1
|
Kouchakian MR, Koruji M, Najafi M, Moniri SF, Asgari A, Shariatpanahi M, Moosavi SA, Asgari HR. Human umbilical cord mesenchymal stem cells express cholinergic neuron markers during co-culture with amniotic membrane cells and retinoic acid induction. Med J Islam Repub Iran 2022; 35:129. [PMID: 35321367 PMCID: PMC8840847 DOI: 10.47176/mjiri.35.129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 12/27/2022] Open
Abstract
Background: A wide variety of cytokines are released from human amniotic membrane cells (hAMCs), which can increase the rate of differentiation of mesenchymal stem cells into the neurons. We studied the effect of Retinoic Acid (RA) on the differentiation rate of human Umbilical Cord Mesenchymal Stem Cells (hUMSCs) which were co-cultured with hAMCs. Methods: In this experimental study, both hUMSCs and hAMCs were isolated from postpartum human umbilical cords and placenta respectively. The expression of mesenchymal (CD73, CD90 and CD105), hematopoietic and endothelial (CD34 and CD45) markers in hUMSCs were confirmed by flow cytometry. The hUMSCs were cultured in four distinct groups: group 1) Control, group 2) Co-culture with hAMCs, group 3) RA treatment and group 4) Co-culture with hAMCs treated by RA. Twelve days after culturing, the expression of NSE, MAP2 and ChAT differentiation genes and their related proteins were examined by real-time PCR and immunocytochemistry respectively. Results: The flow-cytometry analysis indicated increased expression of mesenchymal markers and a low expression of both hematopoietic and endothelial markers (CD73:98.24%, CD90: 97.32%, CD105: 90.75%, CD34: 2.96%, and CD45:1.74%). Moreover, the expression of both NSE and MAP2 markers was increased significantly in all studied groups in comparison to the control group On the other hand, the expression of ChAT had a significant increase in the group 2 and 4 (RA and RA+ co-culture). Conclusion: RA can be used as an effective inducer to differentiate hUMSCs into cholinergic-like cells, and hAMCs could increase the number of differentiated cells as an effective factor.
Collapse
Affiliation(s)
| | - Morteza Koruji
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Farzaneh Moniri
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Asgari
- School of Pharmacy, Zanjan University of medical sciences, Zanjan, Iran
| | - Marjan Shariatpanahi
- Department of Toxicology & Pharmacology, School of Pharmacy, International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Akbar Moosavi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Asgari
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Arjmand B, Abedi M, Arabi M, Alavi-Moghadam S, Rezaei-Tavirani M, Hadavandkhani M, Tayanloo-Beik A, Kordi R, Roudsari PP, Larijani B. Regenerative Medicine for the Treatment of Ischemic Heart Disease; Status and Future Perspectives. Front Cell Dev Biol 2021; 9:704903. [PMID: 34568321 PMCID: PMC8461329 DOI: 10.3389/fcell.2021.704903] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/19/2021] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular disease is now the leading cause of adult death in the world. According to new estimates from the World Health Organization, myocardial infarction (MI) is responsible for four out of every five deaths due to cardiovascular disease. Conventional treatments of MI are taking aspirin and nitroglycerin as intermediate treatments and injecting antithrombotic agents within the first 3 h after MI. Coronary artery bypass grafting and percutaneous coronary intervention are the most common long term treatments. Since none of these interventions will fully regenerate the infarcted myocardium, there is value in pursuing more innovative therapeutic approaches. Regenerative medicine is an innovative interdisciplinary method for rebuilding, replacing, or repairing the missed part of different organs in the body, as similar as possible to the primary structure. In recent years, regenerative medicine has been widely utilized as a treatment for ischemic heart disease (one of the most fatal factors around the world) to repair the lost part of the heart by using stem cells. Here, the development of mesenchymal stem cells causes a breakthrough in the treatment of different cardiovascular diseases. They are easily obtainable from different sources, and expanded and enriched easily, with no need for immunosuppressing agents before transplantation, and fewer possibilities of genetic abnormality accompany them through multiple passages. The production of new cardiomyocytes can result from the transplantation of different types of stem cells. Accordingly, due to its remarkable benefits, stem cell therapy has received attention in recent years as it provides a drug-free and surgical treatment for patients and encourages a more safe and feasible cardiac repair. Although different clinical trials have reported on the promising benefits of stem cell therapy, there is still uncertainty about its mechanism of action. It is important to conduct different preclinical and clinical studies to explore the exact mechanism of action of the cells. After reviewing the pathophysiology of MI, this study addresses the role of tissue regeneration using various materials, including different types of stem cells. It proves some appropriate data about the importance of ethical problems, which leads to future perspectives on this scientific method.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Abedi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Arabi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahdieh Hadavandkhani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Kordi
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Liu C. Application of marine collagen for stem-cell-based therapy and tissue regeneration (Review). MEDICINE INTERNATIONAL 2021; 1:6. [PMID: 36698868 PMCID: PMC9855277 DOI: 10.3892/mi.2021.5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/22/2021] [Indexed: 01/28/2023]
Abstract
Tissue engineering and regenerative medicine is becoming an important component in modern biological scientific research. Tissue engineering, a branch of regenerative medicine, is a field that is actively developing to meet the challenges presented in biomedical applications. This particularly applies to the research area of stem cells and biomaterials, due to both being pivotal determinants for the successful restoration or regeneration of damaged tissues and organs. Recently, the development of innovative marine collagen-based biomaterials has attracted attention due to the reported environmentally friendly properties, the lack of zoonotic disease transmission, biocompatibility, bioactivity, the lack of ethics-related concerns and cost-effectiveness for manufacturing. The present review aimed to summarize the potential application and function of marine collagen in stem cell research in a medical and clinical setting. In addition, the present review cited recent studies regarding the latest research advances into using marine collagen for cartilage, bone, periodontal and corneal regeneration. It also characterized the distinct advantages of using marine collagen for stem cell-based tissue repair and regeneration. In addition, the present review comprehensively discussed the most up to date information on stem cell biology, particularly the possibility of treating stem cells with marine collagen to maximize their multi-directional differentiation capability, which highlights the potential use of marine collagen in regenerative medicine. Furthermore, recent research progress on the potential immunomodulatory capacity of mesenchymal stem cells following treatment with marine collagen to improve the understanding of cell-matrix interactions was investigated. Finally, perspectives on the possible future research directions for the application of marine collagen in the area of regenerative medicine are provided.
