1
|
Li C, Zhang G, Zhao B, Xie D, Du H, Duan X, Hu Y, Zhang L. Advances of surgical robotics: image-guided classification and application. Natl Sci Rev 2024; 11:nwae186. [PMID: 39144738 PMCID: PMC11321255 DOI: 10.1093/nsr/nwae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 08/16/2024] Open
Abstract
Surgical robotics application in the field of minimally invasive surgery has developed rapidly and has been attracting increasingly more research attention in recent years. A common consensus has been reached that surgical procedures are to become less traumatic and with the implementation of more intelligence and higher autonomy, which is a serious challenge faced by the environmental sensing capabilities of robotic systems. One of the main sources of environmental information for robots are images, which are the basis of robot vision. In this review article, we divide clinical image into direct and indirect based on the object of information acquisition, and into continuous, intermittent continuous, and discontinuous according to the target-tracking frequency. The characteristics and applications of the existing surgical robots in each category are introduced based on these two dimensions. Our purpose in conducting this review was to analyze, summarize, and discuss the current evidence on the general rules on the application of image technologies for medical purposes. Our analysis gives insight and provides guidance conducive to the development of more advanced surgical robotics systems in the future.
Collapse
Affiliation(s)
- Changsheng Li
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Gongzi Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100141, China
| | - Baoliang Zhao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dongsheng Xie
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Hailong Du
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100141, China
| | - Xingguang Duan
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ying Hu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lihai Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100141, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
2
|
Zeng N, Sun JX, Liu CQ, Xu JZ, An Y, Xu MY, Zhang SH, Zhong XY, Ma SY, He HD, Wang SG, Xia QD. Knowledge mapping of application of image-guided surgery in prostate cancer: a bibliometric analysis (2013-2023). Int J Surg 2024; 110:2992-3007. [PMID: 38445538 PMCID: PMC11093506 DOI: 10.1097/js9.0000000000001232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/14/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Image-guided surgery (IGS) refers to surgery navigated by medical imaging technology, helping doctors better clarify tumor boundaries, identify metastatic lymph nodes and preserve surrounding healthy tissue function. Recent studies have provided expectable momentum of the application of IGS in prostate cancer (PCa). The authors aim to comprehensively construct a bibliometric analysis of the application of IGS in PCa. METHOD The authors searched publications related to application of IGS in PCa from 2013 to 2023 on the web of science core collection (WoSCC) databases. VOSviewer, CiteSpace, and R package 'bibliometrix' were used for bibliometric analysis. RESULTS Two thousand three eighty-nine articles from 75 countries and 2883 institutions led by the United States were included. The number of publications related to the application of IGS in PCa kept high in the last decade. Johns Hopkins University is the top research institutions. Journal of Nuclear Medicine has the highest popularity as the selection of journal and co-cited journal. Pomper Martin G. had published the most paper. Ali Afshar-Oromieh was co-cited most frequently. The clinical efficacy of PSMA-PET/CT in PCa diagnosis and treatment are main topics in this research field, with emerging focuses on the use of fluorescence imaging guidance technology in PCa. 'PSMA' and 'PET/CT' are the main keywords as long-term research hotspots. CONCLUSION This study is the first bibliometric analysis of researches on application of IGS in PCa with three recognized bibliometric software, providing an objective description and comprehensive guidance for the future relevant investigations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Shao-Gang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, People’s Republic of China
| | - Qi-Dong Xia
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, People’s Republic of China
| |
Collapse
|
3
|
Klint E, Richter J, Wårdell K. Combined Use of Frameless Neuronavigation and In Situ Optical Guidance in Brain Tumor Needle Biopsies. Brain Sci 2023; 13:brainsci13050809. [PMID: 37239281 DOI: 10.3390/brainsci13050809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Brain tumor needle biopsies are performed to retrieve tissue samples for neuropathological analysis. Although preoperative images guide the procedure, there are risks of hemorrhage and sampling of non-tumor tissue. This study aimed to develop and evaluate a method for frameless one-insertion needle biopsies with in situ optical guidance and present a processing pipeline for combined postoperative analysis of optical, MRI, and neuropathological data. An optical system for quantified feedback on tissue microcirculation, gray-whiteness, and the presence of a tumor (protoporphyrin IX (PpIX) accumulation) with a one-insertion optical probe was integrated into a needle biopsy kit that was used for frameless neuronavigation. In Python, a pipeline for signal processing, image registration, and coordinate transformation was set up. The Euclidian distances between the pre- and postoperative coordinates were calculated. The proposed workflow was evaluated on static references, a phantom, and three patients with suspected high-grade gliomas. In total, six biopsy samples that overlapped with the region of the highest PpIX peak without increased microcirculation were taken. The samples were confirmed as being tumorous and postoperative imaging was used to define the biopsy locations. A 2.5 ± 1.2 mm difference between the pre- and postoperative coordinates was found. Optical guidance in frameless brain tumor biopsies could offer benefits such as quantified in situ indication of high-grade tumor tissue and indications of increased blood flow along the needle trajectory before the tissue is removed. Additionally, postoperative visualization enables the combined analysis of MRI, optical, and neuropathological data.
Collapse
Affiliation(s)
- Elisabeth Klint
- Department of Biomedical Engineering, Linköping University, 581 85 Linköping, Sweden
| | - Johan Richter
- Department of Biomedical Engineering, Linköping University, 581 85 Linköping, Sweden
- Department of Neurosurgery, Linköping University Hospital, 581 85 Linköping, Sweden
| | - Karin Wårdell
- Department of Biomedical Engineering, Linköping University, 581 85 Linköping, Sweden
| |
Collapse
|
4
|
Yalamarty SSK, Filipczak N, Li X, Subhan MA, Parveen F, Ataide JA, Rajmalani BA, Torchilin VP. Mechanisms of Resistance and Current Treatment Options for Glioblastoma Multiforme (GBM). Cancers (Basel) 2023; 15:cancers15072116. [PMID: 37046777 PMCID: PMC10093719 DOI: 10.3390/cancers15072116] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive form of brain cancer that is difficult to treat due to its resistance to both radiation and chemotherapy. This resistance is largely due to the unique biology of GBM cells, which can evade the effects of conventional treatments through mechanisms such as increased resistance to cell death and rapid regeneration of cancerous cells. Additionally, the blood–brain barrier makes it difficult for chemotherapy drugs to reach GBM cells, leading to reduced effectiveness. Despite these challenges, there are several treatment options available for GBM. The standard of care for newly diagnosed GBM patients involves surgical resection followed by concurrent chemoradiotherapy and adjuvant chemotherapy. Emerging treatments include immunotherapy, such as checkpoint inhibitors, and targeted therapies, such as bevacizumab, that attempt to attack specific vulnerabilities in GBM cells. Another promising approach is the use of tumor-treating fields, a type of electric field therapy that has been shown to slow the growth of GBM cells. Clinical trials are ongoing to evaluate the safety and efficacy of these and other innovative treatments for GBM, intending to improve with outcomes for patients.
