1
|
Shin JH, Kim SS, Seo SR. Pyrrolidine Dithiocarbamate Suppresses Cutibacterium acnes-Induced Skin Inflammation. Int J Mol Sci 2023; 24:ijms24054444. [PMID: 36901873 PMCID: PMC10003320 DOI: 10.3390/ijms24054444] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023] Open
Abstract
Cutibacterium acnes (C. acnes), a Gram-positive anaerobic bacterium, proliferates in hair follicles and pores and causes inflammation in the skin of young people. The rapid growth of C. acnes triggers macrophages to secrete proinflammatory cytokines. Pyrrolidine dithiocarbamate (PDTC) is a thiol compound that exerts antioxidant and anti-inflammatory effects. Although the anti-inflammatory function of PDTC in several inflammatory disorders has been reported, the effect of PDTC on C. acnes-induced skin inflammation remains unexplored. In the present study, we examined the effect of PDTC on C. acnes-induced inflammatory responses and determined the mechanism by using in vitro and in vivo experimental models. We found that PDTC significantly inhibited the expression of C. acnes-induced proinflammatory mediators, such as interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and NOD-like receptor (NLR) pyrin domain-containing 3 (NLRP3), in mouse-bone-marrow-derived macrophage (BMDM) cells. PDTC suppressed C. acnes-induced activation of nuclear factor-kappa B (NF-κB), which is the major transcription factor for proinflammatory cytokine expression. In addition, we found that PDTC inhibited caspase-1 activation and IL-1β secretion through suppressing NLRP3 and activated the melanoma 2 (AIM2) inflammasome but not the NLR CARD-containing 4 (NLRC4) inflammasome. Moreover, we found that PDTC improved C. acnes-induced inflammation by attenuating C. acnes-induced IL-1β secretion in a mouse acne model. Therefore, our results suggest that PDTC has potential therapeutic value for the amelioration of C. acnes-induced skin inflammation.
Collapse
Affiliation(s)
- Jin Hak Shin
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seon Sook Kim
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Life Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Su Ryeon Seo
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
- Correspondence: ; Tel.: +82-33-250-8541; Fax: +82-33-241-4627
| |
Collapse
|
2
|
Huang Y, Wang S, Fan J, Pan J, Zhou Q, Xu J, Wang J, Zhang T, Yan Z. New insights into the mechanism of ammonia toxicity: Focus on Cactus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114357. [PMID: 36508831 DOI: 10.1016/j.ecoenv.2022.114357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
The NF-κB signaling pathway is the most critical pathway in innate immunity. IκB (Cactus) is the primary cytoplasmic inhibitor of NF-κB (Dorsal). In this study, we found that ammonia exposure could significantly induce the expression of Cactus, in a dose-dependent manner in different tissues, with the highest expression in the gill of Corbicula fluminea. The expression pattern-related elements (Tube and Dorsal) in the NF-κB signaling pathway were also analyzed, showing significant up-regulation in 48 h. There was an inhibitory effect between up-regulated Cactus and Dorsal in 72 h, which may regulate Dorsal as a negative feedback pathway function to control the expression of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α). Besides, through molecular docking simulation, we found that the Cactus could be directly activated by NH3, complementing the regulatory mechanism of the Cactus. To further test our hypothesis, the levels of pro-inflammatory cytokines decreased after adding PDTC (the antioxidant of Cactus/IκB), suggesting that PDTC can prevent the degradation of Cactus, inhibit Dorsal translocating into the nucleus, and activate the pro-inflammatory cytokines. This revealed the inhibitory effect of Cactus on activating Dorsal/NF-κB factors in the NF-κB signaling pathway. Thus, we suggested that the Cactus is an essential regulator of ammonia-activated inflammation in C. fluminea, which was reported to be activated only by bacteria and immune stimulators. Our study provides a new perspective on the mechanism of ammonia toxicity in invertebrates.
Collapse
Affiliation(s)
- Yi Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao 266100, PR China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China (College of Environmental Science and Engineering), Qingdao 266100, PR China
| | - Shuping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Juntao Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jinfen Pan
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China (College of Environmental Science and Engineering), Qingdao 266100, PR China
| | - Quan Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jiayun Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jie Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Tianxu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
3
|
Jia C, Dai C, Wang H, Wan Y, Qiao Y, Xu F, Peng S, Zhao Y, Zhao C, Zhao L. Differential Effects of Three Techniques for Hepatic Vascular Exclusion during Resection for Liver Cirrhosis on Hepatic Ischemia-Reperfusion Injury in Rats. Gastroenterol Res Pract 2018; 2018:5309286. [PMID: 29507582 PMCID: PMC5817263 DOI: 10.1155/2018/5309286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/13/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/AIMS Hepatic ischemia-reperfusion (I/R) injury is a serious concern during hepatic vascular occlusion. The objectives of this study were to assess effects of three techniques for hepatic vascular occlusion on I/R injury and to explore the underlying mechanisms. METHODS Liver cirrhotic rats had undertaken Pringle maneuver (PR), hemihepatic vascular occlusion (HH), or hepatic blood inflow occlusion without hemihepatic artery control (WH). Levels of tumor necrosis factor alpha (TNF-α), nuclear factor kappa B (NF-κB), toll-like receptor 4 (TLR4), TIR-domain-containing adapter-inducing interferon-β (TRIF), and hemeoxygenase 1 (HMOX1) were assayed. RESULTS The histopathologic analysis displayed that liver harm was more prominent in the PR group, but similar in the HH and WH groups. The HH and WH groups responded to hepatic I/R inflammation similarly but better than the PR group. Mechanical studies suggested that TNF-α/NF-κB signaling and TLR4/TRIF transduction pathways were associated with the differential effects. In addition, the HH and WH groups had significantly higher levels of hepatic HMOX1 (P < 0.05) than the PR group. CONCLUSIONS HH and WH confer better preservation of liver function and protection than the Pringle maneuver in combating I/R injury. Upregulation of HMOX1 may lead to better protection and clinical outcomes after liver resection.
Collapse
Affiliation(s)
- Changjun Jia
- Department of Hepatobiliary and Splenic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Chaoliu Dai
- Department of Hepatobiliary and Splenic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Hailiang Wang
- Department of Hepatobiliary and Splenic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
- Department of Hepatobiliary Surgery, Weihai Central Hospital, Weihai, Shandong 264400, China
| | - Yi Wan
- Department of Hepatobiliary and Splenic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Yunyu Qiao
- Department of Hepatobiliary and Splenic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
- Department of Anal Disease, Shenyang Coloproctology Hospital, Shenyang, Liaoning 110000, China
| | - Feng Xu
- Department of Hepatobiliary and Splenic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Songlin Peng
- Department of Hepatobiliary and Splenic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yang Zhao
- Department of Hepatobiliary and Splenic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Chuang Zhao
- Department of Hepatobiliary and Splenic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Liang Zhao
- Department of Hepatobiliary and Splenic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| |
Collapse
|
4
|
Pyrrolidine dithiocarbamate (PDTC) inhibits inflammatory signaling via expression of regulator of calcineurin activity 1 (RCAN1). Biochem Pharmacol 2017; 143:107-117. [DOI: 10.1016/j.bcp.2017.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/11/2017] [Indexed: 11/20/2022]
|
5
|
Tapuria N, Junnarkar S, Abu-amara M, Fuller B, Seifalian AM, Davidson BR. Haemoxygenase modulates cytokine induced neutrophil chemoattractant in hepatic ischemia reperfusion injury. World J Gastroenterol 2016; 22:7518-7535. [PMID: 27672274 PMCID: PMC5011667 DOI: 10.3748/wjg.v22.i33.7518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 02/05/2016] [Accepted: 05/23/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the hepatic microcirculatory changes due to Haemoxygenase (HO), effect of HO inhibition on remote ischemic preconditioning (RIPC) and modulation of CINC.
