1
|
Banerjee S, Mondal S, Islam J, Sarkar R, Saha B, Sen A. Rhizospheric nano-remediation salvages arsenic genotoxicity: Zinc-oxide nanoparticles articulate better oxidative stress management, reduce arsenic uptake, and increase yield in Pisum sativum (L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169493. [PMID: 38151134 DOI: 10.1016/j.scitotenv.2023.169493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 12/29/2023]
Abstract
Pea (Pisum sativum L.), a legume, has a high nutritional content, but arsenic (As) in the agro-ecosystem poses a significant bottleneck to its yield, especially in South East Asia, by severely hampering ontogeny. The present study proposes a rhizospheric nano-remediation strategy to evade As-genotoxicity and improve crop yield using biogenic zinc-oxide nanoparticles (ZnONPs). Similar to any other source of environmental stress, As-toxicity caused rapid oxidative bursts with deterioration in morpho-physiological attributes (germination rate, shoot length, and root length decreased by 62 %, 16 %, and 14.9 % respectively in the negative control, over normal control). Reactive oxygen species (ROS) accumulation (12.8 and 9-fold increase in leaves and roots) overburdened antioxidative defense, and loss of cellular homeostasis resulted in membrane damage (82.75 % increase) and electrolyte-leakage (2.6-fold increase) in negative control. The study also reveals a significant increase in nuclear area, nuclear fragmentation, and micronuclei formation in root tip cells under As-stress, indicating severe genomic instability and increased programmed cell death (3.3-fold increase in early apoptotic cells) due to leaky plasma membrane and unrepaired DNA damage. Application of ZnONPs significantly reduced As-toxicity in peas due to its adsorption in the rhizosphere, causing diminished As-uptake and better antioxidant response. Improved phytochelatin synthesis enhanced vacuolar sequestration of arsenic, which reduced As-interference. Comparatively better flowering time (7.74-19.36 % reduction in flowering delay) with greater transcript abundance of GIGANTIA (GI), CONSTANS (CO), and FLOWERING LOCUS T (FT) genes; better photosynthetic activity (1.3-1.9-fold increased chlorophyll autofluorescence); increased pollen viability; lesser genotoxicity (decreased tail DNA in comet assay) was noticed. A maximum increase of 37.5 % in pod number and seed zinc content (1.67-fold) was observed while seed arsenic content decreased under ZnONPs treatment. However, the highest dose of ZnONPs (400 mg L-1) induced NP-toxicity in pea plants under our experimental conditions, while optimum stress-alleviation was observed up to 300 mg L-1.
Collapse
Affiliation(s)
- Swarnendra Banerjee
- Molecular Genetics Laboratory, Department of Botany, University of North Bengal, Siliguri 734013, India
| | - Sourik Mondal
- Molecular Genetics Laboratory, Department of Botany, University of North Bengal, Siliguri 734013, India
| | - Jarzis Islam
- Molecular Genetics Laboratory, Department of Botany, University of North Bengal, Siliguri 734013, India
| | - Rajarshi Sarkar
- Molecular Genetics Laboratory, Department of Botany, University of North Bengal, Siliguri 734013, India
| | - Bedabrata Saha
- Plant Pathology and Weed Research Department, Newe Ya'ar Research Centre, Agricultural Research Organization (ARO), Ramat Yishay 3009500, Israel
| | - Arnab Sen
- Molecular Genetics Laboratory, Department of Botany, University of North Bengal, Siliguri 734013, India.
| |
Collapse
|
2
|
Huang J, Wang Y, Liu W, Li X, Han R, Liang W, Wang H. Nitric oxide-mediated alternative pathway alleviates aluminum-induced programmed cell death in soybean root tips. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110988. [PMID: 34315602 DOI: 10.1016/j.plantsci.2021.110988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Alternative pathway (AP) plays essential roles in plant adaptation to environmental stress. However, the exact role of AP in response to aluminum (Al) toxicity remains elusive. We here provide solid evidences that the activated AP capacity in root tips of soybean alleviated Al toxicity. Furthermore, inhibition of AP by pharmacological or transgenic approach aggravated Al-induced programmed cell death (PCD) occurrence mediated through reactive oxygen species (ROS)-dependent mitochondrial pathway. Our results also demonstrated that nitric oxide (NO) plays a negative role in PCD occurrence caused by Al in soybean root tips. Interestingly, the alleviating effect of NO on Al-induced PCD could be blocked by AP inhibition. Further investigation showed that NO mediates the induction of AP resulting from the upregulation of AOX expression and pyruvate content in Al-treated root tips of soybean. Taken together, our results clearly suggest that AP participates in the alleviation of Al toxicity and also plays a critical role in the alleviating effect of NO on Al-induced PCD occurrence, which will open up new avenues for the improvement of plant growth in acidic soils.