Collapse
Affiliation(s)
- Satya Siva Kishan Yalamarty
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Xiang Li
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Md Abdus Subhan
- Department of Chemistry, ShahJalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Farzana Parveen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Department of Pharmacy Services, DHQ Hospital, Jhang 35200, Pakistan
| | - Janaína Artem Ataide
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, Brazil
| | - Bharat Ashok Rajmalani
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Vladimir P. Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
5
|
Broggi M, Zattra CM, Restelli F, Acerbi F, Seveso M, Devigili G, Schiariti M, Vetrano IG, Ferroli P, Broggi G. A Brief Explanation on Surgical Approaches for Treatment of Different Brain Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:689-714. [PMID: 37452959 DOI: 10.1007/978-3-031-23705-8_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The main goal of brain tumor surgery is to achieve gross total tumor resection without postoperative complications and permanent new deficits. However, when the lesion is located close or within eloquent brain areas, cranial nerves, and/or major brain vessels, it is imperative to balance the extent of resection with the risk of harming the patient, by following a so-called maximal safe resection philosophy. This view implies a shift from an approach-guided attitude, in which few standard surgical approaches are used to treat almost all intracranial tumors, to a pathology-guided one, with surgical approaches actually tailored to the specific tumor that has to be treated with specific dedicated pre- and intraoperative tools and techniques. In this chapter, the basic principles of the most commonly used neurosurgical approaches in brain tumors surgery are presented and discussed along with an overview on all available modern tools able to improve intraoperative visualization, extent of resection, and postoperative clinical outcome.
Collapse
Affiliation(s)
- Morgan Broggi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Costanza M Zattra
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Francesco Restelli
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Francesco Acerbi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Mirella Seveso
- Neuroanesthesia and Neurointensive Care Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Grazia Devigili
- Neurological Unit 1, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Marco Schiariti
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Ignazio G Vetrano
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Paolo Ferroli
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Giovanni Broggi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy.
- Scientific Director, Fondazione I.E.N. Milano, Italy.
| |
Collapse
|
6
|
Cheng C, Lu M, Zhang Y, Hu X. Effect of augmented reality navigation technology on perioperative safety in partial nephrectomies: A meta-analysis and systematic review. Front Surg 2023; 10:1067275. [PMID: 37123539 PMCID: PMC10130447 DOI: 10.3389/fsurg.2023.1067275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Aim To evaluate the impact of augmented reality surgical navigation (ARSN) technology on short-term outcomes of partial nephrectomy (PN). Methods A systematic literature search was conducted in PubMed, Embase, Cochrane, and Web of Science for eligible studies published through March 28, 2022. Two researchers independently performed the article screening, data extraction and quality review. Data analysis was performed using Cochrane Review Manager software. Results A total of 583 patients from eight studies were included in the analysis, with 313 in the ARSN-assisted PN group (AR group) and 270 in the conventional PN group (NAR group). ARSN-assisted PN showed better outcomes than conventional surgery in terms of operative time, estimated blood loss, global ischemia rate, warm ischemia time, and enucleation rate. However, there were no significant differences in the rate of Conversion to radical nephrectomy (RN), postoperative estimated glomerular filtration rate (eGFR), positive margin rate, and postoperative complication rate. Conclusion The utilization of ARSN can improve the perioperative safety of PN. Compared with conventional PN, ARSN-assisted PN can reduce intraoperative blood loss, shorten operative time, and improve renal ischemia. Although direct evidence is lacking, our results still suggest a potential advantage of ARSN in improving renal recovery after PN. However, as the ARSN system is still in an exploratory stage, its relevance in PN have been poorly reported. Additional high-quality randomized controlled trial (RCT) studies will be required to confirm the effect of ARSN on PN. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=301798, identifier PROSPERO ID: CRD42022301798.
Collapse
|
7
|
Boekestijn I, van Oosterom MN, Dell'Oglio P, van Velden FHP, Pool M, Maurer T, Rietbergen DDD, Buckle T, van Leeuwen FWB. The current status and future prospects for molecular imaging-guided precision surgery. Cancer Imaging 2022; 22:48. [PMID: 36068619 PMCID: PMC9446692 DOI: 10.1186/s40644-022-00482-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/21/2022] [Indexed: 01/19/2023] Open
Abstract
Molecular imaging technologies are increasingly used to diagnose, monitor, and guide treatment of i.e., cancer. In this review, the current status and future prospects of the use of molecular imaging as an instrument to help realize precision surgery is addressed with focus on the main components that form the conceptual basis of intraoperative molecular imaging. Paramount for successful interventions is the relevance and accessibility of surgical targets. In addition, selection of the correct combination of imaging agents and modalities is critical to visualize both microscopic and bulk disease sites with high affinity and specificity. In this context developments within engineering/imaging physics continue to drive the growth of image-guided surgery. Particularly important herein is enhancement of sensitivity through improved contrast and spatial resolution, features that are critical if sites of cancer involvement are not to be overlooked during surgery. By facilitating the connection between surgical planning and surgical execution, digital surgery technologies such as computer-aided visualization nicely complement these technologies. The complexity of image guidance, combined with the plurality of technologies that are becoming available, also drives the need for evaluation mechanisms that can objectively score the impact that technologies exert on the performance of healthcare professionals and outcome improvement for patients.
