1
|
Sverrisdóttir S, Faulstich FM. Exploring Ground and Excited States Via Single Reference Coupled-Cluster Theory and Algebraic Geometry. J Chem Theory Comput 2024; 20:8517-8528. [PMID: 39288220 PMCID: PMC11465470 DOI: 10.1021/acs.jctc.4c00644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
The exploration of the root structure of coupled cluster (CC) equations holds both foundational and practical significance for computational quantum chemistry. This study provides insight into the intricate root structures of these nonlinear equations at both the CCD and CCSD level of theory. We utilize computational techniques from algebraic geometry, specifically the monodromy and parametric homotopy continuation methods, to calculate the full solution set. We compare the computed CC roots against various established theoretical upper bounds, shedding light on the accuracy and efficiency of these bounds. We hereby focus on the dissociation processes of four-electron systems such as (H2)2 in both D2h and D∞h configurations, H4 symmetrically distorted on a circle, and lithium hydride. We moreover investigate the ability of single-reference CC solutions to approximate excited state energies. We find that multiple CC roots describe energies of excited states with high accuracy. Our investigations reveal that for systems like lithium hydride, CC not only provides high-accuracy approximations to several excited state energies but also to the states themselves.
Collapse
Affiliation(s)
- Svala Sverrisdóttir
- Department
of Mathematics, The University of California, Berkeley, California 94720, United States
| | - Fabian M. Faulstich
- Department
of Mathematics, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
2
|
Alcoba DR, Lain L, Torre A, Ayala TR, Oña OB, Massaccesi GE, Peralta JE, Melo JI. Generalized Spin in the Variance-Based Wave Function Optimization Method within the Doubly Occupied Configuration Interaction Framework. J Phys Chem A 2024; 128:7277-7283. [PMID: 39140833 DOI: 10.1021/acs.jpca.4c02742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In this work, we implement a generalized spin formulation of the doubly occupied configuration interaction methodology using the energy variance of the N-electron Hamiltonian. We perform the optimization of the N-electron wave functions and calculate their corresponding energies, using a unified variational treatment for ground and excited states based on the energy variance, which allows us to describe the entire energy spectra on an equal footing. We analyze the effects produced by the breakdown of the Ŝ2 and Ŝz symmetries in the spectra of model hydrogenic clusters in terms of energies and spin-related quantities, arising from the restricted, unrestricted, and generalized spin methods. The results are compared with other related methods as well as full configuration interaction.
Collapse
Affiliation(s)
- Diego R Alcoba
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Ciudad Universitaria, 1428 Buenos Aires, Argentina
- CONICET─Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Luis Lain
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao, Spain
| | - Alicia Torre
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao, Spain
| | - Tomás R Ayala
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Ofelia B Oña
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Diag. 113 y 64 (S/N), Sucursal 4, CC 16, 1900 La Plata, Argentina
| | - Gustavo E Massaccesi
- Departamento de Ciencias Exactas, Ciclo Básico Común, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
- Instituto de Investigaciones Matemáticas "Luis A. Santaló" (IMAS), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Juan E Peralta
- Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Juan I Melo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Ciudad Universitaria, 1428 Buenos Aires, Argentina
- CONICET─Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Ciudad Universitaria, 1428 Buenos Aires, Argentina
| |
Collapse
|
3
|
Windom ZW, Claudino D, Bartlett RJ. An Attractive Way to Correct for Missing Singles Excitations in Unitary Coupled Cluster Doubles Theory. J Phys Chem A 2024; 128:7036-7045. [PMID: 39114900 DOI: 10.1021/acs.jpca.4c03935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Coupled cluster methods based exclusively on double excitations are comparatively "cheap" and interesting model chemistries, as they are typically able to capture the bulk of the dynamic electron correlation effects. The trade-off in such approximations is that the effect of neglected excitations, particularly single excitations, can be considerable. Using standard and electron-pair-restricted T2 operators to define two flavors of unitary coupled cluster doubles (UCCD) methods, we investigate the extent to which missing single excitations can be recovered from low-order corrections in many-body perturbation theory (MBPT) within the unitary coupled cluster (UCC) formalism. Our analysis includes the derivations of finite-order UCC energy functionals, which are used as a basis to define perturbative estimates of missed single excitations. This leads to the novel UCCD[4S] and UCCD[6S] methods, which consider energy corrections for missing single excitations through fourth- and sixth-order in MBPT, respectively. We also apply the same methodology to the electron-pair-restricted ansatz, but the improvements are only marginal. Our findings show that augmenting UCCD with these post hoc perturbative corrections can lead to UCCSD-quality results.
