1
|
Gutiérrez-Quintanilla A, Moge B, Compagnon I, Noble JA. Vibrational and electronic spectra of protonated vanillin: exploring protonation sites and isomerisation. Phys Chem Chem Phys 2024; 26:15358-15368. [PMID: 38767194 DOI: 10.1039/d3cp05573f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Photofragmentation spectra of protonated vanillin produced under electrospray ionisation (ESI) conditions have been recorded in the 3000-3700 cm-1 (vibrational) and 225-460 nm (electronic) ranges, using room temperature IRMPD (infrared multiphoton dissociation) and cryogenic UVPD (ultraviolet photodissociation) spectroscopies, respectively. The cold (∼50 K) electronic UVPD spectrum exhibits very well resolved vibrational structure for the S1 ← S0 and S3 ← S0 transitions, suggesting long excited state dynamics, similar to its simplest analogue, protonated benzaldehyde. The experimental data were combined with theoretical calculations to determine the protonation site and configurational isomer observed in the experiments.
Collapse
Affiliation(s)
- Alejandro Gutiérrez-Quintanilla
- CNRS, Aix Marseille Univ., PIIM, Physique des Interactions Ioniques et Moléculaires, UMR 7345, 13397 Marseille, France.
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Baptiste Moge
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Isabelle Compagnon
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Jennifer A Noble
- CNRS, Aix Marseille Univ., PIIM, Physique des Interactions Ioniques et Moléculaires, UMR 7345, 13397 Marseille, France.
| |
Collapse
|
2
|
Langeland J, Lindkvist TT, Kjær C, Nielsen SB. Gas-phase Förster resonance energy transfer in mass-selected and trapped ions. MASS SPECTROMETRY REVIEWS 2024; 43:477-499. [PMID: 36514825 DOI: 10.1002/mas.21828] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/21/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Förster Resonance Energy transfer (FRET) is a nonradiative process that may occur from an electronically excited donor to an acceptor when the emission spectrum of the donor overlaps with the absorption spectrum of the acceptor. FRET experiments have been done in the gas phase based on specially designed mass-spectroscopy setups with the goal to obtain structural information on biomolecular ions labeled with a FRET pair (i.e., donor and acceptor dyes) and to shed light on the energy-transfer process itself. Ions are accumulated in a radio-frequency ion trap or a Penning trap where mass selection of those of interest takes place, followed by photoexcitation. Gas-phase FRET is identified from detection of emitted light either from the donor, the acceptor, or both, or from a fragmentation channel that is specific to the acceptor when electronically excited. The challenge associated with the first approach is the collection and detection of photons emitted from a thin ion cloud that is not easily accessible while the second approach relies both on the photophysical and chemical behavior of the acceptor. In this review, we present the different instrumentation used for gas-phase FRET, including a discussion of advantages and disadvantages, and examples on how the technique has provided important structural information that is not easily obtainable otherwise. Furthermore, we describe how the spectroscopic properties of the dyes are affected by nearby electric fields, which is readily discernable from experiments on simple model systems with alkyl or π-conjugated bridges. Such spectral changes can have a significant effect on the FRET efficiency. Ideas for new directions are presented at the end with special focus on cold-ion spectroscopy.
