1
|
Nuhkat M, Brosché M, Stoelzle-Feix S, Dietrich P, Hedrich R, Roelfsema MRG, Kollist H. Rapid depolarization and cytosolic calcium increase go hand-in-hand in mesophyll cells' ozone response. THE NEW PHYTOLOGIST 2021; 232:1692-1702. [PMID: 34482538 DOI: 10.1111/nph.17711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Plant stress signalling involves bursts of reactive oxygen species (ROS), which can be mimicked by the application of acute pulses of ozone. Such ozone-pulses inhibit photosynthesis and trigger stomatal closure in a few minutes, but the signalling that underlies these responses remains largely unknown. We measured changes in Arabidopsis thaliana gas exchange after treatment with acute pulses of ozone and set up a system for simultaneous measurement of membrane potential and cytosolic calcium with the fluorescent reporter R-GECO1. We show that within 1 min, prior to stomatal closure, O3 triggered a drop in whole-plant CO2 uptake. Within this early phase, O3 pulses (200-1000 ppb) elicited simultaneous membrane depolarization and cytosolic calcium increase, whereas these pulses had no long-term effect on either stomatal conductance or photosynthesis. In contrast, pulses of 5000 ppb O3 induced cell death, systemic Ca2+ signals and an irreversible drop in stomatal conductance and photosynthetic capacity. We conclude that mesophyll cells respond to ozone in a few seconds by distinct pattern of plasma membrane depolarizations accompanied by an increase in the cytosolic calcium ion (Ca2+ ) level. These responses became systemic only at very high ozone concentrations. Thus, plants have rapid mechanism to sense and discriminate the strength of ozone signals.
Collapse
Affiliation(s)
- Maris Nuhkat
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| | - Mikael Brosché
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Viikinkaari 1, Biocentre 3, Helsinki, 00790, Finland
| | | | - Petra Dietrich
- Molecular Plant Physiology, Department of Biology, University of Erlangen-Nürnberg, Staudtstrasse 5, Erlangen, 91058, Germany
| | - Rainer Hedrich
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, University of Würzburg, Julius-von-Sachs-Platz 2, Würzburg, D-97082, Germany
| | - M Rob G Roelfsema
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, University of Würzburg, Julius-von-Sachs-Platz 2, Würzburg, D-97082, Germany
| | - Hannes Kollist
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| |
Collapse
|
2
|
Tanveer M, Shabala S. Neurotransmitters in Signalling and Adaptation to Salinity Stress in Plants. NEUROTRANSMITTERS IN PLANT SIGNALING AND COMMUNICATION 2020. [DOI: 10.1007/978-3-030-54478-2_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
3
|
Colmenero-Flores JM, Franco-Navarro JD, Cubero-Font P, Peinado-Torrubia P, Rosales MA. Chloride as a Beneficial Macronutrient in Higher Plants: New Roles and Regulation. Int J Mol Sci 2019; 20:E4686. [PMID: 31546641 PMCID: PMC6801462 DOI: 10.3390/ijms20194686] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/02/2019] [Indexed: 12/24/2022] Open
Abstract
Chloride (Cl-) has traditionally been considered a micronutrient largely excluded by plants due to its ubiquity and abundance in nature, its antagonism with nitrate (NO3-), and its toxicity when accumulated at high concentrations. In recent years, there has been a paradigm shift in this regard since Cl- has gone from being considered a harmful ion, accidentally absorbed through NO3- transporters, to being considered a beneficial macronutrient whose transport is finely regulated by plants. As a beneficial macronutrient, Cl- determines increased fresh and dry biomass, greater leaf expansion, increased elongation of leaf and root cells, improved water relations, higher mesophyll diffusion to CO2, and better water- and nitrogen-use efficiency. While optimal growth of plants requires the synchronic supply of both Cl- and NO3- molecules, the NO3-/Cl- plant selectivity varies between species and varieties, and in the same plant it can be modified by environmental cues such as water deficit or salinity. Recently, new genes encoding transporters mediating Cl- influx (ZmNPF6.4 and ZmNPF6.6), Cl- efflux (AtSLAH3 and AtSLAH1), and Cl- compartmentalization (AtDTX33, AtDTX35, AtALMT4, and GsCLC2) have been identified and characterized. These transporters have proven to be highly relevant for nutrition, long-distance transport and compartmentalization of Cl-, as well as for cell turgor regulation and stress tolerance in plants.
