1
|
Osmoprotectant and antioxidant effects of new synthesized 6-(2-hydroxyethyl)cyclohex-3-enol on barley under drought stress. Biol Futur 2021; 72:241-249. [PMID: 34554477 DOI: 10.1007/s42977-020-00058-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
The aim of present study was synthesize 6-(2-hydroxyethyl)cyclohex-3-enol (11) and investigate its antioxidant properties in barley plants under drought stress. For this aim, 1,4-cyclohexadiene (7) was subjected to [2 + 2] ketene addition reaction with dichloro ketene and the chlorine atoms were reduced. After that, the cyclobutanone ring was converted to a lactone ring and the lactone ring was reduced with LiAlH4. Subsequently, 6-(2-hydroxyethyl)cyclohex-3-enol (13) was obtained with high yield. The structures of the synthesized molecules were clarified by NMR, FTIR, GCMS spectroscopic methods. Two different methods were used to evaluate antioxidant activity of cyclohexenediol 11. One of them was DPPH radical scavenging activity which was used extensively. Also, osmoprotectant and antioxidant effects of 6-(2-hydroxyethyl)cyclohex-3-enol (13) were investigated in barley under drought stress. Drought decreased the relative water content (RWC) and water potential (WP) in barley leaves. Cyclohexenediol 11 treatment remarkably increased RWC and WP in leaves under drought conditions. Superoxide [Formula: see text] and nitric oxide (NO) accumulated under drought. In cyclohexenediol 11 treated-plants, the accumulation [Formula: see text] and NO were strongly reduced under drought conditions. Our results showed that cyclohexenediol 11 helped barley plants for maintaining water under drought stress; this makes synthetic cyclitol cyclohexenediol 11 as a good osmoprotectant candidate. Another important result in this study was the strong radical scavenging potential of cyclohexenediol 11. We think that much more comprehensive biochemical studies should be conducted to determine how cyclohexenediol 11 performs the radical scavenge role.
Collapse
|
2
|
Aranda I, Cadahía E, Fernández de Simón B. Specific leaf metabolic changes that underlie adjustment of osmotic potential in response to drought by four Quercus species. TREE PHYSIOLOGY 2021; 41:728-743. [PMID: 33231684 DOI: 10.1093/treephys/tpaa157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/11/2020] [Indexed: 05/14/2023]
Abstract
Osmotic adjustment is almost ubiquitous as a mechanism of response to drought in many forest species. Recognized as an important mechanism of increasing turgor under water stress, the metabolic basis for osmotic adjustment has been described in only a few species. We set an experiment with four species of the genus Quercus ranked according to drought tolerance and leaf habit from evergreen to broad-leaved deciduous. A cycle of watering deprivation was imposed on seedlings, resulting in well-watered (WW) and water-stressed (WS) treatments, and their water relations were assessed from pressure-volume curves. Leaf predawn water potential (Ψpd) significantly decreased in WS seedlings, which was followed by a drop in leaf osmotic potential at full turgor (Ψπ100). The lowest values of Ψπ100 followed the ranking of decreasing drought tolerance: Quercus ilex L. < Quercus faginea Lam. < Quercus pyrenaica Willd. < Quercus petraea Matt. Liebl. The leaf osmotic potential at the turgor loss point (ΨTLP) followed the same pattern as Ψπ100 across species and treatments. The pool of carbohydrates, some organic acids and cyclitols were the main osmolytes explaining osmotic potential across species, likewise to the osmotic adjustment assessed from the decrease in leaf Ψπ100 between WW and WS seedlings. Amino acids were very responsive to WS, particularly γ-aminobutyric acid in Q. pyrenaica, but made a relatively minor contribution to osmotic potential compared with other groups of compounds. In contrast, the cyclitol proto-quercitol made a prominent contribution to the changes in osmotic potential regardless of watering treatment or species. However, different metabolites, such as quinic acid, played a more important role in osmotic adjustment in Q. ilex, distinguishing it from the other species studied. In conclusion, while osmotic adjustment was present in all four Quercus species, the molecular processes underpinning this response differed according to their phylogenetic history and specific ecology.