Collapse
Affiliation(s)
- Jeppe Langeland
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | | | - Christina Kjær
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
3
|
Marlton SJP, Liu C, Watkins P, Bieske EJ. Gas-phase electronic spectra of HC 2n+1H + ( n = 2-6) chains. Phys Chem Chem Phys 2024; 26:12306-12315. [PMID: 38623876 DOI: 10.1039/d4cp00625a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Highly unsaturated carbon chains are generated in combustion processes and electrical discharges, and are confirmed constituents of the interstellar medium. In hydrogen-rich environments smaller carbon clusters tend to exist as linear chains, capped on each end by hydrogen atoms. Although the HC2nH+ polyacetylene chains have been extensively characterized spectroscopically, the corresponding odd HC2n+1H+ chains have received far less attention. Here we use two-colour resonance enhanced photodissociation spectroscopy to measure electronic spectra for HC2n+1H+ (n = 2-6) chains contained in a cryogenically cooled quadrupole ion trap. The HC2n+1H+ chains are formed either top-down by ionizing and fragmenting pyrene molecules using pulsed 266 nm radiation, or bottom-up by reacting cyclic carbon cluster cations with acetylene. Ion mobility measurements confirm that the HC2n+1H+ species are linear, consistent with predictions from electronic structure calculations. The HC2n+1H+ electronic spectra exhibit three band systems in the visible/near infrared spectral range, which each shifts progressively to longer wavelength by ≈90 nm with the addition of each additional CC subunit. The strongest visible HC11H+ band has a wavelength (λ = 545.1 nm) and width (1.5 nm) that match the strong λ 5450 diffuse interstellar band (DIB). However, other weaker HC11H+ bands do not correspond to catalogued DIBs, casting doubt on the role of HC11H+ as a carrier for the λ 5450 DIB. There are no identifiable correspondences between catalogued DIBs and bands for the other HC2n+1H+ chains, allowing upper limits to be established for their column densities in diffuse interstellar clouds.
Collapse
Affiliation(s)
- Samuel J P Marlton
- School of Chemistry, University of Melbourne, Parkville 3010, Australia.
| | - Chang Liu
- School of Chemistry, University of Melbourne, Parkville 3010, Australia.
| | - Patrick Watkins
- School of Chemistry, University of Melbourne, Parkville 3010, Australia.
| | - Evan J Bieske
- School of Chemistry, University of Melbourne, Parkville 3010, Australia.
| |
Collapse
|
4
|
Marlton SJP, Liu C, Bieske EJ. Bond dissociation energy of FeCr+ determined through threshold photodissociation in a cryogenic ion trap. J Chem Phys 2024; 160:034301. [PMID: 38226822 DOI: 10.1063/5.0188157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024] Open
Abstract
The bond dissociation energy of FeCr+ is measured using resonance enhanced photodissociation spectroscopy in a cryogenic ion trap. The onset for FeCr+ → Fe + Cr+ photodissociation occurs well above the lowest Cr+(6S, 3d5) + Fe(5D, 3d64s2) dissociation limit. In contrast, the higher energy FeCr+ → Fe+ + Cr photodissociation process exhibits an abrupt onset at the energy of the Cr(7S, 3d54s1) + Fe+(6D, 3d64s1) limit, enabling accurate dissociation energies to be extracted: D(Fe-Cr+) = 1.655 ± 0.006 eV and D(Fe+-Cr) = 2.791 ± 0.006 eV. The measured D(Fe-Cr+) bond energy is 10%-20% larger than predictions from accompanying CAM (Coulomb Attenuated Method)-B3LYP and NEVPT2 and coupled cluster singles, doubles, and perturbative triples electronic structure calculations, which give D(Fe-Cr+) = 1.48, 1.40, and 1.35 eV, respectively. The study emphasizes that an abrupt increase in the photodissociation yield at threshold requires that the molecule possesses a dense manifold of optically accessible, coupled electronic states adjacent to the dissociation asymptote. This condition is not met for the lowest Cr+(6S, 3d5) + Fe(5D, 3d64s2) dissociation limit of FeCr+ but is satisfied for the higher energy Cr(7S, 3d54s1) + Fe+(6D, 3d64s1) dissociation limit.
Collapse
Affiliation(s)
- Samuel J P Marlton
- School of Chemistry, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Chang Liu
- School of Chemistry, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Evan J Bieske
- School of Chemistry, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
5
|
Roesch GC, Garand E. Tandem Mass-Selective Cryogenic Digital Ion Traps for Enhanced Cluster Formation. J Phys Chem A 2023; 127:7665-7672. [PMID: 37656038 DOI: 10.1021/acs.jpca.3c04706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
We present the implementation of tandem mass-selective cryogenic ion traps, designed to enhance the range of ion processing capabilities that can be performed prior to spectroscopic interrogation. We show that both the formation of ion clusters and mass filtering steps can be combined in a single cryogenic linear quadrupole ion trap driven by RF square waves. Mass filtering and mass isolation can be achieved by manipulation of the RF frequency and duty cycle. Very importantly, this scheme circumvents the need for high-amplitude RF voltages that can be incompatible with typical cryogenic ion processing conditions. In addition, proper adjustment of the stability boundaries during the clustering process allows for the preferential formation of a specific cluster size rather than a broad distribution of sizes. Lastly, we show that a specific cluster size can be formed, mass-selected, and then transferred to another ion trap for a second completely separate ion processing step. The instrumentation and modular design developed here expand the scope of ionic species and clusters that can be accessed by processing electrosprayed ions.
