1
|
Yurkov AP, Afonin AM, Kryukov AA, Gorbunova AO, Kudryashova TR, Kovalchuk AI, Gorenkova AI, Bogdanova EM, Kosulnikov YV, Laktionov YV, Kozhemyakov AP, Romanyuk DA, Zhukov VA, Puzanskiy RK, Mikhailova YV, Yemelyanov VV, Shishova MF. The Effects of Rhizophagus irregularis Inoculation on Transcriptome of Medicago lupulina Leaves at Early Vegetative and Flowering Stages of Plant Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:3580. [PMID: 37896043 PMCID: PMC10610208 DOI: 10.3390/plants12203580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/02/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
The study is aimed at revealing the effects of Rhizophagus irregularis inoculation on the transcriptome of Medicago lupulina leaves at the early (second leaf formation) and later (flowering) stages of plant development. A pot experiment was conducted under conditions of low phosphorus (P) level in the substrate. M. lupulina plants were characterized by high mycorrhizal growth response and mycorrhization parameters. Library sequencing was performed on the Illumina HiseqXTen platform. Significant changes in the expression of 4863 (padj < 0.01) genes from 34049 functionally annotated genes were shown by Massive Analysis of cDNA Ends (MACE-Seq). GO enrichment analysis using the Kolmogorov-Smirnov test was performed, and 244 functional GO groups were identified, including genes contributing to the development of effective AM symbiosis. The Mercator online tool was used to assign functional classes of differentially expressed genes (DEGs). The early stage was characterized by the presence of six functional classes that included only upregulated GO groups, such as genes of carbohydrate metabolism, cellular respiration, nutrient uptake, photosynthesis, protein biosynthesis, and solute transport. At the later stage (flowering), the number of stimulated GO groups was reduced to photosynthesis and protein biosynthesis. All DEGs of the GO:0016036 group were downregulated because AM plants had higher resistance to phosphate starvation. For the first time, the upregulation of genes encoding thioredoxin in AM plant leaves was shown. It was supposed to reduce ROS level and thus, consequently, enhance the mechanisms of antioxidant protection in M. lupulina plants under conditions of low phosphorus level. Taken together, the obtained results indicate genes that are the most important for the effective symbiosis with M. lupulina and might be engaged in other plant species.
Collapse
Affiliation(s)
- Andrey P. Yurkov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Alexey M. Afonin
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Alexey A. Kryukov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Anastasia O. Gorbunova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Tatyana R. Kudryashova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
- Graduate School of Biotechnology and Food Science, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 194064, Russia
| | - Anastasia I. Kovalchuk
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
- Graduate School of Biotechnology and Food Science, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 194064, Russia
| | - Anastasia I. Gorenkova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
| | - Ekaterina M. Bogdanova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
| | - Yuri V. Kosulnikov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Yuri V. Laktionov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Andrey P. Kozhemyakov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Daria A. Romanyuk
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (D.A.R.); (V.A.Z.)
| | - Vladimir A. Zhukov
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (D.A.R.); (V.A.Z.)
| | - Roman K. Puzanskiy
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg 197022, Russia
| | - Yulia V. Mikhailova
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg 197022, Russia;
| | - Vladislav V. Yemelyanov
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
| | - Maria F. Shishova
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
| |
Collapse
|
2
|
Lee HY, Chen Z, Zhang C, Yoon GM. Editing of the OsACS locus alters phosphate deficiency-induced adaptive responses in rice seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1927-1940. [PMID: 30810167 PMCID: PMC6436150 DOI: 10.1093/jxb/erz074] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/04/2019] [Indexed: 05/21/2023]
Abstract
Phosphate (Pi) deficiency severely influences the growth and reproduction of plants. To cope with Pi deficiency, plants initiate morphological and biochemical adaptive responses upon sensing low Pi in the soil, and the plant hormone ethylene plays a crucial role during this process. However, how regulation of ethylene biosynthesis influences the Pi-induced adaptive responses remains unclear. Here, we determine the roles of rice 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS), the rate-limiting enzymes in ethylene biosynthesis, in response to Pi deficiency. Through analysis of tissue-specific expression of OsACS in response to Pi deficiency and OsACS mutants generated by CRISPR/Cas9 [clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9] genome editing, we found that two members of the OsACS family, i.e. OsACS1 and OsACS2, are involved but differed in their importance in controlling the remodeling of root system architecture, transcriptional regulation of Pi starvation-induced genes, and cellular phosphorus homeostasis. Interestingly, in contrast to the known inhibitory role of ethylene on root elongation, both OsACS mutants, especially OsACS1, almost fail to promote lateral root growth in response to Pi deficiency, demonstrating a stimulatory role for ethylene in lateral root development under Pi-deficient conditions. Together, this study provides new insights into the roles of ethylene in Pi deficiency response in rice seedlings and the isoform-specific function of OsACS genes in this process.
Collapse
Affiliation(s)
- Han Yong Lee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Zhixiong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Cankui Zhang
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Gyeong Mee Yoon
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
3
|
Roldan M, Islam A, Dinh PTY, Leung S, McManus MT. Phosphate availability regulates ethylene biosynthesis gene expression and protein accumulation in white clover (Trifolium repens L.) roots. Biosci Rep 2016; 36:e00411. [PMID: 27737923 PMCID: PMC5293567 DOI: 10.1042/bsr20160148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 01/23/2023] Open
Abstract
The expression and accumulation of members of the 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) and ACC oxidase (ACO) gene families was examined in white clover roots grown in either Pi (phosphate) sufficient or Pi-deprived defined media. The accumulation of one ACO isoform, TR-ACO1, was positively influenced after only 1 h of exposure to low Pi, and this was maintained over a 7-day time-course. Up-regulation of TR-ACS1, TR-ACS2 and TR-ACS3 transcript abundance was also observed within 1 h of exposure to low Pi in different tissue regions of the roots, followed by a second increase in abundance of TR-ACS2 after 5-7 days of exposure. An increase in transcript abundance of TR-ACO1 and TR-ACO3, but not TR-ACO2, was observed after 1 h of exposure to low Pi, with a second increase in TR-ACO1 transcripts occurring after 2-5 days. These initial increases of the TR-ACS and TR-ACO transcript abundance occurred before the induction of Trifolium repens PHOSPHATE TRANSPORTER 1 (TR-PT1), and the addition of sodium phosphite did not up-regulate TR-ACS1 expression over 24 h. In situ hybridization revealed some overlap of TR-ACO mRNA accumulation, with TR-ACO1 and TR-ACO2 in the root tip regions, and TR-ACO1 and TR-ACO3 mRNA predominantly in the lateral root primordia. TR-ACO1p-driven GFP expression showed that activation of the TR-ACO1 promoter was initiated within 24 h of exposure to low Pi (as determined by GFP protein accumulation). These results suggest that the regulation of ethylene biosynthesis in white clover roots is biphasic in response to low Pi supply.
