1
|
Gao YQ, Guo R, Wang HY, Sun JY, Chen CZ, Hu D, Zhong CW, Jiang MM, Shen RF, Zhu XF, Huang J. Melatonin Increases Root Cell Wall Phosphorus Reutilization via an NO Dependent Pathway in Rice (Oryza sativa). J Pineal Res 2024; 76:e12995. [PMID: 39073181 DOI: 10.1111/jpi.12995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/24/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
Melatonin (MT) has been implicated in the plant response to phosphorus (P) stress; however, the precise molecular mechanisms involved remain unclear. This study investigated whether MT controls internal P distribution and root cell wall P remobilization in rice. Rice was treated with varying MT and P levels and analyzed using biochemical and molecular techniques to study phosphorus utilization. The results demonstrated that low P levels lead to a rapid increase in endogenous MT levels in rice roots. Furthermore, the exogenous application of MT significantly improved rice tolerance to P deficiency, as evidenced by the increased biomass and reduced proportion of roots to shoots under P-deficient conditions. MT application also mitigated the decrease in P content regardless in both the roots and shoots. Mechanistically, MT accelerated the reutilization of P, particularly in the root pectin fraction, leading to increased soluble P liberation. In addition, MT enhanced the expression of OsPT8, a gene involved in root-to-shoot P translocation. Furthermore, we observed that MT induced the production of nitric oxide (NO) in P-deficient rice roots and that the mitigating effect of MT on P deficiency was compromised in the presence of the NO inhibitor, c-PTIO, implying that NO is involved in the MT-facilitated mitigation of P deficiency in rice. Overall, our findings highlight the potential of MT as a promising strategy for enhancing rice tolerance to P deficiency and improving P use efficiency in agricultural practices.
Collapse
Affiliation(s)
- Yong Qiang Gao
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, China
| | - Rui Guo
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, China
| | - Hao Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, China
| | - Jie Ya Sun
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, China
| | - Chang Zhao Chen
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, China
| | - Die Hu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, China
| | - Chong Wei Zhong
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, China
| | - Meng Meng Jiang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, China
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, China
| | - Jiu Huang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
| |
Collapse
|
2
|
Microbial Communities in the Fynbos Region of South Africa: What Happens during Woody Alien Plant Invasions. DIVERSITY 2020. [DOI: 10.3390/d12060254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Cape Floristic Region (CFR) is globally known for its plant biodiversity, and its flora is commonly referred to as fynbos. At the same time, this area is under severe pressure from urbanization, agricultural expansion and the threat of invasive alien plants. Acacia, Eucalyptus and Pinus are the common invasive alien plants found across the biome and considerable time, effort and resources are put into the removal of invasive alien plants and the rehabilitation of native vegetation. Several studies have shown that invasion not only affects the composition of plant species, but also has a profound effect on the soil chemistry and microbial populations. Over the last few years, a number of studies have shown that the microbial populations of the CFR are unique to the area, and harbour many endemic species. The extent of the role they play in the invasion process is, however, still unclear. This review aims to provide an insight into the current knowledge on the different microbial populations from this system, and speculate what their role might be during invasion. More importantly, it places a spotlight on the lack of information about this process.
