1
|
Kravets KY, Timakova SI, Grechnikov AA, Borodkov AS, Laptinskaya PK, Kuzmin VS, Simanovsky YO. Screening of Medicinal Compounds in Blood by Atmospheric Pressure Laser Plasma Ionization Mass Spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822100082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
2
|
Alessenko AV, Shupik MA, Gutner UA, Zateyshchikov DA, Minushkina LO, Rogozhina AA, Lebedev AT, Maloshitskaya OA, Sokolov SA, Kurochkin IN. Prospects for Using Chromatography–Mass Spectrometry for the Determination of Lipids in Clinical Cardiolipidology. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822040025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Omotola EO, Oluwole AO, Oladoye PO, Olatunji OS. Occurrence, detection and ecotoxicity studies of selected pharmaceuticals in aqueous ecosystems- a systematic appraisal. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 91:103831. [PMID: 35151848 DOI: 10.1016/j.etap.2022.103831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceutical compounds (PCs) have globally emerged as a significant group of environmental contaminants due to the constant detection of their residues in the environment. The main scope of this review is to fill the void of information on the knowledge on the African occurrence of selected PCs in environmental matrices in comparison with those outside Africa and their respective toxic actions on both aquatic and non-aquatic biota through ecotoxicity bioassays. To achieve this objective, the study focused on commonly used and detected pharmaceutical drugs (residues). Based on the conducted literature survey, Africa has the highest levels of ciprofloxacin, sulfamethoxazole, lamivudine, acetaminophen, and diclofenac while Europe has the lowest of all these PC residues in her physical environments. For ecotoxicity bioassays, the few data available are mostly on individual groups of pharmaceuticals whereas there is sparsely available data on their combined forms.
Collapse
Affiliation(s)
- Elizabeth Oyinkansola Omotola
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South Africa; Department of Chemical Sciences, Tai Solarin University of Education, Ijebu Ode PMB 2118, Ogun State, Nigeria.
| | | | - Peter Olusakin Oladoye
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL 33199, United States
| | | |
Collapse
|
4
|
Kravets KY, Grechnikov AA, Simanovsky YO. Ionization of Organic Compounds Affected by Laser Plasma Radiation at Atmospheric Pressure. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821140069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
A Tapered Capillary-Based Contactless Atmospheric Pressure Ionization Mass Spectrometry for On-Line Preconcentration and Separation of Small Organics. SEPARATIONS 2021. [DOI: 10.3390/separations8080111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Capillary electrophoresis (CE) is an effective technique for the separation of different analytes. Moreover, online preconcentration of trace analytes in the capillary for CE analysis has been demonstrated. CE and capillary electrochromatography (CEC) are suitable for the separation of analytes with similar polarities. Given that CE and CEC are only used to separate small-volume samples, sensitive mass spectrometry (MS) is a suitable detection tool for CE and CEC. Contactless atmospheric pressure ionization (C-API) is a continuous flow ion source that only uses a short capillary as the ionization emitter operated at atmospheric pressure for MS analysis. In this study, we demonstrated the feasibility of hyphenating CE/CEC with C-API-MS by using a short and tapered capillary as the interface. The short capillary (a few centimeters) can function as the separation/preconcentration tube and the ionization emitter. This hyphenated technique can be used to analyze small organics within a few minutes. The suitability of using the hyphenated technique for online preconcentration, separation, and quantitative analysis for small organics is demonstrated in this study.
