1
|
Zhou T, Mo J, Xu W, Hu Q, Liu H, Fu Y, Jiang J. Mild hypothermia alleviates oxygen−glucose deprivation/reperfusion-induced apoptosis by inhibiting ROS generation, improving mitochondrial dysfunction and regulating DNA damage repair pathway in PC12 cells. Apoptosis 2022; 28:447-457. [PMID: 36520321 DOI: 10.1007/s10495-022-01799-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
The brain ischemia/reperfusion (I/R) injury has a great impact on human life and property safety. As far as we know, mild hypothermia (MH) is an effective measure to reduce neuronal injury after I/R. However, the precise mechanism is not extremely clear. The purpose of this study was to investigate whether mild therapeutic hypothermia can play a protective role in nerve cells dealing with brain I/R injury and explore its specific mechanism in vitro. A flow cytometer, cell counting kit-8 (CCK-8) assay and lactate dehydrogenase (LDH) release assay were performed to detect apoptotic rate of cells, cell viability and cytotoxicity, respectively, reactive oxygen species (ROS) assay kit, JC-1 fluorescent methods, immunofluorescence and western blot were used to explore ROS, mitochondrial transmembrane potential (Δψm), mitochondrial permeability transition pore (MPTP) and protein expression, respectively. The result indicated that the cell activity was decreased, while the cytotoxicity and apoptosis rate were increased after treating with oxygen-glucose deprivation/reperfusion (OGD/R) in PC12 cells. However, MH could antagonize this phenomenon. Interestingly, treating with OGD/R increased the release of ROS and the transfer of Cytochrome C (Cyt-C) from mitochondria to cytoplasm. In addition, it up-regulated the expression of γH2AX, Bax and Clv-caspase3, down-regulated the expression of PCNA, Rad51 and Bcl-2, and inhibited the function of mitochondria in PC12 cells. Excitingly, the opposite trend was observed after MH treatment. Therefore, our results suggest that MH protects PC12 cells against OGD/R-induced injury with the mechanism of inhibiting cell apoptosis by reducing ROS production, improving mitochondrial function, reducing DNA damage, and enhancing DNA repair.
Collapse
Affiliation(s)
- Tianen Zhou
- Department of Emergency, The First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Jierong Mo
- Department of Emergency, The First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Weigan Xu
- Department of Emergency, The First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Qiaohua Hu
- Department of Emergency, The First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Hongfeng Liu
- Department of Emergency, The First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Yue Fu
- Department of General Medicine, The First People's Hospital of Foshan, Foshan, 528000, Guangdong, China.
| | - Jun Jiang
- Department of Emergency, The First People's Hospital of Foshan, Foshan, 528000, Guangdong, China.
| |
Collapse
|
2
|
Abstract
Neuroprotection after acute spinal cord injury is an important strategy to limit secondary injury. Animal studies have shown that systemic hypothermia is an effective neuroprotective strategy that can be combined with other therapies. Systemic hypothermia affects several processes at the cellular level to reduce metabolic activity, oxidative stress, and apoptotic neuronal cell death. Modest systemic hypothermia has been shown to be safe and feasible in the acute phase after cervical spinal cord injury. These data have provided the impetus for an active multicenter randomized controlled trial for modest systemic hypothermia in acute cervical spinal cord injury.
Collapse
|
3
|
Dugan EA, Bennett C, Tamames I, Dietrich WD, King CS, Prasad A, Rajguru SM. Therapeutic hypothermia reduces cortical inflammation associated with utah array implants. J Neural Eng 2020; 17:026035. [PMID: 32240985 DOI: 10.1088/1741-2552/ab85d2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Neuroprosthetics hold tremendous promise to restore function through brain-computer interfaced devices. However, clinical applications of implantable microelectrodes remain limited given the challenges of maintaining neuronal signals for extended periods of time and with multiple biological mechanisms negatively affecting electrode performance. Acute and chronic inflammation, oxidative stress, and blood brain barrier disruption contribute to inconsistent electrode performance. We hypothesized that therapeutic hypothermia (TH) applied at the microelectrode insertion site will positively modulate both inflammatory and apoptotic pathways, promoting neuroprotection and improved performance in the long-term. APPROACH A custom device and thermoelectric system were designed to deliver controlled TH locally to the cortical implant site at the time of microelectrode array insertion and immediately following surgery. The TH paradigm was derived from in vivo cortical temperature measurements and finite element modeling of temperature distribution profiles in the cortex. Male Sprague-Dawley rats were implanted with non-functional Utah microelectrodes arrays (UMEA) consisting of 4 × 4 grid of 1.5 mm long parylene-coated silicon shanks. In one group, TH was applied to the implant site for two hours following the UMEA implantation, while the other group was implanted under normothermic conditions without treatment. At 48 h, 72 h, 7 d and 14 d post-implantation, mRNA expression levels for genes associated with inflammation and apoptosis were compared between normothermic and hypothermia-treated groups. MAIN RESULTS The custom system delivered controlled TH to the cortical implant site and the numerical models confirmed that the temperature decrease was confined locally. Furthermore, a one-time application of TH post UMEA insertion significantly reduced the acute inflammatory response with a reduction in the expression of inflammatory regulating cytokines and chemokines. SIGNIFICANCE This work provides evidence that acutely applied hypothermia is effective in significantly reducing acute inflammation post intracortical electrode implantation.
Collapse
Affiliation(s)
- Elizabeth A Dugan
- Department of Biomedical Engineering, University of Miami, FL, United States of America
| | | | | | | | | | | | | |
Collapse
|
4
|
Yao Z, You C, He M. Effect and Feasibility of Therapeutic Hypothermia in Patients with Hemorrhagic Stroke: A Systematic Review and Meta-Analysis. World Neurosurg 2018; 111:404-412.e2. [PMID: 29325957 DOI: 10.1016/j.wneu.2018.01.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/31/2017] [Accepted: 01/04/2018] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Therapeutic hypothermia (TH) has shown good results in experimental models of hemorrhagic stroke. The clinical application of TH, however, remains controversial, since reports regarding its therapeutic effect are inconsistent. METHODS We conducted a systematic review based on Preferred Reporting Items for Systematic Reviews and Meta-analyses comparing TH with a control group in terms of mortality, poor outcome, delayed cerebral ischemia (DCI), and specific complications. The subgroup analyses were stratified by study type, country, mean age, hemorrhage type, cooling method, treatment duration, rewarming velocity, and follow-up time. RESULTS Nine studies were included, most of which were of moderate quality. The overall effect demonstrated insignificant differences in mortality (risk ratio [RR] 0.78; 95% confidence interval [CI] 0.58-1.06; P = 0.11) and poor outcome rate (RR 0.89; 95% CI 0.70-1.12; P = 0.32) between TH and the control group. However, sensitivity analyses, after we omitted 1 study, achieved a statistically significant difference in poor outcome favoring TH. Moreover, in the subgroup analyses, the results derived from randomized studies revealed that TH significantly reduced poor outcomes (RR 0.40; 95% CI 0.22-0.74; P = 0.003). In addition, TH significantly reduced DCI compared with control (RR 0.61; 95% CI 0.40-0.93; P = 0.02). The incidence of specific complications (rebleeding, pneumonia, sepsis, arrhythmia, and hydrocephalus) between the 2 groups were comparable and did not reach significant difference. CONCLUSIONS The overall effect showed TH did not significantly reduce mortality and poor outcomes but led to a decreased incidence of DCI. Compared with control, TH resulted in comparable incidences of specific complications.