Collapse
Affiliation(s)
- Zachary W Windom
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
- Quantum Information Science Section, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Daniel Claudino
- Quantum Information Science Section, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Rodney J Bartlett
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
4
|
Johnson PA. Beyond a Richardson-Gaudin Mean-Field: Slater-Condon Rules and Perturbation Theory. J Phys Chem A 2024; 128:6033-6045. [PMID: 39007410 DOI: 10.1021/acs.jpca.4c02857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Richardson-Gaudin states provide a basis of the Hilbert space for strongly correlated electrons. In this study, optimal expressions for the transition density matrix elements between Richardson-Gaudin states are obtained with a cost comparable with the corresponding reduced density matrix elements. Analogues of the Slater-Condon rules are identified based on the number of near-zero singular values of the RG state overlap matrix. Finally, a perturbative approach is shown to be close in quality to a configuration interaction of Richardson-Gaudin states while being feasible to compute.
Collapse
Affiliation(s)
- Paul A Johnson
- Département de Chimie, Université Laval, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
5
|
Gałyńska M, Boguslawski K. Benchmarking Ionization Potentials from pCCD Tailored Coupled Cluster Models. J Chem Theory Comput 2024; 20:4182-4195. [PMID: 38752491 PMCID: PMC11137826 DOI: 10.1021/acs.jctc.4c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
The ionization potential (IP) is an important parameter providing essential insights into the reactivity of chemical systems. IPs are also crucial for designing, optimizing, and understanding the functionality of modern technological devices. We recently showed that limiting the CC ansatz to the seniority-zero sector proves insufficient in predicting reliable and accurate ionization potentials within an IP equation-of-motion coupled-cluster formalism. Specifically, the absence of dynamical correlation in the seniority-zero pair coupled cluster doubles (pCCD) model led to unacceptably significant errors of approximately 1.5 eV. In this work, we aim to explore the impact of dynamical correlation and the choice of the molecular orbital basis (canonical vs localized) in CC-type methods targeting 230 ionized states in 70 molecules, comprising small organic molecules, medium-sized organic acceptors, and nucleobases. We focus on pCCD-based approaches as well as the conventional IP-EOM-CCD and IP-EOM-CCSD. Their performance is compared to the CCSD(T) or CCSDT equivalent and experimental reference data. Our statistical analysis reveals that all investigated frozen-pair coupled cluster methods exhibit similar performance, with differences in errors typically within chemical accuracy (1 kcal/mol or 0.05 eV). Notably, the effect of the molecular orbital basis, such as canonical Hartree-Fock or natural pCCD-optimized orbitals, on the IPs is marginal if dynamical correlation is accounted for. Our study suggests that triple excitations are crucial in achieving chemical accuracy in IPs when modeling electron detachment processes with pCCD-based methods.