Collapse
Affiliation(s)
- José M Colmenero-Flores
- Instituto de Recursos Naturales y Agrobiología, Spanish National Research Council (CSIC), Avda Reina Mercedes 10, 41012 Sevilla, Spain.
| | - Juan D Franco-Navarro
- Instituto de Recursos Naturales y Agrobiología, Spanish National Research Council (CSIC), Avda Reina Mercedes 10, 41012 Sevilla, Spain.
| | - Paloma Cubero-Font
- Instituto de Recursos Naturales y Agrobiología, Spanish National Research Council (CSIC), Avda Reina Mercedes 10, 41012 Sevilla, Spain.
- Biochimie et physiologie Moléculaire des Plantes (BPMP), Univ Montpellier, CNRS, INRA, SupAgro, 2 place P. Viala, 34060 Montpellier, France.
| | - Procopio Peinado-Torrubia
- Instituto de Recursos Naturales y Agrobiología, Spanish National Research Council (CSIC), Avda Reina Mercedes 10, 41012 Sevilla, Spain.
| | - Miguel A Rosales
- Instituto de Recursos Naturales y Agrobiología, Spanish National Research Council (CSIC), Avda Reina Mercedes 10, 41012 Sevilla, Spain.
| |
Collapse
|
4
|
Dédaldéchamp F, Moyen C, Fleurat-Lessard P, Roblin G. Characteristic early membrane effects induced by tryptophan in pulvinar motor cells. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:528-535. [PMID: 31473567 DOI: 10.1016/j.plaphy.2019.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/02/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Tryptophan at concentrations higher than 0.1 mM, triggered characteristic early physiological effects such as rapid (within 5 min) dose-dependent membrane hyperpolarization in Mimosa pudica motor cells and modification of the time course of the spontaneous proton efflux monitored in the incubation medium of pulvinar tissues. The rapid modifications of the leaf turgor-mediated movements seen on the primary pulvini of M. pudica following a shock and on Cassia fasciculata leaflets during a transition from light to darkness indicate that tryptophan disturbed the ionic migrations involved in the electrophysiological events and in the osmocontractile reaction of the motor cells. These reactions were specific to tryptophan compared to those induced by serine and 5-hydroxytryptophan. The tryptophan mode of action cannot be linked to a direct modification of the plasma membrane H+-ATPase activity as monitored on purified pulvinar plasma membrane vesicles. The tryptophan metabolism-linked products tryptamine and indole also inhibited the motile reactions, activated in a continuous manner the H+ secretion of pulvinar tissues and showed properties of a protonophore and an ATPase activity inhibitor on plasma membrane vesicles, respectively. The specific behavior of tryptophan in the reaction studies here is discussed in light of the previously reported action of phytohormones.
Collapse
Affiliation(s)
- Fabienne Dédaldéchamp
- University of Poitiers, UFR Sciences Fondamentales et Appliquées, UMR CNRS 7267 Laboratoire EBI Ecologie et Biologie des Interactions, Equipe SEVE Sucres & Echanges Végétaux Environnement 3, rue Jacques Fort, Bât. B31, TSA 51106, 86073, Poitiers Cedex 9, France.
| | - Christelle Moyen
- University of Bourgogne Franche-Comté, Laboratoire de Chrono-Environnement, UMR CNRS 6249 UsC INRA, 16 route de Gray, 25000, Besançon, France
| | - Pierrette Fleurat-Lessard
- University of Poitiers, UFR Sciences Fondamentales et Appliquées, UMR CNRS 7267 Laboratoire EBI Ecologie et Biologie des Interactions, Equipe SEVE Sucres & Echanges Végétaux Environnement 3, rue Jacques Fort, Bât. B31, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Gabriel Roblin
- University of Poitiers, UFR Sciences Fondamentales et Appliquées, UMR CNRS 7267 Laboratoire EBI Ecologie et Biologie des Interactions, Equipe SEVE Sucres & Echanges Végétaux Environnement 3, rue Jacques Fort, Bât. B31, TSA 51106, 86073, Poitiers Cedex 9, France
| |
Collapse
|
5
|
Kurusu T, Mitsuka D, Yagi C, Kitahata N, Tsutsui T, Ueda T, Yamamoto Y, Negi J, Iba K, Betsuyaku S, Kuchitsu K. Involvement of S-type anion channels in disease resistance against an oomycete pathogen in Arabidopsis seedlings. Commun Integr Biol 2018; 11:1-6. [PMID: 30214673 PMCID: PMC6132426 DOI: 10.1080/19420889.2018.1495007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/01/2018] [Accepted: 06/23/2018] [Indexed: 11/29/2022] Open
Abstract
Pharmacological indications suggest that anion channel-mediated plasma membrane (PM) anion efflux is crucial in early defense signaling to induce immune responses and programmed cell death in plants. Arabidopsis SLAC1, an S-type anion channel required for stomatal closure, is involved in cryptogein-induced PM Cl- efflux to positively modulate the activation of other ion fluxes, production of reactive oxygen species and a wide range of defense responses including hypersensitive cell death in tobacco BY-2 cells. We here analyzed disease resistance against several pathogens in multiple mutants of the SLAC/SLAH channels of Arabidopsis. Resistance against a biotrophic oomycete Hyaloperonospora arabidopsidis Noco2 was significantly enhanced in the SLAC1-overexpressing plants than in the wild-type, while that against a bacteria Pseudomonas syringae was not affected significantly. Possible regulatory roles of S-type anion channels in plant immunity and disease resistance against bacterial and oomycete pathogens is discussed.