Collapse
Affiliation(s)
- Imke Boekestijn
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Matthias N van Oosterom
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Paolo Dell'Oglio
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Urology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Floris H P van Velden
- Medical Physics, Department of Radiology , Leiden University Medical Center, Leiden, the Netherlands
| | - Martin Pool
- Department of Clinical Farmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tobias Maurer
- Martini-Klinik Prostate Cancer Centre Hamburg, Hamburg, Germany
| | - Daphne D D Rietbergen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
8
|
Hassanin SW, Kshirsagar RS, Eide JG, Chang J, Liang J, Palmer JN, Adappa ND. Image-Guided Surgical Device Failures in Functional Endoscopic Sinus Surgery: A MAUDE Analysis. Laryngoscope 2022; 133:1310-1314. [PMID: 35833501 DOI: 10.1002/lary.30296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/24/2022] [Accepted: 06/29/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Image-guided surgery (IGS) devices have become widely used for anatomic localization during functional endoscopic sinus surgery (FESS). However, there are no studies that analyze the post-market complications associated with IGS device use during FESS. The objective of this study was to better characterize post-market complications associated with the use of IGS devices during sinus surgery. METHODS The US Food and Drug Administration's Manufacturer and User Facility Device Experience database was queried for event reports associated with neurological stereotaxic devices utilized in IGS between the dates of January 1, 2016 and December 31, 2020. Medical device reports that were analyzed for this study pertained strictly to FESS. RESULTS There were 1873 reports involving IGS devices for FESS included in this study. Fifty-five reports involved adverse events to patients (2.9%) and 1818 (97.1%) involved device malfunctions. Of the adverse events to patients, the most common included cerebrospinal fluid leakage (45.6%), tissue damage (12.7%), and nervous system injury (3.6%). The most commonly reported device malfunction was imprecision (21.1%). CONCLUSION IGS devices are widely utilized in FESS. Of the medical device reports between 2016 and 2020, less than 3% resulted in adverse events. Further studies of the infrequent post-market complications of IGS devices used in FESS can help guide surgeons on the risks of their clinical use. LEVEL OF EVIDENCE 4-Retrospective database survey without controls Laryngoscope, 2022.
Collapse
Affiliation(s)
- Samir W Hassanin
- Department of Medical Education, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, U.S.A
| | - Rijul S Kshirsagar
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, U.S.A
| | - Jacob G Eide
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, U.S.A
| | - Jeremy Chang
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, U.S.A
| | - Jonathan Liang
- Department of Head and Neck Surgery, Kaiser Permanente Oakland Medical Center, Oakland, California, U.S.A
| | - James N Palmer
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, U.S.A
| | - Nithin D Adappa
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, U.S.A
| |
Collapse
|
9
|
El Kheir W, Marcos B, Virgilio N, Paquette B, Faucheux N, Lauzon MA. Drug Delivery Systems in the Development of Novel Strategies for Glioblastoma Treatment. Pharmaceutics 2022; 14:1189. [PMID: 35745762 PMCID: PMC9227363 DOI: 10.3390/pharmaceutics14061189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a grade IV glioma considered the most fatal cancer of the central nervous system (CNS), with less than a 5% survival rate after five years. The tumor heterogeneity, the high infiltrative behavior of its cells, and the blood-brain barrier (BBB) that limits the access of therapeutic drugs to the brain are the main reasons hampering the current standard treatment efficiency. Following the tumor resection, the infiltrative remaining GBM cells, which are resistant to chemotherapy and radiotherapy, can further invade the surrounding brain parenchyma. Consequently, the development of new strategies to treat parenchyma-infiltrating GBM cells, such as vaccines, nanotherapies, and tumor cells traps including drug delivery systems, is required. For example, the chemoattractant CXCL12, by binding to its CXCR4 receptor, activates signaling pathways that play a critical role in tumor progression and invasion, making it an interesting therapeutic target to properly control the direction of GBM cell migration for treatment proposes. Moreover, the interstitial fluid flow (IFF) is also implicated in increasing the GBM cell migration through the activation of the CXCL12-CXCR4 signaling pathway. However, due to its complex and variable nature, the influence of the IFF on the efficiency of drug delivery systems is not well understood yet. Therefore, this review discusses novel drug delivery strategies to overcome the GBM treatment limitations, focusing on chemokines such as CXCL12 as an innovative approach to reverse the migration of infiltrated GBM. Furthermore, recent developments regarding in vitro 3D culture systems aiming to mimic the dynamic peritumoral environment for the optimization of new drug delivery technologies are highlighted.
Collapse
Affiliation(s)
- Wiam El Kheir
- Advanced Dynamic Cell Culture Systems Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Bernard Marcos
- Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Nick Virgilio
- Department of Chemical Engineering, Polytechnique Montréal, 2500 Chemin de Polytechnique, Montréal, QC H3T 1J4, Canada;
| | - Benoit Paquette
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada;
- Clinical Research Center of the Centre Hospitalier Universitaire de l’Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Nathalie Faucheux
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Clinical Research Center of the Centre Hospitalier Universitaire de l’Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Marc-Antoine Lauzon
- Advanced Dynamic Cell Culture Systems Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Research Center on Aging, 1036 Rue Belvédère Sud, Sherbrooke, QC J1H 4C4, Canada
| |
Collapse
|
10
|
Hardy NP, Cahill RA. Digital surgery for gastroenterological diseases. World J Gastroenterol 2021; 27:7240-7246. [PMID: 34876786 PMCID: PMC8611203 DOI: 10.3748/wjg.v27.i42.7240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/27/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023] Open
Abstract
Advances in machine learning, computer vision and artificial intelligence methods, in combination with those in processing and cloud computing capability, portend the advent of true decision support during interventions in real-time and soon perhaps in automated surgical steps. Such capability, deployed alongside technology intraoperatively, is termed digital surgery and can be delivered without the need for high-end capital robotic investment. An area close to clinical usefulness right now harnesses advances in near infrared endolaparoscopy and fluorescence guidance for tissue characterisation through the use of biophysics-inspired algorithms. This represents a potential synergistic methodology for the deep learning methods currently advancing in ophthalmology, radiology, and recently gastroenterology via colonoscopy. As databanks of more general surgical videos are created, greater analytic insights can be derived across the operative spectrum of gastroenterological disease and operations (including instrumentation and operative step sequencing and recognition, followed over time by surgeon and instrument performance assessment) and linked to value-based outcomes. However, issues of legality, ethics and even morality need consideration, as do the limiting effects of monopolies, cartels and isolated data silos. Furthermore, the role of the surgeon, surgical societies and healthcare institutions in this evolving field needs active deliberation, as the default risks relegation to bystander or passive recipient. This editorial provides insight into this accelerating field by illuminating the near-future and next decade evolutionary steps towards widespread clinical integration for patient and societal benefit.
