1
|
Sangiogo Gil E, Giustini A, Accomasso D, Granucci G. Excitonic Approach for Nonadiabatic Dynamics: Extending Beyond the Frenkel Exciton Model. J Chem Theory Comput 2024; 20:8437-8449. [PMID: 39284746 DOI: 10.1021/acs.jctc.4c00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
We report the formulation and implementation of an extended Frenkel exciton model (EFEM) designed for simulating the dynamics of multichromophoric systems, taking into account the possible presence of interchromophore charge transfer states, as well as other states in which two chromophores are simultaneously excited. Our approach involves constructing a Hamiltonian based on calculations performed on monomers and selected dimers within the multichromophoric aggregate. Nonadiabatic molecular dynamics is addressed using a surface hopping approach, while the electronic wave functions and energies required for constructing the EFEM are computed utilizing the semiempirical floating occupation molecular orbitals-configuration interaction (FOMO-CI) electronic structure method. To validate our approach, we simulate the singlet fission process in a trimer of 2,5-bis(fluorene-9-ylidene)-2,5-dihydrothiophene (ThBF) molecules, embedded in their crystal environment, comparing the results of the EFEM to the standard "supermolecule" approach.
Collapse
Affiliation(s)
- Eduarda Sangiogo Gil
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, A-1090 Vienna, Austria
| | - Andrea Giustini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, 56124 Pisa, Italy
| | - Davide Accomasso
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | - Giovanni Granucci
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
2
|
Dai Y, Rambaldi F, Negri F. Eclipsed and Twisted Excimers of Pyrene and 2-Azapyrene: How Nitrogen Substitution Impacts Excimer Emission. Molecules 2024; 29:507. [PMID: 38276585 PMCID: PMC11154402 DOI: 10.3390/molecules29020507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Due to their unique photophysical and electronic properties, pyrene and its analogues have been the subject of extensive research in recent decades. The propensity of pyrene and its derivatives to form excimers has found wide application in various fields. Nitrogen-substituted pyrene derivatives display similar photophysical properties, but for them, excimer emission has not been reported to date. Here, we use time-dependent density functional theory (TD-DFT) calculations to investigate the low-lying exciton states of dimers of pyrene and 2-azapyrene. The excimer equilibrium structures are determined and the contribution of charge transfer (CT) excitations and intermolecular interactions to the exciton states is disclosed using a diabatization procedure. The study reveals that the dimers formed by the two molecules have quite similar exciton-state patterns, in which the relevant CT contributions govern the formation of excimer states, along with the La/Lb state inversion. In contrast with pyrene, the dipole-dipole interactions in 2-azapyrene stabilize the dark eclipsed excimer structure and increase the barrier for conversion into a bright twisted excimer. It is suggested that these differences in the nitrogen-substituted derivative might influence the excimer emission properties.
Collapse
Affiliation(s)
- Yasi Dai
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (Y.D.); (F.R.)
- Center for Chemical Catalysis—C3, Alma Mater Studiorum—Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Filippo Rambaldi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (Y.D.); (F.R.)
| | - Fabrizia Negri
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (Y.D.); (F.R.)
- Center for Chemical Catalysis—C3, Alma Mater Studiorum—Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Research Unit of Bologna, 40126 Bologna, Italy
| |
Collapse
|
3
|
Dai Y, Calzolari A, Zubiria-Ulacia M, Casanova D, Negri F. Intermolecular Interactions and Charge Resonance Contributions to Triplet and Singlet Exciton States of Oligoacene Aggregates. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010119. [PMID: 36615311 PMCID: PMC9822017 DOI: 10.3390/molecules28010119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
Intermolecular interactions modulate the electro-optical properties of molecular materials and the nature of low-lying exciton states. Molecular materials composed by oligoacenes are extensively investigated for their semiconducting and optoelectronic properties. Here, we analyze the exciton states derived from time-dependent density functional theory (TDDFT) calculations for two oligoacene model aggregates: naphthalene and anthracene dimers. To unravel the role of inter-molecular interactions, a set of diabatic states is selected, chosen to coincide with local (LE) and charge-transfer (CT) excitations within a restricted orbital space including two occupied and two unoccupied orbitals for each molecular monomer. We study energy profiles and disentangle inter-state couplings to disclose the (CT) character of singlet and triplet exciton states and assess the influence of inter-molecular orientation by displacing one molecule with respect to the other along the longitudinal translation coordinate. The analysis shows that (CT) contributions are relevant, although comparably less effective for triplet excitons, and induce a non-negligible mixed character to the low-lying exciton states for eclipsed monomers and for small translational displacements. Such (CT) contributions govern the La/Lb state inversion occurring for the low-lying singlet exciton states of naphthalene dimer and contribute to the switch from H- to J-aggregate type of the strongly allowed Bb transition of both oligoacene aggregates.