Collapse
Affiliation(s)
- Marta Gałyńska
- Institute of Physics, Faculty of Physics,
Astronomy, and Informatics, Nicolaus Copernicus
University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Katharina Boguslawski
- Institute of Physics, Faculty of Physics,
Astronomy, and Informatics, Nicolaus Copernicus
University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| |
Collapse
|
6
|
Damour Y, Scemama A, Jacquemin D, Kossoski F, Loos PF. State-Specific Coupled-Cluster Methods for Excited States. J Chem Theory Comput 2024; 20:4129-4145. [PMID: 38749498 PMCID: PMC11137840 DOI: 10.1021/acs.jctc.4c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 05/29/2024]
Abstract
We reexamine ΔCCSD, a state-specific coupled-cluster (CC) with single and double excitations (CCSD) approach that targets excited states through the utilization of non-Aufbau determinants. This methodology is particularly efficient when dealing with doubly excited states, a domain in which the standard equation-of-motion CCSD (EOM-CCSD) formalism falls short. Our goal here to evaluate the effectiveness of ΔCCSD when applied to other types of excited states, comparing its consistency and accuracy with EOM-CCSD. To this end, we report a benchmark on excitation energies computed with the ΔCCSD and EOM-CCSD methods for a set of molecular excited-state energies that encompasses not only doubly excited states but also doublet-doublet transitions and (singlet and triplet) singly excited states of closed-shell systems. In the latter case, we rely on a minimalist version of multireference CC known as the two-determinant CCSD method to compute the excited states. Our data set, consisting of 276 excited states stemming from the quest database [Véril et al., WIREs Comput. Mol. Sci. 2021, 11, e1517], provides a significant base to draw general conclusions concerning the accuracy of ΔCCSD. Except for the doubly excited states, we found that ΔCCSD underperforms EOM-CCSD. For doublet-doublet transitions, the difference between the mean absolute errors (MAEs) of the two methodologies (of 0.10 and 0.07 eV) is less pronounced than that obtained for singly excited states of closed-shell systems (MAEs of 0.15 and 0.08 eV). This discrepancy is largely attributed to a greater number of excited states in the latter set exhibiting multiconfigurational characters, which are more challenging for ΔCCSD. We also found typically small improvements by employing state-specific optimized orbitals.
Collapse
Affiliation(s)
- Yann Damour
- Laboratoire
de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Anthony Scemama
- Laboratoire
de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Denis Jacquemin
- Nantes
Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut
Universitaire de France (IUF), F-75005 Paris, France
| | - Fábris Kossoski
- Laboratoire
de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Pierre-François Loos
- Laboratoire
de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| |
Collapse
|
7
|
Tuckman H, Neuscamman E. Aufbau Suppressed Coupled Cluster Theory for Electronically Excited States. J Chem Theory Comput 2024; 20:2761-2773. [PMID: 38502102 DOI: 10.1021/acs.jctc.3c01285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
We introduce an approach to improve single-reference coupled cluster theory in settings where the Aufbau determinant is absent from or plays only a small role in the true wave function. Using a de-excitation operator that can be efficiently hidden within a similarity transform, we create a coupled cluster wave function in which de-excitations work to suppress the Aufbau determinant and produce wave functions dominated by other determinants. Thanks to an invertible and fully exponential form, the approach is systematically improvable, size consistent, size extensive, and, interestingly, size intensive in a granular way that should make the adoption of some ground state techniques, such as local correlation, relatively straightforward. In this initial study, we apply the general formalism to create a state-specific method for orbital-relaxed, singly excited states. We find that this approach matches the accuracy of similar-cost equation-of-motion methods in valence excitations while offering improved accuracy for charge transfer states. We also find the approach to be more accurate than excited-state-specific perturbation theory in both types of states.
Collapse
Affiliation(s)
- Harrison Tuckman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Eric Neuscamman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Schraivogel T, Kats D. Two determinant distinguishable cluster. J Chem Phys 2024; 160:124109. [PMID: 38526108 DOI: 10.1063/5.0199274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
A two reference determinant version of the distinguishable cluster with singles and doubles (DCSD) has been developed. We have implemented the two determinant distinguishable cluster (2D-DCSD) and the corresponding traditional 2D-CCSD method in a new open-source package written in Julia called ElemCo.jl. The methods were benchmarked on singlet and triplet excited states of valence and Rydberg character, as well as for singlet-triplet gaps of diradicals. It is demonstrated that the distinguishable cluster approximation improves the accuracy of 2D-CCSD.
Collapse
Affiliation(s)
- Thomas Schraivogel
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Daniel Kats
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| |
Collapse
|
9
|
Johnson PA, DePrince AE. Single Reference Treatment of Strongly Correlated H 4 and H 10 Isomers with Richardson-Gaudin States. J Chem Theory Comput 2023; 19:8129-8146. [PMID: 37955440 DOI: 10.1021/acs.jctc.3c00807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Richardson-Gaudin (RG) states are employed as a variational wave function ansatz for strongly correlated isomers of H4 and H10. In each case, a single RG state describes the seniority-zero sector quite well. Simple natural orbital functionals offer a cheap and reasonable approximation of the outstanding weak correlation in the seniority-zero sector, while systematic improvement is achieved by performing a configuration interaction in terms of RG states.
