1
|
Shamloo A, Naseri T, Rahbary A, Bakhtiari MA, Ebrahimi S, Mirafzal I. In-silico study of drug delivery to atherosclerosis in the human carotid artery using metal-organic frameworks based on adhesion of nanocarriers. Sci Rep 2023; 13:21481. [PMID: 38057414 PMCID: PMC10700345 DOI: 10.1038/s41598-023-48803-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
This study investigates nanocarriers (NCs) for drug delivery targeting carotid artery atherosclerosis. This targeted drug delivery mechanism is based on ligand-receptor bindings facilitated by coating NCs with P-selectin aptamers, which exhibit high affinities for P-selectin plaque receptors. Recognizing the significant advantages of metal-organic frameworks (MOFs), such as their high drug-loading percentages, we chose them as nanocarriers for this research. Our evaluation considers critical factors: NC surface density (the number of attached nanocarriers per unit of plaque area), toxicity (percentage of NCs missing the target), and efficient drug transfer to plaque tissue. Employing molecular dynamics (MD) for drug loading calculations via van der Waals interactions and computational fluid dynamics (CFD) for toxicity, surface density, and drug transfer assessments, we achieve a comprehensive analysis. A cardiac cycle-based metric guides optimal MOF release conditions, establishing an ideal dosage of 600 NCs per cycle. MOF-801 exhibits outstanding drug delivery performance, particularly in plaque targeting. While a magnetic field enhances NC adhesion, its impact on drug transfer is limited, emphasizing the need for further optimization in magnetic targeting for NC-based therapies. This study provides crucial insights into NC drug delivery performance in carotid artery atherosclerosis, advancing the field of targeted drug delivery for atherosclerosis treatment.
Collapse
Affiliation(s)
- Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran.
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran.
| | - Tahoora Naseri
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Ali Rahbary
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Mohammad Ali Bakhtiari
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Sina Ebrahimi
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Iman Mirafzal
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
2
|
Delyagina ES, Agafonov MA, Garibyan AA, Terekhova IV. γ-Cyclodextrin Based Metal–Organic Framework As a Niflumic Acid Delivery System. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422080088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Agafonov MA, Alexandrov EV, Artyukhova NA, Bekmukhamedov GE, Blatov VA, Butova VV, Gayfulin YM, Garibyan AA, Gafurov ZN, Gorbunova YG, Gordeeva LG, Gruzdev MS, Gusev AN, Denisov GL, Dybtsev DN, Enakieva YY, Kagilev AA, Kantyukov AO, Kiskin MA, Kovalenko KA, Kolker AM, Kolokolov DI, Litvinova YM, Lysova AA, Maksimchuk NV, Mironov YV, Nelyubina YV, Novikov VV, Ovcharenko VI, Piskunov AV, Polyukhov DM, Polyakov VA, Ponomareva VG, Poryvaev AS, Romanenko GV, Soldatov AV, Solovyeva MV, Stepanov AG, Terekhova IV, Trofimova OY, Fedin VP, Fedin MV, Kholdeeva OA, Tsivadze AY, Chervonova UV, Cherevko AI, Shul′gin VF, Shutova ES, Yakhvarov DG. METAL-ORGANIC FRAMEWORKS IN RUSSIA: FROM THE SYNTHESIS AND STRUCTURE TO FUNCTIONAL PROPERTIES AND MATERIALS. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622050018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Sun X, Keywanlu M, Tayebee R. Experimental and molecular dynamics simulation study on the delivery of some common drugs by ZIF‐67, ZIF‐90, and ZIF‐8 zeolitic imidazolate frameworks. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xiaodong Sun
- Department of Hepatobiliary Surgery The Third Hospital of Jinan Jinan China
| | - Maryam Keywanlu
- Department of Chemistry, School of Sciences Hakim Sabzevari University Sabzevar Iran
| | - Reza Tayebee
- Department of Chemistry, School of Sciences Hakim Sabzevari University Sabzevar Iran
| |
Collapse
|
5
|