Collapse
Affiliation(s)
- Yasi Dai
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, 40126 Bologna, Italy
| | - Alessandro Calzolari
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, 40126 Bologna, Italy
| | - Maria Zubiria-Ulacia
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastian, Euskadi, Spain
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Manuel Lardizabal 3, 20018 Donostia-San Sebastian, Euskadi, Spain
| | - David Casanova
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastian, Euskadi, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Euskadi, Spain
| | - Fabrizia Negri
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, 40126 Bologna, Italy
- INSTM UdR Bologna, 40126 Bologna, Italy
- Correspondence:
| |
Collapse
|
4
|
Luňák S, Weiter M, Vala M. Complete Set of Diketopyrrolopyrrole Centrosymmetrical Cofacial Stacked Pairs. Chemphyschem 2022; 23:e202200252. [PMID: 35770507 DOI: 10.1002/cphc.202200252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/29/2022] [Indexed: 11/12/2022]
Abstract
Stacked centrosymmetrical dimers and simultaneously H-bonded and stacked hexamers of thiophene-substituted diketopyrrolopyrrole (ThDPP) were studied using DFT as models for crystals with slipped-stacked molecules in 1D columns. Eight stacked dimer arrangements were found, six of which are driven by the minimisation of electron repulsion and realised by placing the partially negatively charged atoms of the diketopyrrolopyrrole rings below the centre of an adjancent thiophene ring. Four of these stacks are related to N,N'-diacylated derivative. An analogous set of eight stacks was discovered computationally for phenyl-substituted DPP (PhDPP), four of which are known among H-bonded DPP pigments, and one more among N,N'-dialkylated PhDPP derivatives. The results shed more light on the mechanisms that drive the formation of stacks between nonaromatic (DPP) and aromatic (Th, Ph) rings. The excitation energies of the lowest four singlet states computed by TD DFT enabled excitonic coupling and energy separation between Frenkel-resonsnce-type and charge-transfer states to be established, depending on the equilibrium stack geometry.
Collapse
Affiliation(s)
- Stanislav Luňák
- Brno University of Technology: Vysoke uceni technicke v Brne, Faculty of Chemistry, Purkyňova 464/118, 61200, Brno, CZECH REPUBLIC
| | - Martin Weiter
- Brno University of Technology: Vysoke uceni technicke v Brne, Faculty of Chemistry, Purkyňova 464/118, 61200, Brno, CZECH REPUBLIC
| | - Martin Vala
- Brno University of Technology: Vysoke uceni technicke v Brne, Faculty of Chemistry, Purkyňova 464/118, 61200, Brno, CZECH REPUBLIC
| |
Collapse
|
5
|
Accelerating symmetry-breaking charge separation in a perylenediimide trimer through a vibronically coherent dimer intermediate. Nat Chem 2022; 14:786-793. [PMID: 35469005 DOI: 10.1038/s41557-022-00927-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/10/2022] [Indexed: 11/08/2022]
Abstract
Understanding the photophysics and photochemistry of molecular π-stacked chromophores is important for utilizing them as functional photonic materials. However, these investigations have been mostly limited to covalent molecular dimers, which can only approximate the electronic and vibronic interactions present in the higher oligomers typical of functional organic materials. Here we show that a comparison of the excited-state dynamics of a covalent slip-stacked perylenediimide dimer (2) and trimer (3) provides fundamental insights into electronic state mixing and symmetry-breaking charge separation (SB-CS) beyond the dimer limit. We find that coherent vibronic coupling to high-frequency modes facilitates ultrafast state mixing between the Frenkel exciton (FE) and charge-transfer (CT) states. Subsequently, solvent fluctuations and interchromophore low-frequency vibrations promote CT character in the coherent FE/CT mixed state. The coherent FE/CT mixed state persists in 2, but, in 3, low-frequency vibronic coupling collapses the coherence, resulting in ultrafast SB-CS between the distal perylenediimide units.
Collapse
|
6
|
Impact of Charge-Resonance Excitations on CT-Mediated J-Type Aggregation in Singlet and Triplet Exciton States of Perylene Di-Imide Aggregates: A TDDFT Investigation. COMPUTATION 2022. [DOI: 10.3390/computation10020018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The modulation of intermolecular interactions upon aggregation induces changes in excited state properties of organic molecules that can be detrimental for some optoelectronic applications but can be exploited for others. The time-dependent density functional theory (TDDFT) is a cost-effective approach to determining the exciton states of molecular aggregates, and it has been shown to provide reliable results when coupled with the appropriate choice of the functional. Here we apply a general procedure to analyze the aggregates’ exciton states derived from TDDFT calculations in terms of diabatic states chosen to coincide with local (LE) and charge-transfer (CT) excitations within a restricted orbital space. We apply the approach to study energy profiles, interstate couplings, and the charge-transfer character of singlet and triplet exciton states of perylene di-imide aggregates (PDI). We focus on the intermolecular displacement along the longitudinal translation coordinate, which mimics different amounts of slip-stacking observed in PDI crystals. The analysis, in terms of symmetry-adapted Frenkel excitations (FE) and charge-resonance (CR) states and their interactions, discloses how the interchange of the H/J character for small longitudinal shifts, previously reported for singlet exciton states, also occurs for triplet excitons.