Collapse
Affiliation(s)
- Chao Liu
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
4
|
Therapeutic Applications of Stem Cells and Extracellular Vesicles in Emergency Care: Futuristic Perspectives. Stem Cell Rev Rep 2021; 17:390-410. [PMID: 32839921 PMCID: PMC7444453 DOI: 10.1007/s12015-020-10029-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regenerative medicine (RM) is an interdisciplinary field that aims to repair, replace or regenerate damaged or missing tissue or organs to function as close as possible to its physiological architecture and functions. Stem cells, which are undifferentiated cells retaining self-renewal potential, excessive proliferation and differentiation capacity into offspring or daughter cells that form different lineage cells of an organism, are considered as an important part of the RM approaches. They have been widely investigated in preclinical and clinical studies for therapeutic purposes. Extracellular vesicles (EVs) are the vital mediators that regulate the therapeutic effects of stem cells. Besides, they carry various types of cargo between cells which make them a significant contributor of intercellular communication. Given their role in physiological and pathological conditions in living cells, EVs are considered as a new therapeutic alternative solution for a variety of diseases in which there is a high unmet clinical need. This review aims to summarize and identify therapeutic potential of stem cells and EVs in diseases requiring acute emergency care such as trauma, heart diseases, stroke, acute respiratory distress syndrome and burn injury. Diseases that affect militaries or societies including acute radiation syndrome, sepsis and viral pandemics such as novel coronavirus disease 2019 are also discussed. Additionally, featuring and problematic issues that hamper clinical translation of stem cells and EVs are debated in a comparative manner with a futuristic perspective. Graphical Abstract.
Collapse
|
5
|
Hopfner U, Maan ZN, Hu MS, Aitzetmüller MM, Zaussinger M, Kirsch M, Machens HG, Duscher D. Deferoxamine enhances the regenerative potential of diabetic Adipose Derived Stem Cells. J Plast Reconstr Aesthet Surg 2020; 73:1738-1746. [PMID: 32418841 DOI: 10.1016/j.bjps.2020.02.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 12/05/2019] [Accepted: 02/16/2020] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Diabetes mellitus remains a significant public health problem, consuming over $400 billion every year. While Diabetes itself can be controlled effectively, impaired wound healing still occurs frequently in diabetic patients. Adipose-derived mesenchymal stem cells (ASCs) provide an especially appealing source for diabetic wound cell therapy. With autologous approaches, the functionality of ASCs largely underlie patient-dependent factors. Diabetes is a significant diminishing factor of MSC functionality. Here, we explore a novel strategy to enhance diabetic ASC functionality through deferoxamine (DFO) preconditioning. MATERIAL AND METHODS Human diabetic ASCs have been preconditioned with 150 µM and 300 µM DFO in vitro and analyzed for regenerative cytokine expression. Murine diabetic ASCs have been preconditioned with 150 µM DFO examined for their in vitro and in vivo vasculogenic capacity in Matrigel assays. Additionally, a diabetic murine wound healing model has been performed to assess the regenerative capacity of preconditioned cells. RESULTS DFO preconditioning enhances the VEGF expression of human diabetic ASCs through hypoxia-inducible factor upregulation. The use of 150 µM of DFO was an optimal concentration to induce regenerative effects. The vasculogenic potential of preconditioned diabetic ASCs is significantly greater in vitro and in vivo. The enhanced regenerative functionality of DFO preconditioned ASCs was further confirmed in a model of diabetic murine wound healing. CONCLUSION These results demonstrate that DFO significantly induced the upregulation of hypoxia-inducible factor-1 alpha and VEGF in diabetic ASCs and showed efficacy in the treatment of diabetes-associated deficits of wound healing. The favorable status of DFO as a small molecule drug approved since decades for multiple indications makes this approach highly translatable.