Collapse
Affiliation(s)
- Junjun Huang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Ying Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Wenwen Liu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Xiaoyu Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Rongzhi Han
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Weihong Liang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Huahua Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China.
| |
Collapse
|
3
|
Ren H, Zhao X, Li W, Hussain J, Qi G, Liu S. Calcium Signaling in Plant Programmed Cell Death. Cells 2021; 10:cells10051089. [PMID: 34063263 PMCID: PMC8147489 DOI: 10.3390/cells10051089] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
Programmed cell death (PCD) is a process intended for the maintenance of cellular homeostasis by eliminating old, damaged, or unwanted cells. In plants, PCD takes place during developmental processes and in response to biotic and abiotic stresses. In contrast to the field of animal studies, PCD is not well understood in plants. Calcium (Ca2+) is a universal cell signaling entity and regulates numerous physiological activities across all the kingdoms of life. The cytosolic increase in Ca2+ is a prerequisite for the induction of PCD in plants. Although over the past years, we have witnessed significant progress in understanding the role of Ca2+ in the regulation of PCD, it is still unclear how the upstream stress perception leads to the Ca2+ elevation and how the signal is further propagated to result in the onset of PCD. In this review article, we discuss recent advancements in the field, and compare the role of Ca2+ signaling in PCD in biotic and abiotic stresses. Moreover, we discuss the upstream and downstream components of Ca2+ signaling and its crosstalk with other signaling pathways in PCD. The review is expected to provide new insights into the role of Ca2+ signaling in PCD and to identify gaps for future research efforts.
Collapse
Affiliation(s)
- Huimin Ren
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China; (H.R.); (X.Z.); (W.L.)
| | - Xiaohong Zhao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China; (H.R.); (X.Z.); (W.L.)
| | - Wenjie Li
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China; (H.R.); (X.Z.); (W.L.)
| | - Jamshaid Hussain
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan;
| | - Guoning Qi
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China; (H.R.); (X.Z.); (W.L.)
- Correspondence: (G.Q.); (S.L.)
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China; (H.R.); (X.Z.); (W.L.)
- Correspondence: (G.Q.); (S.L.)
| |
Collapse
|
4
|
Qi YH, Mao FF, Zhou ZQ, Liu DC, Deng XY, Li JW, Mei FZ. The release of cytochrome c and the regulation of the programmed cell death progress in the endosperm of winter wheat (Triticum aestivum L.) under waterlogging. PROTOPLASMA 2018; 255:1651-1665. [PMID: 29717349 DOI: 10.1007/s00709-018-1256-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
It has been shown in mammalian systems that the mitochondria can play a key role in the regulation of apoptosis by releasing intermembrane proteins (such as cytochrome c) into the cytosol. Cytochrome c released from the mitochondria to the cytoplasm activates proteolytic enzyme cascades, leading to specific nuclear DNA degradation and cell death. This pathway is considered to be one of the important regulatory mechanisms of apoptosis. Previous studies have shown that endosperm cell development in wheat undergoes specialized programmed cell death (PCD) and that waterlogging stress accelerates the PCD process; however, little is known regarding the associated molecular mechanism. In this study, changes in mitochondrial structure, the release of cytochrome c, and gene expression were studied in the endosperm cells of the wheat (Triticum aestivum L.) cultivar "huamai 8" during PCD under different waterlogging durations. The results showed that waterlogging aggravated the degradation of mitochondrial structure, increased the mitochondrial permeability transition (MPT), and decreased mitochondrial transmembrane potential (ΔΨm), resulting in the advancement of the endosperm PCD process. In situ localization and western blotting of cytochrome c indicated that with the development of the endosperm cell, cytochrome c was gradually released from the mitochondria to the cytoplasm, and waterlogging stress led to an advancement and increase in the release of cytochrome c. In addition, waterlogging stress resulted in the increased expression of the voltage-dependent anion channel (VDAC) and adenine nucleotide translocator (ANT), suggesting that the mitochondrial permeability transition pore (MPTP) may be involved in endosperm PCD under waterlogging stress. The MPTP inhibitor cyclosporine A effectively suppressed cell death and cytochrome c release during wheat endosperm PCD. Our results indicate that the mitochondria play important roles in the PCD of endosperm cells and that the increase in mitochondrial damage and corresponding release of cytochrome c may be one of the major causes of endosperm PCD advancement under waterlogging.