METHODS Eight groups of animals were studied - Sham, ischemia reperfusion injury (IRI) the animals were subjected to 45 min of hepatic ischemia followed by three hours of reperfusion, RIPC (remote ischemic preconditioning) + IRI group, remote ischemic preconditioning in sham (RIPC + Sham), PDTC + IR (Pyridodithiocarbamate, HO donor), ZnPP + RIPC + IRI (Zinc protoporphyrin prior to preconditioning), IR-24 (45 min of ischemia followed by 24 h of reperfusion), RIPC + IR-24 (preconditioning prior to IR). After 3 and 24 h of reperfusion the animals were killed by exsanguination and samples were taken.
RESULTS Velocity of flow (160.83 ± 12.24 μm/s), sinusoidal flow (8.42 ± 1.19) and sinusoidal perfusion index (42.12 ± 7.28) in hepatic IR were lower (P < 0.05) in comparison to RIPC and PDTC (HO inducer). RIPC increased velocity of flow (328.04 ± 19.13 μm/s), sinusoidal flow (17.75 ± 2.59) and the sinusoidal perfusion index (67.28 ± 1.82) (P < 0.05). PDTC (HO induction) reproduced the effects of RIPC in hepatic IR. PDTC restored RBC velocity (300.88 ± 22.109 μm/s), sinusoidal flow (17.66 ± 3.71) and sinusoidal perfusion (82.33 ± 3.5) to near sham levels. ZnPP (HO inhibition) reduced velocity of flow of RBC in the RIPC group (170.74 ± 13.43 μm/s and sinusoidal flow in the RIPC group (9.46 ± 1.34). ZnPP in RIPC (60.29 ± 1.82) showed a fall in perfusion only at 180 min of reperfusion. Neutrophil adhesion in IR injury is seen in both postsinusoidal venules (769.05 ± 87.48) and sinusoids (97.4 ± 7.49). Neutrophil adhesion in RIPC + IR injury is reduced in both postsinusoidal venules (219.66 ± 93.79) and sinusoids (25.69 ± 9.08) (P < 0.05). PDTC reduced neutrophil adhesion in both postsinusoidal venules (89.58 ± 58.32) and sinusoids (17.98 ± 11.01) (P < 0.05) reproducing the effects of RIPC. ZnPP (HO inhibition) increased venular (589.04 ± 144.36) and sinusoidal neutrophil adhesion in preconditioned animals (121.39 ± 30.65) (P < 0.05). IR after 24 h of reperfusion increased venular and sinusoidal neutrophil adhesion in comparison to the early phase and was significantly reduced by RIPC. Hepatocellular cell death in IRI (80.83 ± 13.03), RIPC + IR (17.35 ± 2.47), and PTDC + IR (11.66 ± 1.17) reduced hepatocellular death. ZnPP + RIPC + IR (41.33 ± 3.07) significantly increased hepatocellular death (P < 0.05 PTDC/RIPC vs ZnPP and IR). The CINC cytokine levels in sham (101.32 ± 6.42). RIPC + sham (412.18 ± 65.24) as compared to sham (P < 0.05). CINC levels in hepatic IR were (644.08 ± 181.24). PDTC and RIPC CINC levels were significantly lower than hepatic IR (P < 0.05). HO inhibition in preconditioned animals with Zinc protoporphyrin increased serum CINC levels (521.81 ± 74.9) (P < 0.05). The serum CINC levels were high in the late phase of hepatic IR (15306 ± 1222.04). RIPC reduced CINC levels in the late phase of IR (467.46 ± 26.06), P < 0.05.
CONCLUSION RIPC protects hepatic microcirculation by induction of HO and modulation of CINC in hepatic IR.
Collapse
|
6
|
Yamanaka K, Houben P, Bruns H, Schultze D, Hatano E, Schemmer P. A systematic review of pharmacological treatment options used to reduce ischemia reperfusion injury in rat liver transplantation. PLoS One 2015; 10:e0122214. [PMID: 25919110 PMCID: PMC4412498 DOI: 10.1371/journal.pone.0122214] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/10/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Although animal studies models are frequently used for the purpose of attenuating ischemia reperfusion injury (IRI) in liver transplantation (LT), many of pharmacological agents have not become part of clinical routine. METHODS A search was performed using the PubMed database to identify agents, from which 58 articles containing 2700 rat LT procedures were selected. The identified pharmacological agents were categorized as follows: I - adenosine agonists, nitric oxide agonists, endothelin antagonists, and prostaglandins, II - Kupffer cell inactivator, III - complement inhibiter, IV - antioxidant, V - neutrophil inactivator, VI -anti-apoptosis agent, VII - heat shock protein and nuclear factor kappa B inducer, VIII - metabolic agent, IX - traditional Chinese medicine, and X - others. Meta-analysis using 7-day-survival rate was also performed with Mantel-Haenszel's Random effects model. RESULTS The categorization revealed that the rate of donor-treated experiments in each group was highest for agents from Group II (70%) and VII (71%), whereas it was higher for agents from Group V (83%) in the recipient-treated experiments. Furthermore, 90% of the experiments with agents in Group II provided 7-day-survival benefits. The Risk Ratio (RR) of the meta-analysis was 2.43 [95% CI: 1.88-3.14] with moderate heterogeneity. However, the RR of each of the studies was too model-dependent to be used in the search for the most promising pharmacological agent. CONCLUSION With regard to hepatic IRI pathology, the categorization of agents of interest would be a first step in designing suitable multifactorial and pleiotropic approaches to develop pharmacological strategies.