Collapse
Affiliation(s)
- Ursula Hopfner
- Department for Plastic Surgery and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Germany
| | - Zeshaan N Maan
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Michael S Hu
- Department for Plastic Surgery, University of Pittsburgh, Pennsylvania, USA
| | - Matthias M Aitzetmüller
- Department for Plastic Surgery and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Germany
| | - Maximilian Zaussinger
- Department for Plastic Surgery and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Germany
| | - Manuela Kirsch
- Department for Plastic Surgery and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Germany
| | - Hans-Günther Machens
- Department for Plastic Surgery and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Germany
| | - Dominik Duscher
- Department for Plastic Surgery and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Germany; Division for Plastic and Reconstructive Surgery, Kepler University Hospital, Linz, Austria.
| |
Collapse
|
6
|
|
7
|
Kosaraju R, Rennert RC, Maan ZN, Duscher D, Barrera J, Whittam AJ, Januszyk M, Rajadas J, Rodrigues M, Gurtner GC. Adipose-Derived Stem Cell-Seeded Hydrogels Increase Endogenous Progenitor Cell Recruitment and Neovascularization in Wounds. Tissue Eng Part A 2016; 22:295-305. [PMID: 26871860 DOI: 10.1089/ten.tea.2015.0277] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) are appealing for cell-based wound therapies because of their accessibility and ease of harvest, but their utility is limited by poor cell survival within the harsh wound microenvironment. In prior work, our laboratory has demonstrated that seeding ASCs within a soft pullulan-collagen hydrogel enhances ASC survival and improves wound healing. To more fully understand the mechanism of this therapy, we examined whether ASC-seeded hydrogels were able to modulate the recruitment and/or functionality of endogenous progenitor cells. Employing a parabiosis model and fluorescence-activated cell sorting analysis, we demonstrate that application of ASC-seeded hydrogels to wounds, when compared with injected ASCs or a noncell control, increased the recruitment of provascular circulating bone marrow-derived mesenchymal progenitor cells (BM-MPCs). BM-MPCs comprised 23.0% of recruited circulating progenitor cells in wounds treated with ASC-seeded hydrogels versus 8.4% and 2.1% in those treated with controls, p < 0.05. Exploring the potential for functional modulation of BM-MPCs, we demonstrate a statistically significant increase in BM-MPC migration, proliferation, and tubulization when exposed to hydrogel-seeded ASC-conditioned medium versus control ASC-conditioned medium (73.8% vs. 51.4% scratch assay closure; 9.1% vs. 1.4% proliferation rate; 10.2 vs. 5.5 tubules/HPF; p < 0.05 for all assays). BM-MPC expression of genes related to cell stemness and angiogenesis was also significantly increased following exposure to hydrogel-seeded ASC-conditioned medium (p < 0.05). These data suggest that ASC-seeded hydrogels improve both progenitor cell recruitment and functionality to effect greater neovascularization.
Collapse
Affiliation(s)
- Revanth Kosaraju
- 1 Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Robert C Rennert
- 1 Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Zeshaan N Maan
- 1 Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Dominik Duscher
- 1 Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Janos Barrera
- 1 Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Alexander J Whittam
- 1 Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Michael Januszyk
- 1 Department of Surgery, Stanford University School of Medicine , Stanford, California.,2 Program in Biomedical Informatics, Stanford University School of Medicine , Stanford, California
| | - Jayakumar Rajadas
- 3 Biomaterials and Advanced Drug Delivery Center, Stanford University , Stanford, California
| | - Melanie Rodrigues
- 1 Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Geoffrey C Gurtner
- 1 Department of Surgery, Stanford University School of Medicine , Stanford, California
| |
Collapse
|
8
|
Duscher D, Atashroo D, Maan ZN, Luan A, Brett EA, Barrera J, Khong SM, Zielins ER, Whittam AJ, Hu MS, Walmsley GG, Pollhammer MS, Schmidt M, Schilling AF, Machens HG, Huemer GM, Wan DC, Longaker MT, Gurtner GC. Ultrasound-Assisted Liposuction Does Not Compromise the Regenerative Potential of Adipose-Derived Stem Cells. Stem Cells Transl Med 2015; 5:248-57. [PMID: 26702129 PMCID: PMC4729547 DOI: 10.5966/sctm.2015-0064] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/28/2015] [Indexed: 01/19/2023] Open
Abstract
The regenerative abilities of adipose-derived mesenchymal stem cells (ASCs) harvested via a third-generation ultrasound-assisted liposuction (UAL) device versus ASCs obtained via standard suction-assisted lipoaspiration were evaluated. ASC yield and viability, and expression of most osteogenic, adipogenic, and key regenerative genes were equivalent between the two methods. Cells harvested via UAL showed comparable abilities to enhance cutaneous regeneration and appear suitable for cell therapy and tissue engineering applications. Human mesenchymal stem cells (MSCs) have recently become a focus of regenerative medicine, both for their multilineage differentiation capacity and their excretion of proregenerative cytokines. Adipose-derived mesenchymal stem cells (ASCs) are of particular interest because of their abundance in fat tissue and the ease of harvest via liposuction. However, little is known about the impact of different liposuction methods on the functionality of ASCs. Here we evaluate the regenerative abilities of ASCs harvested via a third-generation ultrasound-assisted liposuction (UAL) device versus ASCs obtained via standard suction-assisted lipoaspiration (SAL). Lipoaspirates were sorted using fluorescent assisted cell sorting based on an established surface-marker profile (CD34+/CD31−/CD45−), to obtain viable ASCs. Yield and viability were compared and the differentiation capacities of the ASCs were assessed. Finally, the regenerative potential of ASCs was examined using an in vivo model of tissue regeneration. UAL- and SAL-derived samples demonstrated equivalent ASC yield and viability, and UAL ASCs were not impaired in their osteogenic, adipogenic, or chondrogenic differentiation capacity. Equally, quantitative real-time polymerase chain reaction showed comparable expression of most osteogenic, adipogenic, and key regenerative