Collapse
Affiliation(s)
- Yuan-Hong Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Fang-Fang Mao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhu-Qing Zhou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Dong-Cheng Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiang-Yi Deng
- College of Food and Biological Science and Technology, Wuhan Institute of Design and Sciences, Wuhan, 430070, Hubei, China
| | - Ji-Wei Li
- College of Food and Biological Science and Technology, Wuhan Institute of Design and Sciences, Wuhan, 430070, Hubei, China
| | - Fang-Zhu Mei
- Division of Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
5
|
Stamenković M, Woelken E, Hanelt D. Ultrastructure of Cosmarium strains (Zygnematophyceae, Streptophyta) collected from various geographic locations shows species-specific differences both at optimal and stress temperatures. PROTOPLASMA 2014; 251:1491-509. [PMID: 24802109 DOI: 10.1007/s00709-014-0652-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 04/22/2014] [Indexed: 05/26/2023]
Abstract
Plant species collected from various climatic zones and stressed in vitro at various temperatures reveal changes in cellular ultrastructure which are in accordance with the climate at their sampling sites. This observation initiated the investigation to establish if stress at different temperatures may cause diverse extents of changes in the ultrastructure of microalgal strains originating from different geographic zones. The study revealed that the six Cosmarium strains demonstrated ultrastructural characteristics that were consistent with their source location under optimal, low and high temperature conditions, pointing to their preference to specific climatic niches. Interestingly, chloroplasts of all of the Cosmarium strains correspond to a sun-adapted type, which is concomitant with earlier statements that these strains are rendered as high-light adapted algae. The Cosmarium strains developed multiple ultrastructural responses which enabled them to cope with excessive temperatures, occasionally occurring in desmid natural habitats. The appearance of cubic membranes and increased number of plastoglobules may represent the first line in protection against high-temperature stress, which is accompanied by the alteration of protein synthesis and the appearance of stress granules in order to preserve cell homeostasis. However, the prolonged warm- or cold-temperature stress obviously initiated the programmed cell death, as concluded from the appearance of several ultrastructural features observed in all of the Cosmarium strains. The fair acclimation possibilities and the ability to undergo programmed cell death in order to save the population, certainly favor the cosmopolitan distribution of the genus Cosmarium.
Collapse
|
6
|
Ek-Ramos MJ, Avila J, Nelson Dittrich AC, Su D, Gray JW, Devarenne TP. The tomato cell death suppressor Adi3 is restricted to the endosomal system in response to the Pseudomonas syringae effector protein AvrPto. PLoS One 2014; 9:e110807. [PMID: 25350368 PMCID: PMC4211712 DOI: 10.1371/journal.pone.0110807] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/20/2014] [Indexed: 01/22/2023] Open
Abstract
The tomato (Solanum lycopersicum) AGC protein kinase Adi3 functions as a suppressor of cell death and was first identified as an interactor with the tomato resistance protein Pto and the Pseudomonas syringae effector protein AvrPto. Models predict that loss of Adi3 cell death suppression (CDS) activity during Pto/AvrPto interaction leads to the cell death associated with the resistance response initiated from this interaction. Nuclear localization is required for Adi3 CDS. Prevention of nuclear accumulation eliminates Adi3 CDS and induces cell death by localizing Adi3 to intracellular punctate membrane structures. Here we use several markers of the endomembrane system to show that the punctate membrane structures to which non-nuclear Adi3 is localized are endosomal in nature. Wild-type Adi3 also localizes in these punctate endosomal structures. This was confirmed by the use of endosomal trafficking inhibitors, which were capable of trapping wild-type Adi3 in endosomal-like structures similar to the non-nuclear Adi3. This suggests Adi3 may traffic through the cell using the endomembrane system. Additionally, Adi3 was no longer found in the nucleus but was visualized in these punctate endosomal-like membranes during the cell death induced by the Pto/AvrPto interaction. Therefore we propose that inhibiting nuclear import and constraining Adi3 to the endosomal system in response to AvrPto is a mechanism to initiate the cell death associated with resistance.