Collapse
Affiliation(s)
- Gina C Roesch
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
| | - Etienne Garand
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
| |
Collapse
|
6
|
Salvi M, Uma NN, Dinesan H, Roy A, Kumar SS. A versatile 16-pole ion trap setup for investigating photophysics of biomolecular ions. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:093203. [PMID: 37721505 DOI: 10.1063/5.0160407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/26/2023] [Indexed: 09/19/2023]
Abstract
A linear 16-pole ion trap-based experimental setup has been designed, implemented, and characterized to investigate the photophysics of biomolecules in the gas phase. Electrospray ionization is employed to generate the ions in the gas phase at atmospheric pressure. The voltage configuration on the ion funnel, the ion optic device in the first vacuum interface, is used to control the energy of the ions. A home-built quadrupole mass-filter is utilized for the mass-selection of the ions of interest. A 16-pole ion trap designed and built in-house is implemented for ion trapping. The instrument's versatility and capability are showcased by demonstrating the fragmentation patterns of protonated and deprotonated tryptophan, as well as describing the photodetachment decay of deprotonated indole.
Collapse
Affiliation(s)
- M Salvi
- Department of Physics and the Center for Atomic, Molecular, and Optical Sciences & Technologies (CAMOST), Indian Institute of Science Education and Research Tirupati, AP, Tirupati 517507, India
| | - N N Uma
- Department of Physics and the Center for Atomic, Molecular, and Optical Sciences & Technologies (CAMOST), Indian Institute of Science Education and Research Tirupati, AP, Tirupati 517507, India
| | - Hemanth Dinesan
- CNRS Laboratoire de Physique des Lasers (LPL), Université Sorbonne Paris Nord Villetaneuse, Villetaneuse 93430, France
| | - Abheek Roy
- Department of Physics and the Center for Atomic, Molecular, and Optical Sciences & Technologies (CAMOST), Indian Institute of Science Education and Research Tirupati, AP, Tirupati 517507, India
| | - S Sunil Kumar
- Department of Physics and the Center for Atomic, Molecular, and Optical Sciences & Technologies (CAMOST), Indian Institute of Science Education and Research Tirupati, AP, Tirupati 517507, India
| |
Collapse
|
7
|
Fielicke A. Probing the binding and activation of small molecules by gas-phase transition metal clusters via IR spectroscopy. Chem Soc Rev 2023. [PMID: 37162518 DOI: 10.1039/d2cs00104g] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Isolated transition metal clusters have been established as useful models for extended metal surfaces or deposited metal particles, to improve the understanding of their surface chemistry and of catalytic reactions. For this objective, an important milestone has been the development of experimental methods for the size-specific structural characterization of clusters and cluster complexes in the gas phase. This review focusses on the characterization of molecular ligands, their binding and activation by small transition metal clusters, using cluster-size specific infrared action spectroscopy. A comprehensive overview and a critical discussion of the experimental data available to date is provided, reaching from the initial results obtained using line-tuneable CO2 lasers to present-day studies applying infrared free electron lasers as well as other intense and broadly tuneable IR laser sources.
Collapse
Affiliation(s)
- André Fielicke
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany.