genes between both ASC groups. Cutaneous regeneration and neovascularization were significantly enhanced in mice treated with ASCs obtained by either UAL or SAL compared with controls, but there were no significant differences in healing between cell-therapy groups. We conclude that UAL is a successful method of obtaining fully functional ASCs for regenerative medicine purposes. Cells harvested with this alternative approach to liposuction are suitable for cell therapy and tissue engineering applications. Significance Adipose-derived mesenchymal stem cells (ASCs) are an appealing source of therapeutic progenitor cells because of their multipotency, diverse cytokine profile, and ease of harvest via liposuction. Alternative approaches to classical suction-assisted liposuction are gaining popularity; however, little evidence exists regarding the impact of different liposuction methods on the regenerative functionality of ASCs. Human ASC characteristics and regenerative capacity were assessed when harvested via ultrasound-assisted (UAL) versus standard suction-assisted liposuction. ASCs obtained via UAL were of equal quality when directly compared with the current gold standard harvest method. UAL is an adjunctive source of fully functional mesenchymal stem cells for applications in basic research and clinical therapy.
Collapse
Affiliation(s)
- Dominik Duscher
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, School of Medicine, Stanford University, Stanford, California, USA Section of Plastic, Aesthetic and Reconstructive Surgery, Johannes Kepler University, Linz, Austria Department of Plastic Surgery and Hand Surgery, Technical University Munich, Munich, Germany
| | - David Atashroo
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, School of Medicine, Stanford University, Stanford, California, USA
| | - Zeshaan N Maan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, School of Medicine, Stanford University, Stanford, California, USA
| | - Anna Luan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, School of Medicine, Stanford University, Stanford, California, USA
| | - Elizabeth A Brett
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, School of Medicine, Stanford University, Stanford, California, USA
| | - Janos Barrera
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, School of Medicine, Stanford University, Stanford, California, USA
| | - Sacha M Khong
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, School of Medicine, Stanford University, Stanford, California, USA
| | - Elizabeth R Zielins
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, School of Medicine, Stanford University, Stanford, California, USA
| | - Alexander J Whittam
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, School of Medicine, Stanford University, Stanford, California, USA
| | - Michael S Hu
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, School of Medicine, Stanford University, Stanford, California, USA
| | - Graham G Walmsley
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, School of Medicine, Stanford University, Stanford, California, USA Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - Michael S Pollhammer
- Section of Plastic, Aesthetic and Reconstructive Surgery, Johannes Kepler University, Linz, Austria
| | - Manfred Schmidt
- Section of Plastic, Aesthetic and Reconstructive Surgery, Johannes Kepler University, Linz, Austria
| | - Arndt F Schilling
- Department of Plastic Surgery and Hand Surgery, Technical University Munich, Munich, Germany
| | - Hans-Günther Machens
- Department of Plastic Surgery and Hand Surgery, Technical University Munich, Munich, Germany
| | - Georg M Huemer
- Section of Plastic, Aesthetic and Reconstructive Surgery, Johannes Kepler University, Linz, Austria
| | - Derrick C Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, School of Medicine, Stanford University, Stanford, California, USA
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, School of Medicine, Stanford University, Stanford, California, USA Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - Geoffrey C Gurtner
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, School of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
9
|
Trainor N, Pietak A, Smith T. Rethinking clinical delivery of adult stem cell therapies. Nat Biotechnol 2015; 32:729-35. [PMID: 25093878 DOI: 10.1038/nbt.2970] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | | | - Tim Smith
- Octane Biotech Inc., Kingston, Ontario, Canada
| |
Collapse
|
10
|
A polyhedral oligomeric silsesquioxane-based bilayered dermal scaffold seeded with adipose tissue-derived stem cells: in vitro assessment of biomechanical properties. J Surg Res 2014; 188:361-72. [PMID: 24507201 DOI: 10.1016/j.jss.2014.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 12/23/2013] [Accepted: 01/06/2014] [Indexed: 11/21/2022]
Abstract
BACKGROUND Although commercial skin substitutes are widely available, its use remains challenging at surgery and postoperatively. The high cost is also prohibitive. We designed and characterized a scaffold for dermal replacement, using advanced nanocomposite materials, which are known to have unique nanoscale features that enhance cellular behavior. METHODS A bilayered scaffold was developed using the nanocomposite, polyhedral oligomeric silsesquioxane, incorporated into poly(caprolactone-urea)urethane, resulting in a mechanically robust bioabsorbable polymer; forming the inner layer, which was designed with a range of porosities. The removable outer layer contained nanosilver. Tensile testing, surface tension, permeability, and scanning electron microscopy were performed. Optimal pore morphology for cellular proliferation was elucidated through adipose tissue-derived stem cell culture and a cell viability assay. All tests were repeated on Integra Dermal Regeneration Template. RESULTS The physical construct was easy to handle and clinically applicable. Macroporosity and permeability of scaffolds was demonstrated, confirmed by scanning electron microscopy. Both tensile strength and surface tension were comparable with skin; outer layer demonstrated hydrophobicity and inner layer showed hydrophilicity. Cell assay confirmed cellular proliferation onto the scaffold, comparable with Integra. CONCLUSIONS We demonstrate that a porous bilayered dermal scaffold could form the basis of a new generation of skin substitute that is both mechanically robust and harbors the ability for enhancing cell regeneration.