Collapse
Affiliation(s)
- María J. Ek-Ramos
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Julian Avila
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Anna C. Nelson Dittrich
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Dongyin Su
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Joel W. Gray
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Timothy P. Devarenne
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
7
|
Yoshimura K, Ogawa T, Tsujimura M, Ishikawa K, Shigeoka S. Ectopic expression of the human MutT-type Nudix hydrolase, hMTH1, confers enhanced tolerance to oxidative stress in arabidopsis. PLANT & CELL PHYSIOLOGY 2014; 55:1534-1543. [PMID: 24928220 DOI: 10.1093/pcp/pcu083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Oxidized nucleotides produced by oxidative stress cause DNA mutations and the production of abnormal proteins. Thus, mammalian cells have developed multiple MutT-type Nudix hydrolases that exhibit pyrophosphohydrolase activity toward oxidized nucleotides in the cytosol, mitochondria and nucleus. On the other hand, AtNUDX1 is the only MutT-type Nudix hydrolase in the cytosol of Arabidopsis plants. To clarify the physiological significance of the defenses against oxidatively induced DNA damage in plant organelles, we analyzed the effects of the ectopic expression of the human MutT-type Nudix hydrolase, hMTH1, which was localized in the cytosol (cyt-hMTH1), chloroplasts (chl-hMTH1) and mitochondria (mit-hMTH1) of Arabidopsis cells, on tolerance to oxidative stress. Tolerance to oxidative stress caused by heating and paraquat (PQ) treatment was higher in the mit-hMTH1 and chl-hMTH1 plants than in the control and cyt-hMTH1 plants. The accumulation of H2O2 and the frequency of dead cells were lower in the mit-hMTH1 and chl-hMTH1 plants under stressful conditions. The poly(ADP-ribosyl)ation (PAR) reaction, which regulates repair systems for damaged DNA, was activated in the mit-hMTH1 and chl-hMTH1 plants under heat stress and PQ treatment. Furthermore, DNA fragmentation, which caused programmed cell death, was clearly suppressed in the mit-hMTH1 and chl-hMTH1 plants under heat stress. These results demonstrated that the ectopic expression of hMTH1 in the chloroplasts and mitochondria of Arabidopsis enhanced oxidative stress tolerance by activating the PAR reaction and suppressing programmed cell death.
Collapse
Affiliation(s)
- Kazuya Yoshimura
- Department of Food and Nutritional Science, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501 Japan
| | - Takahisa Ogawa
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| | - Masaki Tsujimura
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| | - Kazuya Ishikawa
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| | - Shigeru Shigeoka
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| |
Collapse
|
8
|
Hu D, Ma G, Wang Q, Yao J, Wang Y, Pritchard HW, Wang X. Spatial and temporal nature of reactive oxygen species production and programmed cell death in elm (Ulmus pumila L.) seeds during controlled deterioration. PLANT, CELL & ENVIRONMENT 2012; 35:2045-59. [PMID: 22582978 DOI: 10.1111/j.1365-3040.2012.02535.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Seed deterioration is poorly understood and remains an active area for research. Seeds of elm (Ulmus pumila L.) were aged at 37 °C above water [controlled deterioration treatment (CDT)] for various lengths of time to assess programmed cell death (PCD) and reactive oxygen species (ROS) product in embryonic tissues during a 5 d period. The hallmarks of PCD were identified in the elm seeds during CDT including TUNEL experiments, DNA laddering, cytochrome c (cyt c) leakage and enzymatic activities. These analyses indicated that PCD occurred systematically and progressively in deteriorated elm seeds. Cyt c release and increase in caspase-3-like/DEVDase activity occurred during CDT, which could be suppressed by ascorbic acid (AsA) and caspase-3 inhibitor Ac-DEVD-CHO, respectively. In situ localization of ROS production indicated that the distinct spatial-temporal signature of ROS during CDT coincided with the changes in PCD hallmark features. Multiple antioxidant elements were activated during the first few days of CDT, but were subsequently depleted as PCD progressed. Taken together, our findings identify PCD as a key mechanism that occurs asymmetrically during elm seeds CDT and suggest an important role for PCD in seeds deterioration.
