1
|
Poudel H, Wales DJ, Leitner DM. Vibrational Energy Landscapes and Energy Flow in GPCRs. J Phys Chem B 2024; 128:7568-7576. [PMID: 39058920 DOI: 10.1021/acs.jpcb.4c04513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
We construct and analyze disconnectivity graphs to provide the first graphical representation of the vibrational energy landscape of a protein, in this study β2AR, a G-protein coupled receptor (GPCR), in active and inactive states. The graphs, which indicate the relative free energy of each residue and the minimum free energy barriers for energy transfer between them, reveal important composition, structural and dynamic properties that mediate the flow of energy. Prolines and glycines, which contribute to GPCR plasticity and function, are identified as bottlenecks to energy transport along the backbone from which alternative pathways for energy transport via nearby noncovalent contacts emerge, seen also in the analysis of first passage time (FPT) distributions presented here. Striking differences between the disconnectivity graphs and FPT distributions for the inactive and active states of β2AR are found where structural and dynamic changes occur upon activation, contributing to allosteric regulation.
Collapse
Affiliation(s)
- Humanath Poudel
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - David J Wales
- Yusuf Hamied Department of Chemistry, Cambridge University, Cambridge CB2 1EW, U.K
| | - David M Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| |
Collapse
|
2
|
Reid KM, Poudel H, Leitner DM. Dynamics of Hydrogen Bonds between Water and Intrinsically Disordered and Structured Regions of Proteins. J Phys Chem B 2023; 127:7839-7847. [PMID: 37672685 DOI: 10.1021/acs.jpcb.3c03102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Recent studies indicate more restricted dynamics of water around intrinsically disordered proteins (IDPs) than structured proteins. We examine here the dynamics of hydrogen bonds between water molecules and two proteins, small ubiquitin-related modifier-1 (SUMO-1) and ubiquitin-conjugating enzyme E2I (UBC9), which we compare around intrinsically disordered regions (IDRs) and structured regions of these proteins. It has been recognized since some time that excluded volume effects, which influence access of water molecules to hydrogen-bonding sites, and the strength of hydrogen bonds between water and protein affect hydrogen bond lifetimes. While we find those two properties to mediate lifetimes of hydrogen bonds between water and protein residues in this study, we also find that the lifetimes are affected by the concentration of charged groups on other nearby residues. These factors are more important in determining the hydrogen bond lifetimes than whether a residue hydrogen bonding with water belongs to an IDR or to a structured region.
Collapse
Affiliation(s)
- Korey M Reid
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Humanath Poudel
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - David M Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| |
Collapse
|
3
|
Modi T, Campitelli P, Heyden M, Ozkan SB. Correlated Evolution of Low-Frequency Vibrations and Function in Enzymes. J Phys Chem B 2023; 127:616-622. [PMID: 36633931 DOI: 10.1021/acs.jpcb.2c05983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Previous studies of the flexibility of ancestral proteins suggest that proteins evolve their function by altering their native state ensemble. Here, we propose a more direct method to analyze such changes during protein evolution by comparing thermally activated vibrations at frequencies below 6 THz, which report on the dynamics of collective protein modes. We analyzed the backbone vibrational density of states of ancestral and extant β-lactamases and thioredoxins and observed marked changes in the vibrational spectrum in response to evolution. Coupled with previously observed changes in protein flexibility, the observed shifts of vibrational mode densities suggest that protein dynamics and dynamical allostery are critical factors for the evolution of enzymes with specialized catalytic and biophysical properties.
Collapse
Affiliation(s)
- Tushar Modi
- Department of Physics, Arizona State University, Tempe, Arizona85287, United States
| | - Paul Campitelli
- Department of Physics, Arizona State University, Tempe, Arizona85287, United States
| | - Matthias Heyden
- School of Molecular Sciences, Arizona State University, Tempe, Arizona85287, United States
| | - S Banu Ozkan
- Department of Physics, Arizona State University, Tempe, Arizona85287, United States
| |
Collapse
|
4
|
Poudel H, Leitner DM. Locating dynamic contributions to allostery via determining rates of vibrational energy transfer. J Chem Phys 2023; 158:015101. [PMID: 36610954 DOI: 10.1063/5.0132089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Determining rates of energy transfer across non-covalent contacts for different states of a protein can provide information about dynamic and associated entropy changes during transitions between states. We investigate the relationship between rates of energy transfer across polar and nonpolar contacts and contact dynamics for the β2-adrenergic receptor, a rhodopsin-like G-protein coupled receptor, in an antagonist-bound inactive state and agonist-bound active state. From structures sampled during molecular dynamics (MD) simulations, we find the active state to have, on average, a lower packing density, corresponding to generally more flexibility and greater entropy than the inactive state. Energy exchange networks (EENs) are computed for the inactive and active states from the results of the MD simulations. From the EENs, changes in the rates of energy transfer across polar and nonpolar contacts are found for contacts that remain largely intact during activation. Change in dynamics of the contact, and entropy associated with the dynamics, can be estimated from the change in rates of energy transfer across the contacts. Measurement of change in the rates of energy transfer before and after the transition between states thereby provides information about dynamic contributions to activation and allostery.