Collapse
|
6
|
Rapid Identification of Different Cinnamon Using Coated Direct Inlet Probe Coupled with Atmospheric-Pressure Chemical Ionization Mass Spectrometry. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-01981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Borisov RS, Esparza CA, Goryainov SV, Zaikin VG. Ion-Molecular Derivatization Reactions of Alcohols in a “Direct Analysis in Real Time” (DART) Mass Spectrometer: 4-N,N-Dimethylaminopyridine as a New Efficient Reagent. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820130043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Kuleshov DO, Mazur DM, Gromov IA, Alekseyuk EN, Gall NR, Polyakova OV, Lebedev AT, Gall LN. Study of the Aniline and Acetone Condensation Reaction under Electrospray Ionization Conditions. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820130067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Jjunju FPM, Damon DE, Romero-Perez D, Young IS, Ward RJ, Marshall A, Maher S, Badu-Tawiah AK. Analysis of non-conjugated steroids in water using paper spray mass spectrometry. Sci Rep 2020; 10:10698. [PMID: 32612114 PMCID: PMC7329809 DOI: 10.1038/s41598-020-67484-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/01/2020] [Indexed: 11/09/2022] Open
Abstract
A novel strategy for the direct analysis of non-conjugated steroids in water using paper spray mass spectrometry (PS-MS) has been developed. PS-MS was used in the identification and quantification of non-conjugated (free) steroids in fish tank water samples. Data shown herein indicates that individual amounts of free steroids can be detected in aqua as low as; 0.17 ng/µL, 0.039 ng/µL, 0.43 ng/µL, 0.0076 ng/µL for aldosterone, corticosterone, cortisol, and β-estrone, respectively, and with an average relative standard deviation of ca. < 10% in the positive ion mode using PS-MS/MS. Direct detection of free steroids in a raw water mixture, from aquaculture, without prior sample preparation is demonstrated. The presence of free steroids released in fish water samples was confirmed via tandem mass spectrometry using collision-induced dissociation. This approach shows promise for rapid and direct water quality monitoring to provide a holistic assessment of non-conjugated steroids in aqua.
Collapse
Affiliation(s)
- Fred P M Jjunju
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK
| | - Deidre E Damon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - David Romero-Perez
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK
| | - Iain S Young
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Ryan J Ward
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK
| | - Alan Marshall
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK
| | - Simon Maher
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK.
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
10
|
Frey BS, Damon DE, Badu-Tawiah AK. Emerging trends in paper spray mass spectrometry: Microsampling, storage, direct analysis, and applications. MASS SPECTROMETRY REVIEWS 2020; 39:336-370. [PMID: 31491055 PMCID: PMC7875099 DOI: 10.1002/mas.21601] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/22/2019] [Indexed: 05/20/2023]
Abstract
Recent advancements in the sensitivity of chemical instrumentation have led to increased interest in the use of microsamples for translational and biomedical research. Paper substrates are by far the most widely used media for biofluid collection, and mass spectrometry is the preferred method of analysis of the resultant dried blood spot (DBS) samples. Although there have been a variety of review papers published on DBS, there has been no attempt to unify the century old DBS methodology with modern applications utilizing modified paper and paper-based microfluidics for sampling, storage, processing, and analysis. This critical review will discuss how mass spectrometry has expanded the utility of paper substrates from sample collection and storage, to direct complex mixture analysis to on-surface reaction monitoring.
Collapse
Affiliation(s)
- Benjamin S Frey
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| | - Deidre E Damon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| |
Collapse
|
11
|
Han Z, Gu X, Wang S, Liu L, Wang Y, Zhao Z, Yu Z. Time-resolved in situ monitoring of photocatalytic reactions by probe electrospray ionization mass spectrometry. Analyst 2020; 145:3313-3319. [PMID: 32195503 DOI: 10.1039/d0an00305k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Probe electrospray ionization mass spectrometry (PESI-MS) has been demonstrated to be a useful in situ and online analytical technique for monitoring of various reactions. In this work, PESI-MS with a surface-modified probe was adopted and applied to in situ monitoring of photocatalytic reactions. Typical reactions of semiconductor photocatalysts, namely TiO2, SnO2, WO3, SiC and ZnS catalyzed methylene blue (MB) and brilliant green (BG) degradation, were selected to demonstrate the potential of PESI-MS to monitor heterogeneous photocatalytic reactions occurring in suspensions. Surface modification of the probe ensures increased wettability during the whole monitoring process. PESI-MS could provide continuous sampling and real-time MS results without time-consuming and cumbersome sample pretreatments. This method has other merits including good reproducibility and stability (time scale > 60 min), convenience of operation, low sample consumption, high time resolution and high tolerance to suspended photocatalyst particles. Time-resolved mass spectra and ion chromatograms of every chemical species e.g. the substrate and reactive intermediates could be obtained, which is helpful for a better understanding of the photocatalytic reaction process. Thus, PESI-MS could be a versatile analytical technique for in situ photocatalytic reaction analysis and could be an alternative means for the evaluation of photocatalyst performance.