Collapse
Affiliation(s)
- Niall Philip Hardy
- UCD Centre for Precision Surgery, University College Dublin, Dublin D07 Y9AW, Ireland
| | - Ronan Ambrose Cahill
- UCD Centre for Precision Surgery, University College Dublin, Dublin D07 Y9AW, Ireland
| |
Collapse
|
11
|
Wu W, Klockow JL, Zhang M, Lafortune F, Chang E, Jin L, Wu Y, Daldrup-Link HE. Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance. Pharmacol Res 2021; 171:105780. [PMID: 34302977 PMCID: PMC8384724 DOI: 10.1016/j.phrs.2021.105780] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022]
Abstract
Glioblastoma multiforme (GBM) is a WHO grade IV glioma and the most common malignant, primary brain tumor with a 5-year survival of 7.2%. Its highly infiltrative nature, genetic heterogeneity, and protection by the blood brain barrier (BBB) have posed great treatment challenges. The standard treatment for GBMs is surgical resection followed by chemoradiotherapy. The robust DNA repair and self-renewing capabilities of glioblastoma cells and glioma initiating cells (GICs), respectively, promote resistance against all current treatment modalities. Thus, durable GBM management will require the invention of innovative treatment strategies. In this review, we will describe biological and molecular targets for GBM therapy, the current status of pharmacologic therapy, prominent mechanisms of resistance, and new treatment approaches. To date, medical imaging is primarily used to determine the location, size and macroscopic morphology of GBM before, during, and after therapy. In the future, molecular and cellular imaging approaches will more dynamically monitor the expression of molecular targets and/or immune responses in the tumor, thereby enabling more immediate adaptation of tumor-tailored, targeted therapies.
Collapse
Affiliation(s)
- Wei Wu
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Jessica L Klockow
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Michael Zhang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Famyrah Lafortune
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Edwin Chang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Linchun Jin
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| | - Yang Wu
- Department of Neuropathology, Institute of Pathology, Technical University of Munich, Munich, Bayern 81675, Germany
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
12
|
Barber SR. New Navigation Approaches for Endoscopic Lateral Skull Base Surgery. Otolaryngol Clin North Am 2021; 54:175-187. [PMID: 33243374 DOI: 10.1016/j.otc.2020.09.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Image-guided navigation is well established for surgery of the brain and anterior skull base. Although navigation workstations have been used widely by neurosurgeons and rhinologists for decades, utilization in the lateral skull base (LSB) has been less due to stricter requirements for overall accuracy less than 1 mm in this region. Endoscopic approaches to the LSB facilitate minimally invasive surgeries with less morbidity, yet there are risks of injury to critical structures. With improvements in technology over the years, image-guided navigation for endoscopic LSB surgery can reduce operative time, optimize exposure for surgical corridors, and increase safety in difficult cases.
Collapse
Affiliation(s)
- Samuel R Barber
- Department of Otolaryngology-Head and Neck Surgery, University of Arizona College of Medicine, 1501 North Campbell Avenue, Tucson, AZ 85724, USA.
| |
Collapse
|
13
|
Yavas G, Caliskan KE, Cagli MS. Three-dimensional-printed marker-based augmented reality neuronavigation: a new neuronavigation technique. Neurosurg Focus 2021; 51:E20. [PMID: 34333464 DOI: 10.3171/2021.5.focus21206] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/13/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The aim of this study was to assess the precision and feasibility of 3D-printed marker-based augmented reality (AR) neurosurgical navigation and its use intraoperatively compared with optical tracking neuronavigation systems (OTNSs). METHODS Three-dimensional-printed markers for CT and MRI and intraoperative use were applied with mobile devices using an AR light detection and ranging (LIDAR) camera. The 3D segmentations of intracranial tumors were created with CT and MR images, and preoperative registration of the marker and pathology was performed. A patient-specific, surgeon-facilitated mobile application was developed, and a mobile device camera was used for neuronavigation with high accuracy, ease, and cost-effectiveness. After accuracy values were preliminarily assessed, this technique was used intraoperatively in 8 patients. RESULTS The mobile device LIDAR camera was found to successfully overlay images of virtual tumor segmentations according to the position of a 3D-printed marker. The targeting error that was measured ranged from 0.5 to 3.5 mm (mean 1.70 ± 1.02 mm, median 1.58 mm). The mean preoperative preparation time was 35.7 ± 5.56 minutes, which is longer than that for routine OTNSs, but the amount of time required for preoperative registration and the placement of the intraoperative marker was very brief compared with other neurosurgical navigation systems (mean 1.02 ± 0.3 minutes). CONCLUSIONS The 3D-printed marker-based AR neuronavigation system was a clinically feasible, highly precise, low-cost, and easy-to-use navigation technique. Three-dimensional segmentation of intracranial tumors was targeted on the brain and was clearly visualized from the skin incision to the end of surgery.
Collapse
|
14
|
Schneider C, Allam M, Stoyanov D, Hawkes DJ, Gurusamy K, Davidson BR. Performance of image guided navigation in laparoscopic liver surgery - A systematic review. Surg Oncol 2021; 38:101637. [PMID: 34358880 DOI: 10.1016/j.suronc.2021.101637] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/04/2021] [Accepted: 07/24/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Compared to open surgery, minimally invasive liver resection has improved short term outcomes. It is however technically more challenging. Navigated image guidance systems (IGS) are being developed to overcome these challenges. The aim of this systematic review is to provide an overview of their current capabilities and limitations. METHODS Medline, Embase and Cochrane databases were searched using free text terms and corresponding controlled vocabulary. Titles and abstracts of retrieved articles were screened for inclusion criteria. Due to the heterogeneity of the retrieved data it was not possible to conduct a meta-analysis. Therefore results are presented in tabulated and narrative format. RESULTS Out of 2015 articles, 17 pre-clinical and 33 clinical papers met inclusion criteria. Data from 24 articles that reported on accuracy indicates that in recent years navigation accuracy has been in the range of 8-15 mm. Due to discrepancies in evaluation methods it is difficult to compare accuracy metrics between different systems. Surgeon feedback suggests that current state of the art IGS may be useful as a supplementary navigation tool, especially in small liver lesions that are difficult to locate. They are however not able to reliably localise all relevant anatomical structures. Only one article investigated IGS impact on clinical outcomes. CONCLUSIONS Further improvements in navigation accuracy are needed to enable reliable visualisation of tumour margins with the precision required for oncological resections. To enhance comparability between different IGS it is crucial to find a consensus on the assessment of navigation accuracy as a minimum reporting standard.