Collapse
Affiliation(s)
- Humanath Poudel
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| | - David M Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|
5
|
Poudel H, Leitner DM. Energy Transport in Class B GPCRs: Role of Protein-Water Dynamics and Activation. J Phys Chem B 2022; 126:8362-8373. [PMID: 36256609 DOI: 10.1021/acs.jpcb.2c03960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We compute energy exchange networks (EENs) through glucagon-like peptide-1 receptor (GLP-1R), a class B G-protein-coupled receptor (GPCR), in inactive and two active states, one activated by a peptide ligand and the other by a small molecule agonist, from results of molecular dynamics simulations. The reorganized network upon activation contains contributions from structural as well as from dynamic changes and corresponding entropic contributions to the free energy of activation, which are estimated in terms of the change in rates of energy transfer across non-covalent contacts. The role of water in the EENs and in activation of GLP-1R is also investigated. The dynamics of water in contact with the central polar network of the transmembrane region is found to be significantly slower for both activated states compared to the inactive state. This result is consistent with the contribution of water molecules to activation of GLP-1R previously suggested and resembles water dynamics in parts of the transmembrane region found in earlier studies of rhodopsin-like GPCRs.
Collapse
Affiliation(s)
- Humanath Poudel
- Department of Chemistry, University of Nevada, Reno, Nevada89557, United States
| | - David M Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada89557, United States
| |
Collapse
|
6
|
Alvarado YJ, Olivarez Y, Lossada C, Vera-Villalobos J, Paz JL, Vera E, Loroño M, Vivas A, Torres FJ, Jeffreys LN, Hurtado-León ML, González-Paz L. Interaction of the new inhibitor paxlovid (PF-07321332) and ivermectin with the monomer of the main protease SARS-CoV-2: A volumetric study based on molecular dynamics, elastic networks, classical thermodynamics and SPT. Comput Biol Chem 2022; 99:107692. [PMID: 35640480 PMCID: PMC9107165 DOI: 10.1016/j.compbiolchem.2022.107692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 02/04/2023]
Abstract
The COVID-19 pandemic has accelerated the study of drugs, most notably ivermectin and more recently Paxlovid (PF-07321332) which is in phase III clinical trials with experimental data showing covalent binding to the viral protease Mpro. Theoretical developments of catalytic site-directed docking support thermodynamically feasible non-covalent binding to Mpro. Here we show that Paxlovid binds non-covalently at regions other than the catalytic sites with energies stronger than reported and at the same binding site as the ivermectin B1a homologue, all through theoretical methodologies, including blind docking. We volumetrically characterize the non-covalent interaction of the ivermectin homologues (avermectins B1a and B1b) and Paxlovid with the mMpro monomer, through molecular dynamics and scaled particle theory (SPT). Using the fluctuation-dissipation theorem (FDT), we estimated the electric dipole moment fluctuations at the surface of each of complex involved in this study, with similar trends to that observed in the interaction volume. Using fluctuations of the intrinsic volume and the number of flexible fragments of proteins using anisotropic and Gaussian elastic networks (ANM+GNM) suggests the complexes with ivermectin are more dynamic and flexible than the unbound monomer. In contrast, the binding of Paxlovid to mMpro shows that the mMpro-PF complex is the least structurally dynamic of all the species measured in this investigation. The results support a differential molecular mechanism of the ivermectin and PF homologues in the mMpro monomer. Finally, the results showed that Paxlovid despite beingbound in different sites through covalent or non-covalent forms behaves similarly in terms of its structural flexibility and volumetric behaviour.
Collapse
Affiliation(s)
- Ysaias José Alvarado
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Bolivarian Republic of Venezuela.