Collapse
Affiliation(s)
- Marissa Roldan
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4474, New Zealand
| | - Afsana Islam
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4474, New Zealand
| | - Phuong T Y Dinh
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4474, New Zealand
| | - Susanna Leung
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4474, New Zealand
| | - Michael T McManus
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4474, New Zealand
| |
Collapse
|
4
|
Song L, Liu D. Ethylene and plant responses to phosphate deficiency. FRONTIERS IN PLANT SCIENCE 2015; 6:796. [PMID: 26483813 PMCID: PMC4586416 DOI: 10.3389/fpls.2015.00796] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/13/2015] [Indexed: 05/20/2023]
Abstract
Phosphorus is an essential macronutrient for plant growth and development. Phosphate (Pi), the major form of phosphorus that plants take up through roots, however, is limited in most soils. To cope with Pi deficiency, plants activate an array of adaptive responses to reprioritize internal Pi use and enhance external Pi acquisition. These responses are modulated by sophisticated regulatory networks through both local and systemic signaling, but the signaling mechanisms are poorly understood. Early studies suggested that the phytohormone ethylene plays a key role in Pi deficiency-induced remodeling of root system architecture. Recently, ethylene was also shown to be involved in the regulation of other signature responses of plants to Pi deficiency. In this article, we review how researchers have used pharmacological and genetic approaches to dissect the roles of ethylene in regulating Pi deficiency-induced developmental and physiological changes. The interactions between ethylene and other signaling molecules, such as sucrose, auxin, and microRNA399, in the control of plant Pi responses are also examined. Finally, we provide a perspective for the future research in this field.
Collapse
Affiliation(s)
| | - Dong Liu
- Ministry of Education Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, BeijingChina
| |
Collapse
|
5
|
Pandey R, Zinta G, AbdElgawad H, Ahmad A, Jain V, Janssens IA. Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress. Biotechnol Adv 2015; 33:303-16. [PMID: 25797341 DOI: 10.1016/j.biotechadv.2015.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/07/2015] [Accepted: 03/14/2015] [Indexed: 11/24/2022]
Abstract
Atmospheric [CO2] has increased substantially in recent decades and will continue to do so, whereas the availability of phosphorus (P) is limited and unlikely to increase in the future. P is a non-renewable resource, and it is essential to every form of life. P is a key plant nutrient controlling the responsiveness of photosynthesis to [CO2]. Increases in [CO2] typically results in increased biomass through stimulation of net photosynthesis, and hence enhance the demand for P uptake. However, most soils contain low concentrations of available P. Therefore, low P is one of the major growth-limiting factors for plants in many agricultural and natural ecosystems. The adaptive responses of plants to [CO2] and P availability encompass alterations at morphological, physiological, biochemical and molecular levels. In general low P reduces growth, whereas high [CO2] enhances it particularly in C3 plants. Photosynthetic capacity is often enhanced under high [CO2] with sufficient P supply through modulation of enzyme activities involved in carbon fixation such as ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). However, high [CO2] with low P availability results in enhanced dry matter partitioning towards roots. Alterations in below-ground processes including root morphology, exudation and mycorrhizal association are influenced by [CO2] and P availability. Under high P availability, elevated [CO2] improves the uptake of P from soil. In contrast, under low P availability, high [CO2] mainly improves the efficiency with which plants produce biomass per unit P. At molecular level, the spatio-temporal regulation of genes involved in plant adaptation to low P and high [CO2] has been studied individually in various plant species. Genome-wide expression profiling of high [CO2] grown plants revealed hormonal regulation of biomass accumulation through complex transcriptional networks. Similarly, differential transcriptional regulatory networks are involved in P-limitation responses in plants. Analysis of expression patterns of some typical P-limitation induced genes under high [CO2] suggests that long-term exposure of plants to high [CO2] would have a tendency to stimulate similar transcriptional responses as observed under P-limitation. However, studies on the combined effect of high [CO2] and low P on gene expression are scarce. Such studies would provide insights into the development of P efficient crops in the context of anticipated increases in atmospheric [CO2].
Collapse
Affiliation(s)
- Renu Pandey
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Gaurav Zinta
- Department of Biology, University of Antwerp, 2610, Belgium
| | - Hamada AbdElgawad
- Department of Biology, University of Antwerp, 2610, Belgium; Department of Botany, Faculty of Science, University of Beni-Sueif, Beni-Sueif 62511, Egypt
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh 201002, India
| | - Vanita Jain
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi 110012, India
| | | |
Collapse
|
6
|
Lei L, Li Y, Wang Q, Xu J, Chen Y, Yang H, Ren D. Activation of MKK9-MPK3/MPK6 enhances phosphate acquisition in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2014; 203:1146-1160. [PMID: 24865627 DOI: 10.1111/nph.12872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 04/29/2014] [Indexed: 05/04/2023]
Abstract
Despite the abundance of phosphorus in soil, very little is available as phosphate (Pi) for plants. Plants often experience low Pi (LP) stress. Intensive studies have been conducted to reveal the mechanism used by plants to deal with LP; however, Pi sensing and signal transduction pathways are not fully understood. Using in-gel kinase assays, we determined the activities of MPK3 and MPK6 in Arabidopsis thaliana seedlings under both LP and Pi-sufficient (Murashige and Skoog, MS) conditions. Using MKK9 mutant transgenic and crossed mutants, we analyzed the functions of MPK3 and MPK6 in regulating Pi responses of seedlings. The regulation of Pi responses by downstream components of MKK9-MPK3/MPK6 was also screened. LP treatment activated MPK3 and MPK6. Under both LP and MS conditions, mpk3 and mpk6 seedlings took up and accumulated less Pi than the wild-type; activation of MKK9-MPK3/MPK6 in transgenic seedlings induced the transcription of Pi acquisition-related genes and enhanced Pi uptake and accumulation, whereas its activation suppressed the transcription of anthocyanin biosynthetic genes and anthocyanin accumulation; WRKY75 was downstream of MKK9-MPK3/MPK6 when regulating the accumulation of Pi and anthocyanin, and the transcription of Pi acquisition-related and anthocyanin biosynthetic genes. These results suggest that the MKK9-MPK3/MPK6 cascade is part of the Pi signaling pathway in plants.