Collapse
|
3
|
Accumulation of phosphorus and carbon and the dependency on biological N2 fixation for nitrogen nutrition in Polhillia, Wiborgia and Wiborgiella species growing in natural stands in cape fynbos, South Africa. Symbiosis 2020. [DOI: 10.1007/s13199-020-00683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Sun Y, Goll DS, Ciais P, Peng S, Margalef O, Asensio D, Sardans J, Peñuelas J. Spatial Pattern and Environmental Drivers of Acid Phosphatase Activity in Europe. Front Big Data 2020; 2:51. [PMID: 33693374 PMCID: PMC7931918 DOI: 10.3389/fdata.2019.00051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/26/2019] [Indexed: 11/13/2022] Open
Abstract
Acid phosphatase produced by plants and microbes plays a fundamental role in the recycling of soil phosphorus (P). A quantification of the spatial variation in potential acid phosphatase activity (AP) on large spatial scales and its drivers can help to reduce the uncertainty in our understanding of bio-availability of soil P. We applied two machine-learning methods (Random forests and back-propagation artificial networks) to simulate the spatial patterns of AP across Europe by scaling up 126 site observations of potential AP activity from field samples measured in the laboratory, using 12 environmental drivers as predictors. The back-propagation artificial network (BPN) method explained 58% of AP variability, more than the regression tree model (49%). In addition, BPN was able to identify the gradients in AP along three transects in Europe. Partial correlation analysis revealed that soil nutrients (total nitrogen, total P, and labile organic P) and climatic controls (annual precipitation, mean annual temperature, and temperature amplitude) were the dominant factors influencing AP variations in space. Higher AP occurred in regions with higher mean annual temperature, precipitation and higher soil total nitrogen. Soil TP and Po were non-monotonically correlated with modeled AP for Europe, indicating diffident strategies of P utilization by biomes in arid and humid area. This study helps to separate the influences of each factor on AP production and to reduce the uncertainty in estimating soil P availability. The BPN model trained with European data, however, could not produce a robust global map of AP due to the lack of representative measurements of AP for tropical regions. Filling this data gap will help us to understand the physiological basis of P-use strategies in natural soils.
Collapse
Affiliation(s)
- Yan Sun
- Laboratoire des Sciences du Climat et de 1'Environnement, CEA-CNRS-UVSQ, Gif sur Yvette, France
| | - Daniel S. Goll
- Laboratoire des Sciences du Climat et de 1'Environnement, CEA-CNRS-UVSQ, Gif sur Yvette, France
- Institute of Geography, University of Augsburg, Augsburg, Germany
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de 1'Environnement, CEA-CNRS-UVSQ, Gif sur Yvette, France
| | - Shushi Peng
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Olga Margalef
- CSIC, Global Ecology Unit, Centre de Recerca Ecològica i Aplicacions Forestals, Consejo Superior de Investigaciones Científicas, UAB, Bellaterra, Spain
- Centre de Recerca Ecològica i Aplicacions Forestals, Cerdanyola del Vallès, Spain
| | - Dolores Asensio
- CSIC, Global Ecology Unit, Centre de Recerca Ecològica i Aplicacions Forestals, Consejo Superior de Investigaciones Científicas, UAB, Bellaterra, Spain
- Centre de Recerca Ecològica i Aplicacions Forestals, Cerdanyola del Vallès, Spain
| | - Jordi Sardans
- CSIC, Global Ecology Unit, Centre de Recerca Ecològica i Aplicacions Forestals, Consejo Superior de Investigaciones Científicas, UAB, Bellaterra, Spain
- Centre de Recerca Ecològica i Aplicacions Forestals, Cerdanyola del Vallès, Spain
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, Centre de Recerca Ecològica i Aplicacions Forestals, Consejo Superior de Investigaciones Científicas, UAB, Bellaterra, Spain
- Centre de Recerca Ecològica i Aplicacions Forestals, Cerdanyola del Vallès, Spain
| |
Collapse
|
5
|
Pérez-Fernández M, Míguez-Montero Á, Valentine A. Phosphorus and Nitrogen Modulate Plant Performance in Shrubby Legumes from the Iberian Peninsula. PLANTS (BASEL, SWITZERLAND) 2019; 8:E334. [PMID: 31500171 PMCID: PMC6783971 DOI: 10.3390/plants8090334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/23/2019] [Accepted: 09/04/2019] [Indexed: 12/02/2022]
Abstract
We investigated the impact of phosphorus nutrition on plant growth and biological nitrogen fixation in four leguminous plants in the Tribe Genistea. The main objective of the study was to analyze Phosphorus and Nitrogen use efficiency under drought. We also tested for the effects of rhizobial inoculation on plant performance. Plants inoculated with Rhizobium strains isolated from plants of the four species growing in the wild were cropped under controlled conditions in soils with either low P (5 µM) or high P (500 µM). The experiment was replicated in the presence and absence of plant irrigation to test for the effects of drought stress of inoculated and non-inoculated plants under the two P levels of fertilization. Low-P treatments increased nodule production while plant biomass and shoot and root P and N contents where maximum at high P. Low P (5 µM) in the growing media, resulted in greater N accumulated in plants, coupled with greater phosphorus and nitrogen uptake efficiencies. Drought reduced the relative growth rate over two orders of magnitude or more, depending on the combination of plant species and treatment. Genista cinerea had the lowest tolerance to water scarcity, whereas Genista florida and Retama sphaerocarpa were the most resistant species to drought. Drought resistance was enhanced in the inoculated plants. In the four species, and particularly in Echinospartum barnadesii, the inoculation treatment clearly triggered N use efficiency, whereas P use efficiency was greater in the non-inoculated irrigated plants. Nodulation significantly increased in plants in the low P treatments, where plants showed a greater demand for N. The physiological basis for the four species being able to maintain their growth at low P levels and to respond to the greater P supply, is through balanced acquisition of P and N to meet the plants' nutritional needs.