Collapse
Affiliation(s)
- Kenya Yamanaka
- Department of General and Transplant Surgery, University Hospital of Heidelberg, Heidelberg, Germany
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Philipp Houben
- Department of General and Transplant Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Helge Bruns
- Department of General and Transplant Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Daniel Schultze
- Department of General and Transplant Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Peter Schemmer
- Department of General and Transplant Surgery, University Hospital of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
7
|
Ha DT, Oh J, Khoi NM, Dao TT, Dung LV, Do TNQ, Lee SM, Jang TS, Jeong GS, Na M. In vitro and in vivo hepatoprotective effect of ganodermanontriol against t-BHP-induced oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2013; 150:875-885. [PMID: 24140584 DOI: 10.1016/j.jep.2013.09.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/09/2013] [Accepted: 09/11/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ganoderma lucidum (Fr.) Karst. (Ganodermataceae) is a mushroom which is used as a traditional remedy in the treatment of human diseases such as hepatitis, liver disorders, hypercholesterolemia, arthritis, bronchitis and tumorigenic diseases. This study targets the evaluation of hepatoprotective activity of ganodermanontriol, a sterol isolated from Ganoderma lucidum, and the investigation of its mechanism of action in Hepa1c1c7 and murine liver cells upon tert-butyl hydroperoxide (t-BHP)-induced inflammation. t-BHP was utilized to stimulate an anti-inflammatory reaction in the hepatic cell lines and murine hepatic tissue examined. Western blot and reverse transcription-quantitative polymerase chain reaction (RT-PCR) were used to estimate the expression of ganodermanontriol (GDT)-induced proteins, including heme oxidase-1 (HO-1) and mitogen-activated protein kinases (MAPKs) as well as the corresponding mRNA. Luciferase assays were conducted to evaluate the interaction between NF-E2-related factor-2 (Nrf-2), the antioxidant response element (ARE), and the promoter region of the HO-1 gene and subsequent gene expression. Biochemical markers for hepatotoxicity were monitored to assess whether GDT protected the cells from the t-BHP-mediated oxidative stimuli. RESULTS GDT induced HO-1 expression via the activation of Nrf-2 nuclear translocation and the subsequent transcription of the HO-1 gene in vitro and in vivo, which seemed to be regulated by phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) and p38 signaling pathways. GDT exhibited in vitro and in vivo hepatoprotective activity as determined by the lowered levels of hepatic enzymes and malondialdehydes and the elevated glutathione levels. CONCLUSIONS This study validates the ethnopharmacological application of Ganoderma lucidum as a treatment for hepatic disorders. GDT induced in vitro and in vivo anti-inflammatory activity in t-BHP-damaged hepatic cells through the expression of HO-1, and in which PI3K/Akt and p38 kinases are involved. Our study motivates further research in the exploration of potent hepatoprotective agents from Ganoderma lucidum.
Collapse
Affiliation(s)
- Do Thi Ha
- National Institute of Medicinal Materials (NIMM), 3B Quangtrung, Hoankiem, Hanoi, Vietnam; College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wang CF, Wang ZY, Tao SF, Ding J, Sun LJ, Li JY, Quan ZW. Preconditioning donor liver with Nodosin perfusion lessens rat ischemia reperfusion injury via heme oxygenase-1 upregulation. J Gastroenterol Hepatol 2012; 27:832-40. [PMID: 22098251 DOI: 10.1111/j.1440-1746.2011.06966.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND AIM Ischemia reperfusion injury (IRI) remains a major cause of graft injury, dysfunction and even failure post-transplantation. Heme oxygenase 1 (HO-1) has been found to be an attractive target for anti-inflammatory therapies and a potential candidate responsible for cell injury. The objective of this study was to investigate whether preconditioning the donor liver with Nodosin perfusion upregulates HO-1 and then lessens IRI in rat models. METHODS Wistar rats were divided into four groups: experimental group, control group, positive control group and negative control group in which the donor liver was preconditioned with Nodosin, lactated ringer's solution, cobalt protoporphyrin and zinc protoporphyrin perfusion, respectively. We measured HO-1 expression and enzyme activity in rat livers of each group ex vivo at 0, 1 and 2 h after perfusion. At 1 h after perfusion, donor livers of Wistar rats were transplanted into Sprague-Dawley rats orthotopically. Serum transaminase levels, degree of cell apoptosis and Suzuki's score were used to assess ischemia/reperfusion injury in recipients at 24 h after transplantation. RESULTS Ex vivo, donor liver preconditioning with Nodosin perfusion induced HO-1 expression and enzyme activity significantly, compared with the control group (P < 0.05). In vivo, serum transaminase levels, cell apoptosis degree and Suzuki's score of representative recipients in the Nodosin group were lower than that in the control group (P < 0.05). Preconditioning with Nodosin perfusion induced HO-1 protein mainly in Kupffer cells. CONCLUSIONS This study suggests that preconditioning with Nodosin perfusion provides a potential protective effect through inducing HO-1 expression to attenuate ischemia/reperfusion injury in liver transplantation.
Collapse
Affiliation(s)
- Chun-Feng Wang
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Molinero LL, Alegre ML. Role of T cell-nuclear factor κB in transplantation. Transplant Rev (Orlando) 2011; 26:189-200. [PMID: 22074783 DOI: 10.1016/j.trre.2011.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/17/2011] [Accepted: 07/12/2011] [Indexed: 11/30/2022]
Abstract
Nuclear factor (NF) κB is a pleiotropic transcription factor that is ubiquitously expressed. After transplantation of solid organs, NF-κB in the graft is activated within a few hours as a consequence of ischemia/reperfusion and then again after a few days in intragraft infiltrating cells during the process of acute allograft rejection. In the present article, we review the components of the NF-κB pathway, their mechanisms of activation, and their role in T cell and antigen-presenting cell activation and differentiation and in solid organ allograft rejection. Targeted inhibition of NF-κB in selected cell types may promote graft survival with fewer adverse effects compared with global immunosuppressive therapies.
Collapse
Affiliation(s)
- Luciana L Molinero
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
10
|
Abstract
Heme oxygenase-1 (HO-1) is the rate-limiting enzyme in heme catabolism that converts heme to Fe++, carbon monoxide and biliverdin. HO-1 acts anti-inflammatory and modulates apoptosis in many pathological conditions. In transplantation, HO-1 is overexpressed in organs during brain death, when undergoing ischemic damage and rejection. However, intentionally induced, it ameliorates pathological processes like ischemia reperfusion injury, allograft, xenograft or islet rejection, facilitates donor specific tolerance and alleviates chronic allograft changes. We herein consistently summarize the huge amount of data on HO-1 and transplantation that have been generated in multiple laboratories during the last 15years and suggest possible clinical implications and applications for the near future.
Collapse
Affiliation(s)
- Robert Öllinger
- Department of Visceral, Transplant and Thoracic Surgery, Medical University Innsbruck, Innsbruck, Austria.
| | | |
Collapse
|
11
|
Hagar HH. An insight into the possible protective effect of pyrrolidine dithiocarbamate against lipopolysaccharide-induced oxidative stress and acute hepatic injury in rats. Saudi Pharm J 2009; 17:259-67. [PMID: 23960709 DOI: 10.1016/j.jsps.2009.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 06/20/2009] [Indexed: 02/07/2023] Open
Abstract
Lipopolysaccharide (LPS) is a major cell wall molecule of Gram-negative bacteria known to stimulate the synthesis and secretion of several toxic metabolites, such as reactive oxygen species. In this study, the effect of pyrrolidine dithiocarbamate (PDTC), an antioxidant with nuclear factor-κB inhibitor activity, was evaluated in LPS-induced oxidative stress and acute hepatic injury in rats. Animals were pretreated for 3 consecutive days with PDTC (200 mg/kg/day, i.p.) or saline and animals were then challenged with LPS (6 mg/kg, i.p.) or saline. Six hours after LPS injection, animals were decapitated and blood and liver samples were collected to assess the chosen biochemical parameters. Saline-pretreated animals challenged with LPS revealed extensive liver damage, as evidenced by increases in serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma glutamyl transferase (γ-GT). Also, LPS treatment resulted in significant increases in serum lactate dehydrogenase (LDH), tumor necrosis factor-alpha (TNF-α) and nitrite levels. Furthermore, LPS challenge caused oxidative stress as indicated by an increase in hepatic lipid peroxidation measured as thiobarbituric acid reactive substances (TBARS) and a decrease in hepatic reduced glutathione concentration (GSH) as well as decreased activities of superoxide dismutase (SOD) and catalase in hepatic tissues. The administration of PDTC prior to LPS challenge resulted in improved liver functions as evidenced by the decline in serum AST, ALT, γ-GT levels and reduction in serum LDH, TNF-α and nitrite levels. Moreover, PDTC reduced the chosen lipid peroxidation marker, TBARS and increased GSH concentration, and SOD and catalase activities in hepatic tissues. These results indicate that PDTC may be a useful pharmacological agent in alleviating LPS-induced oxidative stress and acute hepatic injury.