Collapse
Affiliation(s)
- Takamitsu Kurusu
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
- Imaging Frontier Center, Tokyo University of Science, Noda, Japan
| | - Daiki Mitsuka
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Chikako Yagi
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Nobutaka Kitahata
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
- Imaging Frontier Center, Tokyo University of Science, Noda, Japan
| | - Tomokazu Tsutsui
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
| | | | - Juntaro Negi
- Department of Biology, Kyushu University, Fukuoka, Japan
| | - Koh Iba
- Department of Biology, Kyushu University, Fukuoka, Japan
| | - Shigeyuki Betsuyaku
- Japan Science and Technology Agency (JST), PRESTO, Kawaguchi, Japan
- Department of Biological Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
- Imaging Frontier Center, Tokyo University of Science, Noda, Japan
| |
Collapse
|
6
|
Roblin G, Octave S, Faucher M, Fleurat-Lessard P, Berjeaud JM. Cysteine: A multifaceted amino acid involved in signaling, plant resistance and antifungal development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:77-89. [PMID: 29852365 DOI: 10.1016/j.plaphy.2018.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/04/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Early effects induced by cysteine were monitored using the model of Mimosa pudica pulvinar cells. Rapid dose-dependent membrane depolarization (within seconds) and modification of proton secretion (within minutes) were triggered at cysteine concentrations higher than 0.1 mM. These effects did not result from a modification of the plasma membrane H+-ATPase activity nor from a protonophore effect as shown by assays on plasma membrane vesicles isolated from pulvinar tissues. In a 0.5-10 mM range, cysteine inhibited the ion-driven turgor-mediated seismonastic reaction of Mimosa pudica primary pulvini and the dark-induced movement of Cassia fasciculata leaflets. At concentrations higher than 1 mM, it induced a long-lasting leaflet necrosis dependent on the concentration and treatment duration. Electron microscopy showed that cysteine induced important damage in the nucleus, mitochondria, endoplasmic reticulum and Golgi of the M. pudica motor cell. Cysteine inhibited in a concentration-dependent manner, from 0.5 to 20 mM, both the mycelial growth and the spore germination of the fungal pathogens Phaeomoniella chlamydospora and Phaeoacremonium minimum implicated in esca disease of grapevines. Using [35S] cysteine, we showed that the amino acid was absorbed following leaf spraying, translocated from leaves to other parts of grapevine cuttings and accumulated within trunks and roots. Therefore, cysteine showed relevant properties to be a candidate able to control fungal diseases either by acting as an early signal directing plant host reaction or/and by acting directly on fungal development.
Collapse
Affiliation(s)
- Gabriel Roblin
- Université de Poitiers, Ecologie & Biologie des Interactions, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 Poitiers cedex 9, France
| | - Stéphane Octave
- Université de Poitiers, Ecologie & Biologie des Interactions, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 Poitiers cedex 9, France; Current address: Sorbonne Universités, Université de Technologie de Compiègne, UMR CNRS 7025, Génie Enzymatique et Cellulaire, Rue du Docteur Schweitzer CS 60319, 60203 Compiègne Cedex, France
| | - Mireille Faucher
- Université de Poitiers, Ecologie & Biologie des Interactions, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 Poitiers cedex 9, France
| | - Pierrette Fleurat-Lessard
- Université de Poitiers, Ecologie & Biologie des Interactions, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 Poitiers cedex 9, France
| | - Jean-Marc Berjeaud
- Université de Poitiers, Ecologie & Biologie des Interactions, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 Poitiers cedex 9, France.