| | - Yosmari Olivarez
- Universidad del Zulia (LUZ). Facultad Experimental de Ciencias (FEC), Departamento de Quimica, Laboratorio de Electronica Molecular, 4001 Maracaibo, Bolivarian Republic of Venezuela
| | - Carla Lossada
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Bolivarian Republic of Venezuela
| | - Joan Vera-Villalobos
- Facultad de Ciencias Naturales y Matemáticas, Departamento de Química y Ciencias Ambientales, Laboratorio de Análisis Químico Instrumental (LAQUINS), Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - José Luis Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Eddy Vera
- Universidad del Zulia (LUZ). Facultad Experimental de Ciencias (FEC), Departamento de Quimica, Laboratorio de Electronica Molecular, 4001 Maracaibo, Bolivarian Republic of Venezuela
| | - Marcos Loroño
- Departamento Académico de Química Analítica e Instrumental, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Alejandro Vivas
- Universidad del Zulia (LUZ). Facultad Experimental de Ciencias (FEC), Departamento de Quimica, Laboratorio de Electronica Molecular, 4001 Maracaibo, Bolivarian Republic of Venezuela
| | - Fernando Javier Torres
- Grupo de Química Computacional y Teórica (QCT-UR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Grupo de Química Computacional y Teórica (QCT-USFQ), Instituto de Simulación Computacional (ISC-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito (USFQ), Quito, Ecuador
| | - Laura N Jeffreys
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - María Laura Hurtado-León
- Universidad del Zulia (LUZ), Facultad Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio de Genética y Biología Molecular (LGBM), Maracaibo 4001, Zulia, Bolivarian Republic of Venezuela
| | - Lenin González-Paz
- Universidad del Zulia (LUZ), Facultad Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio de Genética y Biología Molecular (LGBM), Maracaibo 4001, Zulia, Bolivarian Republic of Venezuela; Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Estudios Botanicos y Agroforestales, (CEBA), Laboratorio de Proteccion Vegetal, 4001 Maracaibo, Bolivarian Republic of Venezuela.
| |
Collapse
|
7
|
Gnanasekaran R, Xu Y. Understanding the Energetic Components Influencing the Thermodynamic Quantities of Carbonic Anhydrase Protein upon Ligand Binding. ChemistrySelect 2022. [DOI: 10.1002/slct.202200024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Yao Xu
- Warshel Institute for Computational Biology School of Life and Health Sciences The Chinese University of Hong Kong (Shenzhen) Shenzhen 518172 P. R. China
- School of Life Science University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
8
|
Reid KM, Singh AK, Bikash CR, Wei J, Tal-Gan Y, Vinh NQ, Leitner DM. The origin and impact of bound water around intrinsically disordered proteins. Biophys J 2022; 121:540-551. [PMID: 35074392 PMCID: PMC8874019 DOI: 10.1016/j.bpj.2022.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/14/2021] [Accepted: 01/13/2022] [Indexed: 12/29/2022] Open
Abstract
Proteins and water couple dynamically over a wide range of time scales. Motivated by their central role in protein function, protein-water dynamics and thermodynamics have been extensively studied for structured proteins, where correspondence to structural features has been made. However, properties controlling intrinsically disordered protein (IDP)-water dynamics are not yet known. We report results of megahertz-to-terahertz dielectric spectroscopy and molecular dynamics simulations of a group of IDPs with varying charge content along with structured proteins of similar size. Hydration water around IDPs is found to exhibit more heterogeneous rotational and translational dynamics compared with water around structured proteins of similar size, yielding on average more restricted dynamics around individual residues of IDPs, charged or neutral, compared with structured proteins. The on-average slower water dynamics is found to arise from excess tightly bound water in the first hydration layer, which is related to greater exposure to charged groups. The more tightly bound water to IDPs correlates with the smaller hydration shell found experimentally, and affects entropy associated with protein-water interactions, the contribution of which we estimate based on the dielectric measurements and simulations. Water-IDP dynamic coupling at terahertz frequencies is characterized by the dielectric measurements and simulations.
Collapse
Affiliation(s)
- Korey M. Reid
- Department of Chemistry, University of Nevada, Reno, Nevada
| | - Abhishek K. Singh
- Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia
| | | | - Jessica Wei
- Department of Chemistry, University of Nevada, Reno, Nevada
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, Nevada
| | - Nguyen Q. Vinh
- Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia,Corresponding author
| | - David M. Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada,Corresponding author
| |
Collapse
|
9
|
Das J, Thakuri B, MohanKumar K, Roy S, Sljoka A, Sun GQ, Chakraborty A. Mutation-Induced Long-Range Allosteric Interactions in the Spike Protein Determine the Infectivity of SARS-CoV-2 Emerging Variants. ACS OMEGA 2021; 6:31312-31327. [PMID: 34805715 PMCID: PMC8592041 DOI: 10.1021/acsomega.1c05155] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/01/2021] [Indexed: 05/04/2023]
Abstract
The emergence of a variety of highly transmissible SARS-CoV-2 variants, the causative agent of COVID-19, with multiple spike mutations poses serious challenges in overcoming the ongoing deadly pandemic. It is, therefore, essential to understand how these variants gain enhanced ability to evade immune responses with a higher rate of spreading infection. To address this question, here we have individually assessed the effects of SARS-CoV-2 variant-specific spike (S) protein receptor-binding domain (RBD) mutations E484K, K417N, L452Q, L452R, N501Y, and T478K that characterize and differentiate several emerging variants. Despite the hundreds of apparently neutral mutations observed in the domains other than the RBD, we have shown that each RBD mutation site is differentially engaged in an interdomain allosteric network involving mutation sites from a distant domain, affecting interactions with the human receptor angiotensin-converting enzyme-2 (ACE2). This allosteric network couples the residues of the N-terminal domain (NTD) and the RBD, which are modulated by the RBD-specific mutations and are capable of propagating mutation-induced perturbations between these domains through a combination of structural changes and effector-dependent modulations of dynamics. One key feature of this network is the inclusion of compensatory mutations segregated into three characteristically different clusters, where each cluster residue site is allosterically coupled with specific RBD mutation sites. Notably, each RBD mutation acted like a positive allosteric modulator; nevertheless, K417N was shown to have the largest effects among all of the mutations on the allostery and thereby holds the highest binding affinity with ACE2. This result will be useful for designing the targeted control measure and therapeutic efforts aiming at allosteric modulators.