Collapse
Affiliation(s)
- Lei Lei
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qian Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Juan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yifang Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hailian Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
7
|
Moran Lauter AN, Peiffer GA, Yin T, Whitham SA, Cook D, Shoemaker RC, Graham MA. Identification of candidate genes involved in early iron deficiency chlorosis signaling in soybean (Glycine max) roots and leaves. BMC Genomics 2014; 15:702. [PMID: 25149281 PMCID: PMC4161901 DOI: 10.1186/1471-2164-15-702] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/12/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Iron is an essential micronutrient for all living things, required in plants for photosynthesis, respiration and metabolism. A lack of bioavailable iron in soil leads to iron deficiency chlorosis (IDC), causing a reduction in photosynthesis and interveinal yellowing of leaves. Soybeans (Glycine max (L.) Merr.) grown in high pH soils often suffer from IDC, resulting in substantial yield losses. Iron efficient soybean cultivars maintain photosynthesis and have higher yields under IDC-promoting conditions than inefficient cultivars. RESULTS To capture signaling between roots and leaves and identify genes acting early in the iron efficient cultivar Clark, we conducted a RNA-Seq study at one and six hours after replacing iron sufficient hydroponic media (100 μM iron(III) nitrate nonahydrate) with iron deficient media (50 μM iron(III) nitrate nonahydrate). At one hour of iron stress, few genes were differentially expressed in leaves but many were already changing expression in roots. By six hours, more genes were differentially expressed in the leaves, and a massive shift was observed in the direction of gene expression in both roots and leaves. Further, there was little overlap in differentially expressed genes identified in each tissue and time point. CONCLUSIONS Genes involved in hormone signaling, regulation of DNA replication and iron uptake utilization are key aspects of the early iron-efficiency response. We observed dynamic gene expression differences between roots and leaves, suggesting the involvement of many transcription factors in eliciting rapid changes in gene expression. In roots, genes involved iron uptake and development of Casparian strips were induced one hour after iron stress. In leaves, genes involved in DNA replication and sugar signaling responded to iron deficiency. The differentially expressed genes (DEGs) and signaling components identified here represent new targets for soybean improvement.
Collapse
Affiliation(s)
- Adrienne N Moran Lauter
- />USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, 1565 Agronomy Hall, Ames, IA 50011 USA
| | - Gregory A Peiffer
- />USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, 1565 Agronomy Hall, Ames, IA 50011 USA
| | - Tengfei Yin
- />Department of Statistics, Iowa State University, Ames, Iowa 50011 USA
| | - Steven A Whitham
- />Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011 USA
| | - Dianne Cook
- />Department of Statistics, Iowa State University, Ames, Iowa 50011 USA
| | - Randy C Shoemaker
- />USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, 1565 Agronomy Hall, Ames, IA 50011 USA
- />Department of Agronomy, Iowa State University, Ames, Iowa 50011 USA
| | - Michelle A Graham
- />USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, 1565 Agronomy Hall, Ames, IA 50011 USA
- />Department of Agronomy, Iowa State University, Ames, Iowa 50011 USA
| |
Collapse
|
8
|
Roldan M, Dinh P, Leung S, McManus MT. Ethylene and the responses of plants to phosphate deficiency. AOB PLANTS 2013; 5:plt013. [PMCID: PMC4104654 DOI: 10.1093/aobpla/plt013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 02/14/2013] [Indexed: 05/20/2023]
Abstract
This review considers the evidence that ethylene biosynthesis is up-regulated by locally-generated signals in response to a change in external P supply, where the hormone then mediates, with auxin, changes in root system architecture. Subsequent changes in endogenous P evoke systemic responses whereby ethylene again is important in inducing some of the key signature changes observed in P-deprived tissues (eg. phosphate transporter and acid phosphatase up-regulation). The consideration as to how plants uptake and transport phosphorus (P) is of significant agronomic and economic importance, in part driven by finite reserves of rock phosphate. Our understanding of these mechanisms has been greatly advanced, particularly with respect to the responses of plants to P deficiency and the genetic dissection of the signalling involved. Further, the realization that there are two tiers of transcriptional responses, the local, in which inorganic P (Pi) acts as an external signal independent of the endogenous P level, and the systemic involving root–shoot signalling, has now added a dimension of both clarity and complexity. Notwithstanding, it is now clear that the hormone ethylene plays a key role in mediating both levels of responses. This review, therefore, covers the role of ethylene in terms of mediating responses to P deficiency. The evidence that Pi supply regulates ethylene biosynthesis and sensitivity, and that this, in turn, regulates changes in root system architecture and in Pi-deprivation responses is examined here. While ethylene is the focus, the key interactions with auxin are also assessed, but interactions with the other hormone groups, which have recently been reviewed, are not covered. The emerging view that ethylene is a multi-faceted hormone in terms of mediating responses to P deficiency invites the dissection of the transcriptional cues that mediate changes in ethylene biosynthesis and/or sensitivity. Knowledge of the nature of such cues will subsequently reveal more of the underpinning interactions that govern P responses and provide avenues for the production of germplasm with an improved phosphate use efficiency.