| |
Collapse
|
7
|
Ramesh SA, Tyerman SD, Gilliham M, Xu B. γ-Aminobutyric acid (GABA) signalling in plants. Cell Mol Life Sci 2017; 74:1577-1603. [PMID: 27838745 PMCID: PMC11107511 DOI: 10.1007/s00018-016-2415-7] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/06/2016] [Accepted: 11/08/2016] [Indexed: 01/11/2023]
Abstract
The role of γ-aminobutyric acid (GABA) as a signal in animals has been documented for over 60 years. In contrast, evidence that GABA is a signal in plants has only emerged in the last 15 years, and it was not until last year that a mechanism by which this could occur was identified-a plant 'GABA receptor' that inhibits anion passage through the aluminium-activated malate transporter family of proteins (ALMTs). ALMTs are multigenic, expressed in different organs and present on different membranes. We propose GABA regulation of ALMT activity could function as a signal that modulates plant growth, development, and stress response. In this review, we compare and contrast the plant 'GABA receptor' with mammalian GABAA receptors in terms of their molecular identity, predicted topology, mode of action, and signalling roles. We also explore the implications of the discovery that GABA modulates anion flux in plants, its role in signal transduction for the regulation of plant physiology, and predict the possibility that there are other GABA interaction sites in the N termini of ALMT proteins through in silico evolutionary coupling analysis; we also explore the potential interactions between GABA and other signalling molecules.
Collapse
Affiliation(s)
- Sunita A Ramesh
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Stephen D Tyerman
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Matthew Gilliham
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Bo Xu
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia.
| |
Collapse
|
8
|
Roblin G, Laduranty J, Bonmort J, Aidene M, Chollet JF. Unsaturated amino acids derived from isoleucine trigger early membrane effects on plant cells. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 107:67-74. [PMID: 27254795 DOI: 10.1016/j.plaphy.2016.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/13/2016] [Accepted: 05/18/2016] [Indexed: 06/05/2023]
Abstract
Unsaturated amino acids (UnsAA) have been shown to affect the activity of various biological processes. However, their mode of action has been investigated poorly thus far. We show in this work that 2-amino-3-methyl-4-pentenoic acid (C2) and 2-amino-3-methyl-4-pentynoic acid (C3) structurally derived from isoleucine (Ile) exhibited a multisite action on plant cells. For one, C2 and C3 induced early modifications at the plasma membrane level, as shown by the hyperpolarization monitored by microelectrode implantation in the pulvinar cells of Mimosa pudica, indicating that these compounds are able to modify ionic fluxes. In particular, proton (H(+)) fluxes were modified, as shown by the pH rise monitored in the bathing medium of pulvinar tissues. A component of this effect may be linked to the inhibitory effect observed on the proton pumping and the vanadate-sensitive activity of the plasma membrane H(+)-ATPase monitored in plasma membrane vesicles (PMVs) purified from pulvinar tissues of M. pudica and leaf tissues of Beta vulgaris. This effect may explain, in part, the inhibitory effect of the compounds on the uptake capacity of sucrose and valine by B. vulgaris leaf tissues. In contrast, an unexpected action was observed in cell reactions, implicating ion fluxes and water movement. Indeed, the osmocontractile reactions of pulvini induced either by a mechanical shock in M. pudica or by dark and light signals in Cassia fasciculata were increased, indicating that, compared to Ile, these compounds may modify in a specific way the plasma membrane permeability to water and ions.
Collapse
Affiliation(s)
- Gabriel Roblin
- Laboratoire EBI (Écologie et Biologie des Interactions), UMR CNRS 7267, Équipe SEVE (Sucres, Échanges Végétaux, Environnement), Université de Poitiers, 3 rue Jacques Fort, TSA 51106, F-86073 Poitiers Cedex 9, France
| | - Joëlle Laduranty
- IC2MP (Institut de Chimie des Milieux et des Matériaux de Poitiers), UMR CNRS 7285, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, F-86073 Poitiers Cedex 9, France
| | - Janine Bonmort
- Laboratoire EBI (Écologie et Biologie des Interactions), UMR CNRS 7267, Équipe SEVE (Sucres, Échanges Végétaux, Environnement), Université de Poitiers, 3 rue Jacques Fort, TSA 51106, F-86073 Poitiers Cedex 9, France
| | - Mohand Aidene
- Département de Chimie, Université de Tizi-Ouzou, BP 17, RP 15000 Tizi-Ouzou, Algeria
| | - Jean-François Chollet
- IC2MP (Institut de Chimie des Milieux et des Matériaux de Poitiers), UMR CNRS 7285, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, F-86073 Poitiers Cedex 9, France.