Collapse
Affiliation(s)
| | - A Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
10
|
Kossoski F, Loos PF. Seniority and Hierarchy Configuration Interaction for Radicals and Excited States. J Chem Theory Comput 2023. [PMID: 37965728 DOI: 10.1021/acs.jctc.3c00946] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Hierarchy configuration interaction (hCI) has recently been introduced as an alternative configuration interaction (CI) route combining excitation degree and seniority number and has been shown to efficiently recover both dynamic and static correlations for closed-shell molecular systems [ J. Phys. Chem. Lett. 2022, 13, 4342]. Here we generalize hCI for an arbitrary reference determinant, allowing calculations for radicals and excited states in a state-specific way. We gauge this route against excitation-based CI (eCI) and seniority-based CI (sCI) by evaluating how different ground-state properties of radicals converge to the full CI limit. We find that hCI outperforms or matches eCI, whereas sCI is far less accurate, in line with previous observations for closed-shell molecules. Employing second-order Epstein-Nesbet (EN2) perturbation theory as a correction significantly accelerates the convergence of hCI and eCI. We further explore various hCI and sCI models to calculate the excitation energies of closed- and open-shell systems. Our results underline that the choice of both the reference determinant and the set of orbitals drives the fine balance between correlation of ground and excited states. State-specific hCI2 and higher-order models perform similarly to their eCI counterparts, whereas lower orders of hCI deliver poor results unless supplemented by the EN2 correction, which substantially improves their accuracy. In turn, sCI1 produces decent excitation energies for radicals, encouraging the development of related seniority-based coupled-cluster methods.
Collapse
Affiliation(s)
- Fábris Kossoski
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| |
Collapse
|
11
|
Tuckman H, Neuscamman E. Excited-State-Specific Pseudoprojected Coupled-Cluster Theory. J Chem Theory Comput 2023; 19:6160-6171. [PMID: 37676752 DOI: 10.1021/acs.jctc.3c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
We present an excited-state-specific coupled-cluster approach in which both the molecular orbitals and cluster amplitudes are optimized for an individual excited state. The theory is formulated via a pseudoprojection of the traditional coupled-cluster wavefunction that allows correlation effects to be introduced atop an excited-state mean field starting point. The approach shares much in common with ground-state CCSD, including size extensivity and an N6 cost scaling. Preliminary numerical tests show that, when augmented with N5 cost perturbative corrections for key terms, the method can improve over excited-state-specific second-order perturbation theory in valence, charge transfer, and Rydberg states.
Collapse
Affiliation(s)
- Harrison Tuckman
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Eric Neuscamman
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
12
|
Mamache S, Gałyńska M, Boguslawski K. Benchmarking ionization potentials using the simple pCCD model. Phys Chem Chem Phys 2023. [PMID: 37378457 DOI: 10.1039/d3cp01963b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The electron-detachment energy is measured by the ionization potential (IP). As a result, it is a fundamental, observable and important molecular electronic signature in photoelectron spectroscopy. A precise theoretical prediction of electron-detachment energies or ionization potentials is essential for organic optoelectronic systems like transistors, solar cells, or light-emitting diodes. In this work, we benchmark the performance of the recently presented IP variant of the equation-of-motion pair coupled cluster doubles (IP-EOM-pCCD) model to determine IPs. Specifically, the predicted ionization energies are compared to experimental results and higher-order coupled cluster theories based on statistically assessing 201 electron-detached states of 41 organic molecules for three different molecular orbital basis sets and two sets of particle-hole operators. While IP-EOM-pCCD features a reasonable spread and skewness of ionization energies, its mean error and standard deviation differ by up to 1.5 eV from reference data. Our study, thus, highlights the importance of dynamical correlation to reliably predict IPs from a pCCD reference function in small organic molecules.