Collapse
Affiliation(s)
- Die Hu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing 100083, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Li Z, Yue H, Xing D. MAP Kinase 6-mediated activation of vacuolar processing enzyme modulates heat shock-induced programmed cell death in Arabidopsis. THE NEW PHYTOLOGIST 2012; 195:85-96. [PMID: 22497243 DOI: 10.1111/j.1469-8137.2012.04131.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
• Vacuolar processing enzyme (VPE), a cysteine protease, has been intensively studied in plant hypersensitive cell death, but the role and molecular mechanism of VPEs in response to abiotic stresses remain unclear. This work investigated the involvement of VPEs in Arabidopsis response to heat stress. • Under heat shock (HS), Arabidopsis VPE activity and the transcript level of γVPE were both upregulated, and γVPE deficiency suppressed vacuolar disruption and delayed caspase-3-like activation in HS-induced programmed cell death (PCD). Moreover, the change of VPE activity generally paralleled the alteration of caspase-1-like activity under HS treatment, indicating that HS-induced VPE activity might exhibit the caspase-1-like activity. • Further studies showed that MAP Kinase 6 (MPK6) activity was increased after HS treatment, and experiments with inhibitors and mutants suggested that MPK6 was responsible for the γVPE activation after HS treatment. In response to HS stress, reactive oxygen species (ROS) production, increase of cytoplasmic calcium concentration ([Ca(2+) ](cyt)) and the upregulation of calmodulin 3 (CaM3) transcript level occurred upstream of MPK6 activation. • Our results suggested that activation of Arabidopsis γVPE was mediated by MPK6 and played an important role in HS-induced Arabidopsis PCD, providing new insight into the mechanistic study of plant VPEs.
Collapse
Affiliation(s)
- Zhe Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | | | | |
Collapse
|
10
|
Hüve K, Bichele I, Rasulov B, Niinemets U. When it is too hot for photosynthesis: heat-induced instability of photosynthesis in relation to respiratory burst, cell permeability changes and H₂O₂ formation. PLANT, CELL & ENVIRONMENT 2011; 34:113-26. [PMID: 21029116 DOI: 10.1111/j.1365-3040.2010.02229.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Photosynthesis rate (A(n)) becomes unstable above a threshold temperature, and the recovery upon return to low temperature varies because of reasons not fully understood. We investigated responses of A(n), dark respiration and chlorophyll fluorescence to supraoptimal temperatures of varying duration and kinetics in Phaseolus vulgaris asking whether the instability of photosynthesis under severe heat stress is associated with cellular damage. Cellular damage was assessed by Evans blue penetration (enhanced membrane permeability) and by H₂O₂ generation [3,3'-diaminobenzidine 4HCl (DAB)-staining]. Critical temperature for dark fluorescence (F(0) ) rise (T(F)) was at 46-48 °C, and a burst of respiration was observed near T(F). However, A(n) was strongly inhibited already before T(F) was reached. Membrane permeability increased with temperature according to a switch-type response, with enhanced permeability observed above 48 °C. Experiments with varying heat pulse lengths and intensities underscored the threshold-type loss of photosynthetic function, and indicated that the degree of photosynthetic deterioration and cellular damage depended on accumulated heat-dose. Beyond the 'point of no return', propagation of cellular damage and reduction of photosynthesis continued upon transfer to lower temperatures and photosynthetic recovery was slow or absent. We conclude that instability of photosynthesis under severe heat stress is associated with time-dependent propagation of cellular lesions.
Collapse
Affiliation(s)
- Katja Hüve
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | | | | | | |
Collapse
|
11
|
Li Z, Xing D. Mitochondrial pathway leading to programmed cell death induced by aluminum phytotoxicity in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2010; 5:1660-2. [PMID: 21512328 PMCID: PMC3115128 DOI: 10.4161/psb.5.12.14014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 10/25/2010] [Indexed: 05/03/2023]
Abstract
Recent studies have reported some apoptosis-like characters under Al treatment including nucleus morphology changes and appearance of nucleus fragmentation in plant cells. Our recent report has suggested that mitochondrial oxidative burst, mitochondrial swelling and mitochondrial transmembrane potential (MTP) disrupt play crucial roles in Al-induced caspase-3-like activation and programmed cell death (PCD). And Complex I and III might be the sources of Al-induced mitochondrial reactive oxygen species (ROS) through interaction between Al and iron-sulfur (Fe-S) protein. Our study contributed to the understanding of mitochondria-dependent cellular signaling cascade of plant biological responses in Al-induced PCD. However, the mitochondria-dependent mechanism in Al-induced PCD needs further improvement, and the roles of mitochondria functional proteins are still poorly understood compared with the study of signaling pathways involved in animal cell apoptosis. By using the fluorescence techniques and the Arabidopsis mesophyll protoplasts as a reference model, the subsequent researches have been carried out to obtain comprehensive understanding of Al-induced plant PCD.