| |
Collapse
|
9
|
Guo W, Zuo Z, Cheng X, Sun J, Li H, Li L, Qiu JL. The chloride channel family gene CLCd negatively regulates pathogen-associated molecular pattern (PAMP)-triggered immunity in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1205-15. [PMID: 24449384 PMCID: PMC3935575 DOI: 10.1093/jxb/ert484] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chloride channel (CLC) family genes are ubiquitous from prokaryotes to eukaryotes and encode proteins with both channel and transporter activities. The Arabidopsis thaliana genome encodes seven CLC genes, and their products are found in a variety of cellular compartments and have various physiological functions. However, a role for AtCLCs in plant innate immunity has not previously been demonstrated. Here it is reported that AtCLCd is a negative regulator of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). T-DNA insertion mutants of AtCLCd exhibited enhanced responses to the elicitor, flg22. The PTI phenotypes of the clcd mutants were rescued by expression of AtCLCd. Overexpression of AtCLCd led to impaired flg22-induced responses. In line with a role for AtCLCd in PTI, the clcd mutants were more resistant to a virulent strain of the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 when spray inoculated, while AtCLCd-overexpressing lines displayed increased susceptibility to this pathogen. Interestingly, flg22 treatment was found to repress the expression of AtCLCd. In addition, its expression was elevated in mutants of the flg22 pattern recognition receptor (PRR) FLS2 and the PRR regulatory proteins BAK1 and BKK1, and reduced in an FLS2-overexpressing line. These latter findings indicate that FLS2 complexes regulate the expression of AtCLCd, further supporting a role for AtCLCd in PTI.
Collapse
Affiliation(s)
- Wei Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhangli Zuo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xi Cheng
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Juan Sun
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huali Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Legong Li
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jin-Long Qiu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
10
|
Guo W, Wang C, Zuo Z, Qiu JL. The roles of anion channels in Arabidopsis immunity. PLANT SIGNALING & BEHAVIOR 2014; 9:e29230. [PMID: 25763497 PMCID: PMC4203573 DOI: 10.4161/psb.29230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 05/14/2014] [Accepted: 05/14/2014] [Indexed: 06/04/2023]
Abstract
Anion efflux is one of the most immediate responses of plant cells to pathogen attacks, suggesting that anion channels may play a role in plant defense. Recently we reported that the chloride channel AtCLCd negatively regulates Arabidopsis pathogen-associated molecular pattern-triggered immunity (PTI), probably by affecting trafficking of the pattern recognition receptors (PRRs). Since AtCLCd is localized to the trans-Golgi network, it is not likely to be directly involved in anion flux across the plasma membrane. Here, we used a pharmacological approach to explore further the function of plasma membrane-localized R-type and S-type anion channels in plant immunity. We found that the R-type and S-type anion channels play opposite roles in Arabidopsis innate immunity. Inhibition of the R-type anion channels enhances, whereas inhibition of the S-type channels inhibits PTI and effector-triggered immunity (ETI).