Collapse
Affiliation(s)
- Marissa Roldan
- Institute of Molecular Biosciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
- Present address: AgResearch Grasslands, Private Bag 11008, Palmerston North, New Zealand
| | - Phuong Dinh
- Institute of Molecular Biosciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
- Present address: Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Susanna Leung
- Institute of Molecular Biosciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Michael T. McManus
- Institute of Molecular Biosciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
- Corresponding author's e-mail address:
| |
Collapse
|
9
|
Liang CY, Chen ZJ, Yao ZF, Tian J, Liao H. Characterization of two putative protein phosphatase genes and their involvement in phosphorus efficiency in Phaseolus vulgaris. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:400-411. [PMID: 22571280 DOI: 10.1111/j.1744-7909.2012.01126.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Protein dephosphorylation mediated by protein phosphatases plays a major role in signal transduction of plant responses to environmental stresses. In this study, two putative protein phosphatases, PvPS2:1 and PvPS2:2 were identified and characterized in bean (Phaseolus vulgaris). The two PvPS2 members were found to be localized to the plasma membrane and the nucleus by transient expression of PvPS2:GFP in onion epidermal cells. Transcripts of the two PvPS2 genes were significantly increased by phosphate (P(i) ) starvation in the two bean genotypes, G19833 (a P-efficient genotype) and DOR364 (a P-inefficient genotype). However, G19833 exhibited higher PvPS2:1 expression levels than DOR364 in both leaves and roots during P(i) starvation. Increased transcription of PvPS2:1 in response to P(i) starvation was further verified through histochemical analysis of PvPS2:1 promoter fusion ß-glucuronidase (GUS) in transgenic Arabidopsis plants. Analysis of PvPS2:1 overexpression lines in bean hairy roots and Arabidopsis showed that PvS2:1 was involved in root growth and P accumulation. Furthermore, expression levels of two P(i) starvation responsive genes were upregulated and the APase activities were enhanced in the overexpressing PvPS2:1 Arabidopsis lines. Taken together, our results strongly suggested that PvPS2:1 positively regulated plant responses to P(i) starvation, and could be further targeted as a candidate gene to improve crop P efficiency.
Collapse
Affiliation(s)
- Cui-Yue Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, China
| | | | | | | | | |
Collapse
|
10
|
Fita A, Bowen HC, Hayden RM, Nuez F, Picó B, Hammond JP. Diversity in expression of phosphorus (P) responsive genes in Cucumis melo L. PLoS One 2012; 7:e35387. [PMID: 22536378 PMCID: PMC3334927 DOI: 10.1371/journal.pone.0035387] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/15/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Phosphorus (P) is a major limiting nutrient for plant growth in many soils. Studies in model species have identified genes involved in plant adaptations to low soil P availability. However, little information is available on the genetic bases of these adaptations in vegetable crops. In this respect, sequence data for melon now makes it possible to identify melon orthologues of candidate P responsive genes, and the expression of these genes can be used to explain the diversity in the root system adaptation to low P availability, recently observed in this species. METHODOLOGY AND FINDINGS Transcriptional responses to P starvation were studied in nine diverse melon accessions by comparing the expression of eight candidate genes (Cm-PAP10.1, Cm-PAP10.2, Cm-RNS1, Cm-PPCK1, Cm-transferase, Cm-SQD1, Cm-DGD1 and Cm-SPX2) under P replete and P starved conditions. Differences among melon accessions were observed in response to P starvation, including differences in plant morphology, P uptake, P use efficiency (PUE) and gene expression. All studied genes were up regulated under P starvation conditions. Differences in the expression of genes involved in P mobilization and remobilization (Cm-PAP10.1, Cm-PAP10.2 and Cm-RNS1) under P starvation conditions explained part of the differences in P uptake and PUE among melon accessions. The levels of expression of the other studied genes were diverse among melon accessions, but contributed less to the phenotypical response of the accessions. CONCLUSIONS This is the first time that these genes have been described in the context of P starvation responses in melon. There exists significant diversity in gene expression levels and P use efficiency among melon accessions as well as significant correlations between gene expression levels and phenotypical measurements.
Collapse
Affiliation(s)
- Ana Fita
- Centro de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
11
|
Chen Z, Cui Q, Liang C, Sun L, Tian J, Liao H. Identification of differentially expressed proteins in soybean nodules under phosphorus deficiency through proteomic analysis. Proteomics 2011; 11:4648-59. [PMID: 22002838 DOI: 10.1002/pmic.201100231] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 09/05/2011] [Accepted: 09/26/2011] [Indexed: 11/09/2022]
Abstract
Symbiotic nitrogen fixation is a high-phosphorus demand process. Proteomic analysis was performed to identify the differentially expressed proteins in soybean nodules under phosphate starvation, and qRT-PCR was subsequently conducted to examine the expression patterns of the genes encoding the identified proteins. There were 44 phosphate-starvation responsive proteins identified from soybean nodules. Among them, 14 plant and 3 rhizobial proteins were up-regulated, whereas 13 plant and 14 rhizobial proteins were down-regulated by phosphate starvation. The qRT-PCR assays verified that gene expression correlated with 11 of the 14 up-regulated proteins from plants, but only 4 of 13 down-regulated proteins were correlated to the expression of the corresponding genes, suggesting that most up-regulated proteins may be controlled at the transcriptional level, whereas down-regulated proteins were controlled at the post-transcriptional level. Furthermore, a group of genes exhibited differential responses to phosphate starvation in nodules versus roots, suggesting that different adaptive responses might occur between roots and nodules. To our best knowledge, this is the first study to reveal differential protein profiles of nodules responding to phosphate starvation through proteomic analysis, which could result in a relatively comprehensive understanding of molecular mechanisms through which soybean nodules adapt to phosphorus stress.