Collapse
Affiliation(s)
- Zhong Yao
- Department of Neurosurgery, West China Hospital, Sichuan University, and West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, and West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Min He
- Department of Neurosurgery, West China Hospital, Sichuan University, and West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Gedrova S, Galik J, Marsala M, Zavodska M, Pavel J, Sulla I, Gajdos M, Lukac I, Kafka J, Ledecky V, Sulla I, Karasova M, Reichel P, Trbolova A, Capik I, Lukacova V, Bimbova K, Bacova M, Stropkovska A, Lukacova N. Neuroprotective effect of local hypothermia in a computer-controlled compression model in minipig: Correlation of tissue sparing along the rostro-caudal axis with neurological outcome. Exp Ther Med 2017; 15:254-270. [PMID: 29399061 PMCID: PMC5769223 DOI: 10.3892/etm.2017.5432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/20/2017] [Indexed: 11/05/2022] Open
Abstract
This study investigated the neuroprotective efficacy of local hypothermia in a minipig model of spinal cord injury (SCI) induced by a computer-controlled impactor device. The tissue integrity observed at the injury epicenter, and up to 3 cm cranially and caudally from the lesion site correlated with motor function. A computer-controlled device produced contusion lesions at L3 level with two different degrees of tissue sparing, depending upon pre-set impact parameters (8N- and 15N-force impact). Hypothermia with cold (4°C) saline or Dulbecco's modified Eagle's medium (DMEM)/F12 culture medium was applied 30 min after SCI (for 5 h) via a perfusion chamber (flow 2 ml/min). After saline hypothermia, the 8N-SCI group achieved faster recovery of hind limb function and the ability to walk from one to three steps at nine weeks in comparison with non-treated animals. Such improvements were not observed in saline-treated animals subjected to more severe 15N-SCI or in the group treated with DMEM/F12 medium. It was demonstrated that the tissue preservation in the cranial and caudal segments immediately adjacent to the lesion, and neurofilament protection in the lateral columns may be essential for modulation of the key spinal microcircuits leading to a functional outcome. Tissue sparing observed only in the caudal sections, even though significant, was not sufficient for functional improvement in the 15N-SCI model.
Collapse
Affiliation(s)
- Stefania Gedrova
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Kosice, Slovak Republic
| | - Jan Galik
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Kosice, Slovak Republic
| | - Martin Marsala
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Kosice, Slovak Republic.,Neuroregeneration Laboratory, Department of Anesthesiology, University of California-San Diego, La Jolla, CA 92037, USA
| | - Monika Zavodska
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Kosice, Slovak Republic
| | - Jaroslav Pavel
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Kosice, Slovak Republic
| | - Igor Sulla
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Kosice, Slovak Republic.,Hospital of Slovak Railways, 040 01 Kosice, Slovak Republic
| | - Miroslav Gajdos
- Department of Neurosurgery, Faculty of Medicine, University of Pavol Jozef Safarik, 040 01 Kosice, Slovak Republic
| | - Imrich Lukac
- Department of Neurosurgery, Faculty of Medicine, University of Pavol Jozef Safarik, 040 01 Kosice, Slovak Republic
| | - Jozef Kafka
- Department of Neurosurgery, Faculty of Medicine, University of Pavol Jozef Safarik, 040 01 Kosice, Slovak Republic
| | - Valent Ledecky
- University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovak Republic
| | - Igor Sulla
- University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovak Republic
| | - Martina Karasova
- University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovak Republic
| | - Peter Reichel
- University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovak Republic
| | - Alexandra Trbolova
- University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovak Republic
| | - Igor Capik
- University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovak Republic
| | - Viktoria Lukacova
- Faculty of Economics, Technical University of Kosice, 040 01 Kosice, Slovak Republic
| | - Katarina Bimbova
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Kosice, Slovak Republic
| | - Maria Bacova
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Kosice, Slovak Republic
| | - Andrea Stropkovska
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Kosice, Slovak Republic
| | - Nadezda Lukacova
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Kosice, Slovak Republic
| |
Collapse
|
6
|
de Oliveira Manoel AL, Goffi A, Marotta TR, Schweizer TA, Abrahamson S, Macdonald RL. The critical care management of poor-grade subarachnoid haemorrhage. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:21. [PMID: 26801901 PMCID: PMC4724088 DOI: 10.1186/s13054-016-1193-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Aneurysmal subarachnoid haemorrhage is a neurological syndrome with complex systemic complications. The rupture of an intracranial aneurysm leads to the acute extravasation of arterial blood under high pressure into the subarachnoid space and often into the brain parenchyma and ventricles. The haemorrhage triggers a cascade of complex events, which ultimately can result in early brain injury, delayed cerebral ischaemia, and systemic complications. Although patients with poor-grade subarachnoid haemorrhage (World Federation of Neurosurgical Societies 4 and 5) are at higher risk of early brain injury, delayed cerebral ischaemia, and systemic complications, the early and aggressive treatment of this patient population has decreased overall mortality from more than 50% to 35% in the last four decades. These management strategies include (1) transfer to a high-volume centre, (2) neurological and systemic support in a dedicated neurological intensive care unit, (3) early aneurysm repair, (4) use of multimodal neuromonitoring, (5) control of intracranial pressure and the optimisation of cerebral oxygen delivery, (6) prevention and treatment of medical complications, and (7) prevention, monitoring, and aggressive treatment of delayed cerebral ischaemia. The aim of this article is to provide a summary of critical care management strategies applied to the subarachnoid haemorrhage population, especially for patients in poor neurological condition, on the basis of the modern concepts of early brain injury and delayed cerebral ischaemia.
Collapse
Affiliation(s)
- Airton Leonardo de Oliveira Manoel
- St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1 W8, Canada. .,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1 W8, Canada.
| | - Alberto Goffi
- Toronto Western Hospital MSNICU, 2nd Floor McLaughlin Room 411-H, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
| | - Tom R Marotta
- St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1 W8, Canada
| | - Tom A Schweizer
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1 W8, Canada
| | - Simon Abrahamson
- St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1 W8, Canada
| | - R Loch Macdonald
- St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1 W8, Canada.,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1 W8, Canada
| |
Collapse
|
7
|
Sun HT, Zheng M, Wang Y, Diao Y, Zhao W, Wei Z. Monitoring intracranial pressure utilizing a novel pattern of brain multiparameters in the treatment of severe traumatic brain injury. Neuropsychiatr Dis Treat 2016; 12:1517-23. [PMID: 27382294 PMCID: PMC4922802 DOI: 10.2147/ndt.s106915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The aim of the study was to evaluate the clinical value of multiple brain parameters on monitoring intracranial pressure (ICP) procedures in the therapy of severe traumatic brain injury (sTBI) utilizing mild hypothermia treatment (MHT) alone or a combination strategy with other therapeutic techniques. A total of 62 patients with sTBI (Glasgow Coma Scale score <8) were treated using mild hypothermia alone or mild hypothermia combined with conventional ICP procedures such as dehydration using mannitol, hyperventilation, and decompressive craniectomy. The multiple brain parameters, which included ICP, cerebral perfusion pressure, transcranial Doppler, brain tissue partial pressure of oxygen, and jugular venous oxygen saturation, were detected and analyzed. All of these measures can control the ICP of sTBI patients to a certain extent, but multiparameters associated with brain environment and functions have to be critically monitored simultaneously because some procedures of reducing ICP can cause side effects for long-term recovery in sTBI patients. The result suggested that multimodality monitoring must be performed during the process of mild hypothermia combined with conventional ICP procedures in order to safely target different clinical methods to specific patients who may benefit from an individual therapy.
Collapse
Affiliation(s)
- Hong-Tao Sun
- Sixth Department of Neurosurgery, Affiliated Hospital of Logistics University of People's Armed Police Force, Tianjin
| | - Maohua Zheng
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Yanmin Wang
- Sixth Department of Neurosurgery, Affiliated Hospital of Logistics University of People's Armed Police Force, Tianjin
| | - Yunfeng Diao
- Sixth Department of Neurosurgery, Affiliated Hospital of Logistics University of People's Armed Police Force, Tianjin
| | - Wanyong Zhao
- Sixth Department of Neurosurgery, Affiliated Hospital of Logistics University of People's Armed Police Force, Tianjin
| | - Zhengjun Wei
- Sixth Department of Neurosurgery, Affiliated Hospital of Logistics University of People's Armed Police Force, Tianjin
| |
Collapse
|
8
|
Otto KA. Therapeutic hypothermia applicable to cardiac surgery. Vet Anaesth Analg 2015; 42:559-69. [PMID: 26361886 DOI: 10.1111/vaa.12299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/19/2015] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To review the beneficial and adverse effects of therapeutic hypothermia (TH) applicable to cardiac surgery with cardiopulmonary bypass (CPB) in the contexts of various temperature levels and techniques for achieving TH. DATABASES USED Multiple electronic literature searches were performed using PubMed and Google for articles published from June 2012 to December 2014. Relevant terms (e.g. 'hypothermia', 'cardiopulmonary bypass', 'cardiac surgery', 'neuroprotection') were used to search for original articles, letters and reviews without species limitation. Reviews were included despite potential publication bias. References from the studies identified were also searched to find other potentially relevant citations. Abstracts, case reports, conference presentations, editorials and expert opinions were excluded. CONCLUSIONS Therapeutic hypothermia is an essential measure of neuroprotection during cardiac surgery that may be achieved most effectively by intravascular cooling using hypothermic CPB. For most cardiac surgical procedures, mild to modest (32-36 °C) TH will be sufficient to assure neuroprotection and will avoid most of the adverse effects of hypothermia that occur at lower body core temperatures.