Collapse
Affiliation(s)
- María Pérez-Fernández
- Department of Physical, Chemical and Natural Systems, University Pablo de Olavide, 41013 Seville, Spain.
| | - Ángel Míguez-Montero
- Department of Physical, Chemical and Natural Systems, University Pablo de Olavide, 41013 Seville, Spain.
| | - Alexandre Valentine
- Department of Botany and Zoology, Stellenbosch University, 7602 Matieland, South Africa.
| |
Collapse
|
6
|
MacAlister D, Muasya AM, Chimphango SBM. Linking root traits to superior phosphorus uptake and utilisation efficiency in three Fabales in the Core Cape Subregion, South Africa. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:760-770. [PMID: 32291050 DOI: 10.1071/fp17209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/24/2018] [Indexed: 06/11/2023]
Abstract
In the low-P soil of the fynbos biome, plants have evolved several morphological and physiological P acquisition and use mechanisms, leading to variable uptake and use efficiencies. We expected that plants grown in low-P soils would exhibit greater P acquisition traits and hypothesised that Aspalathus linearis (Burm. f.) R. Dahlgren, a cluster-root-forming species adapted to drier and infertile soils, would be the most efficient at P acquisition compared with other species. Three fynbos Fabales species were studied: A. linearis and Podalyria calyptrata (Retz.) Willd, both legumes, and Polygala myrtifolia L., a nonlegume. A potted experiment was conducted where the species were grown in two soil types with high P (41.18mgkg-1) and low P (9.79mgkg-1). At harvest, biomass accumulation, foliar nutrients and P acquisition mechanisms were assessed. Polygala myrtifolia developed a root system with greater specific root length, root hair width and an average root diameter that exuded a greater amount of citrate and, contrary to the hypothesis, exhibited greater whole-plant P uptake efficiency. However, P. calyptrata had higher P use efficiency, influenced by N availability through N2 fixation. Specific root length, root length and root:shoot ratio were promising morphological traits for efficient foraging of P, whereas acid phosphatase exudation was the best physiological trait for solubilisation of P.
Collapse
Affiliation(s)
- Dunja MacAlister
- Department of Biological Sciences, HW Pearson Building, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| | - A Muthama Muasya
- Department of Biological Sciences, HW Pearson Building, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| | - Samson B M Chimphango
- Department of Biological Sciences, HW Pearson Building, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| |
Collapse
|
7
|
Güsewell S, Schroth MH. How functional is a trait? Phosphorus mobilization through root exudates differs little between Carex species with and without specialized dauciform roots. THE NEW PHYTOLOGIST 2017; 215:1438-1450. [PMID: 28670743 DOI: 10.1111/nph.14674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 05/21/2017] [Indexed: 06/07/2023]
Abstract
Root structures secreting carboxylates and phosphatases are thought to enhance a plant's phosphorus (P) acquisition. But do closely related species with and without such structures really differ in root exudation, P mobilization, or ecological niche? We investigated this by comparing 23 European Carex species with and without 'dauciform roots' (DRs). Plants grown in pots with sand were screened for DR formation, phosphatase activities, carboxylate exudation, and utilization of various organic and inorganic P compounds. Ecological niches were compared using ecological indicator values and nutrient concentrations of plant shoots in natural habitats. Species of subgenus Carex formed DRs, while species of subgenus Vignea did not. Species with DRs had higher root diesterase activity than species without DRs, exuded more citrate but less oxalate and less total carboxylates, and allocated less biomass to roots. Species with and without DRs showed similar growth responses to different forms of P and different amounts of P supplied; their natural habitats do not differ in soil fertility or degree of P limitation. Despite some differences in physiological function, DRs did not influence the P acquisition and nutritional niche of European Carex species, suggesting that species with and without DRs do not exhibit distinct P-acquisition strategies.