Vegas VG, Latorre A, Marcos ML, Gómez-García CJ, Castillo Ó, Zamora F, Gómez J, Martínez-Costas J, Vázquez López M, Somoza Á, Amo-Ochoa P. Rational Design of Copper(II)-Uracil Nanoprocessed Coordination Polymers to Improve Their Cytotoxic Activity in Biological Media. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36948-36957. [PMID: 34338517 DOI: 10.1021/acsami.1c11612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This work is focused on the rational structural design of two isostructural Cu(II) nano-coordination polymers (NCPs) with uracil-1-acetic acid (UAcOH) (CP1n) and 5-fluorouracil-1-acetic acid (CP2n). Suitable single crystals for X-ray diffraction studies of CP1 and CP2 were prepared under hydrothermal conditions, enabling their structural determination as 1D-CP ladder-like polymeric structures. The control of the synthetic parameters allows their processability into water colloids based on nanoplates (CP1n and CP2n). These NCPs are stable in water at physiological pHs for long periods. However, interestingly, CP1n is chemically altered in culture media. These transformations provoke the partial release of its building blocks and the formation of new species, such as [Cu(UAcO)2(H2O)4]·2H2O (Cu(II)-complex), and species corresponding to the partial reduction of the Cu(II) centers. The cytotoxic studies of CP1n versus human pancreatic adenocarcinoma and human uveal melanoma cells show that CP1n produces a decrease in the cell viability, while their UAcOH and Cu(II)-complex are not cytotoxic under similar conditions. The copper reduction species detected in the hydrolysis of CP1n are closely related to the formation of the reactive oxygen species (ROS) detected in the cytotoxic studies. These results prompted us to prepare CP2n that was designed to improve the cytotoxicity by the substitution of UAcO by 5-FUAcO, taking into account the anticancer activity of the 5-fluorouracil moiety. The new CP2n has a similar behavior to CP1n both in water and in biological media. However, its subtle structural differences are vital in improving its cytotoxic activity. Indeed, the release during the hydrolysis of species containing the 5-fluorouracil moiety provokes a remarkable increase in cellular toxicity and a significant increase in ROS species formation.
Collapse
Affiliation(s)
- Verónica G Vegas
- Departamento de Química Inorgánica, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ana Latorre
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Cantoblanco, Madrid 28049, Spain
| | - María Luisa Marcos
- Departamento de Química, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Carlos J Gómez-García
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Inorgánica, Universidad de Valencia, Catedrático José Beltrán 2, Paterna, Valencia 46980, Spain
| | - Óscar Castillo
- Departamento de Química Inorgánica, Universidad del País Vasco (UPV/EHU), P.O. Box 644, Bilbao E-48080, Spain
| | - Félix Zamora
- Departamento de Química Inorgánica, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Jacobo Gómez
- Centro Singular en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - José Martínez-Costas
- Centro Singular en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica y Biología Molecular, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Miguel Vázquez López
- Centro Singular en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Cantoblanco, Madrid 28049, Spain
| | - Pilar Amo-Ochoa
- Departamento de Química Inorgánica, Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
6
|
Javanbakht S, Nabi M, Shadi M, Amini MM, Shaabani A. Carboxymethyl cellulose/tetracycline@UiO-66 nanocomposite hydrogel films as a potential antibacterial wound dressing. Int J Biol Macromol 2021; 188:811-819. [PMID: 34390748 DOI: 10.1016/j.ijbiomac.2021.08.061] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/29/2021] [Accepted: 08/08/2021] [Indexed: 01/17/2023]
Abstract
Designing an antibacterial agent with a suitable water vapor permeability, good mechanical properties, and controlled antibiotic release is a promising method for stopping bacterial infection in wound tissue. In this respect, this work aims to prepare novel flexible polymeric hydrogel films via integrating UiO-66 into the polymeric carboxymethyl cellulose (CMC) hydrogel for improving the mechanical and antibiotic release performances. First, we performed a green hydrothermal synthetic method to synthesis UiO-66 and followed by encapsulating Tetracycline (TC) through immersion in its aqueous solution. Also, the casting technique was utilized to integrate different concentrations of the TC-encapsulated UiO-66 (TC@UiO-66, 5% to 15%) in the polymeric CMC matrix (CMC/TC@UiO-66) cross-linked by citric acid and plasticized by glycerol. The release performance showed a low initial burst release with a controlled release over 72 h in the artificial sweat and simulated wound exudate (PBS, pH 7.4) media. The in vitro cytotoxicity and antibacterial activity results revealed a good cytocompatibility toward Human skin fibroblast (HFF-1) cells and a significant activity against both E. coli and S. aureus with 1.3 and 1.7 cm inhibition zone, respectively. The obtained results recommend CMC/TC@UiO-66 films as a potential antibacterial wound dressing.