Collapse
|
7
|
Wang K, Xie Z, Luo Z, Ma H. Low-Scaling Excited State Calculation Using the Block Interaction Product State. J Phys Chem Lett 2022; 13:462-470. [PMID: 35015548 DOI: 10.1021/acs.jpclett.1c03445] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We develop an automatic and efficient scheme for the accurate construction of the bases for excitonic models, which can enable "black-box" excited state structure calculations for large molecular systems. These new and optimized bases, which are named the block interaction product state (BIPS), can be expressed as the direct products of the local states for each chromophore. Each chromophore's local states are selected by diagonalization of its reduced density matrix, which is obtained by quantum chemical calculation of the small subsystem composed of the chromophore and its nearest neighbors. We implemented the BIPS framework with fragment-based calculations considering two- and three-body interactions. Test calculations for eight different molecular aggregates demonstrate that this framework provides an accurate description of not only the excitation energies but also the first-order wave function properties (dipole moment and transition dipole moment) of the low-lying excited states at a low-scaling computational cost.
Collapse
Affiliation(s)
- Ke Wang
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Zhaoxuan Xie
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Zhen Luo
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Haibo Ma
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Wilson‐Kovacs RS, Fang X, Hagemann MJL, Symons HE, Faul CFJ. Design and Control of Perylene Supramolecular Polymers through Imide Substitutions. Chemistry 2022; 28:e202103443. [PMID: 34595777 PMCID: PMC9298417 DOI: 10.1002/chem.202103443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 12/13/2022]
Abstract
The number and type of new supramolecular polymer (SMP) systems have increased rapidly in recent years. Some of the key challenges faced for these novel systems include gaining full control over the mode of self-assembly, the creation of novel architectures and exploring functionality. Here, we provide a critical overview of approaches related to perylene-based SMPs and discuss progress to exert control over these potentially important SMPs through chemical modification of the imide substituents. Imide substitutions affect self-assembly behaviour orthogonally to the intrinsic optoelectronic properties of the perylene core, making for a valuable approach to tune SMP properties. Several recent approaches are therefore highlighted, with a focus on controlling 1) morphology, 2) H- or J- aggregation, and 3) mechanism of growth and degree of aggregation using thermodynamic and kinetic control. Areas of potential future exploration and application of these functional SMPs are also explored.
Collapse
Affiliation(s)
| | - Xue Fang
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | | - Henry E. Symons
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Charl F. J. Faul
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| |
Collapse
|
9
|
Pauk K, Luňák S, Růžička A, Marková A, Teichmanová K, Mausová A, Kratochvíl M, Smolka R, Mikysek T, Weiter M, Imramovský A, Vala M. Colour-tuneable solid-state fluorescence of crystalline powders formed from push–pull substituted 2,5-diphenyl-stilbenes. RSC Adv 2022; 12:34797-34807. [DOI: 10.1039/d2ra05593g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Polycrystalline powders of push–pull substituted stilbenes with various acceptors emit from blue to infrared. Exciton localization on a monomer (in J-like packing) or a stacked dimer (for H-aggregates) avoid exciton migration to the quenching sites.
Collapse
Affiliation(s)
- Karel Pauk
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 95, Pardubice CZ-530 09, Czech Republic
| | - Stanislav Luňák
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Brno CZ-612 00, Czech Republic
| | - Aleš Růžička
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice CZ-532 10, Czech Republic
| | - Aneta Marková
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Brno CZ-612 00, Czech Republic
| | - Kateřina Teichmanová
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 95, Pardubice CZ-530 09, Czech Republic
| | - Anna Mausová
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 95, Pardubice CZ-530 09, Czech Republic
| | - Matouš Kratochvíl
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Brno CZ-612 00, Czech Republic
| | - Rastislav Smolka
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Brno CZ-612 00, Czech Republic
| | - Tomáš Mikysek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice CZ-532 10, Czech Republic
| | - Martin Weiter
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Brno CZ-612 00, Czech Republic
| | - Aleš Imramovský
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 95, Pardubice CZ-530 09, Czech Republic
| | - Martin Vala
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Brno CZ-612 00, Czech Republic
| |
Collapse
|
10
|
Liu YH, Wang K, Ma HB. Evaluating first-order molecular properties of delocalized ionic or excited states in molecular aggregates by renormalized excitonic method. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2108133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yun-hao Liu
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Ke Wang
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Hai-bo Ma
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| |
Collapse
|