Collapse
Affiliation(s)
- Zhongbao Han
- School of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, Liaoning, China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Usmanov DT, Akhunov S, Khasanov U, Rotshteyn VM, Kasimov BS. Direct detection of morphine in human urine by surface-ionization mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2020; 26:153-157. [PMID: 31510802 DOI: 10.1177/1469066719875655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Detection and analysis of drugs-of-abuse in biological fluids are the essential tasks for the law enforcement, forensic toxicology, doping research and social health. In this work, we developed a surface-ionization mass spectrometry method for direct detection of trace amount of morphine spiked in blank urine. The mass-spectrometric analysis of spiked samples was carried out without preliminary extraction and chromatographic separation. It was found out that the major fragment ions at m/z 144, 146 could be served as indicator lines of morphine spiked in blank urine. Limit of detection of morphine spiked in blank urine was 100 pg (50 ng/ml), and a linear range of calibration curve was more than two orders of magnitude. The spiked samples were also analyzed by gas chromatography-mass spectrometry without preliminary extraction and derivatization procedures. No morphine was found in the spiked samples. The experimental data show that the high selectivity of the surface ionization can be allowed to direct analysis of morphine spiked in blank urine without its preliminary extraction and chromatographic separation.
Collapse
Affiliation(s)
- D T Usmanov
- Institute of Ion-Plasma and Laser Technologies, Tashkent, Uzbekistan
| | - ShDj Akhunov
- Institute of Ion-Plasma and Laser Technologies, Tashkent, Uzbekistan
| | - U Khasanov
- Institute of Ion-Plasma and Laser Technologies, Tashkent, Uzbekistan
| | - V M Rotshteyn
- Institute of Ion-Plasma and Laser Technologies, Tashkent, Uzbekistan
| | - BSh Kasimov
- Institute of Ion-Plasma and Laser Technologies, Tashkent, Uzbekistan
| |
Collapse
|
13
|
Borisov R, Esparza C, Polovkov N, Topolyan A, Zaikin V. An approach to analysis of primary amines by a combination of thin‐layer chromatography and matrix‐assisted laser desorption ionization mass spectrometry in conjunction with post‐chromatographic derivatization. J Sep Sci 2019; 42:3470-3478. [DOI: 10.1002/jssc.201900644] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/30/2019] [Accepted: 09/10/2019] [Indexed: 01/29/2023]
Affiliation(s)
- Roman Borisov
- A.V.Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences Moscow Russia
- People's Friendship University of Russia (RUDN University) Moscow Russia
| | - Cesar Esparza
- People's Friendship University of Russia (RUDN University) Moscow Russia
| | - Nikolai Polovkov
- A.V.Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences Moscow Russia
| | - Artyom Topolyan
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of Sciences Moscow Russia
| | - Vladimir Zaikin
- A.V.Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences Moscow Russia
| |
Collapse
|
14
|
Nie B, Henion J, Ryona I. The Role of Mass Spectrometry in the Cannabis Industry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:719-730. [PMID: 30993637 PMCID: PMC6502781 DOI: 10.1007/s13361-019-02164-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 05/10/2023]
Abstract
The focus of this critical insight article is a brief overview of analytical challenges the cannabis industry faces and how analytical chemists have new opportunities to demonstrate the merits of employing mass spectrometry for the chemical analysis of cannabis and its products. The current range of cannabis products extends from recreational use to medicines, edibles, beverages, and beyond. The standards employed to assure product quality, integrity, and safety are lacking compared to those currently used by the pharmaceutical, food, and beverage industries. This manuscript overviews some of the important analytical issues that exist for the growth and harvest of the cannabis plant to the production of a wide variety of its products. Currently, the topics of interest for safety in cannabis testing where mass spectrometry can play an important role include what are currently referred to as potency, pesticides, terpenes, heavy metals, and mycotoxins from bacteria. Since each state in the USA as well as several countries has their own regulations, the analytical opportunities and challenges vary depending upon which jurisdiction a laboratory is supporting. This Critical Insight report will suggest where mass spectrometry can play an important role and provide valuable input on these topics. Graphical Abstract.