Collapse
Affiliation(s)
- Saddem Mamache
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland.
| | - Marta Gałyńska
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland.
| | - Katharina Boguslawski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland.
| |
Collapse
|
13
|
Marie A, Burton HGA. Excited States, Symmetry Breaking, and Unphysical Solutions in State-Specific CASSCF Theory. J Phys Chem A 2023; 127:4538-4552. [PMID: 37141564 DOI: 10.1021/acs.jpca.3c00603] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
State-specific electronic structure theory provides a route toward balanced excited-state wave functions by exploiting higher-energy stationary points of the electronic energy. Multiconfigurational wave function approximations can describe both closed- and open-shell excited states and avoid the issues associated with state-averaged approaches. We investigate the existence of higher-energy solutions in complete active space self-consistent field (CASSCF) theory and characterize their topological properties. We demonstrate that state-specific approximations can provide accurate higher-energy excited states in H2 (6-31G) with more compact active spaces than would be required in a state-averaged formalism. We then elucidate the unphysical stationary points, demonstrating that they arise from redundant orbitals when the active space is too large or symmetry breaking when the active space is too small. Furthermore, we investigate the singlet-triplet crossing in CH2 (6-31G) and the avoided crossing in LiF (6-31G), revealing the severity of root flipping and demonstrating that state-specific solutions can behave quasi-diabatically or adiabatically. These results elucidate the complexity of the CASSCF energy landscape, highlighting the advantages and challenges of practical state-specific calculations.
Collapse
Affiliation(s)
- Antoine Marie
- Physical and Theoretical Chemical Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K
| | - Hugh G A Burton
- Physical and Theoretical Chemical Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K
| |
Collapse
|
14
|
Kossoski F, Loos PF. State-Specific Configuration Interaction for Excited States. J Chem Theory Comput 2023; 19:2258-2269. [PMID: 37024102 PMCID: PMC10134430 DOI: 10.1021/acs.jctc.3c00057] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
We introduce and benchmark a systematically improvable route for excited-state calculations, labeled state-specific configuration interaction (ΔCI), which is a particular realization of multiconfigurational self-consistent field and multireference configuration interaction. Starting with a reference built from optimized configuration state functions, separate CI calculations are performed for each targeted state (hence, state-specific orbitals and determinants). Accounting for single and double excitations produces the ΔCISD model, which can be improved with second-order Epstein-Nesbet perturbation theory (ΔCISD+EN2) or a posteriori Davidson corrections (ΔCISD+Q). These models were gauged against a vast and diverse set of 294 reference excitation energies. We have found that ΔCI is significantly more accurate than standard ground-state-based CI, whereas close performances were found between ΔCISD and EOM-CC2 and between ΔCISD+EN2 and EOM-CCSD. For larger systems, ΔCISD+Q delivers more accurate results than EOM-CC2 and EOM-CCSD. The ΔCI route can handle challenging multireference problems, singly and doubly excited states, from closed- and open-shell species, with overall comparable accuracy and thus represents a promising alternative to more established methodologies. In its current form, however, it is reliable only for relatively low-lying excited states.
Collapse
Affiliation(s)
- Fábris Kossoski
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
15
|
Rishi V, Ravi M, Perera A, Bartlett RJ. Dark Doubly Excited States with Modified Coupled Cluster Models: A Reliable Compromise between Cost and Accuracy? J Phys Chem A 2023; 127:828-834. [PMID: 36640093 DOI: 10.1021/acs.jpca.2c07697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
To treat doubly excited states, the treatment of triple excitations is considered necessary in the framework of equation-of-motion coupled cluster (EOM-CC) methods. We investigate models without explicit triples and seek quantitative measure for the performance of EOM based on CC with singles and doubles (CCSD) or modified CCSD (Distinguishable Cluster Approximation) approaches for states with predominant double excitation character. We also test the efficacy of including triples in perturbative manner through EOM-CCSD(T) and in an iterative way through EOM-CCSDT-3 method. Extended similarity transformed EOM-CCSD(EXT-STEOM-CCSD) method is also tested and provides superior quality results at comparatively low cost. We use the QUEST2 benchmark set of double excitations proposed by Loos et al. [ J. Chem. Theory Comput.2019, 15, 1939] to investigate the performance of methods such as EOM-CCSD, EOM-DCSD, EXT-STEOM-CCSD, ΔCCSD, and ΔDCSD. We also test a tailored CC approach, ΔpairCCD-TCCSD.