Collapse
Affiliation(s)
- Zhijian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou, PR China
| | | | | | | | | | | |
Collapse
|
12
|
Hammond JP, Broadley MR, Bowen HC, Spracklen WP, Hayden RM, White PJ. Gene expression changes in phosphorus deficient potato (Solanum tuberosum L.) leaves and the potential for diagnostic gene expression markers. PLoS One 2011; 6:e24606. [PMID: 21935429 PMCID: PMC3173461 DOI: 10.1371/journal.pone.0024606] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 08/14/2011] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND There are compelling economic and environmental reasons to reduce our reliance on inorganic phosphate (Pi) fertilisers. Better management of Pi fertiliser applications is one option to improve the efficiency of Pi fertiliser use, whilst maintaining crop yields. Application rates of Pi fertilisers are traditionally determined from analyses of soil or plant tissues. Alternatively, diagnostic genes with altered expression under Pi limiting conditions that suggest a physiological requirement for Pi fertilisation, could be used to manage Pifertiliser applications, and might be more precise than indirect measurements of soil or tissue samples. RESULTS We grew potato (Solanum tuberosum L.) plants hydroponically, under glasshouse conditions, to control their nutrient status accurately. Samples of total leaf RNA taken periodically after Pi was removed from the nutrient solution were labelled and hybridised to potato oligonucleotide arrays. A total of 1,659 genes were significantly differentially expressed following Pi withdrawal. These included genes that encode proteins involved in lipid, protein, and carbohydrate metabolism, characteristic of Pi deficient leaves and included potential novel roles for genes encoding patatin like proteins in potatoes. The array data were analysed using a support vector machine algorithm to identify groups of genes that could predict the Pi status of the crop. These groups of diagnostic genes were tested using field grown potatoes that had either been fertilised or unfertilised. A group of 200 genes could correctly predict the Pi status of field grown potatoes. CONCLUSIONS This paper provides a proof-of-concept demonstration for using microarrays and class prediction tools to predict the Pi status of a field grown potato crop. There is potential to develop this technology for other biotic and abiotic stresses in field grown crops. Ultimately, a better understanding of crop stresses may improve our management of the crop, improving the sustainability of agriculture.
Collapse
Affiliation(s)
- John P Hammond
- Division of Plant and Crop Sciences, University of Nottingham, Loughborough, United Kingdom.
| | | | | | | | | | | |
Collapse
|
13
|
Cheng L, Bucciarelli B, Shen J, Allan D, Vance CP. Update on lupin cluster roots. Update on white lupin cluster root acclimation to phosphorus deficiency. PLANT PHYSIOLOGY 2011; 156:1025-32. [PMID: 21464472 PMCID: PMC3135949 DOI: 10.1104/pp.111.175174] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 03/25/2011] [Indexed: 05/20/2023]
Affiliation(s)
| | | | | | | | - Carroll P. Vance
- Department of Plant Nutrition, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Beijing 100193, People’s Republic of China (L.C., J.S.); Department of Agronomy and Plant Genetics (L.C., B.B., C.P.V.) and Department of Soil, Water, and Climate (D.A.), University of Minnesota, St. Paul, Minnesota 55108; United States Department of Agriculture Agricultural Research Service, St. Paul, Minnesota 55108 (B.B., C.P.V.)
| |
Collapse
|
14
|
Sbabou L, Bucciarelli B, Miller S, Liu J, Berhada F, Filali-Maltouf A, Allan D, Vance C. Molecular analysis of SCARECROW genes expressed in white lupin cluster roots. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1351-63. [PMID: 20167612 PMCID: PMC2837254 DOI: 10.1093/jxb/erp400] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 12/18/2009] [Accepted: 12/24/2009] [Indexed: 05/21/2023]
Abstract
The Scarecrow (SCR) transcription factor plays a crucial role in root cell radial patterning and is required for maintenance of the quiescent centre and differentiation of the endodermis. In response to phosphorus (P) deficiency, white lupin (Lupinus albus L.) root surface area increases some 50-fold to 70-fold due to the development of cluster (proteoid) roots. Previously it was reported that SCR-like expressed sequence tags (ESTs) were expressed during early cluster root development. Here the cloning of two white lupin SCR genes, LaSCR1 and LaSCR2, is reported. The predicted amino acid sequences of both LaSCR gene products are highly similar to AtSCR and contain C-terminal conserved GRAS family domains. LaSCR1 and LaSCR2 transcript accumulation localized to the endodermis of both normal and cluster roots as shown by in situ hybridization and gene promoter::reporter staining. Transcript analysis as evaluated by quantitative real-time-PCR (qRT-PCR) and RNA gel hybridization indicated that the two LaSCR genes are expressed predominantly in roots. Expression of LaSCR genes was not directly responsive to the P status of the plant but was a function of cluster root development. Suppression of LaSCR1 in transformed roots of lupin and Medicago via RNAi (RNA interference) delivered through Agrobacterium rhizogenes resulted in decreased root numbers, reflecting the potential role of LaSCR1 in maintaining root growth in these species. The results suggest that the functional orthologues of AtSCR have been characterized.
Collapse
Affiliation(s)
- Laila Sbabou
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St Paul, MN 55108, USA
- Laboratoire de Microbiologie et Biologie Moléculaire, Faculté des Sciences, Université Mohammed V, Rabat, Morocco
| | - Bruna Bucciarelli
- USDA-ARS, Plant Science Research Unit, 1991 Upper Buford Circle, St Paul, MN 55108, USA
| | - Susan Miller
- USDA-ARS, Plant Science Research Unit, 1991 Upper Buford Circle, St Paul, MN 55108, USA
| | - Junqi Liu
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St Paul, MN 55108, USA
| | - Fatiha Berhada
- Laboratoire de Microbiologie et Biologie Moléculaire, Faculté des Sciences, Université Mohammed V, Rabat, Morocco
| | - Abdelkarim Filali-Maltouf
- Laboratoire de Microbiologie et Biologie Moléculaire, Faculté des Sciences, Université Mohammed V, Rabat, Morocco
| | - Deborah Allan
- Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, St Paul, MN 55108, USA
| | - Carroll Vance
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St Paul, MN 55108, USA
- USDA-ARS, Plant Science Research Unit, 1991 Upper Buford Circle, St Paul, MN 55108, USA
| |
Collapse
|
15
|
Liang C, Tian J, Lam HM, Lim BL, Yan X, Liao H. Biochemical and molecular characterization of PvPAP3, a novel purple acid phosphatase isolated from common bean enhancing extracellular ATP utilization. PLANT PHYSIOLOGY 2010; 152:854-65. [PMID: 19955264 PMCID: PMC2815866 DOI: 10.1104/pp.109.147918] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 11/23/2009] [Indexed: 05/13/2023]
Abstract
Purple acid phosphatases (PAPs) play diverse physiological roles in plants. In this study, we purified a novel PAP, PvPAP3, from the roots of common bean (Phaseolus vulgaris) grown under phosphate (Pi) starvation. PvPAP3 was identified as a 34-kD monomer acting on the specific substrate, ATP, with a broad pH range and a high heat stability. The activity of PvPAP3 was insensitive to tartrate, indicating that PvPAP3 is a PAP-like protein. Amino acid sequence alignment and phylogenetic analysis suggest that PvPAP3 belongs to the group of plant PAPs with low molecular mass. Transient expression of 35S:PvPAP3-green fluorescent protein in onion (Allium cepa) epidermal cells verified that it might anchor on plasma membrane and be secreted into apoplast. Pi starvation led to induction of PvPAP3 expression in both leaves and roots of common bean, and expression of PvPAP3 was strictly dependent on phosphorus (P) availability and duration of Pi starvation. Furthermore, induction of PvPAP3 expression was more rapid and higher in a P-efficient genotype, G19833, than in a P-inefficient genotype, DOR364, suggesting possible roles of PvPAP3 in P efficiency in bean. In vivo analysis using a transgenic hairy root system of common bean showed that both growth and P uptake of bean hairy roots from the PvPAP3 overexpression transgenic lines were significantly enhanced when ATP was supplied as the sole external P source. Taken together, our results suggest that PvPAP3 is a novel PAP that might function in the adaptation of common bean to P deficiency, possibly through enhancing utilization of extracellular ATP as a P source.