Collapse
Affiliation(s)
- Hanan H Hagar
- Pharmacology Department (31), College of Medicine and King Khalid University Hospital, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| |
Collapse
|
12
|
Gueron G, De Siervi A, Ferrando M, Salierno M, De Luca P, Elguero B, Meiss R, Navone N, Vazquez ES. Critical role of endogenous heme oxygenase 1 as a tuner of the invasive potential of prostate cancer cells. Mol Cancer Res 2009; 7:1745-55. [PMID: 19903769 DOI: 10.1158/1541-7786.mcr-08-0325] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-associated death in men. Inflammation has been recognized as a risk factor for this disease. Heme oxygenase 1 (HO-1), the inducible isoform of the rate-limiting enzyme in heme degradation, counteracts oxidative and inflammatory damage. Here, we investigated the regulated expression of HO-1 and its functional consequences in PCa. We studied the effect of genetic and pharmacologic disruption of HO-1 in the growth, invasion, and migration in androgen-sensitive (MDA PCa2b and LNCaP) and androgen-insensitive (PC3) PCa cell lines. Our results show that HO-1 levels are markedly decreased in PC3 compared with MDA PCa2b and LNCaP. Hemin treatment increased HO-1 at both protein and mRNA levels in all cell lines and decreased cell proliferation and invasion. Furthermore, overexpression of HO-1 in PC3 resulted in markedly reduced cell proliferation and migration. Accordingly, small interfering RNA-mediated silencing of HO-1 expression in MDA PCa2b cells resulted in increased proliferation and invasion. Using reverse transcription-quantitative PCR-generated gene array, a set of inflammatory and angiogenic genes were upregulated or downregulated in response to HO-1 overexpression identifying matrix metalloprotease 9 (MMP9) as a novel downstream target of HO-1. MMP9 production and activity was downregulated by HO-1 overexpression. Furthermore, PC3 cells stably transfected with HO-1 (PC3HO-1) and controls were injected into nu/nu mice for analysis of in vivo tumor xenograft phenotype. Tumor growth and MMP9 expression was significantly reduced in PC3HO-1 tumors compared with control xenografts. Taken together, these results implicate HO-1 in PCa cell migration and proliferation suggesting its potential role as a therapeutic target in clinical settings.
Collapse
Affiliation(s)
- Geraldine Gueron
- Department of Biological Chemistry, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
The in-vivo effect of pyrrolidine dithiocarbamate on hepatic parenchymal microcirculation and oxygenation of the rat liver. Eur J Gastroenterol Hepatol 2009; 21:1184-90. [PMID: 19474746 DOI: 10.1097/meg.0b013e32831d28cc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Pyrrolidine dithiocarbamate has been shown to be a potent inducer of haemeoxygenase-1. This study investigated its in-vivo effects on systemic and hepatic microcirculatory perfusion. METHODS Male Sprague-Dawley rats (n=12) were administered intravenously with pyrrolidine dithiocarbamate (10, 20 and 50 mg/kg body weight) or vehicle (0.2 ml physiological saline) served as control. Systemic and hepatic haemodynamics including arterial oxygen saturation, heart rate, mean arterial blood pressure and portal blood flow were monitored. Microcirculation in skeletal muscle and liver was measured by laser Doppler flowmetry and intravital fluorescence microscopy, whereas hepatic tissue oxyhaemoglobin and cytochrome oxidase CuA redox state, which is an indicative of extracellular and intracellular oxygenation were measured by near infrared spectroscopy. RESULTS Pyrrolidine dithiocarbamate induced a dose-dependent increase in mean arterial blood pressure and skeletal muscle microcirculation. The hepatic parenchymal microcirculation was significantly improved and an increase in sinusoidal diameter and reduction in RBC velocity were observed. Pyrrolidine dithiocarbamate also showed beneficial effect on hepatic tissue oxygenation showed by an increase in oxyhaemoglobin and cytochrome oxidase CuA redox state as well. CONCLUSION Pyrrolidine dithiocarbamate improves hepatic parenchymal microcirculation and tissue oxygenation, suggesting that it may be used as a potential agent in pharmacological preconditioning in the liver.
Collapse
|
14
|
Orio L, Llopis N, Torres E, Izco M, O’Shea E, Colado MI. A Study on the Mechanisms by Which Minocycline Protects Against MDMA (‘Ecstasy’)-Induced Neurotoxicity of 5-HT Cortical Neurons. Neurotox Res 2009; 18:187-99. [DOI: 10.1007/s12640-009-9120-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 09/15/2009] [Accepted: 09/15/2009] [Indexed: 01/24/2023]
|
15
|
The Protective Effect of CAPE on Hepatic Ischemia/Reperfusion Injury in Rats. J Surg Res 2008; 150:271-7. [DOI: 10.1016/j.jss.2008.01.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 01/22/2008] [Accepted: 01/24/2008] [Indexed: 12/15/2022]
|
16
|
Lee CH, Kim SH, Lee SM. Effect of pyrrolidine dithiocarbamate on hepatic vascular stress gene expression during ischemia and reperfusion. Eur J Pharmacol 2008; 595:100-7. [PMID: 18722366 DOI: 10.1016/j.ejphar.2008.07.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 07/20/2008] [Accepted: 07/24/2008] [Indexed: 10/21/2022]
Abstract
Pyrrolidine dithiocarbamate, an antioxidant and a potent inhibitor of nuclear factor-kappa B (NF-kappaB), is known to have protective effect against ischemia and reperfusion injury. This study examined the cytoprotective mechanism of pyrrolidine dithiocarbamate against the microcirculatory failure caused by hepatic ischemia and reperfusion. Rats were subjected to 60 min of hepatic ischemia followed by 5 h of reperfusion. Pyrrolidine dithiocarbamate (100 mg/kg) or the vehicle was administered intraperitoneally 24 h before ischemia. The level of serum aminotransferases and hepatic lipid peroxides significantly increased, and the glutathione contents fell in the ischemia/reperfusion group. Pyrrolidine dithiocarbamate prevented the increase in the level of serum enzymes and hepatic lipid peroxides, and the decrease in the glutathione contents. The NF-kappaB DNA-binding activity was inhibited by a pre-treatment with pyrrolidine dithiocarbamate. Ischemia and reperfusion significantly increased the mRNA expression of the endothelin-1 and endothelin ET(B) receptor, which was prevented by pyrrolidine dithiocarbamate. There were significant increases in the mRNA expressions of inducible nitric oxide synthase, tumor necrosis factor-alpha, and cyclooxygenase-2, in the livers after ischemia and reperfusion. These increases were attenuated by the pyrrolidine dithiocarbamate treatment. In a rat model of hepatic ischemia and reperfusion, our results suggest that the hepatoprotective actions of pyrrolidine dithiocarbamate may be mediated in part through the modulation of imbalanced expression of vascular stress genes.