Collapse
Affiliation(s)
- Ben Nie
- Advion, Inc., 61 Brown Rd., Ithaca, NY, 14850, USA
| | - Jack Henion
- Advion, Inc., 61 Brown Rd., Ithaca, NY, 14850, USA.
- Q2 Solutions, LLC, 19 Brown Rd., Ithaca, NY, 14850, USA.
| | - Imelda Ryona
- Q2 Solutions, LLC, 19 Brown Rd., Ithaca, NY, 14850, USA
| |
Collapse
|
15
|
Carbon fiber ionization mass spectrometry coupled with solid phase microextraction for analysis of Benzo[a]pyrene. Anal Chim Acta 2019; 1049:133-140. [DOI: 10.1016/j.aca.2018.10.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 11/21/2022]
|
16
|
Huba AK, Mirabelli MF, Zenobi R. High-throughput screening of PAHs and polar trace contaminants in water matrices by direct solid-phase microextraction coupled to a dielectric barrier discharge ionization source. Anal Chim Acta 2018; 1030:125-132. [DOI: 10.1016/j.aca.2018.05.050] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/21/2018] [Accepted: 05/19/2018] [Indexed: 01/21/2023]
|
17
|
Wu ML, Chen TY, Chen YC, Chen YC. Carbon Fiber Ionization Mass Spectrometry for the Analysis of Analytes in Vapor, Liquid, and Solid Phases. Anal Chem 2017; 89:13458-13465. [DOI: 10.1021/acs.analchem.7b03736] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Min-Li Wu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Te-Yu Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Yen-Chun Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
18
|
Kumbhani SR, Wingen LM, Perraud V, Finlayson-Pitts BJ. A cautionary note on the effects of laboratory air contaminants on ambient ionization mass spectrometry measurements. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:1659-1668. [PMID: 28782138 DOI: 10.1002/rcm.7951] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE Ambient ionization mass spectrometry methods are convenient, sensitive and require little sample preparation. However, they are susceptible to species present in air surrounding the mass spectrometer. This study identifies some challenges associated with the potential impacts of indoor air contaminants on ionization and analysis involving open-air methods. METHODS Unexpected effects of volatile organic compounds (VOCs) from floor maintenance activities on ambient ionization mass spectrometry were studied using three different ambient ionization techniques. Extractive electrospray ionization (EESI), direct analysis in real time (DART) and ionization by piezoelectric direct discharge (PDD) plasma were demonstrated in this study to be affected by indoor air contaminants. Identification of contaminant vapors was verified by comparison with standards using EESI-MS/MS product ion scans. RESULTS Emissions of diethylene glycol monoethyl ether and ethylene glycol monobutyl ether are identified from floor stripping and waxing solutions using three ambient ionization mass spectrometry techniques. These unexpected indoor air contaminants are capable of more than 75% ion suppression of target analytes due to their high volatility, proton affinity and solubility compared with the target analytes. The contaminant vapors are also shown to form adducts with one of the target analytes. CONCLUSIONS The common practice in MS analysis of subtracting a background air spectrum may not be appropriate if the presence of ionizable air contaminants alters the spectrum in unexpected ways. For example, VOCs released into air from floor stripping and waxing are capable of causing ion suppression of target analytes.