Collapse
Affiliation(s)
- Klaus A Otto
- Central Laboratory Animal Facility, Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
The use of targeted temperature management for elevated intracranial pressure. Curr Neurol Neurosci Rep 2014; 14:453. [PMID: 24740807 DOI: 10.1007/s11910-014-0453-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of hypothermia for treatment of intracranial hypertension is controversial, despite no other medical therapy demonstrating consistent improvements in morbidity or mortality. Much of this may be the result of negative results from randomized controlled trials. However, the patients selected for these trials may have obscured the results in the populations most likely to benefit. Further, brain injury does not behave uniformly, not even within a diagnosis. Therefore, therapies may have more benefit in some diseases, less in others. This review focuses on the effect on outcome of intracranial hypertension in common disease processes in the neurocritical care unit, and identifies who is most likely to benefit from the use of hypothermia.
Collapse
|
10
|
Barbosa MO, Cristante AF, Santos GBD, Ferreira R, Marcon RM, Barros Filho TEPD. Neuroprotective effect of epidural hypothermia after spinal cord lesion in rats. Clinics (Sao Paulo) 2014; 69:559-64. [PMID: 25141116 PMCID: PMC4129554 DOI: 10.6061/clinics/2014(08)10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/12/2014] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES To evaluate the neuroprotective effect of epidural hypothermia in rats subjected to experimental spinal cord lesion. METHODS Wistar rats (n = 30) weighing 320-360 g were randomized to two groups (hypothermia and control) of 15 rats per group. A spinal cord lesion was induced by the standardized drop of a 10-g weight from a height of 2.5 cm, using the New York University Impactor, after laminectomy at the T9-10 level. Rats in the hypothermia group underwent epidural hypothermia for 20 minutes immediately after spinal cord injury. Motor function was assessed for six weeks using the Basso, Beattie and Bresnahan motor scores and the inclined plane test. At the end of the final week, the rats' neurological status was monitored by the motor evoked potential test and the results for the two groups were compared. RESULTS Analysis of the Basso, Beattie and Bresnahan scores obtained during the six-week period indicated that there were no significant differences between the two groups. There was no significant difference between the groups in the inclined plane test scores during the six-week period. Furthermore, at the end of the study, the latency and amplitude values of the motor evoked potential test were not significantly different between the two groups. CONCLUSION Hypothermia did not produce a neuroprotective effect when applied at the injury level and in the epidural space immediately after induction of a spinal cord contusion in Wistar rats.
Collapse
Affiliation(s)
- Marcello Oliveira Barbosa
- Department of Orthopaedics and Traumatology, Hospital das Forças Armadas (HFA), Brasília, DF, Brazil
| | - Alexandre Fogaça Cristante
- Instituto de Ortopedia e Traumatologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (IOT-HCFMUSP), Spine Division, São Paulo, SP, Brazil
| | - Gustavo Bispo Dos Santos
- Instituto de Ortopedia e Traumatologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (IOT-HCFMUSP), Biologist Laboratory of Medical Investigation - 41, São Paulo, SP, Brazil
| | - Ricardo Ferreira
- Instituto de Ortopedia e Traumatologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (IOT-HCFMUSP), Spine Division, São Paulo, SP, Brazil
| | - Raphael Martus Marcon
- Instituto de Ortopedia e Traumatologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (IOT-HCFMUSP), Spine Division, São Paulo, SP, Brazil
| | - Tarcisio Eloy Pessoa de Barros Filho
- Instituto de Ortopedia e Traumatologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (IOT-HCFMUSP), Spine Division, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Silva NA, Sousa N, Reis RL, Salgado AJ. From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol 2013; 114:25-57. [PMID: 24269804 DOI: 10.1016/j.pneurobio.2013.11.002] [Citation(s) in RCA: 526] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 11/12/2013] [Accepted: 11/12/2013] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) is a devastating neurological disorder that affects thousands of individuals each year. Over the past decades an enormous progress has been made in our understanding of the molecular and cellular events generated by SCI, providing insights into crucial mechanisms that contribute to tissue damage and regenerative failure of injured neurons. Current treatment options for SCI include the use of high dose methylprednisolone, surgical interventions to stabilize and decompress the spinal cord, and rehabilitative care. Nonetheless, SCI is still a harmful condition for which there is yet no cure. Cellular, molecular, rehabilitative training and combinatorial therapies have shown promising results in animal models. Nevertheless, work remains to be done to ascertain whether any of these therapies can safely improve patient's condition after human SCI. This review provides an extensive overview of SCI research, as well as its clinical component. It starts covering areas from physiology and anatomy of the spinal cord, neuropathology of the SCI, current clinical options, neuronal plasticity after SCI, animal models and techniques to assess recovery, focusing the subsequent discussion on a variety of promising neuroprotective, cell-based and combinatorial therapeutic approaches that have recently moved, or are close, to clinical testing.
Collapse
Affiliation(s)
- Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Caldas das Taipas, Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
12
|
Thomé C, Schubert GA, Schilling L. Hypothermia as a neuroprotective strategy in subarachnoid hemorrhage: a pathophysiological review focusing on the acute phase. Neurol Res 2013; 27:229-37. [PMID: 15845206 DOI: 10.1179/016164105x25252] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) remains a very prevalent challenge in neurosurgery associated with a high morbidity and mortality due to the lack of specific treatment modalities. The prognosis of SAH patients depends primarily on three factors: (i) the severity of the initial bleed, (ii) the endovascular or neurosurgical procedure to occlude the aneurysm and (iii) the occurrence of late sequelae, namely delayed ischemic neurological deficits due to cerebral vasospasm. While neurosurgeons and interventionalists have put significant efforts in minimizing periprocedural complications and a multitude of investigators have been devoted to the research on chronic vasospasm, the acute phase of SAH has not been studied in comparable detail. In various experimental studies during the past decade, hypothermia has been shown to reduce neuronal damage after ischemia, traumatic brain injury and other cerebrovascular diseases. Clinically, only some of these encouraging results could be reproduced. This review analyses results of studies on the effects of hypothermia on SAH with special respect to the acute phase in an experimental setting. Based on the available data, some considerations for the application of mild to moderate hypothermia in patients with subarachnoid hemorrhage are given.
Collapse
Affiliation(s)
- Claudius Thomé
- Department of Neurosurgery, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1, 68167 Mannheim, Germany.
| | | | | |
Collapse
|
13
|
Mak CHK, Lu YY, Wong GKC. Review and recommendations on management of refractory raised intracranial pressure in aneurysmal subarachnoid hemorrhage. Vasc Health Risk Manag 2013; 9:353-9. [PMID: 23874101 PMCID: PMC3714000 DOI: 10.2147/vhrm.s34046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Intracranial hypertension is commonly encountered in poor-grade aneurysmal subarachnoid hemorrhage patients. Refractory raised intracranial pressure is associated with poor prognosis. The management of raised intracranial pressure is commonly referenced to experiences in traumatic brain injury. However, pathophysiologically, aneurysmal subarachnoid hemorrhage is different from traumatic brain injury. Currently, there is a paucity of consensus on the management of refractory raised intracranial pressure in spontaneous subarachnoid hemorrhage. We discuss in this paper the role of hyperosmolar agents, hypothermia, barbiturates, and decompressive craniectomy in managing raised intracranial pressure refractory to first-line treatment, in which preliminary data supported the use of hypertonic saline and secondary decompressive craniectomy. Future clinical trials should be carried out to delineate better their roles in management of raised intracranial pressure in aneurysmal subarachnoid hemorrhage patients.