Collapse
Affiliation(s)
- C Schneider
- Department of Surgical Biotechnology, University College London, Pond Street, NW3 2QG, London, UK.
| | - M Allam
- Department of Surgical Biotechnology, University College London, Pond Street, NW3 2QG, London, UK; General surgery Department, Tanta University, Egypt
| | - D Stoyanov
- Department of Computer Science, University College London, London, UK; Centre for Medical Image Computing (CMIC), University College London, London, UK
| | - D J Hawkes
- Centre for Medical Image Computing (CMIC), University College London, London, UK; Wellcome / EPSRC Centre for Surgical and Interventional Sciences (WEISS), University College London, London, UK
| | - K Gurusamy
- Department of Surgical Biotechnology, University College London, Pond Street, NW3 2QG, London, UK
| | - B R Davidson
- Department of Surgical Biotechnology, University College London, Pond Street, NW3 2QG, London, UK
| |
Collapse
|
15
|
Comprehensive Review of 3D Segmentation Software Tools for MRI Usable for Pelvic Surgery Planning. J Digit Imaging 2021; 33:99-110. [PMID: 31236743 DOI: 10.1007/s10278-019-00239-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Patient-specific 3D modeling is the first step towards image-guided surgery, the actual revolution in surgical care. Pediatric and adolescent patients with rare tumors and malformations should highly benefit from these latest technological innovations, allowing personalized tailored surgery. This study focused on the pelvic region, located at the crossroads of the urinary, digestive, and genital channels with important vascular and nervous structures. The aim of this study was to evaluate the performances of different software tools to obtain patient-specific 3D models, through segmentation of magnetic resonance images (MRI), the reference for pediatric pelvis examination. Twelve software tools freely available on the Internet and two commercial software tools were evaluated using T2-w MRI and diffusion-weighted MRI images. The software tools were rated according to eight criteria, evaluated by three different users: automatization degree, segmentation time, usability, 3D visualization, presence of image registration tools, tractography tools, supported OS, and potential extension (i.e., plugins). A ranking of software tools for 3D modeling of MRI medical images, according to the set of predefined criteria, was given. This ranking allowed us to elaborate guidelines for the choice of software tools for pelvic surgical planning in pediatric patients. The best-ranked software tools were Myrian Studio, ITK-SNAP, and 3D Slicer, the latter being especially appropriate if nerve fibers should be included in the 3D patient model. To conclude, this study proposed a comprehensive review of software tools for 3D modeling of the pelvis according to a set of eight criteria and delivered specific conclusions for pediatric and adolescent patients that can be directly applied to clinical practice.
Collapse
|
16
|
Digital dynamic discrimination of primary colorectal cancer using systemic indocyanine green with near-infrared endoscopy. Sci Rep 2021; 11:11349. [PMID: 34059705 PMCID: PMC8167125 DOI: 10.1038/s41598-021-90089-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/29/2021] [Indexed: 02/03/2023] Open
Abstract
As indocyanine green (ICG) with near-infrared (NIR) endoscopy enhances real-time intraoperative tissue microperfusion appreciation, it may also dynamically reveal neoplasia distinctively from normal tissue especially with video software fluorescence analysis. Colorectal tumours of patients were imaged mucosally following ICG administration (0.25 mg/kg i.v.) using an endo-laparoscopic NIR system (PINPOINT Endoscopic Fluorescence System, Stryker) including immediate, continuous in situ visualization of rectal lesions transanally for up to 20 min. Spot and dynamic temporal fluorescence intensities (FI) were quantified using ImageJ (including videos at one frame/second, fps) and by a bespoke MATLAB® application that provided digitalized video tracking and signal logging at 30fps (Fluorescence Tracker App downloadable via MATLAB® file exchange). Statistical analysis of FI-time plots compared tumours (benign and malignant) against control during FI curve rise, peak and decline from apex. Early kinetic FI signal measurement delineated discriminative temporal signatures from tumours (n = 20, 9 cancers) offering rich data for analysis versus delayed spot measurement (n = 10 cancers). Malignant lesion dynamic curves peaked significantly later with a shallower gradient than normal tissue while benign lesions showed significantly greater and faster intensity drop from apex versus cancer. Automated tracker quantification efficiently expanded manual results and provided algorithmic KNN clustering. Photobleaching appeared clinically irrelevant. Analysis of a continuous stream of intraoperatively acquired early ICG fluorescence data can act as an in situ tumour-identifier with greater detail than later snapshot observation alone. Software quantification of such kinetic signatures may distinguish invasive from non-invasive neoplasia with potential for real-time in silico diagnosis.
Collapse
|
17
|
Wu A. Overview of Modern Surgical Management of Central Nervous System Tumors: North American Experience. CURRENT CANCER THERAPY REVIEWS 2020. [DOI: 10.2174/1573394715666190212112842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A wide variety of neoplasms can affect the central nervous system. Surgical management
is impacted by tumor biology and anatomic location. In this review, an overview is presented
of common and clinically significant CNS tumor types based on anatomic location.