Collapse
Affiliation(s)
- Sambhav R Kumbhani
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697-2025, USA
| | - Lisa M Wingen
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697-2025, USA
| | - Véronique Perraud
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697-2025, USA
| | | |
Collapse
|
19
|
Yan X, Li X, Zhang C, Xu Y, Cooks RG. Ambient Ionization Mass Spectrometry Measurement of Aminotransferase Activity. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1175-1181. [PMID: 28144898 DOI: 10.1007/s13361-016-1591-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/03/2016] [Accepted: 12/29/2016] [Indexed: 06/06/2023]
Abstract
A change in enzyme activity has been used as a clinical biomarker for diagnosis and is useful in evaluating patient prognosis. Current laboratory measurements of enzyme activity involve multi-step derivatization of the reaction products followed by quantitative analysis of these derivatives. This study simplified the reaction systems by using only the target enzymatic reaction and directly detecting its product. A protocol using paper spray mass spectrometry for identifying and quantifying the reaction product has been developed. Evaluation of the activity of aspartate aminotransferase (AST) was chosen as a proof-of-principle. The volume of sample needed is greatly reduced compared with the traditional method. Paper spray has a desalting effect that avoids sprayer clogging problems seen when examining serum samples by nanoESI. This very simple method does not require sample pretreatment and additional derivatization reactions, yet it gives high quality kinetic data, excellent limits of detection (60 ppb from serum), and coefficients of variation <10% in quantitation. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Xin Yan
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Xin Li
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Chengsen Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Yang Xu
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
- College of Life Sciences, Jilin University, Changchun, China
| | - R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
20
|
Li LH, Hsieh HY, Hsu CC. Clinical Application of Ambient Ionization Mass Spectrometry. Mass Spectrom (Tokyo) 2017; 6:S0060. [PMID: 28337399 PMCID: PMC5359754 DOI: 10.5702/massspectrometry.s0060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/07/2017] [Indexed: 11/23/2022] Open
Abstract
Ambient ionization allows mass spectrometry analysis directly on the sample surface under atmospheric pressure with almost zero sample pretreatment. Since the development of desorption electrospray ionization (DESI) in 2004, many other ambient ionization techniques were developed. Due to their simplicity and low operation cost, rapid and on-site clinical mass spectrometry analysis becomes real. In this review, we will highlight some of the most widely used ambient ionization mass spectrometry approaches and their applications in clinical study.
Collapse
Affiliation(s)
- Li-Hua Li
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital
| | - Hua-Yi Hsieh
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital
| | | |
Collapse
|
21
|
Van Berkel GJ, Kertesz V. Rapid sample classification using an open port sampling interface coupled with liquid introduction atmospheric pressure ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:281-291. [PMID: 27862458 DOI: 10.1002/rcm.7792] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE An "Open Access"-like mass spectrometric platform to fully utilize the simplicity of the manual open port sampling interface for rapid characterization of unprocessed samples by liquid introduction atmospheric pressure ionization mass spectrometry has been lacking. The in-house developed integrated software with a simple, small and relatively low-cost mass spectrometry system introduced here fills this void. METHODS Software was developed to operate the mass spectrometer, to collect and process mass spectrometric data files, to build a database and to classify samples using such a database. These tasks were accomplished via the vendor-provided software libraries. Sample classification based on spectral comparison utilized the spectral contrast angle method. RESULTS Using the developed software platform near real-time sample classification is exemplified using a series of commercially available blue ink rollerball pens and vegetable oils. In the case of the inks, full scan positive and negative ion ESI mass spectra were both used for database generation and sample classification. For the vegetable oils, full scan positive ion mode APCI mass spectra were recorded. The overall accuracy of the employed spectral contrast angle statistical model was 95.3% and 98% in case of the inks and oils, respectively, using leave-one-out cross-validation. CONCLUSIONS This work illustrates that an open port sampling interface/mass spectrometer combination, with appropriate instrument control and data processing software, is a viable direct liquid extraction sampling and analysis system suitable for the non-expert user and near real-time sample classification via database matching. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Gary J Van Berkel
- Mass Spectrometry and Laser Spectroscopy Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6131, USA
| | - Vilmos Kertesz
- Mass Spectrometry and Laser Spectroscopy Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6131, USA
| |
Collapse
|
22
|
Meher AK, Chen YC. Combination of Raman Spectroscopy and Mass Spectrometry for Online Chemical Analysis. Anal Chem 2016; 88:9151-7. [PMID: 27571682 DOI: 10.1021/acs.analchem.6b02152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mass spectrometry (MS) and Raman spectroscopy are complementary analytical techniques used to provide information related to chemical structures and functional groups of target analytes. Each instrument provides specific chemical information. If these two analytical tools are coupled online, comprehensive structural information can be simultaneously collected from the analytes of interest without losing any important chemical information. Nevertheless, exploring a suitable interface for coupling of these analytical tools, which are governed with different operation principles, remains challenging. In this study, we used a small piece of tissue paper as an interface for hyphenating a Raman spectroscope and a mass spectrometer online. The paper played multiroles as sample loading substrate and an emitter to generate electrospray. Furthermore, it can facilitate surface-enhanced Raman spectroscopic analysis to improve analyte signals in Raman spectra. A sample droplet was placed on the tissue paper located close to the laser of the Raman spectroscope and the inlet of mass spectrometer. Raman spectra were first collected by the Raman spectroscope through laser irradiation followed by generation of electrospray on the edge of the paper for MS analysis. Positional isomers were used as model samples to demonstrate the effectiveness of the hyphenated analytical tool in distinguishing isomers. The feasibility of using this Raman-MS hyphenated technique for monitoring chemical reactions online in real time was also investigated.