Collapse
Affiliation(s)
- Jayanta
Kumar Das
- Department
of Pediatrics, Johns Hopkins University
School of Medicine, Baltimore, Maryland 21287, United States
| | - Bikash Thakuri
- Department
of Mathematics, Sikkim University, Gangtok, Sikkim 737102, India
| | - Krishnan MohanKumar
- Department
of Pediatrics, Johns Hopkins University
School of Medicine, Baltimore, Maryland 21287, United States
| | - Swarup Roy
- Department
of Computer Applications, Sikkim University, Gangtok, Sikkim 737102, India
| | - Adnan Sljoka
- RIKEN
Center for Advanced Intelligence Project, RIKEN, 1-4-1 Nihombashi, Chuo-ku Tokyo 103-0027, Japan
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Gui-Quan Sun
- Department
of Mathematics, North University of China, Taiyuan, Shanxi 030051, China
- Complex
Systems Research Center, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Amit Chakraborty
- Department
of Mathematics, Sikkim University, Gangtok, Sikkim 737102, India
- , . Phone: +91 9784811895
| |
Collapse
|
10
|
The Electrical and Thermal Transport Properties of La-Doped SrTiO 3 with Sc 2O 3 Composite. MATERIALS 2021; 14:ma14216279. [PMID: 34771803 PMCID: PMC8585205 DOI: 10.3390/ma14216279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022]
Abstract
Donor-doped strontium titanate (SrTiO3) is one of the most promising n-type oxide thermoelectric materials. Routine doping of La at Sr site can change the charge scattering mechanism, and meanwhile can significantly increase the power factor in the temperature range of 423–773 K. In addition, the introduction of Sc partially substitutes Sr, thus further increasing the electron concentration and optimizing the electrical transport properties. Moreover, the excess Sc in the form of Sc2O3 composite suppresses multifrequency phonon transport, leading to low thermal conductivity of κ = 3.78 W·m−1·K−1 at 773 K for sample Sr0.88La0.06Sc0.06TiO3 with the highest doping content. Thus, the thermoelectric performance of SrTiO3 can be significantly enhanced by synergistic optimization of electrical transport and thermal transport properties via cation doping and composite engineering.
Collapse
|
11
|
Poudel H, Leitner DM. Activation-Induced Reorganization of Energy Transport Networks in the β 2 Adrenergic Receptor. J Phys Chem B 2021; 125:6522-6531. [PMID: 34106712 DOI: 10.1021/acs.jpcb.1c03412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We compute energy exchange networks (EENs) through the β2 adrenergic receptor (β2AR), a G-protein coupled receptor (GPCR), in inactive and active states, based on the results of molecular dynamics simulations of this membrane bound protein. We introduce a new definition for the reorganization of EENs upon activation that depends on the relative change in rates of energy transfer across noncovalent contacts throughout the protein. On the basis of the reorganized network that we obtain for β2AR upon activation, we identify a branched pathway between the agonist binding site and the cytoplasmic region, where a G-protein binds to the receptor when activated. The pathway includes all of the motifs containing molecular switches previously identified as contributing to the allosteric transition of β2AR upon agonist binding. EENs and their reorganization upon activation are compared with structure-based contact networks computed for the inactive and active states of β2AR.
Collapse
Affiliation(s)
- Humanath Poudel
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - David M Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| |
Collapse
|
12
|
Di Paola L, Leitner DM. Network models of biological adaptation at the molecular scale: Comment on "Dynamic and thermodynamic models of adaptation" by A.N. Gorban et al. Phys Life Rev 2021; 38:124-126. [PMID: 34090823 DOI: 10.1016/j.plrev.2021.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Luisa Di Paola
- Unit of Chemical-physics Fundamentals in Chemical Engineering, Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, Rome, 00128, Italy.
| | - David M Leitner
- Department of Chemistry and Chemical Physics Program, University of Nevada, Reno, 89557, NV, USA
| |
Collapse
|