Collapse
|
14
|
Purdy PD, Novakovic RL, Giles BP, Miller SL, Riegel MS. Spinal cord hypothermia without systemic hypothermia. AJNR Am J Neuroradiol 2012; 34:252-6. [PMID: 22766669 DOI: 10.3174/ajnr.a3175] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Hypothermia has been shown to be beneficial in the setting of acute SCI. However, widespread use has been hindered by the need for systemic hypothermia as the vehicle for achieving spinal cord hypothermia. This study demonstrates that localized spinal cord hypothermia can be achieved via a percutaneous approach while maintaining systemic normothermia. MATERIALS AND METHODS Five Yucatan swine underwent catheterization of the subarachnoid space and infusion of room temperature, chilled, and iced PL solutions into the cervical spinal canal, with drainage from the lumbar canal. Thermocouples were placed within the spinal cord and in the subarachnoid space and recorded during infusions and recovery from hypothermia. RESULTS Results demonstrated that hypothermia as low as 16.8°C is feasible in the spinal cord with retention of systemic normothermia, with strong (r = 0.95) correlation between the spinal cord temperature and the CSF temperature. Degrees of cooling varied with flow rates and with infusate temperature. CONCLUSIONS While the data are preliminary in a small group of animals, the ability to rapidly create a wide range of controlled spinal cord hypothermia while preserving normal body temperature warrants wider exploration. The study also indicates that further investigation of the hypothesis that CSF temperature monitoring may be an acceptable surrogate for direct spinal cord temperature monitoring should be pursued.
Collapse
Affiliation(s)
- P D Purdy
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | | | | | | | | |
Collapse
|
15
|
Erken G, Erken HA, Bor-Kucukatay M, Kucukatay V, Genc O. The effects of in vivo and ex vivo various degrees of cold exposure on erythrocyte deformability and aggregation. Med Sci Monit 2011; 17:BR209-215. [PMID: 21804457 PMCID: PMC3539619 DOI: 10.12659/msm.881899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND This study aimed to investigate alterations in hemorheology by cold exposure, in vivo and ex vivo, and to determine their relationship to oxidative stress. MATERIAL/METHODS Rats were divided into 2 in vivo and ex vivo cold exposure groups. The in vivo group was further divided into control (AR), AC (4°C, 2 hours) and ALTC (4°C, 6 hours) subgroups; and the ex vivo group was divided into control (BR) and BC (4°C, 2 hours) subgroups. Blood samples were used for the determination of erythrocyte deformability, aggregation, and oxidative stress parameters. RESULTS Erythrocyte deformability and aggregation were not affected by 2-hour ex vivo cold exposure. While 2 hour in vivo cold exposure reduced erythrocyte deformability, it returned to normal after 6 hours, possibly due the compensation by acute neuroendocrine response. Six hours of cold exposure decreased aggregation index, and might be an adaptive mechanism allowing the continuation of circulation. Aggregation of ex vivo groups was lower compared to in vivo groups. Cold exposure at various temperatures did not cause alterations in plasma total oxidant antioxidant status and oxidative stress index (TOS, TAS, OSI) when considered together. CONCLUSIONS Results of this study indicate that the alterations observed in hemorheological parameters due to cold exposure are far from being explained by the oxidative stress parameters determined herein.
Collapse
Affiliation(s)
- Gülten Erken
- Department of Physiology, Faculty of Medicine, Pamukkale University, Kinikli, Denizli, Turkey.
| | | | | | | | | |
Collapse
|
16
|
Inamasu J, Nakatsukasa M, Suzuki M, Miyatake S. Therapeutic hypothermia for out-of-hospital cardiac arrest: an update for neurosurgeons. World Neurosurg 2011; 74:120-8. [PMID: 21300001 DOI: 10.1016/j.wneu.2010.02.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 02/20/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND Neurosurgeons have been familiar with the idea that hypothermia is protective against various types of brain injuries, including traumatic brain injury (TBI). Recent randomized controlled trials, however, have failed to demonstrate the efficacy of therapeutic hypothermia (TH) in patients with TBI. On the other hand, TH becomes popular in the treatment of out-of-hospital cardiac arrest (OHCA) survivors, after randomized controlled trials have shown that survival rate and functional outcome is improved with the use of TH in selected patients. We believe that knowledge on the recent progress in TH for OHCA is useful for neurosurgeons, because feedback of information obtained in the treatment of OHCA may revitalize the interest in TH for neurosurgical disorders, particularly TBI. METHODS A review of the literature was conducted with the use of PubMed. RESULTS Various cooling techniques and devices have been developed and trialed in the treatment of OHCA survivors, including prehospital cooling with bolus ice-cold saline, endovascular cooling catheters, and new generation surface cooling devices, some of which have already been known to neurosurgeons. The efficacy of these new methods and devices has been demonstrated in many preliminary studies, and phase III trials are also expected. CONCLUSIONS Neurosurgeons and critical care medicine physicians pursue the same goal of rescuing the brain from the secondary injury despite the difference in etiology (focal trauma vs. global ischemia), with the presumption that earlier and faster implementation of TH will result in better outcome. Thoughtful application of knowledge and techniques obtained in OHCA to TBI under a rigorously controlled situation will make a small, but significant difference in the outcome of TBI victims.
Collapse
Affiliation(s)
- Joji Inamasu
- Department of Neurosurgery, Saiseikai Utsunomiya Hospital, Utsunomiya, Japan.
| | | | | | | |
Collapse
|
17
|
Abstract
STUDY DESIGN Literature review of basic scientific and clinical research in spinal cord injury (SCI). OBJECTIVE To provide physicians with an overview of the neurobiologic challenges of SCI, the current status of investigation for novel therapies that have been translated to human clinical trials, and the preclinical, scientific basis for each of these therapies. SUMMARY OF BACKGROUND DATA An abundance of recent scientific and clinical research activity has revealed numerous insights into the neurobiology of SCI, and has generated an abundance of potential therapies. An increasing number of such therapies are being translated into human SCI trials. Clinicians who attend to SCI patients are increasingly asked about potential treatments and clinical trials. METHODS Published data review of novel treatments that are either currently in human clinical trials for acute SCI or about to initiate clinical evaluation. RESULTS A number of treatments have bridged the "translational gap" and are currently either in the midst of human SCI trials, or are about to begin such clinical evaluation. These include minocycline, Cethrin, anti-Nogo antibodies, systemic hypothermia, Riluzole, magnesium chloride in polyethylene glycol, and human embryonic stem cell derived oligodendrocyte progenitors. A systematic review of the preclinical literature on these specific therapies reveals promising results in a variety of different SCI injury models. CONCLUSION The SCI community is encouraged by the progression of novel therapies from "bench to bedside" and the initiation of clinical trials for a number of different treatments. The task of clinical evaluation, however, is substantial, and many years will be required before the actual efficacy of the treatments currently in evaluation will be determined.
Collapse
|
18
|
Green RS, Howes D. Hypothermic modulation of anoxic brain injury in adult survivors of cardiac arrest: a review of the literature and an algorithm for emergency physicians. CAN J EMERG MED 2010; 7:42-7. [PMID: 17355653 DOI: 10.1017/s1481803500012926] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Anoxic brain injury is a common outcome after cardiac arrest. Despite substantial research into the pathophysiology and management of this injury, a beneficial treatment modality has not been previously identified. Recent studies show that induced hypothermia reduces mortality and improves neurological outcomes in patients resuscitated from ventricular fibrillation. This article reviews the literature on induced hypothermia for anoxic brain injury and summarizes a treatment algorithm proposed by the Canadian Association of Emergency Physicians Critical Care Committee for hypothermia induction in cardiac arrest survivors.