Collapse
Affiliation(s)
| | | | - Zhangli Zuo
- State Key Laboratory of Plant Genomics; Institute of Microbiology; Chinese Academy of Sciences; Beijing, PR China
| | - Jin-Long Qiu
- State Key Laboratory of Plant Genomics; Institute of Microbiology; Chinese Academy of Sciences; Beijing, PR China
| |
Collapse
|
11
|
Kurusu T, Saito K, Horikoshi S, Hanamata S, Negi J, Yagi C, Kitahata N, Iba K, Kuchitsu K. An S-type anion channel SLAC1 is involved in cryptogein-induced ion fluxes and modulates hypersensitive responses in tobacco BY-2 cells. PLoS One 2013; 8:e70623. [PMID: 23950973 PMCID: PMC3741279 DOI: 10.1371/journal.pone.0070623] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/19/2013] [Indexed: 01/01/2023] Open
Abstract
Pharmacological evidence suggests that anion channel-mediated plasma membrane anion effluxes are crucial in early defense signaling to induce immune responses and hypersensitive cell death in plants. However, their molecular bases and regulation remain largely unknown. We overexpressed Arabidopsis SLAC1, an S-type anion channel involved in stomatal closure, in cultured tobacco BY-2 cells and analyzed the effect on cryptogein-induced defense responses including fluxes of Cl(-) and other ions, production of reactive oxygen species (ROS), gene expression and hypersensitive responses. The SLAC1-GFP fusion protein was localized at the plasma membrane in BY-2 cells. Overexpression of SLAC1 enhanced cryptogein-induced Cl(-) efflux and extracellular alkalinization as well as rapid/transient and slow/prolonged phases of NADPH oxidase-mediated ROS production, which was suppressed by an anion channel inhibitor, DIDS. The overexpressor also showed enhanced sensitivity to cryptogein to induce downstream immune responses, including the induction of defense marker genes and the hypersensitive cell death. These results suggest that SLAC1 expressed in BY-2 cells mediates cryptogein-induced plasma membrane Cl(-) efflux to positively modulate the elicitor-triggered activation of other ion fluxes, ROS as well as a wide range of defense signaling pathways. These findings shed light on the possible involvement of the SLAC/SLAH family anion channels in cryptogein signaling to trigger the plasma membrane ion channel cascade in the plant defense signal transduction network.
Collapse
Affiliation(s)
- Takamitsu Kurusu
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
- Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | - Katsunori Saito
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Sonoko Horikoshi
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Shigeru Hanamata
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Juntaro Negi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Chikako Yagi
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Nobutaka Kitahata
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Koh Iba
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
- Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
12
|
Saeedi S, Rocher F, Bonmort J, Fleurat-Lessard P, Roblin G. Early membrane events induced by salicylic acid in motor cells of the Mimosa pudica pulvinus. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1829-1836. [PMID: 23487303 DOI: 10.1093/jxb/ert048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Salicylic acid (o-hydroxy benzoic acid) (SA) induced a rapid dose-dependent membrane hyperpolarization (within seconds) and a modification of the proton secretion (within minutes) of Mimosa pudica pulvinar cells at concentrations higher than 0.1mM. Observations on plasma membrane vesicles isolated from pulvinar tissues showed that SA acted directly at the membrane level through a protonophore action as suggested by the inhibition of the proton gradient and the lack of effect on H(+)-ATPase catalytic activity. Comparative data obtained with protonophores (carbonylcyanide-m-chlorophenylhydrazone and 2,4-dinitrophenol) and inhibitors of ATPases (vanadate, N,N'-dicyclohexylcarbodiimide, and diethylstilbestrol) corroborated this conclusion. Consequently, the collapse of the proton motive force led to an impairment in membrane functioning. This impairment is illustrated by the inhibition of the ion-driven turgor-mediated seismonastic reaction of the pulvinus following SA treatment. SA acted in a specific manner as its biosynthetic precursor benzoic acid induced much milder effects and the m- and p-OH benzoic acid derivatives did not trigger similar characteristic effects. Therefore, SA may be considered both a membrane signal molecule and a metabolic effector following its uptake in the cells.
Collapse
Affiliation(s)
- Saed Saeedi
- Laboratoire Physiologie Moléculaire du Transport des Sucres, Université de Poitiers, EBI UMR CNRS 7267, 3 rue Jacques Fort, F-86022 Poitiers cedex, France
| | | | | | | | | |
Collapse
|
13
|
Koers S, Guzel-Deger A, Marten I, Roelfsema MRG. Barley mildew and its elicitor chitosan promote closed stomata by stimulating guard-cell S-type anion channels. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:670-80. [PMID: 21781196 DOI: 10.1111/j.1365-313x.2011.04719.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Stomatal closure is known to be associated with early defence responses of plant cells triggered by microbe-associated molecular patterns (MAMPs). However, the molecular mechanisms underlying these guard-cell responses have not yet been elucidated. We therefore studied pathogen-induced changes in ion channel activity in Hordeum vulgare guard cells. Barley mildew (Blumeria graminis) hyphae growing on leaves inhibited light-induced stomatal opening, starting at 9 h after inoculation, when appressoria had developed. Alternatively, stomatal closure was induced by nano-infusion of chitosan via open stomata into the sub-stomatal cavity. Experiments using intracellular double-barreled micro-electrodes revealed that mildew stimulated S-type (slow) anion channels in guard cells. These channels enable the efflux of anions from guard cells and also promote K(+) extrusion by altering the plasma membrane potential. Stimulation of S-type anion channels was also provoked by nano-infusion of chitosan. These data suggest that MAMPs of mildew hyphae penetrating the cuticle provoke activation of S-type anion channels in guard cells. In response, guard cells extrude K(+) salts, resulting in stomatal closure. Plasma membrane anion channels probably represent general targets of MAMP signaling in plants, as these elicitors depolarize the plasma membrane of various cell types.