Collapse
Affiliation(s)
- Zhe Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | | |
Collapse
|
12
|
Wang J, Li X, Liu Y, Zhao X. Salt stress induces programmed cell death in Thellungiella halophila suspension-cultured cells. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:1145-51. [PMID: 20417988 DOI: 10.1016/j.jplph.2010.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/18/2010] [Accepted: 03/22/2010] [Indexed: 05/11/2023]
Abstract
Thellungiella halophila (T. halophila) suspension-cultured cells were used to gain knowledge of the pathway of programmed cell death (PCD) in halophytes under salt stress. Several apoptotic-like features occurred in T. halophila cells after exposure to 300 mM NaCl, including the retraction of the plasma membrane from the cell wall, nuclear condensation, DNA laddering and the release of cytochrome c accompanying the increase of caspase 3-like protease activity. This process resulted in ultrastructural changes of mitochondria and Golgi bodies, and autophagy was also induced by high salinity stress. DNA laddering and caspase 3-like activity were inhibited prior to the inhibition of cell death by a specific caspase 3 inhibitor, Ac-DEVD-CHO. The results indicate that 300 mM NaCl stress-induced PCD in T. halophila is similar to animal apoptosis, and this process occurs partly through a caspase 3-like dependent pathway.
Collapse
Affiliation(s)
- Jin Wang
- Extreme Stress Resistance and Biotechnology Laboratory, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China.
| | | | | | | |
Collapse
|
13
|
Qu GQ, Liu X, Zhang YL, Yao D, Ma QM, Yang MY, Zhu WH, Yu S, Luo YB. Evidence for programmed cell death and activation of specific caspase-like enzymes in the tomato fruit heat stress response. PLANTA 2009; 229:1269-1279. [PMID: 19296126 DOI: 10.1007/s00425-009-0908-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Accepted: 02/10/2009] [Indexed: 05/26/2023]
Abstract
The tomato (Lycopersicon esculentum) fruit is the best available model to study the stress response of fleshy fruit. Programmed cell death (PCD) plays an important role in stress responses in mammals and plants. In this study, we provide evidence that PCD is triggered in the tomato fruit heat stress response by detection of the sequential diagnostic PCD events, including release of cytochrome c, activation of caspase-like proteases and the presence of TUNEL-positive nuclei. Investigating the time course of these events for 12 h after heat treatment indicated that cytochrome c release and caspase-like protease activation occurred rapidly and were consistent with the onset of DNA fragmentation. In addition, LEHDase and DEVDase enzymes were specifically activated in tomato fruit pericarp during the heat treatment and recovery time. There was no significant activation of YVADase or IETDase proteases. Preincubation of pericarp discs with the broad-spectrum, cell-permeable caspase inhibitor Z-VAD-FMK, suppressed heat-induced cell death measured by trypan blue, accompanied by a decrease in LEHDase and DEVDase activities.
Collapse
Affiliation(s)
- Gui-Qin Qu
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, 100083, Beijing, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
García-Heredia JM, Hervás M, De la Rosa MA, Navarro JA. Acetylsalicylic acid induces programmed cell death in Arabidopsis cell cultures. PLANTA 2008; 228:89-97. [PMID: 18335236 DOI: 10.1007/s00425-008-0721-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 02/26/2008] [Indexed: 05/09/2023]
Abstract
Acetylsalicylic acid (ASA), a derivative from the plant hormone salicylic acid (SA), is a commonly used drug that has a dual role in animal organisms as an anti-inflammatory and anticancer agent. It acts as an inhibitor of cyclooxygenases (COXs), which catalyze prostaglandins production. It is known that ASA serves as an apoptotic agent on cancer cells through the inhibition of the COX-2 enzyme. Here, we provide evidences that ASA also behaves as an agent inducing programmed cell death (PCD) in cell cultures of the model plant Arabidopsis thaliana, in a similar way than the well-established PCD-inducing agent H(2)O(2), although the induction of PCD by ASA requires much lower inducer concentrations. Moreover, ASA is herein shown to be a more efficient PCD-inducing agent than salicylic acid. ASA treatment of Arabidopsis cells induces typical PCD-linked morphological and biochemical changes, namely cell shrinkage, nuclear DNA degradation, loss of mitochondrial membrane potential, cytochrome c release from mitochondria and induction of caspase-like activity. However, the ASA effect can be partially reverted by jasmonic acid. Taking together, these results reveal the existence of common features in ASA-induced animal apoptosis and plant PCD, and also suggest that there are similarities between the pathways of synthesis and function of prostanoid-like lipid mediators in animal and plant organisms.