Collapse
|
11
|
Wong VW, Gurtner GC, Longaker MT. Wound healing: a paradigm for regeneration. Mayo Clin Proc 2013; 88:1022-31. [PMID: 24001495 DOI: 10.1016/j.mayocp.2013.04.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/12/2013] [Indexed: 02/07/2023]
Abstract
Human skin is a remarkably plastic organ that sustains insult and injury throughout life. Its ability to expeditiously repair wounds is paramount to survival and is thought to be regulated by wound components such as differentiated cells, stem cells, cytokine networks, extracellular matrix, and mechanical forces. These intrinsic regenerative pathways are integrated across different skin compartments and are being elucidated on the cellular and molecular levels. Recent advances in bioengineering and nanotechnology have allowed researchers to manipulate these microenvironments in increasingly precise spatial and temporal scales, recapitulating key homeostatic cues that may drive regeneration. The ultimate goal is to translate these bench achievements into viable bedside therapies that address the growing global burden of acute and chronic wounds. In this review, we highlight current concepts in cutaneous wound repair and propose that many of these evolving paradigms may underlie regenerative processes across diverse organ systems.
Collapse
Affiliation(s)
- Victor W Wong
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
12
|
Zhang K, Liu T, Li JA, Chen JY, Wang J, Huang N. Surface modification of implanted cardiovascular metal stents: From antithrombosis and antirestenosis to endothelialization. J Biomed Mater Res A 2013; 102:588-609. [PMID: 23520056 DOI: 10.1002/jbm.a.34714] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Kun Zhang
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | | | | | | | | | | |
Collapse
|
13
|
Chen C. Hindsight, insight, and foresight: a multi-level structural variation approach to the study of a scientific field. TECHNOLOGY ANALYSIS & STRATEGIC MANAGEMENT 2013. [DOI: 10.1080/09537325.2013.801949] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Comprehensive characterization of human adipose tissue-derived stem cells expanded in vitro. Biologia (Bratisl) 2013. [DOI: 10.2478/s11756-013-0201-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Rennert RC, Sorkin M, Garg RK, Gurtner GC. Stem cell recruitment after injury: lessons for regenerative medicine. Regen Med 2013; 7:833-50. [PMID: 23164083 DOI: 10.2217/rme.12.82] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tissue repair and regeneration are thought to involve resident cell proliferation as well as the selective recruitment of circulating stem and progenitor cell populations through complex signaling cascades. Many of these recruited cells originate from the bone marrow, and specific subpopulations of bone marrow cells have been isolated and used to augment adult tissue regeneration in preclinical models. Clinical studies of cell-based therapies have reported mixed results, however, and a variety of approaches to enhance the regenerative capacity of stem cell therapies are being developed based on emerging insights into the mechanisms of progenitor cell biology and recruitment following injury. This article discusses the function and mechanisms of recruitment of important bone marrow-derived stem and progenitor cell populations following injury, as well as the emerging therapeutic applications targeting these cells.
Collapse
Affiliation(s)
- Robert C Rennert
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA
| | | | | | | |
Collapse
|
16
|
Aller MA, Arias JI, Prieto I, Gilsanz C, Arias A, Yang H, Arias J. Surgical inflammatory stress: the embryo takes hold of the reins again. Theor Biol Med Model 2013; 10:6. [PMID: 23374964 PMCID: PMC3577641 DOI: 10.1186/1742-4682-10-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/18/2013] [Indexed: 01/07/2023] Open
Abstract
The surgical inflammatory response can be a type of high-grade acute stress response associated with an increasingly complex trophic functional system for using oxygen. This systemic neuro-immune-endocrine response seems to induce the re-expression of 2 extraembryonic-like functional axes, i.e. coelomic-amniotic and trophoblastic-yolk-sac-related, within injured tissues and organs, thus favoring their re-development. Accordingly, through the up-regulation of two systemic inflammatory phenotypes, i.e. neurogenic and immune-related, a gestational-like response using embryonic functions would be induced in the patient's injured tissues and organs, which would therefore result in their repair. Here we establish a comparison between the pathophysiological mechanisms that are produced during the inflammatory response and the physiological mechanisms that are expressed during early embryonic development. In this way, surgical inflammation could be a high-grade stress response whose pathophysiological mechanisms would be based on the recapitulation of ontogenic and phylogenetic-related functions. Thus, the ultimate objective of surgical inflammation, as a gestational process, is creating new tissues/organs for repairing the injured ones. Since surgical inflammation and early embryonic development share common production mechanisms, the factors that hamper the wound healing reaction in surgical patients could be similar to those that impair the gestational process.