Collapse
Affiliation(s)
- Ismael Aranda
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación Forestal, Carretera Coruña Km 7.5, E-28040 Madrid, Spain
- INAGEA, Instituto de Investigaciones Agroambientales y de Economía del Agua, 07122 Palma de Mallorca, Spain
| | - Estrella Cadahía
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación Forestal, Carretera Coruña Km 7.5, E-28040 Madrid, Spain
| | - Brígida Fernández de Simón
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación Forestal, Carretera Coruña Km 7.5, E-28040 Madrid, Spain
| |
Collapse
|
3
|
Aranda I, Cadahía E, Fernández de Simón B. Leaf ecophysiological and metabolic response in Quercus pyrenaica Willd seedlings to moderate drought under enriched CO 2 atmosphere. JOURNAL OF PLANT PHYSIOLOGY 2020; 244:153083. [PMID: 31812028 DOI: 10.1016/j.jplph.2019.153083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/01/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Impact of drought under enriched CO2 atmosphere on ecophysiological and leaf metabolic response of the sub-mediterranean Q. pyrenaica oak was studied. Seedlings growing in climate chamber were submitted to moderate drought (WS) and well-watered (WW) under ambient ([CO2]amb =400 ppm) or CO2 enriched atmosphere ([CO2]enr =800 ppm). The moderate drought endured by seedlings brought about a decrease in leaf gas exchange. However, net photosynthesis (Anet) was highly stimulated for plants at [CO2]enr. There was a decrease of the stomatal conductance to water vapour (gwv) in response to drought, and a subtle trend to be lower under [CO2]enr. The consequence of these changes was an important increase in the intrinsic leaf water use efficiency (WUEi). The electron transport rate (ETR) was almost a 20 percent higher in plants at [CO2]enr regardless drought endured by seedlings. The ETR/Anet was lower under [CO2]enr, pointing to a high capacity to maintain sinks for the uptake of extra carbon in the atmosphere. Impact of drought on the leaf metabolome, as a whole, was more evident than that from [CO2] enrichment of the atmosphere. Changes in pool of non-structural carbohydrates were observed mainly as a consequence of water deficit including increases of fructose, glucose, and proto-quercitol. Most of the metabolites affected by drought back up to levels of non-stressed seedlings after rewetting (recovery phase). It can be concluded that carbon uptake was stimulated by [CO2]enr, even under the stomatal closure that accompanied moderate drought. In the last, there was a positive effect in intrinsic water use efficiency (WUEi), which was much more improved under [CO2]enr. Leaf metabolome was little responsible and some few metabolites changed mainly in response to drought, with little differences between [CO2] growth conditions.
Collapse
Affiliation(s)
- Ismael Aranda
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, O.A., M.P. (INIA), Centro de Investigación Forestal, Carretera de A Coruña Km 7.5, 28040, Madrid, Spain; Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Palma de Mallorca, Islas Baleares, Spain.
| | - Estrella Cadahía
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, O.A., M.P. (INIA), Centro de Investigación Forestal, Carretera de A Coruña Km 7.5, 28040, Madrid, Spain
| | - Brígida Fernández de Simón
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, O.A., M.P. (INIA), Centro de Investigación Forestal, Carretera de A Coruña Km 7.5, 28040, Madrid, Spain
| |
Collapse
|
4
|
Shamustakimova AO, Leonova ТG, Taranov VV, de Boer AH, Babakov AV. Cold stress increases salt tolerance of the extremophytes Eutrema salsugineum (Thellungiella salsuginea) and Eutrema (Thellungiella) botschantzevii. JOURNAL OF PLANT PHYSIOLOGY 2017; 208:128-138. [PMID: 27940414 DOI: 10.1016/j.jplph.2016.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 06/06/2023]
Abstract
A comparative study was performed to analyze the effect of cold acclimation on improving the resistance of Arabidopsis thaliana, Eutrema salsugineum and Eutrema botschantzevii plants to salt stress. Shoot FW, sodium and potassium accumulation, metabolite content, expression of proton pump genes VAB1, VAB2,VAB3, VP2, HA3 and genes encoding ion transporters SOS1, HKT1, NHX1, NHX2, NHX5 located in the plasma membrane or tonoplast were determined just after the cold treatment and the onset of the salt stress. In the same cold-acclimated E. botschantzevii plants, the Na+ concentration after salt treatment was around 80% lower than in non-acclimated plants, whereas the K+ concentration was higher. As a result of cold acclimation, the expression of, VAB3, NHX2, NHX5 genes and of SOS1, VP2, HA3 genes was strongly enhanced in E. botschantzevii and in E. salsugineum plants correspondently. None of the 10 genes analyzed showed any expression change in A. thaliana plants after cold acclimation. Altogether, the results indicate that cold-induced adaptation to subsequent salt stress exists in the extremophytes E. botschantzevii and to a lesser extend in E. salsugineum and is absent in Arabidopsis. This phenomenon may be attributed to the increased expression of ion transporter genes during cold acclimation in the Eutrema species.
Collapse
Affiliation(s)
- A O Shamustakimova
- All_Russia Research Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Timiryazevskaya st., 42, Moscow 127550 Russia
| | - Т G Leonova
- All_Russia Research Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Timiryazevskaya st., 42, Moscow 127550 Russia
| | - V V Taranov
- All_Russia Research Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Timiryazevskaya st., 42, Moscow 127550 Russia
| | - A H de Boer
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - A V Babakov
- All_Russia Research Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Timiryazevskaya st., 42, Moscow 127550 Russia.