Collapse
Affiliation(s)
- Chan-Ho Lee
- College of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | | | | |
Collapse
|
17
|
Stolz DB, Ross MA, Ikeda A, Tomiyama K, Kaizu T, Geller DA, Murase N. Sinusoidal endothelial cell repopulation following ischemia/reperfusion injury in rat liver transplantation. Hepatology 2007; 46:1464-75. [PMID: 17929236 PMCID: PMC2190086 DOI: 10.1002/hep.21887] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
UNLABELLED We evaluated the kinetics by which rat liver sinusoidal endothelial cells (LSECs) are repopulated in the reperfused transplanted liver after 18 hours of cold ischemic storage. We found that the majority of LSECs in livers cold-stored for 18 hours in University of Wisconsin solution are seriously compromised and often are retracted before transplantation. Sinusoids rapidly re-endothelialize within 48 hours of transplantation, and repopulation is coincident with up-regulation of hepatocyte vascular endothelial growth factor expression and vascular endothelial growth factor receptor-2 expression on large vessel endothelial cells and repopulating LSECs. Although re-endothelialization occurs rapidly, we show here, using several high-resolution imaging techniques and 2 different rat liver transplantation models, that engraftment of bone marrow-derived cells into functioning LSECs is routinely between 1% and 5%. CONCLUSION Bone marrow plays a measurable but surprisingly limited role in the rapid repopulation and functional engraftment of bone marrow-derived LSECs after cold ischemia and warm reperfusion.
Collapse
Affiliation(s)
- Donna Beer Stolz
- Cell Biology and Physiology and the Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Mark A. Ross
- Cell Biology and Physiology and the Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA
| | - Atsushi Ikeda
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Koji Tomiyama
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Takashi Kaizu
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - David A. Geller
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Noriko Murase
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
18
|
Tsuchihashi SI, Zhai Y, Bo Q, Busuttil RW, Kupiec-Weglinski JW. Heme Oxygenase-1 Mediated Cytoprotection Against Liver Ischemia and Reperfusion Injury: Inhibition of Type-1 Interferon Signaling. Transplantation 2007; 83:1628-34. [PMID: 17589347 DOI: 10.1097/01.tp.0000266917.39958.47] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Toll-like receptor (TLR)-4 signaling plays a key role in initiating exogenous antigen-independent innate immunity-dominated liver ischemia/reperfusion injury (IRI). Heme oxygenase (HO)-1, a heat-shock protein 32, exerts potent adaptive anti-oxidant and anti-inflammatory functions. Signal transducers and activator of transcription (STAT)-1 activation triggers interferon (IFN)-inducible protein 10 (CXCL-10), one of major products of type-1 IFN pathway downstream of TLR4. This study focuses on the role of type-1 IFN pathway in the mechanism of HO-1 cytoprotection during liver IRI. METHODS AND RESULTS Cobalt protoporphyrin (CoPP)-induced HO-1 overexpression ameliorated liver damage in a well-defined mouse model of liver warm IRI, as evidenced by improved hepatic function (serum alanine aminotransferase levels) and liver histology (Suzuki's scores). HO-1 downregulated phospho-STAT-1 and its key product, CXCL-10. In contrast, TLR4 expression remained elevated regardless of the IRI status. To dissect the mechanism of HO-1 upon CXCL-10, we cultured RW 264.7 (macrophage) cells with exogenous rIFN-beta to stimulate CXCL-10 production via TLR4 pathway in vitro. Indeed, CoPP-induced HO-1 suppressed otherwise highly upregulated rIFN-beta-triggered CXCL-10. Moreover, consistent with our in vitro data, CoPP pretreatment diminished rIFN-beta-induced CXCL-10 production in normal mouse livers. CONCLUSION Hepatic IRI activates TLR4 signaling in vivo to elaborate CXCL-10. HO-1 overexpression downregulates activation of STAT1 via type-1 IFN pathway downstream of TLR4, which in turn decreases CXCL-10 production. This study provides evidence for a novel mechanism by which HO-1 exerts adaptive cytoprotective and anti-inflammatory functions in the context of innate TLR4 activation.
Collapse
Affiliation(s)
- Sei-ichiro Tsuchihashi
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-7054, USA
| | | | | | | | | |
Collapse
|
19
|
Samuel W, Kutty RK, Nagineni S, Vijayasarathy C, Chandraratna RAS, Wiggert B. N-(4-hydroxyphenyl)retinamide induces apoptosis in human retinal pigment epithelial cells: retinoic acid receptors regulate apoptosis, reactive oxygen species generation, and the expression of heme oxygenase-1 and Gadd153. J Cell Physiol 2007; 209:854-65. [PMID: 16972258 DOI: 10.1002/jcp.20774] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
N-(4-hydroxyphenyl)retinamide (4HPR, fenretinide), a retinoic acid (RA) derivative and a potential cancer preventive agent, is known to exert its chemotherapeutic effects in cancer cells through induction of apoptosis. Earlier work from our laboratory has shown that relatively low concentrations of 4HPR induce neuronal differentiation of cultured human retinal pigment epithelial (ARPE-19) cells (Chen et al., 2003, J Neurochem 84:972-981). However, at higher concentrations of 4HPR, these cells showed morphological changes including cell shrinkage and cell death. Here we demonstrate that ARPE-19 cells treated with 4HPR exhibit a dose- and time-dependent induction of apoptosis as evidenced by morphological changes, mono- and oligonucleosome generation, and increased activity of caspases 2 and 3. The 4HPR-induced apoptosis as well as the activation of caspases 2 and 3 were blocked by both retinoic acid receptors (RAR) pan-antagonists, AGN193109 and AGN194310, and by an RARalpha-specific antagonist AGN194301. 4HPR treatment also increased reactive oxygen species (ROS) generation in ARPE-19 cells in a time-dependent manner as determined from the oxidation of 2',7'-dichlorofluorescin. In addition, the increase in the expression of heme oxygenase-1 (HO-1), a stress response protein, and the growth arrest and DNA damage-inducible transcription factor 153 (Gadd153) in response to the ROS generation were also blocked by these receptor antagonists. Pyrrolidine dithiocarbamate (PDTC), a free-radical scavenger, inhibited 4HPR-induced ROS generation, the expression of its downstream mediator, Gadd153, and apoptosis in the pretreated cells. Therefore, our results, clearly demonstrate that 4HPR induces apoptosis in ARPE-19 cells and that RARs mediate this process by regulating ROS generation as well as the expression of Gadd153 and HO-1.