Collapse
Affiliation(s)
| | | | | | | | | | - Hong Liao
- Ministry of Agriculture Key Laboratory of Soil and Plant Nutrition in South China, Root Biology Center, South China Agricultural University, Guangzhou 510642, People's Republic of China (C.L., J.T., X.Y., H.L.); Department of Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, People's Republic of China (H.-M.L.); and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China (B.L.L.)
| |
Collapse
|
16
|
Hernández G, Valdés-López O, Ramírez M, Goffard N, Weiller G, Aparicio-Fabre R, Fuentes SI, Erban A, Kopka J, Udvardi MK, Vance CP. Global changes in the transcript and metabolic profiles during symbiotic nitrogen fixation in phosphorus-stressed common bean plants. PLANT PHYSIOLOGY 2009; 151:1221-38. [PMID: 19755543 PMCID: PMC2773089 DOI: 10.1104/pp.109.143842] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 09/08/2009] [Indexed: 05/18/2023]
Abstract
Phosphorus (P) deficiency is widespread in regions where the common bean (Phaseolus vulgaris), the most important legume for human consumption, is produced, and it is perhaps the factor that most limits nitrogen fixation. Global gene expression and metabolome approaches were used to investigate the responses of nodules from common bean plants inoculated with Rhizobium tropici CIAT899 grown under P-deficient and P-sufficient conditions. P-deficient inoculated plants showed drastic reduction in nodulation and nitrogenase activity as determined by acetylene reduction assay. Nodule transcript profiling was performed through hybridization of nylon filter arrays spotted with cDNAs, approximately 4,000 unigene set, from the nodule and P-deficient root library. A total of 459 genes, representing different biological processes according to updated annotation using the UniProt Knowledgebase database, showed significant differential expression in response to P: 59% of these were induced in P-deficient nodules. The expression platform for transcription factor genes based in quantitative reverse transcriptase-polymerase chain reaction revealed that 37 transcription factor genes were differentially expressed in P-deficient nodules and only one gene was repressed. Data from nontargeted metabolic profiles indicated that amino acids and other nitrogen metabolites were decreased, while organic and polyhydroxy acids were accumulated, in P-deficient nodules. Bioinformatics analyses using MapMan and PathExpress software tools, customized to common bean, were utilized for the analysis of global changes in gene expression that affected overall metabolism. Glycolysis and glycerolipid metabolism, and starch and Suc metabolism, were identified among the pathways significantly induced or repressed in P-deficient nodules, respectively.
Collapse
Affiliation(s)
- Georgina Hernández
- Centro de Ciencias Genómicas-Universidad Nacional Autónoma de México, 62209 Cuernavaca, Morelos, México.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Valdés-López O, Arenas-Huertero C, Ramírez M, Girard L, Sánchez F, Vance CP, Luis Reyes J, Hernández G. Essential role of MYB transcription factor: PvPHR1 and microRNA: PvmiR399 in phosphorus-deficiency signalling in common bean roots. PLANT, CELL & ENVIRONMENT 2008; 31:1834-43. [PMID: 18771575 DOI: 10.1111/j.1365-3040.2008.01883.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phosphorus (P), an essential element for plants, is one of the most limiting nutrients for plant growth. A few transcription factor (TF) genes involved in P-starvation signalling have been characterized for Arabidopsis thaliana and rice. Crop production of common bean (Phaseolus vulgaris L.), the most important legume for human consumption, is often limited by low P in the soil. Despite its agronomic importance, nothing is known about transcriptional regulation in P-deficient bean plants. We functionally characterized the P-deficiency-induced MYB TF TC3604 (Dana Farber Cancer Institute, Common Bean Gene Index v.2.0), ortholog to AtPHR1 (PvPHR1). For its study, we applied RNAi technology in bean composite plants. PvPHR1 is a positive regulator of genes implicated in P transport, remobilization and homeostasis. Although there are no reports on the regulatory roles of microRNAs (miRNA) in bean, we demonstrated that PvmiR399 is an essential component of the PvPHR1 signalling pathway. The analysis of DICER-like1 (PvDCL1) silenced bean composite plants suppressed for accumulation of PvmiR399 and other miRNAs suggested that miR399 is a negative regulator of the ubiquitin E2 conjugase: PvPHO2 expression. Our results set the basis for understanding the signalling for P-starvation responses in common bean and may contribute to crop improvement.
Collapse
Affiliation(s)
- Oswaldo Valdés-López
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mor. México
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Valdés-López O, Hernández G. Transcriptional regulation and signaling in phosphorus starvation: what about legumes? JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:1213-22. [PMID: 19017108 DOI: 10.1111/j.1744-7909.2008.00758.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The availability of soil phosphorus (P), an essential element, is one of the most important requirements for plant growth and crop production. The morphological and physiological adaptations evolved by plants to cope with P starvation have been well characterized. Several P deficiency plant responses are regulated at the transcriptional level. Microarray analysis has generated valuable information on global gene expression in Arabidopsis thaliana grown under P-stress. Despite the identification of P responsive genes, little is known about the regulation of gene expression changes. Four transcription factors, PHR1, WRKY75, ZAT6 and BHLH32, involved in P starvation signaling have been characterized in Arabidopsis, and signaling pathways are deciphered. This review analyzes the current knowledge of transcriptional regulation of P starvation responses in Arabidopsis vis-à-vis legumes such as lupine, common bean and Medicago truncatula. The knowledge on regulatory and signaling mechanisms involved in P acquisition and use in legumes will be useful for improvement of these crops, which account for a large proportion of the world's crop production, providing good nutritional quality feed and food.