Collapse
Affiliation(s)
- José M García-Heredia
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla & Consejo Superior de Investigaciones Científicas, Américo Vespucio 49, 41092, Sevilla, Spain
| | | | | | | |
Collapse
|
15
|
Gao C, Zhang L, Wen F, Xing D. Sorting out the role of reactive oxygen species during plant programmed cell death induced by ultraviolet-C overexposure. PLANT SIGNALING & BEHAVIOR 2008; 3:197-8. [PMID: 19704717 PMCID: PMC2634115 DOI: 10.4161/psb.3.3.5373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 02/27/2008] [Indexed: 05/28/2023]
Abstract
Previous studies have reported that light is required for activating Arabidopsis programmed cell death (PCD) induced by ultraviolet-C (UV-C) overexposure, and a caspase-like protease cleaving the caspase-3 substrate Asp-Glu-Val-Asp (DEVDase activity) is induced during this process. Our recent report has suggested that a quick burst of reactive oxygen species (ROS), which is mainly derived from mitochondria and chloroplasts, is induced in a light dependent manner during the early stages of UV-induced plant PCD. Concomitantly, the mitochondria undergo serious dysfunction including the MTP loss and the changes in distribution and mobility, which ultimately lead to apoptotic-cell death. Though some of signaling molecules have been elucidated in this type of plant cell death, the molecular mechanism about UV-induce Arabidopsis PCD is still poorly understood when comparing with the study of signaling pathways involved in animal cell apoptosis induced by UV. By using the Arabidopsis mesophyll protoplasts as a reference model, we have begun to shed light on the complexity of signaling pathway in UV-induced plant PCD. Recently we have tried to real-time detect the presence of caspase-like proteolytic activation, and to sort out the key role of ROS as well as to further assess the relationship between the ROS production and caspase-like activation in this type of plant apoptotic cell death.
Collapse
Affiliation(s)
- Caiji Gao
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science; South China Normal University; Guangzhou, P.R. China
| | | | | | | |
Collapse
|
16
|
Abstract
Programmed cell death (PCD) is now accepted as a fundamental cellular process in plants. It is involved in defence, development and response to stress, and our understanding of these processes would be greatly improved through a greater knowledge of the regulation of plant PCD. However, there may be several types of PCD that operate in plants, and PCD research findings can be confusing if they are not assigned to a specific type of PCD. The various cell-death mechanisms need therefore to be carefully described and defined. This review describes one of these plant cell death processes, namely the apoptotic-like PCD (AL-PCD). We begin by examining the hallmark 'apoptotic-like' features (protoplast condensation, DNA degradation) of the cell's destruction that are characteristic of AL-PCD, and include examples of AL-PCD during the plant life cycle. The review explores the possible cellular 'executioners' (caspase-like molecules; mitochondria; de novo protein synthesis) that are responsible for the hallmark features of the cellular destruction. Finally, senescence is used as a case study to show that a rigorous definition of cell-death processes in plant cells can help to resolve arguments that occur in the scientific literature regarding the timing and control of plant cell death.
Collapse
Affiliation(s)
- Theresa J Reape
- School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| | - Paul F McCabe
- School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
17
|
Castillo-Olamendi L, Bravo-Garcìa A, Morán J, Rocha-Sosa M, Porta H. AtMCP1b, a chloroplast-localised metacaspase, is induced in vascular tissue after wounding or pathogen infection. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 34:1061-1071. [PMID: 32689436 DOI: 10.1071/fp07153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 10/17/2007] [Indexed: 05/08/2023]
Abstract
cDNA corresponding to the Arabidopsis type I metacaspase AtMCP1b was isolated from plants infected with Pseudomonas syringae. A positive correlation between AtMCP1b expression and cell death was observed in the presence of staurosporine, a protein kinase inhibitor that induces programmed cell death. The tissue localisation of an AtMCP1b promoter-GUS fusion was observed in the vascular tissue of transgenic plants. GUS activity increased in response to an incompatible DC3000 (avrRpm1) or a compatible DC3000 P. syringae infection, or to wounding. Confocal and immunohistochemical analysis of Arabidopsis thaliana (L.) leaves showed that an AtMCP1b-GFP fusion protein was localised in the chloroplasts. Our data support a positive correlation between AtMCP1b gene expression and cell death in response to wounding or pathogenic interactions. Moreover, the localisation of AtMCP1b gene expression within vascular tissue and cells of abscission regions strongly supports a role for AtMCP1b in programmed cell dismantling events in response to environmental and developmental triggers. The AtMCP1b-GFP subcellular localisation infers a role for the plastid organelles in PCD and, thus, in responses to pathogen attack and development.