Collapse
Affiliation(s)
- William Samuel
- Biochemistry Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, 7 Memorial Drive, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Bach SP, Williamson SE, O'Dwyer ST, Potten CS, Watson AJM. Regional localisation of p53-independent apoptosis determines toxicity to 5-fluorouracil and pyrrolidinedithiocarbamate in the murine gut. Br J Cancer 2006; 95:35-41. [PMID: 16804527 PMCID: PMC2360501 DOI: 10.1038/sj.bjc.6603224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Pyrrolidinedithiocarbamate (PDTC) enhanced the activity of 5-fluorouracil (5-FU) in a colorectal cancer xenograft model. Pyrrolidinedithiocarbamate also reduced gastrointestinal toxicity associated with 5-FU therapy in large but not small bowel. We sought to clarify the basis of this differential enteric toxicity. Apoptosis and mitosis were assessed on a cell positional basis in small and large intestinal crypts of p53 wild-type (+/+) and p53 null (-/-) mice 6, 12, 24, 36, 48 and 72 h after the administration of high (200 mg kg(-1)) or low (40 mg kg(-1)) dose 5-FU+/-250 mg kg(-1) PDTC. Regimens were chosen to model a single human dose and a weekly schedule. The effects of another antioxidant N-acetylcysteine (NAC) were also investigated. Large intestinal crypts affect apoptosis purely by p53-dependent mechanisms, whereas small intestinal crypts are able to initiate both p53-dependent and -independent pathways following treatment with 5-FU. Pyrrolidinedithiocarbamate and NAC antagonised p53-dependent but potentiated p53-independent apoptotic activity. Consequently, the proportion of surviving clonogens increased in the large but not in the small intestine. Regional availability of p53-dependent and -independent apoptotic pathways in small and large intestine together with separate modulation of these pathways by antioxidants explains the different regional enterotoxicity following 5-FU therapy.
Collapse
Affiliation(s)
- S P Bach
- Nuffield Department of Surgery, University of Oxford, Level 2, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | | | | | | | | |
Collapse
|
21
|
Mallick IH, Winslet MC, Seifalian AM. Pyrrolidine dithiocarbamate protects the small bowel from warm ischaemia/reperfusion injury of the intestine: the role of haem oxygenase. Clin Sci (Lond) 2006; 111:373-80. [PMID: 16881871 DOI: 10.1042/cs20060119] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
IR (ischaemia/reperfusion) injury of the intestine occurs commonly during abdominal surgery. We have previously shown that PDTC (pyrrolidine dithiocarbamate), an HO-1 (haem oxygenase-1) donor, improves intestinal microvascular perfusion. In the present study, we have investigated the effects of PDTC on the intestinal microcirculation following IR (ischaemia/reperfusion) injury of the intestine. Male Sprague–Dawley rats (n=72) were randomly assigned to four groups (n=18/group): (i) sham-operated group, who underwent laparotomy without induction of IR of the intestine; (ii) IR group, who were subjected to 30 min of superior mesenteric artery occlusion and 2 h of reperfusion; (iii) PDTC+IR group, who received PDTC prior to IR; and (iv) ZnPP group, who received the HO-1 inhibitor ZnPP (zinc protoporphyrin) followed by procedures as in group (iii). The ileum was evaluated for changes in tissue cytochrome c oxidase redox status, RBC (red blood cell) dynamics and leucocyte–endothelial interactions. The expression of HO-1 in the ileal tissue was examined at the end of the reperfusion. PDTC significantly improved the intestinal tissue oxygenation, mucosal perfusion index and RBC velocity compared with the IR and ZnPP groups. PDTC also decreased the leucocyte–endothelial interactions (P<0.05 compared with the IR and ZnPP groups). PDTC induced the expression of HO-1, whereas ZnPP abolished this effect.
Collapse
Affiliation(s)
- Ismail H Mallick
- Gastrointestinal and Hepatobiliary Research Unit, Academic Division of Surgical and Interventional Sciences, University College London, London, UK
| | | | | |
Collapse
|
22
|
He HJ, Zhu TN, Xie Y, Fan J, Kole S, Saxena S, Bernier M. Pyrrolidine Dithiocarbamate Inhibits Interleukin-6 Signaling through Impaired STAT3 Activation and Association with Transcriptional Coactivators in Hepatocytes. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84049-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
He HJ, Zhu TN, Xie Y, Fan J, Kole S, Saxena S, Bernier M. Pyrrolidine dithiocarbamate inhibits interleukin-6 signaling through impaired STAT3 activation and association with transcriptional coactivators in hepatocytes. J Biol Chem 2006; 281:31369-79. [PMID: 16926159 DOI: 10.1074/jbc.m603762200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Interleukin (IL)-6 is a proinflammatory cytokine that has been implicated in the expression of acute phase plasma proteins and hepatic insulin resistance through activation of the JAK/STAT3 pathway. Although previous studies have demonstrated that pyrrolidine dithiocarbamate (PDTC) exerts protection against inflammatory responses, its role in the regulation of IL-6 receptor signaling remains unclear. Here we show that treatment of cultured HepG2 hepatoma cells with PDTC inhibits IL-6-stimulated tyrosine phosphorylation and subsequent nuclear translocation of STAT3 in a dose- and time-dependent fashion. No inhibition of JAK-1 activity was observed. To provide insight into PDTC signaling, we constructed a conditionally active STAT3 by fusing it with the ligand binding domain of the estrogen receptor (STAT3-ER). In the presence of 4-hydroxytamoxifen STAT3-ER was translocated in the nucleus of HepG2 cells in a phosphorylation-independent manner, and treatment with PDTC mitigated the response. Although STAT3 coprecipitated with heat-shock protein 90 (Hsp90) in control cells, coprecipitation of the two proteins was greatly reduced after PDTC treatment or after exposure to geldanamycin, an Hsp90 inhibitor. As a result there was a decrease in IL-6-induced association of STAT3 with the transcriptional coactivators FOXO1a and C/EBPbeta together with significant reduction in the expression of SOCS-3 protein and that of two major acute phase plasma proteins. Importantly, treatment of HepG2 cells and a primary culture of rat hepatocytes with PDTC restored insulin responsiveness that was abrogated by IL-6. These studies are consistent with the ability of PDTC to down-regulate IL-6-induced STAT3 activation by altering the stability of STAT3-Hsp90 complex.