Collapse
Affiliation(s)
- Siamak Javanbakht
- Faculty of Chemistry, Shahid Beheshti University, G.C., P.O. Box 19396-4716, Tehran, Iran
| | - Mohadese Nabi
- Faculty of Chemistry, Shahid Beheshti University, G.C., P.O. Box 19396-4716, Tehran, Iran
| | - Mehrdad Shadi
- Faculty of Chemistry, Shahid Beheshti University, G.C., P.O. Box 19396-4716, Tehran, Iran
| | - Mostafa M Amini
- Faculty of Chemistry, Shahid Beheshti University, G.C., P.O. Box 19396-4716, Tehran, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G.C., P.O. Box 19396-4716, Tehran, Iran; Рeoples' Friendship University of Russia (RUDN University), 6, Miklukho-Maklaya Street, Moscow 117198, Russian Federation.
| |
Collapse
|
7
|
Wang TT, Liu JY, Guo R, An JD, Huo JZ, Liu YY, Shi W, Ding B. Solvothermal Preparation of a Lanthanide Metal-Organic Framework for Highly Sensitive Discrimination of Nitrofurantoin and l-Tyrosine. Molecules 2021; 26:molecules26123673. [PMID: 34208577 PMCID: PMC8233945 DOI: 10.3390/molecules26123673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Metal-organic frameworks (MOFs) have been rapidly developed for their broad applications in many different chemistry and materials fields. In this work, a multi-dentate building block 5-(4-(tetrazol-5-yl)phenyl)-isophthalic acid (H3L) containing tetrazole and carbolxylate moieties was employed for the synthesis of a two-dimensional (2D) lanthanide MOF [La(HL)(DMF)2(NO3)] (DMF = N,N-dimethylformamide) (1) under solvothermal condition. The fluorescent sensing application of 1 was investigated. 1 exhibits high sensitivity recognition for antibiotic nitrofurantoin (Ksv: 3.0 × 103 M−1 and detection limit: 17.0 μM) and amino acid l-tyrosine (Ksv: 1.4 × 104 M−1 and detection limit: 3.6 μM). This work provides a feasible detection platform of 2D MOFs for highly sensitive discrimination of antibiotics and amino acids.
Collapse
Affiliation(s)
- Tian-Tian Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, China; (T.-T.W.); (J.-Y.L.); (R.G.); (J.-D.A.); (J.-Z.H.); (Y.-Y.L.)
| | - Jing-Yi Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, China; (T.-T.W.); (J.-Y.L.); (R.G.); (J.-D.A.); (J.-Z.H.); (Y.-Y.L.)
| | - Rui Guo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, China; (T.-T.W.); (J.-Y.L.); (R.G.); (J.-D.A.); (J.-Z.H.); (Y.-Y.L.)
| | - Jun-Dan An
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, China; (T.-T.W.); (J.-Y.L.); (R.G.); (J.-D.A.); (J.-Z.H.); (Y.-Y.L.)
| | - Jian-Zhong Huo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, China; (T.-T.W.); (J.-Y.L.); (R.G.); (J.-D.A.); (J.-Z.H.); (Y.-Y.L.)
| | - Yuan-Yuan Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, China; (T.-T.W.); (J.-Y.L.); (R.G.); (J.-D.A.); (J.-Z.H.); (Y.-Y.L.)
| | - Wei Shi
- Department of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Correspondence: (W.S.); (B.D.)
| | - Bin Ding
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, China; (T.-T.W.); (J.-Y.L.); (R.G.); (J.-D.A.); (J.-Z.H.); (Y.-Y.L.)