Collapse
Affiliation(s)
- Maria-Angeles Aller
- Department of Surgery, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Jose-Ignacio Arias
- General and Digestive Surgery Unit, Monte Naranco Hospital, Oviedo, Asturias, Spain
| | - Isabel Prieto
- Department of General and Digestive Surgery, La Paz Hospital, Autonomous University, Madrid, Spain
| | - Carlos Gilsanz
- General and Digestive Surgery Unit, Sudeste University Hospital, Arganda del Rey, Madrid, Spain
| | - Ana Arias
- Department of Medicine, Puerta de Hierro Hospital, Autonomous University, Madrid, Spain
| | - Heping Yang
- Division of Gastroenterology and Liver Disease, USC Research Centre for Liver Diseases, Los Angeles, CA, USA
| | - Jaime Arias
- Department of Surgery, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
17
|
Aller MA, Blanco-Rivero J, Arias JI, Balfagon G, Arias J. The wound-healing response and upregulated embryonic mechanisms: brothers-in-arms forever. Exp Dermatol 2012; 21:497-503. [PMID: 22716244 DOI: 10.1111/j.1600-0625.2012.01525.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cutaneous wound-healing reaction occurs in overlapping but inter-related phases, which ultimately result in fibrosis. The pathophysiological mechanisms involved in fibrotic diseases, including organ-related and even systemic diseases, such as systemic sclerosis, could represent the successive systemic upregulation of extraembryonic-like phenotypes, that is, amniotic and vitelline phenotypes. These two extraembryonic-like phenotypes act on the injured tissue to induce a process similar to gastrulation, which occurs during the early phases of embryo development. The amniotic-like phenotype plays a leading role in the development of neurogenic responses with significant hydroelectrolytic alterations that essentially represent the development of open microcirculation within the injured tissue. In turn, through the overlapping expression of a vitelline-like phenotype, a bone marrow-related response is produced. Interstitial infiltration by molecular and cellular mediators contributed by amniotic- and vitelline-like functions provides the functional and metabolic autonomy needed for inducing new tissue formation through mechanisms similar to those that act in gastrulation during the early phases of embryonic development. Thus, while a new tissue is formed, it quickly evolves into fibrotic tissue because of premature senescence. Mechanisms related to extraembryonic-like functions have been suggested in the following physiological and pathological processes: embryonic development; wound-healing reactions occurring during adult life; and senescence. The existence of this sort of basic self-organizing fractal-like functional pattern is an essential characteristic of our way of life.
Collapse
Affiliation(s)
- María-Angeles Aller
- Department of Surgery I, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | | | | | | | | |
Collapse
|
18
|
Wong VW, Sorkin M, Gurtner GC. Enabling stem cell therapies for tissue repair: current and future challenges. Biotechnol Adv 2012. [PMID: 23178704 DOI: 10.1016/j.biotechadv.2012.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Stem cells embody the tremendous potential of the human body to develop, grow, and repair throughout life. Understanding the biologic mechanisms that underlie stem cell-mediated tissue regeneration is key to harnessing this potential. Recent advances in molecular biology, genetic engineering, and material science have broadened our understanding of stem cells and helped bring them closer to widespread clinical application. Specifically, innovative approaches to optimize how stem cells are identified, isolated, grown, and utilized will help translate these advances into effective clinical therapies. Although there is growing interest in stem cells worldwide, this enthusiasm must be tempered by the fact that these treatments remain for the most part clinically unproven. Future challenges include refining the therapeutic manipulation of stem cells, validating these technologies in randomized clinical trials, and regulating the global expansion of regenerative stem cell therapies.
Collapse
Affiliation(s)
- Victor W Wong
- Department of Surgery, Stanford University School of Medicine, 257 Campus Drive, Stanford, CA 94305, USA
| | | | | |
Collapse
|
19
|
Wong VW, Wan DC, Gurtner GC, Longaker MT. Regenerative Surgery: Tissue Engineering in General Surgical Practice. World J Surg 2012; 36:2288-99. [DOI: 10.1007/s00268-012-1710-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Wong VW, Gurtner GC. Tissue engineering for the management of chronic wounds: current concepts and future perspectives. Exp Dermatol 2012; 21:729-34. [PMID: 22742728 DOI: 10.1111/j.1600-0625.2012.01542.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2012] [Indexed: 01/13/2023]
Abstract
Chronic wounds constitute a significant and growing biomedical burden. With the increasing growth of populations prone to dysfunctional wound healing, there is an urgent and unmet need for novel strategies to both prevent and treat these complications. Tissue engineering offers the potential to create functional skin, and the synergistic efforts of biomedical engineers, material scientists, and molecular and cell biologists have yielded promising therapies for non-healing wounds. However, traditional paradigms for wound healing focus largely on the role of inflammatory cells and fail to incorporate more recent research highlighting the importance of stem cells and matrix dynamics in skin repair. Approaches to chronic wound healing centred on inflammation alone are inadequate to guide the development of regenerative medicine-based technologies. As the molecular pathways and biologic defects underlying non-healing wounds are further elucidated, multifaceted bioengineering systems must advance in parallel to exploit this knowledge. In this viewpoint essay, we highlight the current concepts in tissue engineering for chronic wounds and speculate on areas for future research in this increasingly interdisciplinary field.