Collapse
Affiliation(s)
- Hua-Jun He
- Diabetes Section, Laboratory of Clinical Investigation, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Shirahane K, Yamaguchi K, Koga K, Watanabe M, Kuroki S, Tanaka M. Hepatic ischemia/reperfusion injury is prevented by a novel matrix metalloproteinase inhibitor, ONO-4817. Surgery 2006; 139:653-64. [PMID: 16701099 DOI: 10.1016/j.surg.2005.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 10/06/2005] [Accepted: 10/11/2005] [Indexed: 12/14/2022]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) play an important role in inflammation and neoplastic invasion and metastasis. Little is known about the effects of MMP inhibitors on hepatic ischemia/reperfusion injury. The aim of this study is to examine the inhibitory effects of ONO-4817 (oral inhibitor of MMPs) in rats. METHODS Hepatic ischemia/reperfusion was induced in male Wister rats by clamping the portal vein and hepatic artery. The animals were randomized into an ONO-4817 group (300 mg/kg body weight per/day) and a vehicle group by oral gavage of a test substance. Serum alanine aminotransferase, histologic changes, gelatinolytic activity, MMP-2 and MMP-9 activities, tissue inhibitor of metalloproteinase 2 (TIMP-2) messenger RNA (mRNA) levels, and mRNA and serum levels of tumor necrosis factor alpha (TNFalpha) and interleukin 1beta (IL-1beta) were measured in both groups. RESULTS ONO-4817 prevented ischemia/reperfusion injury to the hepatocytes as shown by significant reductions of serum alanine aminotransferase and less severe histologic changes. Gelatinolytic activity was inhibited markedly in the liver of the ONO-4817 group as demonstrated by film in situ zymography. MMP-9 and MMP-2 activities also were inhibited in the ONO-4817 group as shown by gelatin zymography. TIMP-2 mRNA levels showed no significant differences between the 2 groups. TNFalpha mRNA showed no downregulation, but IL-1beta mRNA was downregulated in the liver of the ONO-4817 group 1 to 3 hours after reperfusion. Serum levels of TNFalpha and IL-1beta showed a significant decrease in the ONO-4817 group, compared with the vehicle group after reperfusion. CONCLUSIONS Hepatic ischemia/reperfusion injury was improved by a novel MMP inhibitor, ONO-4817, not only by inhibition of gelatinolytic activity but also by a decrease in release of inflammatory cytokines.
Collapse
Affiliation(s)
- Kengo Shirahane
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Mallick IH, Yang WX, Winslet MC, Seifalian AM. Pyrrolidine dithiocarbamate reduces ischemia-reperfusion injury of the small intestine. World J Gastroenterol 2006; 11:7308-13. [PMID: 16437633 PMCID: PMC4725134 DOI: 10.3748/wjg.v11.i46.7308] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate whether pyrrolidine dithiocarbamate (PDTC), an enhancer of HO production, attenuates intestinal IR injury. METHODS Eighteen male rats were randomly allocated into three groups: (a) sham; (b) IR, consisting of 30 min of intestinal ischemia, followed by 2-h period of reperfusion; and (c) PDTC treatment before IR. Intestinal microvascular perfusion (IMP) was monitored continuously by laser Doppler flowmetry. At the end of the reperfusion, serum samples for lactate dehydrogenase (LDH) levels and biopsies of ileum were obtained. HO activity in the ileum was assessed at the end of the reperfusion period. RESULTS At the end of the reperfusion in the IR group, IMP recovered partially to 42.5% of baseline (P<0.05 vs sham), whereas PDTC improved IMP to 67.3% of baseline (P<0.01 vs IR). There was a twofold increase in HO activity in PDTC group (2 062.66+/-106.11) as compared to IR (842.3+/-85.12) (P<0.001). LDH was significantly reduced (P<0.001) in PDTC group (585.6+/-102.4) as compared to IR group (1 973.8+/-306.5). Histological examination showed that the ileal mucosa was significantly less injured in PDTC group as compared with IR group. CONCLUSION Our study demonstrates that PDTC improves the IMP and attenuates IR injury of the intestine possibly via HO production. Additional studies are warranted to evaluate the clinical efficacy of PDTC in the prevention of IR injury of the small intestine.
Collapse
Affiliation(s)
- Ismail H Mallick
- University Department of Surgery, Royal Free and University College Medical School, University College London, Rowland Hill Street, London NW3 2PF, United Kingdom
| | | | | | | |
Collapse
|
26
|
El Eter E, Hagar HH, Al-Tuwaijiri A, Arafa M. Nuclear factor-kappaB inhibition by pyrrolidinedithiocarbamate attenuates gastric ischemia-reperfusion injury in rats. Can J Physiol Pharmacol 2005; 83:483-92. [PMID: 16049548 DOI: 10.1139/y05-034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pyrrolidinedithiocarbamate (PDTC) is a potent antioxidant and an inhibitor of nuclear factor-kappaB (NF-kappaB). The present study examined the impact of PDTC preconditioning on gastric protection in response to ischemia-reperfusion (I/R) injury to the rat stomach. Male Wistar rats were recruited and divided into 3 groups (n = 7). One group was subjected to gastric ischemia for 30 min and reperfusion for 1 hour. The second group of rats was preconditioned with PDTC (200 mg/kg body mass i.v.) 15 min prior to ischemia and before reperfusion. The third group of rats was sham-operated and served as the control group. Gastric I/R injury increased serum lactate dehydrogenase level, vascular permeability of gastric mucosa (as indicated by Evans blue dye extravasation) and gastric content of inflammatory cytokine; tumor necrosis factor-alpha (TNF-alpha). Moreover, oxidative stress was increased as indicated by elevated lipid peroxides formation (measured as thiobarbituric acid reactive substances) and depleted reduced glutathione in gastric tissues. NF-kappaB translocation was also detected by electrophoretic mobility shift assay. Microscopically, gastric tissues subjected to I/R injury showed ulceration, hemorrhages, and neutrophil infiltration. Immunohistochemical studies of gastric sections revealed increased expression of p53 and Bcl-2 proteins. PDTC pretreatment reduced Evans blue extravasation, serum lactate dehydrogenase levels, gastric TNF-alpha levels, and thiobarbituric acid reactive substances content, and increased gastric glutathione content. Moreover, PDTC pretreatment abolished p53 expression and inhibited NF-kappaB translocation. Finally, histopathological changes were nearly restored by PDTC pretreatment. These results clearly demonstrate that NF-kappaB activation and pro-apoptotic protein p53 induction are involved in gastric I/R injury. PDTC protects against gastric I/R injury by an antioxidant, NF-kappaB inhibition, and by reduction of pro-apoptotic protein p53 expression, which seems to be downstream to NF-kappaB, thus promoting cell survival.