Collapse
Affiliation(s)
- Varun Rishi
- Quantum Theory Project, University of Florida, Gainesville, Florida32611, United States
| | - Moneesha Ravi
- Quantum Theory Project, University of Florida, Gainesville, Florida32611, United States
| | - Ajith Perera
- Quantum Theory Project, University of Florida, Gainesville, Florida32611, United States
| | - Rodney J Bartlett
- Quantum Theory Project, University of Florida, Gainesville, Florida32611, United States
| |
Collapse
|
16
|
Convergence of Møller–Plesset perturbation theory for excited reference states. ADVANCES IN QUANTUM CHEMISTRY 2023. [DOI: 10.1016/bs.aiq.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
17
|
Quintero-Monsebaiz R, Monino E, Marie A, Loos PF. Connections between many-body perturbation and coupled-cluster theories. J Chem Phys 2022; 157:231102. [PMID: 36550046 DOI: 10.1063/5.0130837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Here, we build on the works of Scuseria et al. [J. Chem. Phys. 129, 231101 (2008)] and Berkelbach [J. Chem. Phys. 149, 041103 (2018)] to show connections between the Bethe-Salpeter equation (BSE) formalism combined with the GW approximation from many-body perturbation theory and coupled-cluster (CC) theory at the ground- and excited-state levels. In particular, we show how to recast the GW and Bethe-Salpeter equations as non-linear CC-like equations. Similitudes between BSE@GW and the similarity-transformed equation-of-motion CC method are also put forward. The present work allows us to easily transfer key developments and the general knowledge gathered in CC theory to many-body perturbation theory. In particular, it may provide a path for the computation of ground- and excited-state properties (such as nuclear gradients) within the GW and BSE frameworks.
Collapse
Affiliation(s)
- Raúl Quintero-Monsebaiz
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Enzo Monino
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Antoine Marie
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
18
|
Faribault A, Dimo C, Moisset JD, Johnson PA. Reduced density matrices/static correlation functions of Richardson–Gaudin states without rapidities. J Chem Phys 2022; 157:214104. [DOI: 10.1063/5.0123911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Seniority-zero geminal wavefunctions are known to capture bond-breaking correlation. Among this class of wavefunctions, Richardson–Gaudin states stand out as they are eigenvectors of a model Hamiltonian. This provides a clear physical picture, clean expressions for reduced density matrix (RDM) elements, and systematic improvement (with a complete set of eigenvectors). Known expressions for the RDM elements require the computation of rapidities, which are obtained by first solving for the so-called eigenvalue based variables (EBV) and then root-finding a Lagrange interpolation polynomial. In this paper, we obtain expressions for the RDM elements directly in terms of the EBV. The final expressions can be computed at the same cost as the rapidity expressions. Therefore, except, in particular, circumstances, it is entirely unnecessary to compute rapidities at all. The RDM elements require numerically inverting a matrix, and while this is usually undesirable, we demonstrate that it is stable, except when there is degeneracy in the single-particle energies. In such cases, a different construction would be required.
Collapse
Affiliation(s)
| | - Claude Dimo
- Physics Department and Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | | | - Paul A. Johnson
- Département de Chimie, Université Laval, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
19
|
Hanscam R, Neuscamman E. Applying Generalized Variational Principles to Excited-State-Specific Complete Active Space Self-consistent Field Theory. J Chem Theory Comput 2022; 18:6608-6621. [PMID: 36215108 DOI: 10.1021/acs.jctc.2c00639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We employ a generalized variational principle to improve the stability, reliability, and precision of fully excited-state-specific complete active space self-consistent field theory. Compared to previous approaches that similarly seek to tailor this ansatz's orbitals and configuration interaction expansion for an individual excited state, we find the present approach to be more resistant to root flipping and better at achieving tight convergence to an energy stationary point. Unlike state-averaging, this approach allows orbital shapes to be optimal for individual excited states, which is especially important for charge-transfer states and some doubly excited states. We demonstrate the convergence and state-targeting abilities of this method in LiH, ozone, and MgO, showing in the latter that it is capable of finding three excited-state energy stationary points that no previous method has been able to locate.