Collapse
Affiliation(s)
- Victor W Wong
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
21
|
Abstract
Stem cell-based therapies offer tremendous potential for skin regeneration following injury and disease. Functional stem cell units have been described throughout all layers of human skin and the collective physical and chemical microenvironmental cues that enable this regenerative potential are known as the stem cell niche. Stem cells in the hair follicle bulge, interfollicular epidermis, dermal papillae, and perivascular space have been closely investigated as model systems for niche-driven regeneration. These studies suggest that stem cell strategies for skin engineering must consider the intricate molecular and biologic features of these niches. Innovative biomaterial systems that successfully recapitulate these microenvironments will facilitate progenitor cell-mediated skin repair and regeneration.
Collapse
|
22
|
Moran CJ, Barry FP, Maher SA, Shannon FJ, Rodeo SA. Advancing regenerative surgery in orthopaedic sports medicine: the critical role of the surgeon. Am J Sports Med 2012; 40:934-44. [PMID: 22085730 DOI: 10.1177/0363546511426677] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The constant desire to improve outcomes in orthopaedic sports medicine requires us to continuously consider the challenges faced in the surgical repair or reconstruction of soft tissue and cartilaginous injury. In many cases, surgical efforts targeted at restoring normal anatomy and functional status are ultimately impaired by the biological aspect of the natural history of these injuries, which acts as an obstacle to a satisfactory repair process after surgery. The clinical management of sports injuries and the delivery of appropriate surgical intervention are continuously evolving, and it is likely that the principles of regenerative medicine will have an increasing effect in this specialized field of orthopaedic practice going forward. Ongoing advances in arthroscopy and related surgical techniques should facilitate this process. In contrast to the concept of engineered replacement of entire tissues, it is probable that the earliest effect of regenerative strategies seen in clinical practice will involve biological augmentation of current operative techniques via a synergistic process that might be best considered "regenerative surgery." This article provides an overview of the principles of regenerative surgery in cartilage repair and related areas of orthopaedic surgery sports medicine. The possibilities and challenges of a gradual yet potential paradigm shift in treatment through the increased use of biological augmentation are considered. The translational process and critical role to be played by the specialist surgeon are also addressed. We conclude that increased understanding of the potential and challenges of regenerative surgery should allow those specializing in orthopaedic surgery sports medicine to lead the way in advancing the frontiers of biological strategies to enhance modern clinical care in an evidence-based manner.
Collapse
Affiliation(s)
- Cathal J Moran
- Regenerative Medicine Institute, National University of Ireland, Galway, Ireland.
| | | | | | | | | |
Collapse
|
23
|
Chen C, Hu Z, Liu S, Tseng H. Emerging trends in regenerative medicine: a scientometric analysis in CiteSpace. Expert Opin Biol Ther 2012; 12:593-608. [PMID: 22443895 DOI: 10.1517/14712598.2012.674507] [Citation(s) in RCA: 571] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Regenerative medicine involves research in a number of fields and disciplines such as stem cell research, tissue engineering and biological therapy in general. As research in these areas advances rapidly, it is critical to keep abreast of emerging trends and critical turns of the development of the collective knowledge. AREAS COVERED A progressively synthesized network is derived from 35,963 original research and review articles that cite 3875 articles obtained from an initial topic search on regenerative medicine between 2000 and 2011. CiteSpace is used to facilitate the analysis of the intellectual structure and emerging trends. EXPERT OPINION A major ongoing research trend is concerned with finding alternative reprogramming techniques as well as refining existing ones for induced pluripotent stem cells (iPSCs). A more recent emerging trend focuses on the structural and functional equivalence between iPSCs and human embryonic stem cells and potential clinical and therapeutic implications on regenerative medicine in a long run. The two trends overlap in terms of what they cite, but they are distinct and have different implications on future research. Visual analytics of the literature provides a valuable, timely, repeatable and flexible approach in addition to traditional systematic reviews so as to track the development of new emerging trends and identify critical evidence.