Collapse
Affiliation(s)
- Sabine Güsewell
- Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, 8092, Zürich, Switzerland
| | - Martin H Schroth
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätstrasse 16, 8092, Zürich, Switzerland
| |
Collapse
|
8
|
Vardien W, Steenkamp ET, Valentine AJ. Legume nodules from nutrient-poor soils exhibit high plasticity of cellular phosphorus recycling and conservation during variable phosphorus supply. JOURNAL OF PLANT PHYSIOLOGY 2016; 191:73-81. [PMID: 26720212 DOI: 10.1016/j.jplph.2015.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/30/2015] [Accepted: 12/04/2015] [Indexed: 05/29/2023]
Abstract
Nitrogen fixing legumes rely on phosphorus for nodule formation, nodule function and the energy costs of fixation. Phosphorus is however very limited in soils, especially in ancient sandstone-derived soils such as those in the Cape Floristic Region of South Africa. Plants growing in such areas have evolved the ability to tolerate phosphorus stress by eliciting an array of physiological and biochemical responses. In this study we investigated the effects of phosphorus limitation on N2 fixation and phosphorus recycling in the nodules of Virgilia divaricata (Adamson), a legume native to the Cape Floristic Region. In particular, we focused on nutrient acquisition efficiencies, phosphorus fractions and the exudation and accumulation of phosphatases. Our finding indicate that during low phosphorus supply, V. divaricata internally recycles phosphorus and has a lower uptake rate of phosphorus, as well as lower levels adenylates but greater levels of phosphohydrolase exudation suggesting it engages in recycling internal nodule phosphorus pools and making use of alternate bypass routes in order to conserve phosphorus.
Collapse
Affiliation(s)
- Waafeka Vardien
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Emma T Steenkamp
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Alexander J Valentine
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
9
|
Nguyen GN, Rothstein SJ, Spangenberg G, Kant S. Role of microRNAs involved in plant response to nitrogen and phosphorous limiting conditions. FRONTIERS IN PLANT SCIENCE 2015; 6:629. [PMID: 26322069 PMCID: PMC4534779 DOI: 10.3389/fpls.2015.00629] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/30/2015] [Indexed: 05/22/2023]
Abstract
Plant microRNAs (miRNAs) are a class of small non-coding RNAs which target and regulate the expression of genes involved in several growth, development, and metabolism processes. Recent researches have shown involvement of miRNAs in the regulation of uptake and utilization of nitrogen (N) and phosphorus (P) and more importantly for plant adaptation to N and P limitation conditions by modifications in plant growth, phenology, and architecture and production of secondary metabolites. Developing strategies that allow for the higher efficiency of using both N and P fertilizers in crop production is important for economic and environmental benefits. Improved crop varieties with better adaptation to N and P limiting conditions could be a key approach to achieve this effectively. Furthermore, understanding on the interactions between N and P uptake and use and their regulation is important for the maintenance of nutrient homeostasis in plants. This review describes the possible functions of different miRNAs and their cross-talk relevant to the plant adaptive responses to N and P limiting conditions. In addition, a comprehensive understanding of these processes at molecular level and importance of biological adaptation for improved N and P use efficiency is discussed.
Collapse
Affiliation(s)
- Giao N. Nguyen
- Biosciences Research, Department of Economic DevelopmentHorsham, VIC, Australia
| | - Steven J. Rothstein
- Department of Molecular and Cellular Biology, College of Biological Science, University of GuelphGuelph, ON, Canada
| | - German Spangenberg
- Biosciences Research, Department of Economic Development, AgriBio, Centre for AgriBioscienceBundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe UniversityBundoora, VIC, Australia
| | - Surya Kant
- Biosciences Research, Department of Economic DevelopmentHorsham, VIC, Australia
| |
Collapse
|