| |
Collapse
|
5
|
Merchant A, Buckley TN, Pfautsch S, Turnbull TL, Samsa GA, Adams MA. Site-specific responses to short-term environmental variation are reflected in leaf and phloem-sap carbon isotopic abundance of field grown Eucalyptus globulus. PHYSIOLOGIA PLANTARUM 2012; 146:448-59. [PMID: 22568657 DOI: 10.1111/j.1399-3054.2012.01638.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The carbon isotopic composition (δ(13) C) of plant material has been used extensively as an indirect measure of carbon fixation per volume of water used. More recently, the δ(13) C of phloem sap (δ(13) C(phl) ) has been used as a surrogate measure of short-term, canopy scale δ(13) C. Using a combination of δ(13) C physiological, structural and chemical indices from leaves and phloem sap of Eucalyptus globulus at sites of contrasting water availability, we sought to identify short-term, canopy scale resource limitations. Results illustrate that δ(13) C(phl) offers valid reflections of short-term, canopy scale values of leaf δ(13) C and tree water status. Under conditions limited by water, leaf and phloem sap photoassimilates differ in (13) C abundance of a magnitude large enough to significantly influence predictions of water use efficiency. This pattern was not detected among trees with adequate water supply indicating fractionation into heterotrophic tissues that may be sensitive to plant water status. Trees employed a range of physiological, biochemical and structural adaptations to acclimate to resource limitation that differed among sites providing a useful context upon which to interpret patterns in δ(13) C. Our results highlight that such easily characterized properties are ideal for use as minimally invasive tools to monitor growth and resilience of plants to variations in resource availability.
Collapse
Affiliation(s)
- Andrew Merchant
- Faculty of Agriculture, Food and Natural Resources, The University of Sydney, Sydney, Australia.
| | | | | | | | | | | |
Collapse
|
6
|
Arndt SK, Livesley SJ, Merchant A, Bleby TM, Grierson PF. Quercitol and osmotic adaptation of field-grown Eucalyptus under seasonal drought stress. PLANT, CELL & ENVIRONMENT 2008; 31:915-924. [PMID: 18315535 DOI: 10.1111/j.1365-3040.2008.01803.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This study investigated the role of quercitol in osmotic adjustment in field-grown Eucalyptus astringens Maiden subject to seasonal drought stress over the course of 1 year. The trees grew in a native woodland and a farm plantation in the semi-arid wheatbelt region of south Western Australia. Plantation trees allocated relatively more biomass to leaves than woodland trees, but they suffered greater drought stress over summer, as indicated by lower water potentials, CO(2)assimilation rates and stomatal conductances. In contrast, woodland trees had relatively fewer leaves and suffered less drought stress. Plantation trees under drought stress engaged in osmotic adjustment, but woodland trees did not. Quercitol made a significant contribution to osmotic adjustment in drought-stressed trees (25% of total solutes), and substantially more quercitol was measured in the leaves of plantation trees (5% dry matter) than in the leaves of woodland trees (2% dry matter). We found no evidence that quercitol was used as a carbon storage compound while starch reserves were depleted under drought stress. Differences in stomatal conductance, biomass allocation and quercitol production clearly indicate that E. astringens is both morphologically and physiologically 'plastic' in response to growth environment, and that osmotic adjustment is only one part of a complex strategy employed by this species to tolerate drought.
Collapse
Affiliation(s)
- Stefan K Arndt
- School of Forest and Ecosystem Science, The University of Melbourne, 500 Yarra Boulevard, Richmond, Vic. 3121, Australia.
| | | | | | | | | |
Collapse
|
7
|
Merchant A, Tausz M, Arndt SK, Adams MA. Cyclitols and carbohydrates in leaves and roots of 13 Eucalyptus species suggest contrasting physiological responses to water deficit. PLANT, CELL & ENVIRONMENT 2006; 29:2017-29. [PMID: 17081238 DOI: 10.1111/j.1365-3040.2006.01577.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In many tree species, physiological adaptations to drought include the accumulation of osmotically active substances and/or the presence of particular compatible solutes, among them cyclitols. Recently, the cyclitol quercitol was identified in species of Eucalyptus, a diverse genus whose speciation is probably driven by adaptation to water availability. We subjected seedlings of 13 Eucalyptus species from different ecosystems ('mesic' and 'xeric') and different sub-generic taxonomic groups to 10 weeks of water deficit (WD) treatment. Pre-dawn water potentials (psi(pdwn)) and relative water content (RWC) were determined in shoots, and total osmolality, soluble low-molecular-weight carbohydrates and cyclitols were measured in leaves and roots. Responses to water deficit followed two distinct patterns: Eucalyptus species from 'mesic' environments adjusted concentrations of sucrose (through increased levels of sucrose and decreases in RWC) in response to water deficit, whereas 'xeric' species increased concentrations of quercitol (through reductions in RWC). In root tissues, only species from xeric environments contained high levels of quercitol and mannitol, increasing under WD conditions. We suggest that the former (mesic) strategy may be beneficial to respond to short-lasting drought conditions, because sucrose is easily metabolized, whereas the latter (xeric) strategy may relate to an effective acclimation to longer-lasting drought. These physiological response groups are also related to taxonomic groups within the genus.
Collapse
Affiliation(s)
- Andrew Merchant
- School of Forest and Ecosystem Science, The University of Melbourne, Water St, Creswick, Victoria 3363, Australia.
| | | | | | | |
Collapse
|