Collapse
Affiliation(s)
- Rebecca Hanscam
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Eric Neuscamman
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
20
|
Tecmer P, Boguslawski K. Geminal-based electronic structure methods in quantum chemistry. Toward a geminal model chemistry. Phys Chem Chem Phys 2022; 24:23026-23048. [PMID: 36149376 DOI: 10.1039/d2cp02528k] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this review, we discuss the recent progress in developing geminal-based theories for challenging problems in quantum chemistry. Specifically, we focus on the antisymmetrized geminal power, generalized valence bond, antisymmetrized product of strongly orthogonal geminals, singlet-type orthogonal geminals, the antisymmetric product of 1-reference orbital geminal, also known as the pair coupled cluster doubles ansatz, and geminals constructed from Richardson-Gaudin states. Furthermore, we review various corrections to account for the missing dynamical correlation effects in geminal models and possible extensions to target electronically excited states and open-shell species. Finally, we discuss some numerical examples and present-day challenges for geminal-based models, including a quantitative and qualitative analysis of wave functions, and software availability.
Collapse
Affiliation(s)
- Paweł Tecmer
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland.
| | - Katharina Boguslawski
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland.
| |
Collapse
|
21
|
Surján PR, Simon K, Szabados Á. Stability analysis of the Lippmann–Schwinger equation. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2091053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Péter R. Surján
- Laboratory of Theoretical Chemistry, Loránd Eötvös University, Budapest, Hungary
| | - Kevin Simon
- Laboratory of Theoretical Chemistry, Loránd Eötvös University, Budapest, Hungary
| | - Á. Szabados
- Laboratory of Theoretical Chemistry, Loránd Eötvös University, Budapest, Hungary
| |
Collapse
|
22
|
Moisset JD, Fecteau CÉ, Johnson PA. Density matrices of seniority-zero geminal wavefunctions. J Chem Phys 2022; 156:214110. [DOI: 10.1063/5.0088602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Scalar products and density matrix elements of closed-shell pair geminal wavefunctions are evaluated directly in terms of the pair amplitudes, resulting in an analog of Wick’s theorem for fermions or bosons. This expression is, in general, intractable, but it is shown how it becomes feasible in three distinct ways for Richardson–Gaudin (RG) states, the antisymmetrized geminal power, and the antisymmetrized product of strongly orthogonal geminals. Dissociation curves for hydrogen chains are computed with off-shell RG states and the antisymmetrized product of interacting geminals. Both are near exact, suggesting that the incorrect results observed with ground state RG states (a local maximum rather than smooth dissociation) may be fixable using a different RG state.
Collapse
Affiliation(s)
| | | | - Paul A. Johnson
- Département de Chimie, Université Laval, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
23
|
Fecteau CÉ, Cloutier S, Moisset JD, Boulay J, Bultinck P, Faribault A, Johnson PA. Near-exact treatment of seniority-zero ground and excited states with a Richardson-Gaudin mean-field. J Chem Phys 2022; 156:194103. [PMID: 35597662 DOI: 10.1063/5.0091338] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Eigenvectors of the reduced Bardeen-Cooper-Schrieffer (BCS) Hamiltonian, Richardson-Gaudin (RG) states, are used as a variational wavefunction ansatz for strongly correlated electronic systems. These states are geminal products whose coefficients are solutions of non-linear equations. Previous results showed an un-physical apparent avoided crossing in ground state dissociation curves for hydrogen chains. In this paper, it is shown that each seniority-zero state of the molecular Coulomb Hamiltonian corresponds directly to an RG state. However, the seniority-zero ground state does not correspond to the ground state of a reduced BCS Hamiltonian. The difficulty is in choosing the correct RG state. The systems studied showed a clear choice, and we expect that it should always be possible to reason physically which state to choose.