Collapse
Affiliation(s)
- Robert S Green
- Division of Critical Care Medicine, Dalhousie University, Halifax, NS, Canada.
| | | |
Collapse
|
19
|
Finkelstein RA, Alam HB. Induced hypothermia for trauma: current research and practice. J Intensive Care Med 2010; 25:205-26. [PMID: 20444735 DOI: 10.1177/0885066610366919] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Induction of hypothermia with the goal of providing therapeutic benefit has been accepted for use in the clinical setting of adult cardiac arrest and neonatal hypoxic-ischemic encephalopathy (HIE). However, its potential as a treatment in trauma is not as well defined. This review discusses potential benefits and complications of induced hypothermia (IH) with emphasis on the current state of knowledge and practice in various types of trauma. There is excellent preclinical research showing that in cases of penetrating trauma with cardiac arrest, inducing hypothermia to 10 degrees C using cardiopulmonary bypass (CPB) could possibly save those otherwise likely to die without causing neurologic sequelae. A human trial of this intervention is about to get underway. Preclinical studies suggest that inducing hypothermia may be useful to delay cardiac arrest in penetrating trauma victims who are hypotensive. There is potential for IH to be used in cases of blunt trauma, but it has not been well studied. In the case of traumatic brain injury (TBI), clinical trials have shown conflicting results, despite almost uniform efficacy seen in preclinical experiments. Major studies are analyzed and ways to standardize its use and optimize future clinical trials are discussed. More preclinical and clinical research is needed to better define whether there could be a role for IH in the case of spinal cord injuries.
Collapse
Affiliation(s)
- Robert A Finkelstein
- Division of Trauma, Emergency Surgery and Surgical Critical Care, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
20
|
Tosaka R, Tosaka S, Cho S, Maekawa T, Hara T, Sumikawa K. Direct effect of mild hypothermia on the coronary vasodilation induced by an ATP-sensitive K channel opener, a nitric oxide donor and isoflurane in isolated rat hearts. J Anesth 2010; 24:564-8. [PMID: 20414687 DOI: 10.1007/s00540-010-0941-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Accepted: 03/19/2010] [Indexed: 11/29/2022]
Abstract
PURPOSE Deliberate mild hypothermia (MHT) is applied for cerebroprotection after cardiopulmonary resuscitation and during cardiac surgery. MHT has been shown to alter both contractility and relaxation of blood vessels in the brain. However, the effects of MHT on drug-induced vasodilation are not fully understood. The aim of this study was to clarify the effects of MHT on the coronary vasodilation induced by cromakalim (an ATP-sensitive K channel opener), S-nitroso acetyl-penicillamine (SNAP; a nitric oxide donor), and isoflurane in isolated rat hearts. METHODS Male SD rat hearts were isolated and perfused with Krebs-Henseleit buffer. Coronary flow was measured with the coronary perfusion pressure kept at 60 mmHg, and coronary vascular resistance (CVR) was calculated. After cardiac arrest was induced by tetrodotoxin, the hearts were allocated to one of three temperature groups: 37, 34, and 31 degrees C (n = 7 for each). All groups received 0.01, 0.1, and 1.0 microM of either cromakalim or SNAP or were exposed to isoflurane at 1MAC and 2MAC. Finally, 50 mM of adenosine was administered to obtain maximal coronary vasodilation. RESULTS CVR significantly increased after cardiac arrest, but did not change after the application of each temperature. Cromakalim, SNAP and isoflurane significantly decreased CVR in each temperature group. There were no significant differences in CVR among the three temperature groups with any of the test drugs. CONCLUSION These results indicate that cromakalim-, SNAP-, and isoflurane-induced coronary vasodilation are not affected by MHT.
Collapse
Affiliation(s)
- Reiko Tosaka
- Department of Anesthesiology, Nagasaki University School of Medicine, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Morochovič R, Chudá M, Talánová J, Cibur P, Kitka M, Vanický I. Local Transcutaneous Cooling of the Spinal Cord in the Rat: Effects on Long-Term Outcomes After Compression Spinal Cord Injury. Int J Neurosci 2009; 118:555-68. [DOI: 10.1080/00207450601123456] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Lo TP, Cho KS, Garg MS, Lynch MP, Marcillo AE, Koivisto DL, Stagg M, Abril RM, Patel S, Dietrich WD, Pearse DD. Systemic hypothermia improves histological and functional outcome after cervical spinal cord contusion in rats. J Comp Neurol 2009; 514:433-48. [DOI: 10.1002/cne.22014] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
23
|
Seule MA, Muroi C, Mink S, Yonekawa Y, Keller E. THERAPEUTIC HYPOTHERMIA IN PATIENTS WITH ANEURYSMAL SUBARACHNOID HEMORRHAGE, REFRACTORY INTRACRANIAL HYPERTENSION, OR CEREBRAL VASOSPASM. Neurosurgery 2009; 64:86-92; discussion 92-3. [DOI: 10.1227/01.neu.0000336312.32773.a0] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
OBJECTIVE
To evaluate the feasibility and safety of mild hypothermia treatment in patients with aneurysmal subarachnoid hemorrhage (SAH) who are experiencing intracranial hypertension and/or cerebral vasospasm (CVS).
METHODS
Of 441 consecutive patients with SAH, 100 developed elevated intracranial pressure and/or symptomatic CVS refractory to conventional treatment. Hypothermia (33–34°C) was induced and maintained until intracranial pressure normalized, CVS resolved, or severe side effects occurred.
RESULTS
Thirteen patients were treated with hypothermia alone, and 87 were treated with hypothermia in combination with barbiturate coma. Sixty-six patients experienced poor-grade SAH (Hunt and Hess Grades IV and V) and 92 had Fisher Grade 3 and 4 bleedings. The mean duration of hypothermia was 169 ± 104 hours, with a maximum of 16.4 days. The outcome after 1 year was evaluated in 90 of 100 patients. Thirty-two patients (35.6%) survived with good functional outcome (Glasgow Outcome Scale [GOS] score, 4 and 5), 14 (15.5%) were severely disabled (GOS score, 3), 1 (1.1%) was in a vegetative state (GOS score, 2), and 43 (47.8%) died (GOS score, 1). The most frequent side effects were electrolyte disorders (77%), pneumonia (52%), thrombocytopenia (47%), and septic shock syndrome (40%). Of 93 patients with severe side effects, 6 (6.5%) died as a result of respiratory or multi-organ failure.
CONCLUSION
Prolonged systemic hypothermia may be considered as a last-resort option for a carefully selected group of SAH patients with intracranial hypertension or CVS resistant to conventional treatment. However, complications associated with hypothermia require elaborate protocols in general intensive care unit management.
Collapse
Affiliation(s)
- Martin A. Seule
- Neurointensive Care Unit, Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Carl Muroi
- Neurointensive Care Unit, Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Susanne Mink
- Neurointensive Care Unit, Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Yasuhiro Yonekawa
- Neurointensive Care Unit, Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Emanuela Keller
- Neurointensive Care Unit, Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Nielsen AS, Damek DM. Window of opportunity: flexion myelopathy after drug overdose. J Emerg Med 2008; 42:36-9. [PMID: 19081699 DOI: 10.1016/j.jemermed.2008.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 05/17/2008] [Accepted: 06/03/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Cervical and thoracic flexion myelopathy are uncommon causes of spinal cord injury that can lead to irreversible paralysis, autonomic dysfunction, and death. To the authors' knowledge, this report is the first to describe the natural history of flexion myelopathy and the simultaneous occurrence of cervical and thoracic flexion myelopathy in the setting of drug overdose. OBJECTIVES To report the association of cervical and thoracic flexion myelopathy and drug overdose; to describe the subacute natural history of flexion myelopathy in the setting of drug overdose; to emphasize the need for first responders to document positioning of unresponsive individuals; and to suggest careful neurological examination and early spinal cord imaging in appropriately identified patients at risk of flexion myelopathy. CASE REPORT We describe the case of a 34-year-old woman who developed flexion myelopathy resulting in severe quadriparesis after overdose of quetiapine fumarate, oxycodone/acetaminophen, and chloral hydrate. CONCLUSION Flexion myelopathy in the setting of drug overdose is a subacute injury. Early intervention may limit neurological disability. However, the clinical diagnosis of flexion myelopathy is inevitably delayed by the patient's altered level of consciousness or mental status at presentation, and concurrent multiple organ failure.