Collapse
Affiliation(s)
- Adam Wu
- University of Saskatchewan, Saskatoon, Saskatchewan, SK, Canada
| |
Collapse
|
18
|
Schneider C, Thompson S, Totz J, Song Y, Allam M, Sodergren MH, Desjardins AE, Barratt D, Ourselin S, Gurusamy K, Stoyanov D, Clarkson MJ, Hawkes DJ, Davidson BR. Comparison of manual and semi-automatic registration in augmented reality image-guided liver surgery: a clinical feasibility study. Surg Endosc 2020; 34:4702-4711. [PMID: 32780240 PMCID: PMC7524854 DOI: 10.1007/s00464-020-07807-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The laparoscopic approach to liver resection may reduce morbidity and hospital stay. However, uptake has been slow due to concerns about patient safety and oncological radicality. Image guidance systems may improve patient safety by enabling 3D visualisation of critical intra- and extrahepatic structures. Current systems suffer from non-intuitive visualisation and a complicated setup process. A novel image guidance system (SmartLiver), offering augmented reality visualisation and semi-automatic registration has been developed to address these issues. A clinical feasibility study evaluated the performance and usability of SmartLiver with either manual or semi-automatic registration. METHODS Intraoperative image guidance data were recorded and analysed in patients undergoing laparoscopic liver resection or cancer staging. Stereoscopic surface reconstruction and iterative closest point matching facilitated semi-automatic registration. The primary endpoint was defined as successful registration as determined by the operating surgeon. Secondary endpoints were system usability as assessed by a surgeon questionnaire and comparison of manual vs. semi-automatic registration accuracy. Since SmartLiver is still in development no attempt was made to evaluate its impact on perioperative outcomes. RESULTS The primary endpoint was achieved in 16 out of 18 patients. Initially semi-automatic registration failed because the IGS could not distinguish the liver surface from surrounding structures. Implementation of a deep learning algorithm enabled the IGS to overcome this issue and facilitate semi-automatic registration. Mean registration accuracy was 10.9 ± 4.2 mm (manual) vs. 13.9 ± 4.4 mm (semi-automatic) (Mean difference - 3 mm; p = 0.158). Surgeon feedback was positive about IGS handling and improved intraoperative orientation but also highlighted the need for a simpler setup process and better integration with laparoscopic ultrasound. CONCLUSION The technical feasibility of using SmartLiver intraoperatively has been demonstrated. With further improvements semi-automatic registration may enhance user friendliness and workflow of SmartLiver. Manual and semi-automatic registration accuracy were comparable but evaluation on a larger patient cohort is required to confirm these findings.
Collapse
Affiliation(s)
- C. Schneider
- Division of Surgery & Interventional Science, Royal Free Campus, University College London, Pond Street, London, NW3 2QG UK
| | - S. Thompson
- Wellcome / EPSRC Centre for Surgical and Interventional Sciences (WEISS), University College London, London, UK ,Centre for Medical Image Computing (CMIC), University College London, London, UK ,Department of Medical Physics and Bioengineering, University College London, London, UK
| | - J. Totz
- Wellcome / EPSRC Centre for Surgical and Interventional Sciences (WEISS), University College London, London, UK ,Centre for Medical Image Computing (CMIC), University College London, London, UK ,Department of Medical Physics and Bioengineering, University College London, London, UK
| | - Y. Song
- Wellcome / EPSRC Centre for Surgical and Interventional Sciences (WEISS), University College London, London, UK ,Centre for Medical Image Computing (CMIC), University College London, London, UK ,Department of Medical Physics and Bioengineering, University College London, London, UK
| | - M. Allam
- Division of Surgery & Interventional Science, Royal Free Campus, University College London, Pond Street, London, NW3 2QG UK
| | - M. H. Sodergren
- Centre for Medical Image Computing (CMIC), University College London, London, UK
| | - A. E. Desjardins
- Wellcome / EPSRC Centre for Surgical and Interventional Sciences (WEISS), University College London, London, UK ,Department of Medical Physics and Bioengineering, University College London, London, UK
| | - D. Barratt
- Wellcome / EPSRC Centre for Surgical and Interventional Sciences (WEISS), University College London, London, UK ,Centre for Medical Image Computing (CMIC), University College London, London, UK ,Department of Medical Physics and Bioengineering, University College London, London, UK
| | - S. Ourselin
- Wellcome / EPSRC Centre for Surgical and Interventional Sciences (WEISS), University College London, London, UK ,Centre for Medical Image Computing (CMIC), University College London, London, UK ,Department of Medical Physics and Bioengineering, University College London, London, UK
| | - K. Gurusamy
- Division of Surgery & Interventional Science, Royal Free Campus, University College London, Pond Street, London, NW3 2QG UK ,Wellcome / EPSRC Centre for Surgical and Interventional Sciences (WEISS), University College London, London, UK ,Department of Hepatopancreatobiliary and Liver Transplant Surgery, Royal Free Hospital, London, UK
| | - D. Stoyanov
- Wellcome / EPSRC Centre for Surgical and Interventional Sciences (WEISS), University College London, London, UK ,Centre for Medical Image Computing (CMIC), University College London, London, UK ,Department of Computer Science, University College London, London, UK
| | - M. J. Clarkson
- Wellcome / EPSRC Centre for Surgical and Interventional Sciences (WEISS), University College London, London, UK ,Centre for Medical Image Computing (CMIC), University College London, London, UK ,Department of Medical Physics and Bioengineering, University College London, London, UK
| | - D. J. Hawkes
- Wellcome / EPSRC Centre for Surgical and Interventional Sciences (WEISS), University College London, London, UK ,Centre for Medical Image Computing (CMIC), University College London, London, UK ,Department of Medical Physics and Bioengineering, University College London, London, UK
| | - B. R. Davidson
- Division of Surgery & Interventional Science, Royal Free Campus, University College London, Pond Street, London, NW3 2QG UK ,Wellcome / EPSRC Centre for Surgical and Interventional Sciences (WEISS), University College London, London, UK ,Department of Hepatopancreatobiliary and Liver Transplant Surgery, Royal Free Hospital, London, UK
| |
Collapse
|
19
|
Chaplin V, Phipps MA, Jonathan SV, Grissom WA, Yang PF, Chen LM, Caskey CF. On the accuracy of optically tracked transducers for image-guided transcranial ultrasound. Int J Comput Assist Radiol Surg 2019; 14:1317-1327. [PMID: 31069643 DOI: 10.1007/s11548-019-01988-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/24/2019] [Indexed: 01/12/2023]
Abstract
PURPOSE Transcranial focused ultrasound (FUS) is increasingly being explored to modulate neuronal activity. To target neuromodulation, researchers often localize the FUS beam onto the brain region(s) of interest using spatially tracked tools overlaid on pre-acquired images. Here, we quantify the accuracy of optically tracked image-guided FUS with magnetic resonance imaging (MRI) thermometry, evaluate sources of error and demonstrate feasibility of these procedures to target the macaque somatosensory region. METHODS We developed an optically tracked FUS system capable of projecting the transducer focus onto a pre-acquired MRI volume. To measure the target registration error (TRE), we aimed the transducer focus at a desired target in a phantom under image guidance, heated the target while imaging with MR thermometry and then calculated the TRE as the difference between the targeted and heated locations. Multiple targets were measured using either an unbiased or bias-corrected calibration. We then targeted the macaque S1 brain region, where displacement induced by the acoustic radiation force was measured using MR acoustic radiation force imaging (MR-ARFI). RESULTS All calibration methods enabled registration with TRE on the order of 3 mm. Unbiased calibration resulted in an average TRE of 3.26 mm (min-max: 2.80-4.53 mm), which was not significantly changed by prospective bias correction (TRE of 3.05 mm; 2.06-3.81 mm, p = 0.55). Restricting motion between the transducer and target and increasing the distance between tracked markers reduced the TRE to 2.43 mm (min-max: 0.79-3.88 mm). MR-ARFI images showed qualitatively similar shape and extent as projected beam profiles in a living non-human primate. CONCLUSIONS Our study describes methods for image guidance of FUS neuromodulation and quantifies errors associated with this method in a large animal. The workflow is efficient enough for in vivo use, and we demonstrate transcranial MR-ARFI in vivo in macaques for the first time.
