1
|
Hartwig B, Schnell M, Suhm MA, Obenchain DA. Weak hydrogen bonding to halogens and chirality communication in propanols: Raman and microwave spectroscopy benchmark theory. Phys Chem Chem Phys 2024; 26:9432-9452. [PMID: 38446207 DOI: 10.1039/d3cp04911f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Constitutional and conformational isomers of bromopropanol are vibrationally and rotationally characterised with parallels drawn to the structural chlorine analogues. A previous microwave spectroscopic study of the chloropropanols is re-examined and all systems are explored by Raman jet spectroscopy. For bromine, the entire nuclear quadrupole coupling tensors are accurately determined and compared to their chlorine counterparts. Tensor asymmetry parameters are determined and linked with the hydrogen bond strength as indicated by the downshift of the OH-stretching frequency. The spectroscopic constants derived from the observed transitions are used as benchmarks for a large variety of electronic structure methods followed by harmonic and anharmonic rovibrational treatments. The CCSD(T) electronic structure calculations provide the best performance, in particular once anharmonic and relativistic corrections are applied or implied. Standard DFT approaches vary substantially with respect to their systematic error cancellation across the investigated species, and cost-effective compromises for the different observables are proposed.
Collapse
Affiliation(s)
- Beppo Hartwig
- Institut für Physikalische Chemie, Tammannstrasse 6, 37077 Göttingen, Germany.
| | - Melanie Schnell
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 1, 24118 Kiel, Germany
| | - Martin A Suhm
- Institut für Physikalische Chemie, Tammannstrasse 6, 37077 Göttingen, Germany.
| | - Daniel A Obenchain
- Institut für Physikalische Chemie, Tammannstrasse 6, 37077 Göttingen, Germany.
| |
Collapse
|
2
|
Zibrowius B, Fischer M. On the Use of Solomon Echoes in 27 Al NMR Studies of Complex Aluminium Hydrides. ChemistryOpen 2024; 13:e202300011. [PMID: 37316892 PMCID: PMC10784626 DOI: 10.1002/open.202300011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/12/2023] [Indexed: 06/16/2023] Open
Abstract
The quadrupole coupling constant CQ and the asymmetry parameter η have been determined for two complex aluminium hydrides from 27 Al NMR spectra recorded for stationary samples by using the Solomon echo sequence. The thus obtained data for KAlH4 (CQ =(1.30±0.02) MHz, η=(0.64±0.02)) and NaAlH4 (CQ =(3.11±0.02) MHz, η<0.01) agree very well with data previously determined from MAS NMR spectra. The accuracy with which these parameters can be determined from static spectra turned out to be at least as good as via the MAS approach. The experimentally determined parameters (δiso , CQ and η) are compared with those obtained from DFT-GIPAW (density functional theory - gauge-including projected augmented wave) calculations. Except for the quadrupole coupling constant for KAlH4 , which is overestimated in the GIPAW calculations by about 30 %, the agreement is excellent. Advantages of the application of the Solomon echo sequence for the measurement of less stable materials or for in situ studies are discussed.
Collapse
Affiliation(s)
| | - Michael Fischer
- Crystallography & Geomaterials Research, Faculty of GeosciencesUniversity of BremenKlagenfurter Straße 2–428359BremenGermany
- Bremen Center for Computational Materials ScienceUniversity of Bremen28359BremenGermany
- MAPEX Center for Materials and ProcessesUniversity of Bremen28359BremenGermany
| |
Collapse
|
3
|
Gordon LW, Wang J, Messinger RJ. Revealing impacts of electrolyte speciation on ionic charge storage in aluminum-quinone batteries by NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 348:107374. [PMID: 36706465 DOI: 10.1016/j.jmr.2023.107374] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Rechargeable aluminum-organic batteries are composed of earth-abundant, sustainable electrode materials while the molecular structures of the organic molecules can be controlled to tune their electrochemical properties. Aluminum metal batteries typically use electrolytes based on chloroaluminate ionic liquids or deep eutectic solvents that are comprised of polyatomic aluminum-containing species. Quinone-based organic electrodes store charge when chloroaluminous cations (AlCl2+) charge compensate their electrochemically reduced carbonyl groups, even when such cations are not natively present in the electrolyte. However, how ion speciation in the electrolyte affects the ion charge storage mechanism, and resultant battery performance, is not well understood. Here, we couple solid-state NMR spectroscopy with electrochemical and computational methods to show for the first time that electrolyte-dependent ion speciation significantly alters the molecular-level environments of the charge-compensating cations, which in turn influences battery properties. Using 1,5-dichloroanthraquinone (DCQ) for the first time as an organic electrode material, we utilize solid-state dipolar-mediated and multiple-quantum NMR experiments to elucidate distinct aluminum coordination environments upon discharge that depend significantly on electrolyte speciation. We relate DFT-calculated NMR parameters to experimentally determined quantities, revealing insights into their origins. The results establish that electrolyte ion speciation impacts the local environments of charge-compensating chloroaluminous cations and is a crucial design parameter for rechargeable aluminum-quinone batteries.