Collapse
Affiliation(s)
- Allen S Nielsen
- Department of Neurology, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | | |
Collapse
|
25
|
Abstract
BACKGROUND CONTEXT Interest in systemic and local hypothermia extends back over many decades, and both have been investigated as potential neuroprotective interventions in a number of clinical settings, including traumatic brain injury, stroke, cardiac arrest, and both intracranial and thoracoabdominal aortic aneurysm surgery. The recent use of systemic hypothermia in an injured National Football League football player has focused a great deal of attention on the potential use of hypothermia in acute spinal cord injury. PURPOSE To provide spinal clinicians with an overview of the biological rationale for using hypothermia, the past studies and current clinical applications of hypothermia, and the basic science studies and clinical reports of the use of hypothermia in acute traumatic spinal cord injury. STUDY DESIGN/SETTING A review of the English literature on hypothermia was performed, starting with the original clinical description of the use of systemic hypothermia in 1940. Pertinent basic science and clinical articles were identified using PubMed and the bibliographies of the articles. METHODS Each article was reviewed to provide a concise description of hypothermia's biological rationale, current clinical applications, complications, and experience as a neuroprotective intervention in spinal cord injury. RESULTS Hypothermia has a multitude of physiologic effects. From a neuroprotective standpoint, hypothermia slows basic enzymatic activity, reduces the cell's energy requirements, and thus maintains Adenosine Triphosphate (ATP) concentrations. As such, systemic hypothermia has been shown to be neuroprotective in patients after cardiac arrest, although its benefit in other clinical settings such as traumatic brain injury, stroke, and intracranial aneurysm surgery has not been demonstrated. Animal studies of local and systemic hypothermia in traumatic spinal cord injury models have produced mixed results. Local hypothermia was actively studied in the 1970s in human acute traumatic spinal cord injury, but no case series of this intervention has been published since 1984. No peer-reviewed clinical literature could be found, which describes the application of systemic hypothermia in acute traumatic spinal cord injury. CONCLUSIONS Animal studies of acute traumatic spinal cord injury have not revealed a consistent neuroprotective benefit to either systemic or local hypothermia. Human studies of local hypothermia after acute traumatic spinal cord injury have not been published for over two decades. No peer-reviewed studies describing the use of systemic hypothermia in this setting could be found. Although a cogent biological rationale may exist for the use of local or systemic hypothermia in acute traumatic spinal cord injury, there is little scientific literature currently available to substantiate the clinical use of either in human patients.
Collapse
|
26
|
Gropman AL, Summar M, Leonard JV. Neurological implications of urea cycle disorders. J Inherit Metab Dis 2007; 30:865-79. [PMID: 18038189 PMCID: PMC3758693 DOI: 10.1007/s10545-007-0709-5] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 10/13/2007] [Accepted: 10/18/2007] [Indexed: 12/19/2022]
Abstract
The urea cycle disorders constitute a group of rare congenital disorders caused by a deficiency of the enzymes or transport proteins required to remove ammonia from the body. Via a series of biochemical steps, nitrogen, the waste product of protein metabolism, is removed from the blood and converted into urea. A consequence of these disorders is hyperammonaemia, resulting in central nervous system dysfunction with mental status changes, brain oedema, seizures, coma, and potentially death. Both acute and chronic hyperammonaemia result in alterations of neurotransmitter systems. In acute hyperammonaemia, activation of the NMDA receptor leads to excitotoxic cell death, changes in energy metabolism and alterations in protein expression of the astrocyte that affect volume regulation and contribute to oedema. Neuropathological evaluation demonstrates alterations in the astrocyte morphology. Imaging studies, in particular (1)H MRS, can reveal markers of impaired metabolism such as elevations of glutamine and reduction of myoinositol. In contrast, chronic hyperammonaemia leads to adaptive responses in the NMDA receptor and impairments in the glutamate-nitric oxide-cGMP pathway, leading to alterations in cognition and learning. Therapy of acute hyperammonaemia has relied on ammonia-lowering agents but in recent years there has been considerable interest in neuroprotective strategies. Recent studies have suggested restoration of learning abilities by pharmacological manipulation of brain cGMP with phosphodiesterase inhibitors. Thus, both strategies are intriguing areas for potential investigation in human urea cycle disorders.
Collapse
Affiliation(s)
- A L Gropman
- Department of Neurology, Children's National Medical Center and the George Washington University of the Health Sciences, 111 Michigan Avenue, N. W., Washington, DC 20010, USA.
| | | | | |
Collapse
|
27
|
Tanimoto H, Ichinose K, Okamoto T, Yoshitake A, Tashiro M, Sakanashi Y, Ao H, Terasaki H. Rapidly induced hypothermia with extracorporeal lung and heart assist (ECLHA) improves the neurological outcome after prolonged cardiac arrest in dogs. Resuscitation 2007; 72:128-36. [PMID: 17097794 DOI: 10.1016/j.resuscitation.2006.05.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2005] [Revised: 05/24/2006] [Accepted: 05/24/2006] [Indexed: 11/15/2022]
Abstract
PURPOSE We reported previously that therapeutic hypothermia with extracorporeal lung and heart assist (ECLHA) improved neurological outcome after 15 min cardiac arrest (CA) in dogs, although 45 min was needed to achieve hypothermia. We now investigate whether rapidly induced hypothermia with ECLHA (RHE) would result in a better outcome than slowly induced hypothermia with ECLHA (SHE) in dogs. METHODS Fifteen mongrel female dogs were divided into two groups: an RHE (n = 7) and an SHE (n = 8) group. Normothermic ventricular fibrillation was induced for 15 min and the animals were resuscitated by ECLHA. Rapid hypothermia was induced with a heat exchanger added to the ECLHA circuit in the RHE group, and by immersing the drainage tube of the ECLHA circuit in an ice water bath in the SHE group. Hypothermia (33 degrees C) was maintained for 20 h. The dogs were weaned from ECLHA at 24 h after resuscitation and treated for 96 h; neurological deficit scores (NDS) were measured throughout this period. RESULTS It took 1.6+/-0.8 min to reach 33 degrees C in the RHE group and 49.5+/-12.1 min to reach 33 degrees C in the SHE group. There was no difference in survival rate between the two groups. The NDS at 96 h in the RHE group was better than that in the SHE group (26% (range: 10-28%) versus 32% (26-37%); p < 0.05) although there was no significant difference in NDS between the two groups until 72 h. CONCLUSION Rapid hypothermic induction might be an important factor to improve neurological outcomes in prolonged CA models.
Collapse
Affiliation(s)
- Hironari Tanimoto
- Department of Anesthesiology, Faculty of Medical and Pharmaceutical, Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Gillman L, Leslie G, Williams T, Fawcett K, Bell R, McGibbon V. Adverse events experienced while transferring the critically ill patient from the emergency department to the intensive care unit. Emerg Med J 2006; 23:858-61. [PMID: 17057138 PMCID: PMC2464383 DOI: 10.1136/emj.2006.037697] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To determine the incidence and nature of adverse events and delay to patient transfer from emergency department to intensive care unit (ICU) in a metropolitan tertiary hospital. METHOD A 6-month prospective observational study in conjunction with a retrospective chart audit on all emergency department patients admitted to ICU, including those admitted via theatre or after a computed tomography scan. RESULTS Equipment problems was the most common adverse event occurring in 9% of patient transfers (n = 290). Hypothermia events occurred in 7% of transfers, cardiovascular events in 6% of patient transfers, delays to transfer >20 min occurred in 38% of the prospectively audited cases, with 14% waiting >1 h. One patient was found to have an incorrect patient identification band during a preoperative check. CONCLUSIONS This study generally reported lower rates of adverse events than noted in previous studies involving critically ill transfers. The most significant finding was the application of an incorrect patient identification band and has prompted a review of practice. The establishment of benchmark indicators for adverse events and delays in transfer will be useful for future audits.
Collapse
Affiliation(s)
- L Gillman
- Royal Perth Hospital and Edith Cowan University, Perth, WA 6001, Australia.
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Recent evidence supports the use of therapeutic hypothermia after cardiac arrest. This article reviews recent published studies and describes the pathophysiology of hypothermia. Nurses need to understand the physiology of hypothermia to provide care for patients receiving therapeutic hypothermia. A suggested protocol is included to help manage the care of these patients.