- Correspondence: (W.S.); (B.D.)
| |
Collapse
|
8
|
Alves RC, Schulte ZM, Luiz MT, Bento da Silva P, Frem RCG, Rosi NL, Chorilli M. Breast Cancer Targeting of a Drug Delivery System through Postsynthetic Modification of Curcumin@N 3-bio-MOF-100 via Click Chemistry. Inorg Chem 2021; 60:11739-11744. [PMID: 34101467 DOI: 10.1021/acs.inorgchem.1c00538] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metal-organic frameworks (MOFs) offer many opportunities for applications across biology and medicine. Their wide range of chemical composition makes toxicologically acceptable formulation possible, and their high level of functionality enables possible applications as delivery systems for therapeutics agents. Surface modifications have been used in drug delivery systems to minimize their interaction with the bulk, improving their specificity as targeted carriers. Herein, we discuss a strategy to achieve a tumor-targeting drug-loaded MOF using "click" chemistry to anchor functional folic acid (FA) molecules on the surface of N3-bio-MOF-100. Using curcumin (CCM) as an anticancer drug, we observed drug loading encapsulation efficiencies (DLEs) of 24.02 and 25.64% after soaking N3-bio-MOF-100 in CCM solutions for 1 day and 3 days, respectively. The success of postsynthetic modification of FA was confirmed by 1H NMR spectroscopy, Fourier transform infrared spectroscopy (FTIR), and liquid chromatography-mass spectrometry (LC-MS). The stimuli-responsive drug release studies demonstrated an increase of CCM released under acidic microenvironments. Moreover, the cell viability assay was performed on the 4T1 (breast cancer) cell line in the presence of CCM@N3-bio-MOF-100 and CCM@N3-bio-MOF-100/FA carriers to confirm its biological compatibility. In addition, a cellular uptake study was conducted to evaluate the targeting of tumor cells.
Collapse
Affiliation(s)
- Renata C Alves
- Department of Drugs and Medicines, School of Pharmaceutical Sciences of São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01 - s/n - Campos Ville, 14800-903 Araraquara, São Paulo, Brazil
| | - Zachary M Schulte
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 1560, United States
| | - Marcela T Luiz
- Department of Pharmaceutical Sciences, School of Pharmaceutical Science of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n - Campus da USP, 14040-903 Ribeirão Preto, Sao Paulo, Brazil
| | - Patrícia Bento da Silva
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia (UnB), Campus Universitario Darcy Ribeiro - Asa Norte, 70910-900 Brasilia, Federal District, Brazil
| | - Regina C G Frem
- Institute of Chemistry, São Paulo State University (UNESP), Prof. Francisco Degni 55, PO Box 355, 14800-970 Araraquara, São Paulo, Brazil
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 1560, United States
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences of São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01 - s/n - Campos Ville, 14800-903 Araraquara, São Paulo, Brazil
| |
Collapse
|
9
|
Delivery of oxaliplatin to colorectal cancer cells by folate-targeted UiO-66-NH 2. Toxicol Appl Pharmacol 2021; 423:115573. [PMID: 33991535 DOI: 10.1016/j.taap.2021.115573] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/21/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
Oxaliplatin is being used in different malignancies and several side effects are reported for patients taking Oxaliplatin, including peripheral neuropathy, nausea and vomiting, diarrhea, mouth sores, low blood counts, fatigue, loss of appetite, etc. Here we have developed a targeted anticancer drug delivery system based on folate-conjugated amine-functionalized UiO-66 for the delivery of oxaliplatin (OX). UiO-66-NH2 (U) and UiO-66-NH2-FA(FU) were pre-functionalized by the incorporation of folic acid (FA) into the structure via coordination of the carboxylate group of FA. The FTIR spectra of drug-loaded U and FU showed the presence of new carboxylic and aliphatic groups of OX and FA. Powder X-ray diffraction (PXRD) patterns were matched accordingly with the reference pattern and FESEM results showed semi-spherical particles (115-128 nm). The evaluated amounts of OX in U and FU were calculated 304.5 and 293 mg/g, respectively. The initial burst release of OX was 15.7% per hour for U(OX) and 10.8% per hour for FU(OX). The final release plateau gives 62.9% and 52.3% for U(OX) and FU(OX). To evaluate the application of the prepared delivery platform, they were tested on colorectal cancer cells (CT-26) via MTT assay, cell migration assay, and spheroid model. IC50 values obtained from MTT assay were 21.38, 95.50, and 18.20 μg/mL for OX, U(OX), and FU(OX), respectively. After three days of treatment, the CT26 spheroids at two doses of 500 and 50 μg/mL of U(OX) and FU(OX) showed volume reduction. Moreover, the oxidative behavior of the prepared systems within the cell was assessed by total thiol, malondialdehyde, and superoxide dismutase activity. The results showed that FU(OX) had higher efficacy in preventing the growth of CT-26 spheroid, and was more effective than oxaliplation in cell migration inhibition, and induced higher oxidative stress and apoptosis.