Collapse
Affiliation(s)
- Leo W Gordon
- Department of Chemical Engineering, The City College of New York, CUNY, 160 Convent Ave., New York, NY 10031, USA
| | - Jonah Wang
- Department of Chemical Engineering, The City College of New York, CUNY, 160 Convent Ave., New York, NY 10031, USA
| | - Robert J Messinger
- Department of Chemical Engineering, The City College of New York, CUNY, 160 Convent Ave., New York, NY 10031, USA.
| |
Collapse
|
4
|
Ghasemi Gol A, Akbari J, Khalaj M, Mahmoud Mousavi-Safavi S, Esfahani S, Farahan N. DFT Investigation of a Zn-Doped Carbon Nanocone for the Drug Delivery of Methylated Aspirins. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Walter N, Doppelbauer M, Marx S, Seifert J, Liu X, Pérez-Ríos J, Sartakov BG, Truppe S, Meijer G. Spectroscopic characterization of the a 3Π state of aluminum monofluoride. J Chem Phys 2022; 156:124306. [DOI: 10.1063/5.0082601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Spectroscopic studies of aluminum monofluoride (AlF) have revealed its highly favorable properties for direct laser cooling. All Q lines of the strong A1Π ← X1Σ+ transition around 227 nm are rotationally closed and thereby suitable for the main cooling cycle. The same holds for the narrow, spin-forbidden a3Π ← X1Σ+ transition around 367 nm, which has a recoil limit in the µK range. We here report on the spectroscopic characterization of the lowest rotational levels in the a3Π state of AlF for v = 0–8 using a jet-cooled, pulsed molecular beam. An accidental AC Stark shift is observed on the a3Π0, v = 4 ← X1Σ+, v = 4 band. By using time-delayed ionization for state-selective detection of the molecules in the metastable a3Π state at different points along the molecular beam, the radiative lifetime of the a3Π1, v = 0, J = 1 level is experimentally determined as τ = 1.89 ± 0.15 ms. A laser/radio frequency multiple resonance ionization scheme is employed to determine the hyperfine splittings in the a3Π1, v = 5 level. The experimentally derived hyperfine parameters are compared to the outcome of quantum chemistry calculations. A spectral line with a width of 1.27 kHz is recorded between hyperfine levels in the a3Π, v = 0 state. These measurements benchmark the electronic potential of the a3Π state and yield accurate values for the photon scattering rate and for the elements of the Franck–Condon matrix of the a3Π–X1Σ+ system.
Collapse
Affiliation(s)
- N. Walter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - M. Doppelbauer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - S. Marx
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - J. Seifert
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - X. Liu
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - J. Pérez-Ríos
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - B. G. Sartakov
- Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilovstreet 38, 119991 Moscow, Russia
| | - S. Truppe
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - G. Meijer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
6
|
Rocha CMR, Linnartz H. High-level ab initio quartic force fields and spectroscopic characterization of C 2N . Phys Chem Chem Phys 2021; 23:26227-26240. [PMID: 34787132 DOI: 10.1039/d1cp03505c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While it is now well established that large carbon chain species and radiative electron attachment (REA) are key ingredients triggering interstellar anion chemistry, the role played by smaller molecular anions, for which REA appears to be an unlikely formation pathway, is as yet elusive. Advancing this research undoubtedly requires the knowledge (and modeling) of their astronomical abundances which, for the case of C2N-, is largely hindered by a lack of accurate spectroscopic signatures. In this work, we provide such data for both ground -CCN-(3Σ-) and low-lying c-CNC-(1A1) isomers and their singly-substituted isotopologues by means of state-of-the-art rovibrational quantum chemical techniques. Their quartic force fields are herein calibrated using a high-level composite energy scheme that accounts for extrapolations to both one-particle and (approximate) -particle basis set limits, in addition to relativistic effects, with the final forms being subsequently subject to nuclear motion calculations. Besides standard spectroscopic attributes, the full set of computed properties includes fine and hyperfine interaction constants and can be readily introduced as guesses in conventional experimental data reduction analyses through effective Hamiltonians. On the basis of benchmark calculations performed anew for a minimal test set of prototypical triatomics and limited (low-resolution) experimental data for -CCN-(3Σ-), the target accuracies are determined to be better than 0.1% of experiment for rotational constants and 0.3% for vibrational fundamentals. Apart from laboratory investigations, the results here presented are expected to also prompt future astronomical surveys on C2N-. To this end and using the theoretically-predicted spectroscopic constants, the rotational spectra of both -CCN-(3Σ-) and c-CNC-(1A1) are derived and their likely detectability in the interstellar medium is further explored in connection with working frequency ranges of powerful astronomical facilities. Our best theoretical estimate places c-CNC-(1A1) at about 15.3 kcal mol-1 above the ground-state -CCN-(3Σ-) species.
Collapse
Affiliation(s)
- C M R Rocha
- Laboratory for Astrophysics, Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden, The Netherlands.
| | - H Linnartz
- Laboratory for Astrophysics, Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden, The Netherlands.
| |
Collapse
|