Collapse
|
30
|
Abstract
The benefit of therapeutic hypothermia after severe head injury is highly controversial. However, hypothermia is still used and studied in this context for multiple reasons. Efficacy of hypothermia is demonstrated after cerebral ischemia in numerous animal studies and after cardiac arrest in human studies. Hyperthermia is a major independent factor of outcome after cerebral ischemic or traumatic brain injury. Moreover, ICP is related to core temperature, and hypothermia may be used to decrease intracranial hypertension. However, many questions are still unresolved and can explain discrepancies between clinical studies: direct measurement of cerebral temperature, relationship between ICP, temperature and PaCO(2), level and duration of hypothermia and precise methods for cooling and particularly for rewarming.
Collapse
Affiliation(s)
- B Vigué
- Département d'Anesthésie-Réanimation, CHU de Bicêtre, 94275 Le-Kremlin-Bicêtre, France.
| | | | | | | | | |
Collapse
|
31
|
Delgado P, Sahuquillo J, Poca MA, Alvarez-Sabin J. Neuroprotection in malignant MCA infarction. Cerebrovasc Dis 2006; 21 Suppl 2:99-105. [PMID: 16651820 DOI: 10.1159/000091709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Massive unilateral hemispheric infarction often develops progressive postischemic edema that leads to a malignant course of stroke with mortality of up to 80% with conventional medical therapies. Hypothermia and decompressive hemicraniectomy have shown neuroprotective effects in several animal models of focal transient and permanent MCA occlusion by reducing infarct size and improving neurological outcome. Our aim in this paper was to review the possible mechanisms of both therapies as well as the optimal time window and duration of application of each treatment in animal model and in human malignant MCA infarction reported in the literature.
Collapse
Affiliation(s)
- Pilar Delgado
- Department of Neurology, Vall d'Hebron Hospital, Barcelona, Spain.
| | | | | | | |
Collapse
|
32
|
Lee JE, Yoon YJ, Moseley ME, Yenari MA. Reduction in levels of matrix metalloproteinases and increased expression of tissue inhibitor of metalloproteinase-2 in response to mild hypothermia therapy in experimental stroke. J Neurosurg 2005; 103:289-97. [PMID: 16175859 DOI: 10.3171/jns.2005.103.2.0289] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Mild hypothermia is a robust neuroprotectant, and the results of prospective clinical trials have indicated that it may improve neurological outcome in certain instances. One aspect of this protection has been associated with the prevention of blood-brain barrier (BBB) disruption. Matrix metalloproteinases (MMPs) have been implicated in BBB disruption because they can degrade the extracellular matrix. In this study the authors explored the relationship between hypothermia and MMPs and whether BBB preservation resulting from mild hypothermia therapy is due to alterations in MMP expression. METHODS Rats were subjected to middle cerebral artery occlusion for 2 hours; the animals were maintained in a state of normothermia or mild hypothermia (33 degrees C) immediately after the onset of ischemia. The animals' brains were collected 2, 6, and 24 hours after ischemia began. Contrast-enhanced T1-weighted magnetic resonance imaging was performed at 24 hours to assess the extent of BBB disruption. Consistent with prior reports, areas of BBB disruption detected on T1-weighted images were smaller in the brains of rats maintained in a state of hypothermia (normothermia group 8.6 +/- 3% of the brain; hypothermia group 0.2 +/-0.1% of the brain; p < 0.01). Expression of both MMP-2 and MMP-9 at the transcriptional and translational levels was reduced in hypothermic brains at 6 hours and 24 hours after ischemic injury. Matrix metalloproteinase-9 was primarily localized to cells of monocytic origin but was also observed in neurons and astrocytes. Matrix metalloproteinase-2 was found in some neurons and astrocytes but not in inflammatory cells. In addition, hypothermia increased the levels of the endogenous MMP inhibitor, tissue inhibitor of metalloproteinases-2. CONCLUSIONS The authors conclude that mild hypothermia attenuates BBB disruption, decreases MMP expression, and suppresses MMP activity.
Collapse
Affiliation(s)
- Jong Eun Lee
- Departments of Neurosurgery, Neurology, and Radiology, Stanford University, Stanford, California, USA
| | | | | | | |
Collapse
|
33
|
Mahmood MA, Voorhees ME, Parnell M, Zweifler RM. Transcranial Doppler Ultrasonographic Evaluation of Middle Cerebral Artery Hemodynamics During Mild Hypothermia. J Neuroimaging 2005. [DOI: 10.1111/j.1552-6569.2005.tb00333.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
34
|
Abstract
The brain is extraordinarily susceptible to changes in temperature. Hyperthermia has been shown to exacerbate the biochemical cascade of secondary brain injury. Inversely, hypothermia limits the damaging effects of secondary brain injury. There has been a great deal of investigation regarding the detrimental effects of hyperthermia and the neuroprotection of hypothermia in animal studies. Within the last decade, clinical trials have begun to establish how the brain reacts to both temperature extremes. In the future, studies of hypothermia will continue in the quest of the optimal timing and degree of hypothermia. Hyperthermia will be examined in depth for its detrimental effects on an injured brain. Interventions for the prevention and treatment of hyperthermia will be explored. Nurses will implement cooling strategies to induce hypothermia, applying interventions to prevent complications, and they will also diagnose hyperthermia, deciding when and if to intervene pharmacologically and therapeutically. These advanced nursing actions will be guided by knowledge and understanding of available evidence. This article presents the pathophysiology of secondary brain injury and how it is affected by both hypothermia and hyperthermia. A review of the research leading up to clinical trials is explored, as well as a discussion of the future of temperature modulation for the brain injury patient. This information will help healthcare providers understand the effect that both hypothermia and hyperthermia have on the acutely injured brain.
Collapse
Affiliation(s)
- Laura H Mcilvoy
- Department of Nursing, Indiana University Southeast, New Albany, IN 47150, USA.
| |
Collapse
|
35
|
Mitchell JR, Jefferson P, Ball DR. Head computed tomography scan following cardiac arrest. Can J Anaesth 2005; 52:892; author reply 892-3. [PMID: 16189354 DOI: 10.1007/bf03021797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
36
|
Fairchild KD, Singh IS, Carter HC, Hester L, Hasday JD. Hypothermia enhances phosphorylation of I{kappa}B kinase and prolongs nuclear localization of NF-{kappa}B in lipopolysaccharide-activated macrophages. Am J Physiol Cell Physiol 2005; 289:C1114-21. [PMID: 15972840 DOI: 10.1152/ajpcell.00152.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypothermia (HT) has been associated with both beneficial and detrimental consequences in various pathophysiological states. While HT is generally thought to have anti-inflammatory and cytoprotective effects, we have previously shown that moderate in vitro HT prolongs TNF-alpha production by LPS-stimulated mononuclear phagocytes, in part by prolonging TNF-alpha gene transcription and activation of the pleiotropic transcription factor NF-kappaB. In this study, we have further characterized the effect of moderate (32 degrees C) and marked (28 degrees C) HT in human monocytic THP-1 cells by showing that even short (2 h) exposure to HT followed by a return to normothermic conditions for 22 h resulted in augmented and prolonged production of TNF-alpha. Production of heat shock protein 72 and activation of heat shock factor 1 are not affected by HT in these studies, suggesting that the effect is not part of a generalized stress response. Using immunoblotting, we have shown that HT augments phosphorylation of IKK-beta and IKK-alpha (up to an 8-fold increase at 28 degrees C and a 3.6-fold increase at 32 degrees C vs. 37 degrees C). Furthermore, nuclear accumulation of NF-kappaB p65 was significantly prolonged in hypothermic cells (1.4- and 2.5-fold more nuclear p65 at 2 and 4 h at 28 vs. 37 degrees C). Reexpression of IkappaB-alpha, which contributes to the termination of NF-kappaB-dependent transcription, was delayed several hours in HT-exposed cells. Thus we have shown that clinically relevant HT alters both cytosolic and nuclear events responsible for NF-kappaB activation and deactivation. Enhanced NF-kappaB activation may contribute to the immunomodulatory effects of HT in various clinical settings.