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| |
Collapse
|
8
|
Marlton SJP, Buntine JT, Watkins P, Liu C, Jacovella U, Carrascosa E, Bull JN, Bieske EJ. Probing Colossal Carbon Rings. J Phys Chem A 2023; 127:1168-1178. [PMID: 36703560 DOI: 10.1021/acs.jpca.2c07068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Carbon aggregates containing between 10 and 30 atoms preferentially arrange themselves as planar rings. To learn more about this exotic allotrope of carbon, electronic spectra are measured for even cyclo[n]carbon radical cations (C14+-C36+) using two-color photodissociation action spectroscopy. To eliminate spectral contributions from other isomers, the target cyclo[n]carbon radical cations are isomer-selected using a drift tube ion mobility spectrometer prior to spectroscopic interrogation. The electronic spectra exhibit sharp transitions spanning the visible and near-infrared spectral regions with the main absorption band shifting progressively to longer wavelength by ≈100 nm for every additional two carbon atoms. This behavior is rationalized with a Hückel theory model describing the energies of the in-plane and out-of-plane π orbitals. Photoexcitation of smaller carbon rings leads preferentially to neutral C3 and C5 loss, whereas rings larger than C24+ tend to also decompose into two smaller rings, which, when possible, have aromatic stability. Generally, the observed charged photofragments correspond to low energy fragment pairs, as predicted by density functional theory calculations (CAM-B3LYP-D3(BJ)/cc-pVDZ). Using action spectroscopy it is confirmed that C14+ and C18+ photofragments from C28+ rings have cyclic structures.
Collapse
Affiliation(s)
- Samuel J P Marlton
- School of Chemistry, The University of Melbourne, Victoria, Australia3010
| | - Jack T Buntine
- School of Chemistry, The University of Melbourne, Victoria, Australia3010
| | - Patrick Watkins
- School of Chemistry, The University of Melbourne, Victoria, Australia3010
| | - Chang Liu
- School of Chemistry, The University of Melbourne, Victoria, Australia3010
| | - Ugo Jacovella
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405Orsay, France
| | - Eduardo Carrascosa
- Bruker Daltonics GmbH & Co. KG, Fahrenheitstrasse 4, 28359Bremen, Germany
| | - James N Bull
- School of Chemistry, Norwich Research Park, University of East Anglia, NorwichNR4 7TJ, United Kingdom
| | - Evan J Bieske
- School of Chemistry, The University of Melbourne, Victoria, Australia3010
| |
Collapse
|
9
|
Sala L, Luxford TFM, Ranković M, Kočišek J. Viewpoints on the 11th International Meeting on Atomic and Molecular Physics and Chemistry. J Phys Chem A 2022; 126:8557-8561. [DOI: 10.1021/acs.jpca.2c07768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Leo Sala
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223Prague, Czech Republic
| | - Thomas F. M. Luxford
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223Prague, Czech Republic
| | - Miloš Ranković
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223Prague, Czech Republic
| | - Jaroslav Kočišek
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223Prague, Czech Republic
| |
Collapse
|
10
|
Marlton SJP, Buntine JT, Liu C, Watkins P, Jacovella U, Carrascosa E, Bull JN, Bieske EJ. Disentangling Electronic Spectra of Linear and Cyclic Hydrogenated Carbon Cluster Cations, C 2n+1H + ( n = 3–10). J Phys Chem A 2022; 126:6678-6685. [DOI: 10.1021/acs.jpca.2c05051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Samuel J. P. Marlton
- School of Chemistry, The University of Melbourne, 3010 Parkville, Victoria, Australia
| | - Jack T. Buntine
- School of Chemistry, The University of Melbourne, 3010 Parkville, Victoria, Australia
| | - Chang Liu
- School of Chemistry, The University of Melbourne, 3010 Parkville, Victoria, Australia
| | - Patrick Watkins
- School of Chemistry, The University of Melbourne, 3010 Parkville, Victoria, Australia
| | - Ugo Jacovella
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d’Orsay, 91405 Orsay, France
| | - Eduardo Carrascosa
- Bruker Daltonics GmbH & Co. KG, Fahrenheitstrasse 4, 28359 Bremen, Germany
| | - James N. Bull
- School of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, U.K
| | - Evan J. Bieske
- School of Chemistry, The University of Melbourne, 3010 Parkville, Victoria, Australia
| |
Collapse
|
11
|
Marlton SJP, Trevitt A. Laser Photodissocation, Action Spectroscopy and Mass Spectrometry Unite to Detect and Separate Isomers. Chem Commun (Camb) 2022; 58:9451-9467. [DOI: 10.1039/d2cc02101c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The separation and detection of isomers remains a challenge for many areas of mass spectrometry. This article highlights laser photodissociation and ion mobility strategies that have been deployed to tackle...
Collapse
|