Collapse
Affiliation(s)
- Eman El Eter
- Physiology Department, Medical College & King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | | | | | | |
Collapse
|
27
|
Glasgow SC, Ramachandran S, Csontos KA, Jia J, Mohanakumar T, Chapman WC. Interleukin-1β is prominent in the early pulmonary inflammatory response after hepatic injury. Surgery 2005; 138:64-70. [PMID: 16003318 DOI: 10.1016/j.surg.2005.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Acute lung injury and inflammation can occur after hepatic ischemia/reperfusion or cryoablation. The etiology of this response is uncertain although it involves NF-kappaB-mediated cytokine release from the liver. METHODS Inflammation-specific complementary DNA microarrays were utilized to evaluate cytokine upregulation in mouse lung at 4 hours after partial-volume hepatic cryoablation with a recirculating liquid N(2) probe. Hierarchical cluster analysis was performed to identify candidate genes. On the basis of these results, an enzyme-linked immunosorbent assay for interleukin-1beta (IL-1beta) was conducted on serum and pulmonary parenchymal specimens. The time course of IL-1beta transcriptional upregulation in the liver and lungs was evaluated by quantitative reverse transcription/real-time polymerase chain reaction. RESULTS Starting with a pool of 35 genes generated from normalization and variation filtration, unsupervised hierarchical clustering clearly distinguished lungs of hepatic cryo-injured mice from controls. Genes from the IL-1-family were prominent in the signature. IL-1beta was demonstrable in serum within 2 hours postinjury (218 +/- 89 pg/mL vs 0 at baseline, P = .01). In the lung, IL-1beta was more than 4-fold greater at 4 hours than at baseline. Real-time polymerase chain reaction showed a transcription peak of IL-1beta at 30 minutes in the liver, whereas expression in the lungs remained low until 60 minutes, then continued to increase through 4 hours. CONCLUSIONS Microarray analysis identified cytokines of the IL-1 family as central components of acute lung injury after hepatic cryoablation. IL-1beta levels increased in both serum and lung tissue over 4 hours after liver injury. Expression of IL-1beta peaked early in the injured liver remnant, followed by subsequent increases in the lungs. Targeted intervention against IL-1beta may ameliorate liver-mediated lung injury.
Collapse
Affiliation(s)
- Sean C Glasgow
- Department of Surgery, Section of Abdominal Transplantation, Washington University, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
28
|
Yildirim E, Solaroglu I, Okutan O, Ozisik K, Kaptanoglu E, Sargon MF, Sakinci U. Ultrastructural changes in tracheobronchial epithelia following experimental traumatic brain injury in rats: protective effect of erythropoietin. J Heart Lung Transplant 2005; 23:1423-9. [PMID: 15607673 DOI: 10.1016/j.healun.2003.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Revised: 10/10/2003] [Accepted: 10/10/2003] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND We aimed to demonstrate the time dependent ultrastructural changes in tracheobronchial epithelia after traumatic brain injury. And also, protective effect of erythropoietin was demonstrated. METHODS We used 56 Wistar-Albino female rats weighing 170 to 200 g. The rats were allocated into 7 groups. First group was the control. The second underwent craniotomy without trauma. The third, fourth, and fifth groups were respectively 2-, 8-, and 24-hour trauma groups. The sixth and seventh groups were respectively treatment (erythropoietin, 1,000 IU/kg) and vehicle (0, 4 ml/rat) groups. Weight-drop method was used for achieving head trauma. Samples were obtained from both trachea and main bronchi. Modified electron microscopic scoring model was used to reveal the ultrastructural changes in both trauma and treatment groups. RESULTS There was no statistical difference between control and sham groups (p >0.05). Scores of all trauma groups were significantly different from the controls (p <0.05). Trauma produced obvious gradual damage on ultrastructure of the tracheobronchial epithelia. Erythropoietin decreased tracheobronchial scores after traumatic brain injury in significant levels. Erythropoietin attenuated ultrastructural scores for each organelle in significant levels (p <0.05 for each organelle). CONCLUSIONS The data suggested that ultrastructural damage is obvious at 2 hours deteriorating with time. Erythropoietin protects epithelia against damage after traumatic brain injury. Pharmaceutical lung preservation may help gaining efficacious donor lungs in brain death. But, further time dependent experiments are needed to determine the liability of the donor lung after traumatic brain injury. This fact is to be known for achieving higher graft survival rates.
Collapse
Affiliation(s)
- Erkan Yildirim
- Department of Thoracic Surgery, Ankara Numune Education and Research Hospital, Ankara, Turkey.
| | | | | | | | | | | | | |
Collapse
|
29
|
Patel A, van de Poll MCG, Greve JWM, Buurman WA, Fearon KCH, McNally SJ, Harrison EM, Ross JA, Garden OJ, Dejong CHC, Wigmore SJ. Early Stress Protein Gene Expression in a Human Model of Ischemic Preconditioning. Transplantation 2004; 78:1479-87. [PMID: 15599312 DOI: 10.1097/01.tp.0000144182.27897.1e] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Intermittent clamping of the porta hepatis (PHC) is commonly performed during liver surgery to reduce blood loss and has been reported to precondition livers resulting in improved outcome after liver surgery (humans) and transplantation (animals). This study investigated the early expression of cytoprotective stress proteins during ischemia-reperfusion induced by PHC. Liver samples were taken before and after each event in a two-cycle ischemia-reperfusion protocol using 15 minutes of PHC followed by 5 minutes of reperfusion. Liver tissue was analyzed by real-time polymerase chain reaction for heme oxygenase (HO)-1 and heat shock protein (HSP)-70 mRNA expression. Extracted protein was analyzed by Western blot for HO-1, and HSP-70 and nuclear extracts were analyzed by DNA mobility shift assay for hypoxia inducible factor (HIF)-1alpha and heat shock factor (HSF)-1. Within minutes of PHC, significant increases in HO-1 mRNA expression were detected, and these were maintained throughout the protocol (P < 0.01). Protein expression of HO-1 (P < 0.03) and HO-1 activity (P < 0.05) were similarly increased between the start and end of ischemia- reperfusion (40 minutes). Binding of active HIF-1alpha to its consensus sequence was increased within 15 minutes of the start of the ischemia-reperfusion cycle. Although evidence of the transcriptionally active form of HSF-1 was detected at the same time point, this was not reflected in measurable changes in HSP-70 mRNA or protein. In conclusion, expression of the cytoprotective protein HO-1 is significantly up-regulated in the liver within minutes of PHC. It is likely that HO-1 contributes to the early protective effects of ischemic preconditioning.
Collapse
Affiliation(s)
- Anisha Patel
- Tissue Injury and Repair Group, MRC Centre for Inflammation Research, Medical School, University of Edinburgh, Edinburgh EH8 9AG, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yang YL, Li JP, Xu XP, Dou KF, Yue SQ, Li KZ. Protective effects of tumor necrosis factor α antibody and ulinastatin on liver ischemic reperfusion in rats. World J Gastroenterol 2004; 10:3161-4. [PMID: 15457564 PMCID: PMC4611262 DOI: 10.3748/wjg.v10.i21.3161] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To study the protective effects of tumor necrosis factor α (TNF α ) antibody and ulinastatin on liver ischemic reperfusion in rats.
METHODS: One hundred and twenty male SD rats were randomly divided into four groups: Normal control group, ischemic group, TNFα antibody group and TNFα antibody + ulinastatin group. The animals were killed at 0, 3, 6, 9, 12 h after ischemia for 60 min and followed by reperfusion. Serum alanine aminotransferase (ALT), malondialdehyde (MDA) and liver histopathology were observed.
RESULTS: After ischemic reperfusion, the serum ALT and MDA were remarkably increased, and the hepatic congestion was obvious. Treatment of TNFα antibody and ulinastatin could significantly decrease serum ALT and MDA levels, and relieve hepatic congestion.
CONCLUSION: Ulinastatin and TNFα antibody can suppress the inflammatory reaction induced by hepatic ischemic reperfusion, and have protective effects on rat hepatic ischemic reperfusion injury.
Collapse
Affiliation(s)
- Yan-Ling Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | | | | | | | | | | |
Collapse
|
31
|
|