Collapse
Affiliation(s)
- Oswaldo Valdés-López
- Centro de Ciencias Genómicas Centre for Genomic Sciences, Universidad Nacional Autónoma de México National University of Mexico, Cuernavaca, Morelos 62210, México
| | | |
Collapse
|
19
|
|
20
|
O'Rourke JA, Charlson DV, Gonzalez DO, Vodkin LO, Graham MA, Cianzio SR, Grusak MA, Shoemaker RC. Microarray analysis of iron deficiency chlorosis in near-isogenic soybean lines. BMC Genomics 2007; 8:476. [PMID: 18154662 PMCID: PMC2253546 DOI: 10.1186/1471-2164-8-476] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 12/21/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Iron is one of fourteen mineral elements required for proper plant growth and development of soybean (Glycine max L. Merr.). Soybeans grown on calcareous soils, which are prevalent in the upper Midwest of the United States, often exhibit symptoms indicative of iron deficiency chlorosis (IDC). Yield loss has a positive linear correlation with increasing severity of chlorotic symptoms. As soybean is an important agronomic crop, it is essential to understand the genetics and physiology of traits affecting plant yield. Soybean cultivars vary greatly in their ability to respond successfully to iron deficiency stress. Microarray analyses permit the identification of genes and physiological processes involved in soybean's response to iron stress. RESULTS RNA isolated from the roots of two near isogenic lines, which differ in iron efficiency, PI 548533 (Clark; iron efficient) and PI 547430 (IsoClark; iron inefficient), were compared on a spotted microarray slide containing 9,728 cDNAs from root specific EST libraries. A comparison of RNA transcripts isolated from plants grown under iron limiting hydroponic conditions for two weeks revealed 43 genes as differentially expressed. A single linkage clustering analysis of these 43 genes showed 57% of them possessed high sequence similarity to known stress induced genes. A control experiment comparing plants grown under adequate iron hydroponic conditions showed no differences in gene expression between the two near isogenic lines. Expression levels of a subset of the differentially expressed genes were also compared by real time reverse transcriptase PCR (RT-PCR). The RT-PCR experiments confirmed differential expression between the iron efficient and iron inefficient plants for 9 of 10 randomly chosen genes examined. To gain further insight into the iron physiological status of the plants, the root iron reductase activity was measured in both iron efficient and inefficient genotypes for plants grown under iron sufficient and iron limited conditions. Iron inefficient plants failed to respond to decreased iron availability with increased activity of Fe reductase. CONCLUSION These experiments have identified genes involved in the soybean iron deficiency chlorosis response under iron deficient conditions. Single linkage cluster analysis suggests iron limited soybeans mount a general stress response as well as a specialized iron deficiency stress response. Root membrane bound reductase capacity is often correlated with iron efficiency. Under iron-limited conditions, the iron efficient plant had high root bound membrane reductase capacity while the iron inefficient plants reductase levels remained low, further limiting iron uptake through the root. Many of the genes up-regulated in the iron inefficient NIL are involved in known stress induced pathways. The most striking response of the iron inefficient genotype to iron deficiency stress was the induction of a profusion of signaling and regulatory genes, presumably in an attempt to establish and maintain cellular homeostasis. Genes were up-regulated that point toward an increased transport of molecules through membranes. Genes associated with reactive oxidative species and an ROS-defensive enzyme were also induced. The up-regulation of genes involved in DNA repair and RNA stability reflect the inhospitable cellular environment resulting from iron deficiency stress. Other genes were induced that are involved in protein and lipid catabolism; perhaps as an effort to maintain carbon flow and scavenge energy. The under-expression of a key glycolitic gene may result in the iron-inefficient genotype being energetically challenged to maintain a stable cellular environment. These experiments have identified candidate genes and processes for further experimentation to increase our understanding of soybeans' response to iron deficiency stress.
Collapse
Affiliation(s)
- Jamie A O'Rourke
- Department of Genetics, Developmental and Cellular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Dirk V Charlson
- Department of Crop, Soil, and Environmental Sciences. University of Arkansas, Fayetteville, Arkansas 72704, USA
| | - Delkin O Gonzalez
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
| | - Lila O Vodkin
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
| | - Michelle A Graham
- USDA-ARS, Corn Insect and Crop Genetics Research Unit, Iowa State University, Ames, Iowa 50011, USA
- Agronomy Department, Iowa State University, Ames, Iowa 50011, USA
| | - Silvia R Cianzio
- Agronomy Department, Iowa State University, Ames, Iowa 50011, USA
| | - Michael A Grusak
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Randy C Shoemaker
- USDA-ARS, Corn Insect and Crop Genetics Research Unit, Iowa State University, Ames, Iowa 50011, USA
- Agronomy Department, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
21
|
Tian J, Venkatachalam P, Liao H, Yan X, Raghothama K. Molecular cloning and characterization of phosphorus starvation responsive genes in common bean (Phaseolus vulgaris L.). PLANTA 2007; 227:151-65. [PMID: 17701202 DOI: 10.1007/s00425-007-0603-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 07/18/2007] [Accepted: 07/19/2007] [Indexed: 05/09/2023]
Abstract
Common bean (Phaseolus vulgaris L.) is one of the most important food legumes in the world and its production is limited by low phosphate (Pi) availability in many arable soils. To gain better insight into the molecular mechanisms by which common bean adapts to low Pi availability, we generated a suppression subtractive cDNA library to identify genes involved in P starvation responses. Over 240 putative Pi starvation-responsive genes were identified. The identified clones were sequenced and BLASTx/BLASTn analysis revealed an array of 82 genes showing a high degree of sequence homology to known and unknown proteins in the database. Transcript abundance of seven genes representing different functional categories was examined by Northern blot analysis. Six genes were strongly induced/enhanced under Pi deficiency confirming the results of SSH. Full length cDNAs for three genes, representing PvIDS4-like, PvPS2, and PvPT1 were cloned and characterized. The open reading frame (ORF) of PvIDS4-like encodes a 281-amino acid protein, containing a SPX domain. The ORF of PvPS2 gene encodes a 271-amino acid protein coding for a putative phosphatase. The PvPT1 encodes a 531-amino acid protein exhibiting high homology with high affinity Pi transporters. Expression patterns of these three genes in relation to Pi availability were evaluated with two contrasting genotypes (P-inefficient Dor364 and P-efficient G19833). Both Northern and RT-PCR results showed enhanced accumulation of phosphate transporters and phosphatases in P-efficient genotype, implying that in addition to modified root morphology and architecture, increased P transport and phosphatases activity might contribute to efficient Pi acquisition and translocation in G19833 common bean genotype under limited Pi conditions.