Collapse
Affiliation(s)
- Luis Castillo-Olamendi
- Departmento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., México
| | - Armando Bravo-Garcìa
- Departmento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., México
| | - Julio Morán
- Departmento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Cuernavaca, Mor., México
| | - Mario Rocha-Sosa
- Departmento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., México
| | - Helena Porta
- Departmento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., México
| |
Collapse
|
18
|
Zuppini A, Andreoli C, Baldan B. Heat stress: an inducer of programmed cell death in Chlorella saccharophila. PLANT & CELL PHYSIOLOGY 2007; 48:1000-9. [PMID: 17567640 DOI: 10.1093/pcp/pcm070] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Programmed cell death (PCD) has been recognized as a fundamental cellular process conserved in metazoans, plants and yeast. However, the cellular mechanisms leading to PCD have not been fully elucidated in unicellular organisms. Evidence is presented that heat stress induces PCD in Chlorella saccharophila cells. Our results demonstrate that heat shock triggers a PCD pathway occurring with characteristics features such as chromatin condensation, DNA fragmentation, cell shrinkage and detachment of the plasma membrane from the cell wall, and suggest the presence of caspase 3-like activity. The caspase 3 inhibitor Ac-DEVD-CHO gave significant protection against heat shock-induced cell death. Moreover, a reduction in photosynthetic pigment contents associated with alteration of chloroplast morphology and a fairly rapid disappearance of the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit and the light-harvesting complex of PSII have been observed. The timing of events in the signaling cascade associated with the C. saccharophila heat shock PCD response is discussed. Insights into this field may have general implications for understanding the pathway of cell death in unicellular green algae.
Collapse
Affiliation(s)
- Anna Zuppini
- Dipartimento di Biologia, Università di Padova, via U. Bassi 58/B, 35131 Padova, Italy.
| | | | | |
Collapse
|
19
|
Bernal M, Sánchez-Testillano P, Risueño MDC, Yruela I. Excess copper induces structural changes in cultured photosynthetic soybean cells. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:1001-1012. [PMID: 32689311 DOI: 10.1071/fp06174] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 09/11/2006] [Indexed: 06/11/2023]
Abstract
Soybean [Glycine max (L.) Merr.] cell suspensions have the capacity to develop tolerance to excess copper, constituting a convenient system for studies on the mechanisms of copper tolerance. The functional cell organisation changes observed in these cell cultures after both short-term (stressed cells) and long-term (acclimated cells) exposure to 10 μm CuSO4 are reported from structural, cytochemical and microanalytical approaches. Cells grown in the presence of 10 μm CuSO4 shared some structural features with untreated cells, such as: (i) a large cytoplasmic vacuole, (ii) chloroplasts along the thin layer of cytoplasm, (iii) nucleus in a peripheral location exhibiting circular-shaped nucleolus and a decondensed chromatin pattern, and (iv) presence of Cajal bodies in the cell nuclei. In addition, cells exposed to 10 μm CuSO4 exhibited important differences compared with untreated cells: (i) chloroplasts displayed rounded shape and smaller size with denser-structured internal membranes, especially in copper-acclimated cells; (ii) no starch granules were found within chloroplasts; (iii) the cytoplasmic vacuole was larger, especially after long-term copper exposure; (iv) the levels of citrate and malate increased. Extracellular dark-coloured deposits with high copper content attached at the outer surface of the cell wall were observed only in cells exposed to a short-term copper stress. Structural cell modifications, mainly affecting chloroplasts, accompanied the short-term copper-induced response and were maintained as stable characters during the period of adaptation to excess copper. Vacuolar changes accompanied the long-term copper response. The results indicate that the first response of soybean cells to excess copper prevents its entry into the cell by immobilising it in the cell wall, and after an adaptive period, acclimation to excess copper may be mainly due to vacuolar sequestration.
Collapse
Affiliation(s)
- María Bernal
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain
| | - Pilar Sánchez-Testillano
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), C/ Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María Del Carmen Risueño
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), C/ Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Inmaculada Yruela
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain
| |
Collapse
|