Collapse
Affiliation(s)
- V Chaplin
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, AA 1105 MCN, 1161 21st Ave. S, Nashville, TN, TN 37232, USA
| | - M A Phipps
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, AA 1105 MCN, 1161 21st Ave. S, Nashville, TN, TN 37232, USA
| | - S V Jonathan
- Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - W A Grissom
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, AA 1105 MCN, 1161 21st Ave. S, Nashville, TN, TN 37232, USA
- Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - P F Yang
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, AA 1105 MCN, 1161 21st Ave. S, Nashville, TN, TN 37232, USA
| | - L M Chen
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, AA 1105 MCN, 1161 21st Ave. S, Nashville, TN, TN 37232, USA
| | - C F Caskey
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, AA 1105 MCN, 1161 21st Ave. S, Nashville, TN, TN 37232, USA.
- Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
20
|
Guo Y, Xu S, Li X, Ma X. Preliminary study on Sina (Sina Intraoperative Neurosurgical Assist) APP assisted localization of supratentorial lesions by smart phone. J Clin Neurosci 2019; 62:277-281. [PMID: 30612915 DOI: 10.1016/j.jocn.2018.12.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/23/2018] [Accepted: 12/22/2018] [Indexed: 11/29/2022]
Abstract
This article is aimed at investigating the use of smart phone software Sina in the localization of supratentorial lesions, finding the error between Sina method and neuronavigation, and identifying the reliability of the new method. Neuronavigation and Sina measurement were used to locate the lesion in the patients whose lesion lengths are between 2 cm and 6 cm. The reference point was the center of the lesion. We found the error of Sina method is 13.6 ± 0.55 mm comparing with neuronavigation, so the Sina method still cannot replace the localization method of the neuronavigation system. However, in practical clinical work, with the help of the new method, the lesion can be located more precisely and easily.
Collapse
Affiliation(s)
- Yu Guo
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan 250012, China; Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Shujun Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiangyu Ma
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|
21
|
Fan Y, Sun Y, Chang W, Zhang X, Tang J, Zhang L, Liao H. Bioluminescence imaging and two-photon microscopy guided laser ablation of GBM decreases tumor burden. Am J Cancer Res 2018; 8:4072-4085. [PMID: 30128037 PMCID: PMC6096384 DOI: 10.7150/thno.25357] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/03/2018] [Indexed: 11/25/2022] Open
Abstract
Brain tumor delineation and treatment are the main concerns of neurosurgeons in neurosurgical operations. Bridging the gap between imaging/diagnosis and treatment will provide great convenience for neurosurgeons. Here, we developed an optical theranostics platform that helps to delineate the boundary and quantitatively analyze glioblastoma multiforms (GBMs) with bioluminescence imaging (BLI) to guide laser ablation, and we imaged the GBM cells with two-photon microscopy (TPM) to visualize the laser ablation zone in vivo. Methods: Laser ablation, using the method of coupled ablated path planning with the guidance of BLI, was implemented in vivo for mouse brain tumors. The mapping relationship between semi-quantitative BLI and the laser ablation path was built through the quantitative tumor burden. The mapping was reflected through coupled ablated path planning. The BLI quantitatively and qualitatively evaluated treatment using laser ablation with the appropriate laser parameters and laser-tissue parameters. These parameters were measured after treatment. Furthermore, histopathological analysis of the brain tissue was conducted to compare the TPM images before and after laser ablation and to evaluate the results of in vivo laser ablation. The local recurrences were measured with three separate cohorts. The weights of all of the mice were measured during the experiment. Results: Our in vivo BLI data show that the tumor cell numbers were significantly attenuated after treatment with the optical theranostics platform, and the delineation of GBM margins had clear views to guide the laser resection; the fluorescence intensity in vivo of GBMs quantitatively analyzed the rapid progression of GBMs. The laser-tissue parameters under guidance of multimodality imaging ranged between 1.0 mm and 0.1 mm. The accuracy of the laser ablation reached a submillimeter level, and the resection ratio reached more than 99% under the guidance of BLI. The histopathological sections were compared to TPM images, and the results demonstrated that these images highly coincided. The weight index and local recurrence results demonstrated that the therapeutic effect of the optical theranostics platform was significant. Conclusion: We propose an optical multimodality imaging-guided laser ablation theranostics platform for the treatment of GBMs in an intravital mouse model. The experimental results demonstrated that the integration of multimodality imaging can precisely guide laser ablation for the treatment of GBMs. This preclinical research provides a possibility for the precision treatment of GBMs. The study also provides some theoretical support for clinical research.