Collapse
Affiliation(s)
- Sandra Koers
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Würzburg University, Julius-von-Sachs Platz 2, D-97082 Würzburg, Germany
| | | | | | | |
Collapse
|
14
|
Barbier-Brygoo H, De Angeli A, Filleur S, Frachisse JM, Gambale F, Thomine S, Wege S. Anion channels/transporters in plants: from molecular bases to regulatory networks. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:25-51. [PMID: 21275645 DOI: 10.1146/annurev-arplant-042110-103741] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Anion channels/transporters are key to a wide spectrum of physiological functions in plants, such as osmoregulation, cell signaling, plant nutrition and compartmentalization of metabolites, and metal tolerance. The recent identification of gene families encoding some of these transport systems opened the way for gene expression studies, structure-function analyses of the corresponding proteins, and functional genomics approaches toward further understanding of their integrated roles in planta. This review, based on a few selected examples, illustrates that the members of a given gene family exhibit a diversity of substrate specificity, regulation, and intracellular localization, and are involved in a wide range of physiological functions. It also shows that post-translational modifications of transport proteins play a key role in the regulation of anion transport activity. Key questions arising from the increasing complexity of networks controlling anion transport in plant cells (the existence of redundancy, cross talk, and coordination between various pathways and compartments) are also addressed.
Collapse
|
15
|
Diatloff E, Peyronnet R, Colcombet J, Thomine S, Barbier-Brygoo H, Frachisse JM. R type anion channel: a multifunctional channel seeking its molecular identity. PLANT SIGNALING & BEHAVIOR 2010; 5:1347-52. [PMID: 21051946 PMCID: PMC3115232 DOI: 10.4161/psb.5.11.12921] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 07/05/2010] [Indexed: 05/24/2023]
Abstract
Plant genomes code for channels involved in the transport of cations, anions and uncharged molecules through membranes. Although the molecular identity of channels for cations and uncharged molecules has progressed rapidly in the recent years, the molecular identity of anion channels has lagged behind. Electrophysiological studies have identified S-type (slow) and R-type (rapid) anion channels. In this brief review, we summarize the proposed functions of the R-type anion channels which, like the S-type, were first characterized by electrophysiology over 20 years ago, but unlike the S-type, have still yet to be cloned. We show that the R-type channel can play multiple roles.
Collapse
Affiliation(s)
- Eugene Diatloff
- Institut des Sciences du Végétal; CNRS UPR 2355; Gif sur Yvette
| | - Rémi Peyronnet
- IPMC-CNRS; Université de Nice Sophia Antipolis; Valbonne
| | | | | | | | | |
Collapse
|
16
|
Kadono T, Tran D, Errakhi R, Hiramatsu T, Meimoun P, Briand J, Iwaya-Inoue M, Kawano T, Bouteau F. Increased anion channel activity is an unavoidable event in ozone-induced programmed cell death. PLoS One 2010; 5:e13373. [PMID: 20967217 PMCID: PMC2954175 DOI: 10.1371/journal.pone.0013373] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 09/20/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Ozone is a major secondary air pollutant often reaching high concentrations in urban areas under strong daylight, high temperature and stagnant high-pressure systems. Ozone in the troposphere is a pollutant that is harmful to the plant. PRINCIPAL FINDINGS By exposing cells to a strong pulse of ozonized air, an acute cell death was observed in suspension cells of Arabidopsis thaliana used as a model. We demonstrated that O(3) treatment induced the activation of a plasma membrane anion channel that is an early prerequisite of O(3)-induced cell death in A. thaliana. Our data further suggest interplay of anion channel activation with well known plant responses to O(3), Ca(2+) influx and NADPH-oxidase generated reactive oxygen species (ROS) in mediating the oxidative cell death. This interplay might be fuelled by several mechanisms in addition to the direct ROS generation by O(3); namely, H(2)O(2) generation by salicylic and abscisic acids. Anion channel activation was also shown to promote the accumulation of transcripts encoding vacuolar processing enzymes, a family of proteases previously reported to contribute to the disruption of vacuole integrity observed during programmed cell death. SIGNIFICANCE Collectively, our data indicate that anion efflux is an early key component of morphological and biochemical events leading to O(3)-induced programmed cell death. Because ion channels and more specifically anion channels assume a crucial position in cells, an understanding about the underlying role(s) for ion channels in the signalling pathway leading to programmed cell death is a subject that warrants future investigation.