Collapse
Affiliation(s)
- Karen D Fairchild
- Department of Pediatrics, University of Virginia Health System, Box 800386, Charlottesville, VA 22908, USA.
| | | | | | | | | |
Collapse
|
37
|
Abstract
Traumatic brain injury is a leading cause of death by trauma in adults in the United States and a major contributor to permanent physical, emotional, and psychological disabilities. Therapeutic hypothermia, defined as cooling of the body to less than 36 degrees C, has been shown to decrease mortality and morbidity and improve long-term outcomes by protecting the brain from secondary brain injury. The most commonly seen benefits of hypothermic temperatures of 32 degrees C to 33 degrees C are a significant reduction in intracranial hypertension and improved cerebral perfusion and oxygenation. Although evidence to date is insufficient to recommend the routine use of therapeutic hypothermia outside of the research setting, therapeutic hypothermia is used in multiple healthcare facilities in the world. The following article will define hypothermia and provide critical information necessary to provide care for the critically ill patient under therapeutic hypothermia. It will define the processes of brain injury and how hypothermia is thought to counteract those to protect the brain. Also included is a review of 2 major randomized, controlled trials of hypothermia for traumatic brain injury that have been instrumental in establishing guidelines and directing further research.
Collapse
Affiliation(s)
- Joanna E Wright
- Critical Care Services, Scripps Mercy Hospital, San Diego, CA 92103, USA.
| |
Collapse
|
38
|
Affiliation(s)
- Katie Oyama
- Katie Oyama is a staff nurse in the neuro/trauma intensive care unit at Oregon Health & Science University, Portland, Ore
| | - Laura Criddle
- Laura Criddle is the clinical nurse specialist for the emergency department and the neuro/trauma intensive care unit at Oregon Health & Science University, Portland, Ore
| |
Collapse
|
39
|
Zviman MM, Roguin A, Jacobs A, Rent K, Lardo A, Halperin HR. A new method for inducing hypothermia during cardiac arrest. Crit Care Med 2004; 32:S369-73. [PMID: 15508662 DOI: 10.1097/01.ccm.0000139461.46564.51] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE It has been shown that hypothermia induced after successful resuscitation of comatose survivors of ventricular fibrillation cardiac arrest improves survival and neurologic function. Recent studies also suggest that earlier induction of hypothermia may yield even more improvement. We sought to determine if a new pump system, in addition to vigorous external chest compression, could rapidly induce hypothermia during cardiopulmonary resuscitation in a porcine model of cardiac arrest. METHODS Nine pigs (25-37 kg) were instrumented with micromanometers and thermocouple probes. Two 8-Fr catheters were placed into the femoral veins. Cardiac arrest was induced with 60-Hz current. After 5 mins of no support, chest compression was performed by a circumferential pneumatic bladder (vest-cardiopulmonary resuscitation). Blood was withdrawn from one catheter by a pump system that maximized flow by servo-control of inlet pressure, was cooled, and was returned through the other catheter. Four dogs were instrumented similarly, and cooling was performed during normal circulation. RESULTS In the pigs, baseline temperatures were (mean +/- SEM) 37 +/- 1 degree C. With blood cooling in the external chiller to 10 degrees C, cerebral and right atrial temperatures were reduced by 0.49 +/- 0.09 and 0.67 +/- 0.21 degrees C/min, respectively, for 10 mins. With blood cooling in the external chiller to 4 degrees C, cerebral and right atrial temperatures were reduced by 0.61 +/- 0.18 and 1.56 +/- 0.33 degrees C/min, respectively. Cerebral cooling lagged behind right atrial cooling. There was a strong correlation between coronary perfusion pressure (aortic to right atrial mean decompression-phase pressure) and cerebral cooling rate (r = .79; p < .022). Rates of cooling during normal circulation in dogs were similar. CONCLUSIONS Rapid induction of mild hypothermia is feasible with a system that uses venous access, standard access techniques, and external chest compression. Induction of mild hypothermia during cardiac arrest in the field appears feasible and may allow the benefit of very early induction of hypothermia to be determined in patients.
Collapse
Affiliation(s)
- Menekhem M Zviman
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
40
|
Pabello NG, Tracy SJ, Keller RW. Protective effects of brief intra- and delayed postischemic hypothermia in a transient focal ischemia model in the neonatal rat. Brain Res 2004; 995:29-38. [PMID: 14644468 DOI: 10.1016/j.brainres.2003.09.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hypothermia provides neuroprotection in virtually all animal models of ischemia, including adult stroke models and the neonatal hypoxic-ischemic (HI) model. In these studies, brief periods of hypothermia are examined in a neonatal model employing transient focal ischemia in a 7-day-old rat pup. Pups underwent permanent middle cerebral artery (MCA) occlusion coupled with a temporary (1 h) occlusion of the ipsilateral common carotid artery (CCA). This study included five treatment groups: (1) normothermic (Normo)-brain temperature was maintained at 37 degrees C; (2) intraischemic hypothermia (IntraH)-28 degrees C during the 1-h ischemic period only; (3) postischemic hypothermia (PostH)-28 degrees C for the second hour of reperfusion only; (4) late-onset postischemic hypothermia (LPostH) cooled to 28 degrees C for the fifth and sixth hours of reperfusion only; and (5) Shams. After various times (3 days-6 weeks), the lesion was assessed using 2,3,5-triphenyltetrazolium chloride (TTC) or hematoxylin and eosin (H&E) stains. Intraischemic hypothermia resulted in significant protection in terms of survival, lesion size, and histology. Postischemic hypothermia was not effective in reducing lesion size early after ischemia, but significantly reduced the eventual long-term damage (2-6 weeks). Late-onset postischemic hypothermia did not reduce infarct volume. Therefore, both intraischemic and postischemic hypothermia provided neuroprotection in the neonatal rat, but with different effects on the degenerative time course. While there were no observable differences in simple behaviors or growth, all hypothermic conditions significantly reduced mortality rates. While the protection resulting from intraischemic hypothermia is similar to what is observed in other models, the degree of long-term ischemic protection observed after 1 h of postischemic hypothermia was remarkable and distinct from what has been observed in other adult or neonatal models.
Collapse
Affiliation(s)
- Nina G Pabello
- Center for Neuropharmacology and Neuroscience, Albany Medical College MC-136, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | | | |
Collapse
|
41
|
Futterman LG, Lemberg L. The Significance of Hypothermia in Preserving Ischemic Myocardium. Am J Crit Care 2004. [DOI: 10.4037/ajcc2004.13.1.79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Laurie G. Futterman
- The Division of Cardiology, Department of Medicine, University of Miami School of Medicine, Miami, Fla
| | - Louis Lemberg
- The Division of Cardiology, Department of Medicine, University of Miami School of Medicine, Miami, Fla
| |
Collapse
|
42
|
|
43
|
Inamasu J, Nakamura Y, Ichikizaki K. Induced hypothermia in experimental traumatic spinal cord injury: an update. J Neurol Sci 2003; 209:55-60. [PMID: 12686402 DOI: 10.1016/s0022-510x(02)00463-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The use of induced hypothermia in the treatment of traumatic spinal cord injury (SCI) has been studied extensively between the 1960s and 1970s. Although the treatment showed some promise, it became less popular by the 1980s, mainly because of its adverse effects. However, a revival of hypothermia in the treatment of traumatic brain injury (TBI) in the last decade has encouraged neuroscientists to conduct experiments to reevaluate the potential benefits of hypothermia in traumatic SCI. All laboratory investigations studying the mechanisms of action and/or the efficacy of induced hypothermia in treating experimental traumatic SCI published in the last decade were reviewed. Although efficacy of hypothermia in improving functional outcome of mild to moderate traumatic SCI has been demonstrated, hypothermia may not be protective against severe traumatic SCI. At present, induced hypothermia has yet to be recognized or approved as a potential treatment having therapeutic value for traumatic SCI in humans. The continued search for a possible synergistic effect of induced hypothermia and pharmacological therapy may yield some promise. It has also been deduced from these laboratory studies that hyperthermia is deleterious and rigorous measures to prevent hyperthermia should be taken to minimize the propagation of secondary neuronal damage after traumatic SCI.
Collapse
Affiliation(s)
- Joji Inamasu
- Department of Neurosurgery, National Tokyo Medical Center, Higashigaoka 2-5-1, Meguro, Tokyo 152-8902, Japan.
| | | | | |
Collapse
|
44
|
Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 2003; 4:399-415. [PMID: 12728267 DOI: 10.1038/nrn1106] [Citation(s) in RCA: 1292] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Eng H Lo
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | |
Collapse
|