Collapse
Affiliation(s)
- Chaomei Chen
- Drexel University, College of Information Science and Technology, 3141 Chestnut Street, Philadelphia, PA 19104-2875, USA
| | | | | | | |
Collapse
|
24
|
Glotzbach J, Wong V, Levi B, Longaker M, Gurtner G. Delivery Strategies for Stem Cell-Based Therapy. JOURNAL OF HEALTHCARE ENGINEERING 2012. [DOI: 10.1260/2040-2295.3.1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
LEE JK, CHUN SY, IM JY, JIN HK, KWON TG, BAE JS. Specific Labeling of Neurogenic, Endothelial, and Myogenic Differentiated Cells Derived from Human Amniotic Fluid Stem Cells with Silica-Coated Magnetic Nanoparticles. J Vet Med Sci 2012; 74:969-75. [DOI: 10.1292/jvms.12-0016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Jong Kil LEE
- Stem Cell Neuroplasticity Research Group, Kyungpook National University
- Department of Physiology, Cell and Matrix Research Institute, BSEI, World Class University Program, School of Medicine, Kyungpook National University
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu, Korea
- Department of Physiology, Cell and Matrix Research Institute, BSEI, World Class University Program, School of Medicine, Kyungpook National University, Daegu, Korea
| | - So Young CHUN
- Joint Institute for Regenerative Medicine, Kyungpook National University Hospital
- Joint Institute for Regenerative Medicine, Kyungpook National University Hospital, Daegu, Korea
| | - Jin Young IM
- Stem Cell Neuroplasticity Research Group, Kyungpook National University
- Department of Physiology, Cell and Matrix Research Institute, BSEI, World Class University Program, School of Medicine, Kyungpook National University
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu, Korea
- Department of Physiology, Cell and Matrix Research Institute, BSEI, World Class University Program, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Hee Kyung JIN
- Stem Cell Neuroplasticity Research Group, Kyungpook National University
- Department of Laboratory Animal Medicine, Cell and Matrix Research Institute, College of Veterinary Medicine, Kyungpook National University
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu, Korea
- Department of Laboratory Animal Medicine, Cell and Matrix Research Institute, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Tae Gyun KWON
- Department of Urology, School of Medicine, Kyungpook National University
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jae-Sung BAE
- Stem Cell Neuroplasticity Research Group, Kyungpook National University
- Department of Physiology, Cell and Matrix Research Institute, BSEI, World Class University Program, School of Medicine, Kyungpook National University
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu, Korea
- Department of Physiology, Cell and Matrix Research Institute, BSEI, World Class University Program, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
26
|
Xu C, Mu L, Roes I, Miranda-Nieves D, Nahrendorf M, Ankrum JA, Zhao W, Karp JM. Nanoparticle-based monitoring of cell therapy. NANOTECHNOLOGY 2011; 22:494001. [PMID: 22101191 PMCID: PMC3334527 DOI: 10.1088/0957-4484/22/49/494001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Exogenous cell therapy aims to replace/repair diseased or dysfunctional cells and promises to revolutionize medicine by restoring tissue and organ function. To develop effective cell therapy, the location, distribution and long-term persistence of transplanted cells must be evaluated. Nanoparticle (NP) based imaging technologies have the potential to track transplanted cells non-invasively. Here we summarize the most recent advances in NP-based cell tracking with emphasis on (1) the design criteria for cell tracking NPs, (2) protocols for cell labeling, (3) a comparison of available imaging modalities and their corresponding contrast agents, (4) a summary of preclinical studies on NP-based cell tracking and finally (5) perspectives and future directions.
Collapse
Affiliation(s)
- Chenjie Xu
- Center for Regenerative Therapeutics and Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard Stem Cell Institute, Harvard-MIT, Division of Health Sciences and Technology, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Luye Mu
- Center for Regenerative Therapeutics and Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard Stem Cell Institute, Harvard-MIT, Division of Health Sciences and Technology, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Isaac Roes
- Center for Regenerative Therapeutics and Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard Stem Cell Institute, Harvard-MIT, Division of Health Sciences and Technology, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - David Miranda-Nieves
- Center for Regenerative Therapeutics and Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard Stem Cell Institute, Harvard-MIT, Division of Health Sciences and Technology, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - James A Ankrum
- Center for Regenerative Therapeutics and Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard Stem Cell Institute, Harvard-MIT, Division of Health Sciences and Technology, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Weian Zhao
- Center for Regenerative Therapeutics and Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard Stem Cell Institute, Harvard-MIT, Division of Health Sciences and Technology, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Jeffrey M Karp
- Center for Regenerative Therapeutics and Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard Stem Cell Institute, Harvard-MIT, Division of Health Sciences and Technology, 65 Landsdowne Street, Cambridge, MA 02139, USA
| |
Collapse
|
27
|
Wong VW, Rustad KC, Glotzbach JP, Sorkin M, Inayathullah M, Major MR, Longaker MT, Rajadas J, Gurtner GC. Pullulan hydrogels improve mesenchymal stem cell delivery into high-oxidative-stress wounds. Macromol Biosci 2011; 11:1458-66. [PMID: 21994074 DOI: 10.1002/mabi.201100180] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/27/2011] [Indexed: 01/10/2023]
Abstract
Cell-based therapies for wound repair are limited by inefficient delivery systems that fail to protect cells from the acute inflammatory environment. Here, a biomimetic hydrogel system is described that is based on the polymer pullulan, a carbohydrate glucan known to exhibit potent antioxidant capabilities. It is shown that pullulan hydrogels are an effective cell delivery system and improve mesenchymal stem cell survival and engraftment in high-oxidative-stress environments. The results suggest that glucan hydrogel systems may prove beneficial for progenitor-cell-based approaches to skin regeneration.
Collapse
Affiliation(s)
- Victor W Wong
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|