Collapse
Affiliation(s)
- Takashi Kadono
- Laboratoire d'Electrophysiologie des Membranes,
Université Paris Diderot-Paris 7, Institut de Biologie des Plantes,
Bât 630, Orsay, France
- Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka,
Japan
| | - Daniel Tran
- Laboratoire d'Electrophysiologie des Membranes,
Université Paris Diderot-Paris 7, Institut de Biologie des Plantes,
Bât 630, Orsay, France
| | - Rafik Errakhi
- Laboratoire d'Electrophysiologie des Membranes,
Université Paris Diderot-Paris 7, Institut de Biologie des Plantes,
Bât 630, Orsay, France
| | - Takuya Hiramatsu
- Graduate School of Environmental Engineering, University of Kitakyushu
1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Japan
| | - Patrice Meimoun
- Laboratoire d'Electrophysiologie des Membranes,
Université Paris Diderot-Paris 7, Institut de Biologie des Plantes,
Bât 630, Orsay, France
| | - Joël Briand
- Laboratoire d'Electrophysiologie des Membranes,
Université Paris Diderot-Paris 7, Institut de Biologie des Plantes,
Bât 630, Orsay, France
| | - Mari Iwaya-Inoue
- Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka,
Japan
| | - Tomonori Kawano
- Laboratoire d'Electrophysiologie des Membranes,
Université Paris Diderot-Paris 7, Institut de Biologie des Plantes,
Bât 630, Orsay, France
- Graduate School of Environmental Engineering, University of Kitakyushu
1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Japan
| | - François Bouteau
- Laboratoire d'Electrophysiologie des Membranes,
Université Paris Diderot-Paris 7, Institut de Biologie des Plantes,
Bât 630, Orsay, France
- Graduate School of Environmental Engineering, University of Kitakyushu
1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Japan
| |
Collapse
|
17
|
Jeworutzki E, Roelfsema MRG, Anschütz U, Krol E, Elzenga JTM, Felix G, Boller T, Hedrich R, Becker D. Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involves Ca-associated opening of plasma membrane anion channels. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:367-78. [PMID: 20113440 DOI: 10.1111/j.1365-313x.2010.04155.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The perception of microbes by plants involves highly conserved molecular signatures that are absent from the host and that are collectively referred to as microbe-associated molecular patterns (MAMPs). The Arabidopsis pattern recognition receptors FLAGELLIN-SENSING 2 (FLS2) and EF-Tu receptor (EFR) represent genetically well studied paradigms that mediate defense against bacterial pathogens. Stimulation of these receptors through their cognate ligands, bacterial flagellin or bacterial elongation factor Tu, leads to a defense response and ultimately to increased resistance. However, little is known about the early signaling pathway of these receptors. Here, we characterize this early response in situ, using an electrophysiological approach. In line with a release of negatively charged molecules, voltage recordings of microelectrode-impaled mesophyll cells and root hairs of Col-0 Arabidopsis plants revealed rapid, dose-dependent membrane potential depolarizations in response to either flg22 or elf18. Using ion-selective microelectrodes, pronounced anion currents were recorded upon application of flg22 and elf18, indicating that the signaling cascades initiated by each of the two receptors converge on the same plasma membrane ion channels. Combined calcium imaging and electrophysiological measurements revealed that the depolarization was superimposed by an increase in cytosolic calcium that was indispensable for depolarization. NADPH oxidase mutants were still depolarized upon elicitor stimulation, suggesting a reactive oxygen species-independent membrane potential response. Furthermore, electrical signaling in response to either flg22 or elf 18 critically depends on the activity of the FLS2-associated receptor-like kinase BAK1, suggesting that activation of FLS2 and EFR lead to BAK1-dependent, calcium-associated plasma membrane anion channel opening as an initial step in the pathogen defense pathway.
Collapse
Affiliation(s)
- Elena Jeworutzki
- Julius-von-Sachs Institute of Biosciences, Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|