Collapse
|
22
|
Zhu C, Kong SH, Kim TH, Park SH, Ang RRG, Diana M, Soler L, Suh YS, Lee HJ, Marescaux J, Cao H, Yang HK. The anatomical configuration of the splenic artery influences suprapancreatic lymph node dissection in laparoscopic gastrectomy: analysis using a 3D volume rendering program. Surg Endosc 2018; 32:3697-3705. [DOI: 10.1007/s00464-018-6201-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/25/2018] [Indexed: 02/07/2023]
|
23
|
Jaffee EM, Dang CV, Agus DB, Alexander BM, Anderson KC, Ashworth A, Barker AD, Bastani R, Bhatia S, Bluestone JA, Brawley O, Butte AJ, Coit DG, Davidson NE, Davis M, DePinho RA, Diasio RB, Draetta G, Frazier AL, Futreal A, Gambhir SS, Ganz PA, Garraway L, Gerson S, Gupta S, Heath J, Hoffman RI, Hudis C, Hughes-Halbert C, Ibrahim R, Jadvar H, Kavanagh B, Kittles R, Le QT, Lippman SM, Mankoff D, Mardis ER, Mayer DK, McMasters K, Meropol NJ, Mitchell B, Naredi P, Ornish D, Pawlik TM, Peppercorn J, Pomper MG, Raghavan D, Ritchie C, Schwarz SW, Sullivan R, Wahl R, Wolchok JD, Wong SL, Yung A. Future cancer research priorities in the USA: a Lancet Oncology Commission. Lancet Oncol 2017; 18:e653-e706. [PMID: 29208398 PMCID: PMC6178838 DOI: 10.1016/s1470-2045(17)30698-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/12/2022]
Abstract
We are in the midst of a technological revolution that is providing new insights into human biology and cancer. In this era of big data, we are amassing large amounts of information that is transforming how we approach cancer treatment and prevention. Enactment of the Cancer Moonshot within the 21st Century Cures Act in the USA arrived at a propitious moment in the advancement of knowledge, providing nearly US$2 billion of funding for cancer research and precision medicine. In 2016, the Blue Ribbon Panel (BRP) set out a roadmap of recommendations designed to exploit new advances in cancer diagnosis, prevention, and treatment. Those recommendations provided a high-level view of how to accelerate the conversion of new scientific discoveries into effective treatments and prevention for cancer. The US National Cancer Institute is already implementing some of those recommendations. As experts in the priority areas identified by the BRP, we bolster those recommendations to implement this important scientific roadmap. In this Commission, we examine the BRP recommendations in greater detail and expand the discussion to include additional priority areas, including surgical oncology, radiation oncology, imaging, health systems and health disparities, regulation and financing, population science, and oncopolicy. We prioritise areas of research in the USA that we believe would accelerate efforts to benefit patients with cancer. Finally, we hope the recommendations in this report will facilitate new international collaborations to further enhance global efforts in cancer control.
Collapse
Affiliation(s)
| | - Chi Van Dang
- Ludwig Institute for Cancer Research New York, NY; Wistar Institute, Philadelphia, PA, USA.
| | - David B Agus
- University of Southern California, Beverly Hills, CA, USA
| | - Brian M Alexander
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Alan Ashworth
- University of California San Francisco, San Francisco, CA, USA
| | | | - Roshan Bastani
- Fielding School of Public Health and the Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Sangeeta Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeffrey A Bluestone
- University of California San Francisco, San Francisco, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | | | - Atul J Butte
- University of California San Francisco, San Francisco, CA, USA
| | - Daniel G Coit
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Nancy E Davidson
- Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA
| | - Mark Davis
- California Institute for Technology, Pasadena, CA, USA
| | | | | | - Giulio Draetta
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - A Lindsay Frazier
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Andrew Futreal
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Patricia A Ganz
- Fielding School of Public Health and the Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Levi Garraway
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA; Eli Lilly and Company, Boston, MA, USA
| | | | - Sumit Gupta
- Division of Haematology/Oncology, Hospital for Sick Children, Faculty of Medicine and IHPME, University of Toronto, Toronto, Canada
| | - James Heath
- California Institute for Technology, Pasadena, CA, USA
| | - Ruth I Hoffman
- American Childhood Cancer Organization, Beltsville, MD, USA
| | - Cliff Hudis
- Breast Cancer Medicine Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Chanita Hughes-Halbert
- Medical University of South Carolina and the Hollings Cancer Center, Charleston, SC, USA
| | - Ramy Ibrahim
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Hossein Jadvar
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brian Kavanagh
- Department of Radiation Oncology, University of Colorado, Denver, CO, USA
| | - Rick Kittles
- College of Medicine, University of Arizona, Tucson, AZ, USA; University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | | | - Scott M Lippman
- University of California San Diego Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - David Mankoff
- Department of Radiology and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elaine R Mardis
- The Institute for Genomic Medicine at Nationwide Children's Hospital Columbus, OH, USA; College of Medicine, Ohio State University, Columbus, OH, USA
| | - Deborah K Mayer
- University of North Carolina Lineberger Cancer Center, Chapel Hill, NC, USA
| | - Kelly McMasters
- The Hiram C Polk Jr MD Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | | | | | - Peter Naredi
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dean Ornish
- University of California San Francisco, San Francisco, CA, USA
| | - Timothy M Pawlik
- Department of Surgery, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | | | - Martin G Pomper
- The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Derek Raghavan
- Levine Cancer Institute, Carolinas HealthCare, Charlotte, NC, USA
| | | | - Sally W Schwarz
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | | | - Richard Wahl
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Jedd D Wolchok
- Ludwig Center for Cancer Immunotherapy, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Sandra L Wong
- Department of Surgery, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Alfred Yung
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
24
|
Affiliation(s)
- Chin Siang Ong
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Narutoshi Hibino
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Wang J, Suenaga H, Yang L, Kobayashi E, Sakuma I. Video see-through augmented reality for oral and maxillofacial surgery. Int J Med Robot 2016; 13. [PMID: 27283505 DOI: 10.1002/rcs.1754] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/26/2016] [Accepted: 04/29/2016] [Indexed: 11/11/2022]
Abstract
BACKGROUND Oral and maxillofacial surgery has not been benefitting from image guidance techniques owing to the limitations in image registration. METHODS A real-time markerless image registration method is proposed by integrating a shape matching method into a 2D tracking framework. The image registration is performed by matching the patient's teeth model with intraoperative video to obtain its pose. The resulting pose is used to overlay relevant models from the same CT space on the camera video for augmented reality. RESULTS The proposed system was evaluated on mandible/maxilla phantoms, a volunteer and clinical data. Experimental results show that the target overlay error is about 1 mm, and the frame rate of registration update yields 3-5 frames per second with a 4 K camera. CONCLUSIONS The significance of this work lies in its simplicity in clinical setting and the seamless integration into the current medical procedure with satisfactory response time and overlay accuracy. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Junchen Wang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China.,Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Hideyuki Suenaga
- Department of Oral-Maxillofacial Surgery, Dentistry and Orthodontics, The University of Tokyo Hospital, Tokyo, Japan
| | - Liangjing Yang
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Etsuko Kobayashi
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Ichiro Sakuma
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|