Collapse
|
10
|
Veselovsky VV, Lozanova AV, Isaeva VI, Chernyshev VV. Synthesis and the crystal structure of a new chiral metal-organic coordination polymer based on l-proline-substituted 2-aminobenzene-1,4-dicarboxylic acid derivative. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Simulation of adsorption and release of doxepin onto ZIF-8 including in vitro cellular toxicity and viability. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115557] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Morozova S, Sharsheeva A, Morozov M, Vinogradov A, Hey-Hawkins E. Bioresponsive metal–organic frameworks: Rational design and function. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Facile synthesis and structure elucidation of metal-organic frameworks with {ZnCa} and {Zn2Ca} metal cores. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Crystal structures and Full Interaction Maps of proton transfer coordination compounds, templated via Schiff base hydrolysis in situ. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
|
16
|
Smolobochkin AV, Gazizov AS, Urgenishbay NM, Melyashova AS, Burilov AR, Pudovik MA. Synthesis of (E)-4-(4-chlorobenzylidene)-3,4-dihydro-2H-pyrrole-based pyrrolinium salts. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2771-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Druzhkov NO, Meshcheryakova IN, Cherkasov AV, Piskunov AV. New functionalized ditopic redox-active hydroxy-p-iminoquinone-type ligands and mercury(ii) complexes based on these ligands. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2722-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Dzhardimalieva GI, Rabinskiy LN, Kydralieva KA, Uflyand IE. Recent advances in metallopolymer-based drug delivery systems. RSC Adv 2019; 9:37009-37051. [PMID: 35539076 PMCID: PMC9075603 DOI: 10.1039/c9ra06678k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Metallopolymers (MPs) or metal-containing polymers have shown great potential as new drug delivery systems (DDSs) due to their unique properties, including universal architectures, composition, properties and surface chemistry. Over the past few decades, the exponential growth of many new classes of MPs that deal with these issues has been demonstrated. This review presents and assesses the recent advances and challenges associated with using MPs as DDSs. Among the most widely used MPs for these purposes, metal complexes based on synthetic and natural polymers, coordination polymers, metal-organic frameworks, and metallodendrimers are distinguished. Particular attention is paid to the stimulus- and multistimuli-responsive metallopolymer-based DDSs. Of considerable interest is the use of MPs for combination therapy and multimodal systems. Finally, the problems and future prospects of using metallopolymer-based DDSs are outlined. The bibliography includes articles published over the past five years.
Collapse
Affiliation(s)
- Gulzhian I Dzhardimalieva
- Laboratory of Metallopolymers, The Institute of Problems of Chemical Physics RAS Academician Semenov Avenue 1 Chernogolovka Moscow Region 142432 Russian Federation
- Moscow Aviation Institute (National Research University) Volokolamskoe Shosse, 4 Moscow 125993 Russia
| | - Lev N Rabinskiy
- Moscow Aviation Institute (National Research University) Volokolamskoe Shosse, 4 Moscow 125993 Russia
| | - Kamila A Kydralieva
- Moscow Aviation Institute (National Research University) Volokolamskoe Shosse, 4 Moscow 125993 Russia
| | - Igor E Uflyand
- Department of Chemistry, Southern Federal University B. Sadovaya Str. 105/42 Rostov-on-Don 344006 Russian Federation
| |
Collapse
|
19
|
Tsivadze AY, Aksyutin OE, Ishkov AG, Knyazeva MK, Solovtsova OV, Men'shchikov IE, Fomkin AA, Shkolin AV, Khozina EV, Grachev VA. Metal-organic framework structures: adsorbents for natural gas storage. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4873] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Shipilov DA, Malenkovskaya MA, Kutyasheva NV, Kurochkina GI, Sergievich AA, Grachev MK. Cationic β-cyclodextrin derivatives containing 2-(4-isobutylphenyl)- and 2-(3-benzoylphenyl)propionic acid residues. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2497-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|