Collapse
Affiliation(s)
- Anil Kumar Meher
- Department of Applied Chemistry, National Chiao Tung University , Hsinchu 300, Taiwan
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Chiao Tung University , Hsinchu 300, Taiwan
| |
Collapse
|
23
|
Zherebker AY, Kostyukevich YI, Kononikhin AS, Nikolaev EN, Perminova IV. Molecular compositions of humic acids extracted from leonardite and lignite as determined by Fourier transform ion cyclotron resonance mass spectrometry. MENDELEEV COMMUNICATIONS 2016. [DOI: 10.1016/j.mencom.2016.09.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Cahill JF, Kertesz V, Van Berkel GJ. Laser dissection sampling modes for direct mass spectral analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:611-9. [PMID: 26842582 DOI: 10.1002/rcm.7477] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 05/12/2023]
Abstract
RATIONALE Laser microdissection coupled directly with mass spectrometry provides the capability of on-line analysis of substrates with high spatial resolution, high collection efficiency, and freedom on shape and size of the sampling area. Establishing the merits and capabilities of the different sampling modes that the system provides is necessary in order to select the best sampling mode for characterizing analytically challenging samples. METHODS The capabilities of laser ablation spot sampling, laser ablation raster sampling, and laser 'cut and drop' sampling modes of a hybrid optical microscopy/laser ablation liquid vortex capture electrospray ionization mass spectrometry system were compared for the analysis of single cells and tissue. RESULTS Single Chlamydomonas reinhardtii cells were monitored for their monogalactosyldiacylglycerol (MGDG) and diacylglyceryltrimethylhomo-Ser (DGTS) lipid content using the laser spot sampling mode, which was capable of ablating individual cells (~4-15 μm) even when agglomerated together. Turbid Allium Cepa cells (~150 μm) having unique shapes difficult to precisely measure using the other sampling modes could be ablated in their entirety using laser raster sampling. Intact microdissections of specific regions of a cocaine-dosed mouse brain tissue were compared using laser 'cut and drop' sampling. Since in laser 'cut and drop' sampling whole and otherwise unmodified sections are captured into the probe, 100% collection efficiencies were achieved. Laser ablation spot sampling has the highest spatial resolution of any sampling mode, while laser ablation raster sampling has the highest sampling area adaptability of the sampling modes. CONCLUSIONS Laser ablation spot sampling has the highest spatial resolution of any sampling mode, useful in this case for the analysis of single cells. Laser ablation raster sampling was best for sampling regions with unique shapes that are difficult to measure using other sampling modes. Laser 'cut and drop' sampling can be used for cases where the highest sensitivity is needed, for example, monitoring drugs present in trace amounts in tissue.
Collapse
Affiliation(s)
- John F Cahill
- Mass Spectrometry and Laser Spectroscopy Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6131, USA
| | - Vilmos Kertesz
- Mass Spectrometry and Laser Spectroscopy Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6131, USA
| | - Gary J Van Berkel
- Mass Spectrometry and Laser Spectroscopy Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6131, USA
| |
Collapse
|
25
|
Venter AR, Douglass KA, Shelley JT, Hasman G, Honarvar E. Mechanisms of real-time, proximal sample processing during ambient ionization mass spectrometry. Anal Chem 2014; 86:233-249. [PMID: 24308499 DOI: 10.1039/c7ay00948h] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A review of ambient ionization mass spectrometry highlighting the central role of sample preparation immediate to and during sample analysis.
Collapse
Affiliation(s)
- Andre R Venter
- Department of Chemistry, Western Michigan University , Kalamazoo, Michigan 49008-5413, United States
| | | | | | | | | |
Collapse
|