Collapse
Affiliation(s)
- Jiang Tian
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | | | | | | | | |
Collapse
|
22
|
Tesfaye M, Liu J, Allan DL, Vance CP. Genomic and genetic control of phosphate stress in legumes. PLANT PHYSIOLOGY 2007; 144:594-603. [PMID: 17556523 PMCID: PMC1914184 DOI: 10.1104/pp.107.097386] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 04/10/2007] [Indexed: 05/15/2023]
Affiliation(s)
- Mesfin Tesfaye
- United States Department of Agriculture Agricultural Research Service , University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | |
Collapse
|
23
|
Hernández G, Ramírez M, Valdés-López O, Tesfaye M, Graham MA, Czechowski T, Schlereth A, Wandrey M, Erban A, Cheung F, Wu HC, Lara M, Town CD, Kopka J, Udvardi MK, Vance CP. Phosphorus stress in common bean: root transcript and metabolic responses. PLANT PHYSIOLOGY 2007; 144:752-67. [PMID: 17449651 PMCID: PMC1914166 DOI: 10.1104/pp.107.096958] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 04/09/2007] [Indexed: 05/15/2023]
Abstract
Phosphorus (P) is an essential element for plant growth. Crop production of common bean (Phaseolus vulgaris), the most important legume for human consumption, is often limited by low P in the soil. Functional genomics were used to investigate global gene expression and metabolic responses of bean plants grown under P-deficient and P-sufficient conditions. P-deficient plants showed enhanced root to shoot ratio accompanied by reduced leaf area and net photosynthesis rates. Transcript profiling was performed through hybridization of nylon filter arrays spotted with cDNAs of 2,212 unigenes from a P deficiency root cDNA library. A total of 126 genes, representing different functional categories, showed significant differential expression in response to P: 62% of these were induced in P-deficient roots. A set of 372 bean transcription factor (TF) genes, coding for proteins with Inter-Pro domains characteristic or diagnostic for TF, were identified from The Institute of Genomic Research/Dana Farber Cancer Institute Common Bean Gene Index. Using real-time reverse transcription-polymerase chain reaction analysis, 17 TF genes were differentially expressed in P-deficient roots; four TF genes, including MYB TFs, were induced. Nonbiased metabolite profiling was used to assess the degree to which changes in gene expression in P-deficient roots affect overall metabolism. Stress-related metabolites such as polyols accumulated in P-deficient roots as well as sugars, which are known to be essential for P stress gene induction. Candidate genes have been identified that may contribute to root adaptation to P deficiency and be useful for improvement of common bean.
Collapse
Affiliation(s)
- Georgina Hernández
- Centro de Ciencias Genómicas-Universidad Nacional Autónoma de México, 66210 Cuernavaca, Mor., Mexico.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Samac DA, Graham MA. Recent advances in legume-microbe interactions: recognition, defense response, and symbiosis from a genomic perspective. PLANT PHYSIOLOGY 2007; 144:582-7. [PMID: 17556521 PMCID: PMC1914196 DOI: 10.1104/pp.107.096503] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 03/06/2007] [Indexed: 05/07/2023]
Affiliation(s)
- Deborah A Samac
- United States Department of Agriculture-Agricultural Research Service Plant Science Research Unit, St. Paul, Minnesota 55108, USA.
| | | |
Collapse
|
25
|
O'Rourke JA, Graham MA, Vodkin L, Gonzalez DO, Cianzio SR, Shoemaker RC. Recovering from iron deficiency chlorosis in near-isogenic soybeans: a microarray study. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2007; 45:287-92. [PMID: 17466527 DOI: 10.1016/j.plaphy.2007.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Iron deficiency chlorosis (IDC) in soybeans has proven to be a perennial problem in the calcareous soils of the U.S. upper Midwest. A historically difficult trait to study in fields, the use of hydroponics in a controlled greenhouse environment has provided a mechanism to study genetic variation while limiting environmental complications. IDC susceptible plants growing in calcareous soils and in iron-controlled hydroponic experiments often exhibit a characteristic chlorotic phenotype early in the growing season but are able to re-green later in the season. To examine the changes in gene expression of these plants, near-isogenic lines, iron efficient PI548553 (Clark) and iron inefficient PI547430 (IsoClark), developed for their response to iron deficiency stress [USDA, ARS, National Genetic Resources Program, Germplasm Resources Information Network - GRIN. (Online Database) National Germplasm Resources Laboratory, Beltsville, MD, 2004. Available: http://www.ars.grin.gov/cgi-bin/npgs/html/acc_search.pl?accid=PI+547430. [22] were grown in iron-deficient hydroponic conditions for one week, then transferred to iron sufficient conditions for another week. This induced a phenotypic response mimicking the growth of the plants in the field; initial chlorosis followed by re-greening. RNA was isolated from root tissue and transcript profiles were examined between the two near-isogenic lines using publicly available cDNA microarrays. By alleviating the iron deficiency stress our expectation was that plants would return to baseline expression levels. However, the microarray comparison identified four cDNAs that were under-expressed by a two-fold or greater difference in the iron inefficient plant compared to the iron efficient plant. This differential expression was re-examined and confirmed by real time PCR experimentation. Control experiments showed that these genes are not differentially expressed in plants grown continually under iron rich hydroponic conditions. The expression differences suggest potential residual effects of iron deficiency on plant health.
Collapse
Affiliation(s)
- Jamie A O'Rourke
- Department of Genetics, Developmental and Cellular Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | |
Collapse
|