Collapse
Affiliation(s)
- Charles-Émile Fecteau
- Département de chimie, Université Laval, 1045 Avenue de la Médecine, bureau 1220, Québec, Québec G1V 0A6, Canada
| | - Samuel Cloutier
- Département de chimie, Université Laval, 1045 Avenue de la Médecine, bureau 1220, Québec, Québec G1V 0A6, Canada
| | - Jean-David Moisset
- Département de chimie, Université Laval, 1045 Avenue de la Médecine, bureau 1220, Québec, Québec G1V 0A6, Canada
| | - Jérémy Boulay
- Département de chimie, Université Laval, 1045 Avenue de la Médecine, bureau 1220, Québec, Québec G1V 0A6, Canada
| | - Patrick Bultinck
- Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan 281 S3, B-9000 Ghent, Belgium
| | | | - Paul A Johnson
- Département de chimie, Université Laval, 1045 Avenue de la Médecine, bureau 1220, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
24
|
Kossoski F, Damour Y, Loos PF. Hierarchy Configuration Interaction: Combining Seniority Number and Excitation Degree. J Phys Chem Lett 2022; 13:4342-4349. [PMID: 35537704 PMCID: PMC9125689 DOI: 10.1021/acs.jpclett.2c00730] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
We propose a novel partitioning of the Hilbert space, hierarchy configuration interaction (hCI), where the excitation degree (with respect to a given reference determinant) and the seniority number (i.e., the number of unpaired electrons) are combined in a single hierarchy parameter. The key appealing feature of hCI is that each hierarchy level accounts for all classes of determinants whose number shares the same scaling with system size. By surveying the dissociation of multiple molecular systems, we found that the overall performance of hCI usually exceeds or, at least, parallels that of excitation-based CI. For higher orders of hCI and excitation-based CI, the additional computational burden related to orbital optimization usually does not compensate the marginal improvements compared with results obtained with Hartree-Fock orbitals. The exception is orbital-optimized CI with single excitations, a minimally correlated model displaying the qualitatively correct description of single bond breaking at a very modest computational cost.
Collapse
Affiliation(s)
- Fábris Kossoski
- Laboratoire
de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Yann Damour
- Laboratoire
de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Pierre-François Loos
- Laboratoire
de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
25
|
Magoulas I, Shen J, Piecuch P. Addressing strong correlation by approximate coupled-pair methods with active-space and full treatments of three-body clusters. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2057365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ilias Magoulas
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Jun Shen
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Piotr Piecuch
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
26
|
Johnson PA, Ayers PW, Baerdemacker SD, Limacher PA, Neck DV. Bivariational Principle for an Antisymmetrized Product of Nonorthogonal Geminals Appropriate for Strong Electron Correlation. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Burton HGA. Energy Landscape of State-Specific Electronic Structure Theory. J Chem Theory Comput 2022; 18:1512-1526. [PMID: 35179023 PMCID: PMC9082508 DOI: 10.1021/acs.jctc.1c01089] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 11/29/2022]
Abstract
State-specific approximations can provide a more accurate representation of challenging electronic excitations by enabling relaxation of the electron density. While state-specific wave functions are known to be local minima or saddle points of the approximate energy, the global structure of the exact electronic energy remains largely unexplored. In this contribution, a geometric perspective on the exact electronic energy landscape is introduced. On the exact energy landscape, ground and excited states form stationary points constrained to the surface of a hypersphere, and the corresponding Hessian index increases at each excitation level. The connectivity between exact stationary points is investigated, and the square-magnitude of the exact energy gradient is shown to be directly proportional to the Hamiltonian variance. The minimal basis Hartree-Fock and excited-state mean-field representations of singlet H2 (STO-3G) are then used to explore how the exact energy landscape controls the existence and properties of state-specific approximations. In particular, approximate excited states correspond to constrained stationary points on the exact energy landscape, and their Hessian index also increases for higher energies. Finally, the properties of the exact energy are used to derive the structure of the variance optimization landscape and elucidate the challenges faced by variance optimization algorithms, including the presence of unphysical saddle points or maxima of the variance.
Collapse
Affiliation(s)
- Hugh G. A. Burton
- Physical and Theoretical
Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
28
|
Elayan IA, Gupta R, Hollett JW. ΔNO and the complexities of electron correlation in simple hydrogen clusters. J Chem Phys 2022; 156:094102. [DOI: 10.1063/5.0073227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|