1
|
Hu L, Zhao P, Wei Y, Lei Y, Guo X, Deng X, Zhang J. Preparation and Characterization Study of Zein-Sodium Caseinate Nanoparticle Delivery Systems Loaded with Allicin. Foods 2024; 13:3111. [PMID: 39410146 PMCID: PMC11475593 DOI: 10.3390/foods13193111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Allicin, as a natural antibacterial active substance from plants, has great medical and health care value. However, due to its poor stability, its application in the field of food and medicine is limited. So, in this paper, allicin-zein-sodium caseinate composite nanoparticles (zein-Ali-SC) were prepared by antisolvent precipitation and electrostatic deposition. Through the analysis of the particle size, ζ-potential, encapsulation efficiency (EE), loading rate (LC) and microstructure, the optimum preparation conditions for composite nanoparticles were obtained. The mechanism of its formation was studied by fluorescence spectrum, Fourier infrared spectrum (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The stability study results showed that the particle size of composite nanoparticles was less than 200 nm and its PDI was less than 0.3 under different NaCl concentrations and heating conditions, showing good stability. When stored at 4 °C for 21 days, the retention rate of allicin reached 61.67%, which was 52.9% higher than that of free allicin. After freeze-drying and reheating, the nanoparticles showed good redispersibility; meanwhile, antioxidant experiments showed that, compared with free allicin, the nanoparticles had stronger scavenging ability of free radicals, which provided a new idea for improving the stability technology and bioavailability of bioactive compounds.
Collapse
Affiliation(s)
- Ling Hu
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Pengcheng Zhao
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Yabo Wei
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Yongdong Lei
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Xin Guo
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Xiaorong Deng
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| |
Collapse
|
2
|
Liu Z, Duan N, Yang Z, Yue L, Fei Z, Kong S. Identification of male-fertility gene AsaNRF1 and molecular marker development in cultivated garlic ( Allium sativum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1419260. [PMID: 38863545 PMCID: PMC11165202 DOI: 10.3389/fpls.2024.1419260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
Garlic cultivars are predominantly characterized by their sterility and reliance on asexual reproduction, which have traditionally prevented the use of hybrid breeding for cultivar improvement in garlic. Our investigation has revealed a notable exception in the garlic line G398, which demonstrates the ability to produce fertile pollen. Notably, at the seventh stage of anther development, callose degradation in the sterile line G390 was impeded, while G398 exhibited normal callose degradation. Transcriptome profiling revealed an enhanced expression of the callose-degrading gene, AsaNRF1, in the mature flower buds of the fertile line G398 compared to the sterile line G390. An insertion in the promoter of AsaNRF1 in G390 was identified, which led to its reduced expression at the tetrad stage and consequently delayed callose degradation, potentially resulting in the male sterility of G390. A discriminatory marker was developed to distinguish between fertile G398 and sterile G390, facilitating the assessment of male fertility in garlic germplasm resources. This study introduces a practical approach to harnessing garlic hybridization, which can further facilitate the breeding of new cultivars and the creation of novel male-fertile garlic germplasm using modern molecular biology methods.
Collapse
Affiliation(s)
- Zezhou Liu
- Institute of Vegetables, Shandong Academy of Agricultural Sciences/Key Laboratory for Biology of Greenhouse Vegetables of Shandong Province/National Center for Vegetable Improvement, Jinan, China
| | - Naibin Duan
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zonghui Yang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences/Key Laboratory for Biology of Greenhouse Vegetables of Shandong Province/National Center for Vegetable Improvement, Jinan, China
| | - Lixin Yue
- Institute of Vegetables, Shandong Academy of Agricultural Sciences/Key Laboratory for Biology of Greenhouse Vegetables of Shandong Province/National Center for Vegetable Improvement, Jinan, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
| | - Suping Kong
- Institute of Vegetables, Shandong Academy of Agricultural Sciences/Key Laboratory for Biology of Greenhouse Vegetables of Shandong Province/National Center for Vegetable Improvement, Jinan, China
| |
Collapse
|
3
|
Shemesh-Mayer E, Faigenboim A, Ben Michael TE, Kamenetsky-Goldstein R. Integrated Genomic and Transcriptomic Elucidation of Flowering in Garlic. Int J Mol Sci 2022; 23:ijms232213876. [PMID: 36430354 PMCID: PMC9698152 DOI: 10.3390/ijms232213876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
Commercial cultivars of garlic are sterile, and therefore efficient breeding of this crop is impossible. Recent restoration of garlic fertility has opened new options for seed production and hybridization. Transcriptome catalogs were employed as a basis for garlic genetic studies, and in 2020 the huge genome of garlic was fully sequenced. We provide conjoint genomic and transcriptome analysis of the regulatory network in flowering garlic genotypes. The genome analysis revealed phosphatidylethanolamine-binding proteins (PEBP) and LEAFY (LFY) genes that were not found at the transcriptome level. Functions of TFL-like genes were reduced and replaced by FT-like homologs, whereas homologs of MFT-like genes were not found. The discovery of three sequences of LFY-like genes in the garlic genome and confirmation of their alternative splicing suggest their role in garlic florogenesis. It is not yet clear whether AsLFY1 acts alone as the "pioneer transcription factor" or AsLFY2 also provides these functions. The presence of several orthologs of flowering genes that differ in their expression and co-expression network advocates ongoing evolution in the garlic genome and diversification of gene functions. We propose that the process of fertility deprivation in garlic cultivars is based on the loss of transcriptional functions of the specific genes.
Collapse
|
4
|
Creux NM, Brown EA, Garner AG, Saeed S, Scher CL, Holalu SV, Yang D, Maloof JN, Blackman BK, Harmer SL. Flower orientation influences floral temperature, pollinator visits and plant fitness. THE NEW PHYTOLOGIST 2021; 232:868-879. [PMID: 34318484 DOI: 10.1111/nph.17627] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Effective insect pollination requires appropriate responses to internal and external environmental cues in both the plant and the pollinator. Helianthus annuus, a highly outcrossing species, is marked for its uniform eastward orientation of mature pseudanthia, or capitula. Here we investigate how this orientation affects floral microclimate and the consequent effects on plant and pollinator interactions and reproductive fitness. We artificially manipulated sunflower capitulum orientation and temperature in both field and controlled conditions and assessed flower physiology, pollinator visits, seed traits and siring success. East-facing capitula were found to have earlier style elongation, pollen presentation and pollinator visits compared with capitula manipulated to face west. East-facing capitula also sired more offspring than west-facing capitula and under some conditions produced heavier and better-filled seeds. Local ambient temperature change on the capitulum was found to be a key factor regulating the timing of style elongation, pollen emergence and pollinator visits. These results indicate that eastward capitulum orientation helps to control daily rhythms in floral temperature, with direct consequences on the timing of style elongation and pollen emergence, pollinator visitation, and plant fitness.
Collapse
Affiliation(s)
- Nicky M Creux
- Department of Plant Biology, University of California, One Shields Avenue, Davis, CA, 95616, USA
- Department of Plant and Soil Sciences, FABI, Innovation Africa, University of Pretoria, Lynwood Road, Hatfield, 0002, South Africa
| | - Evan A Brown
- Department of Biology, University of Virginia, PO Box 400328, Charlottesville, VA, 22904, USA
| | - Austin G Garner
- Department of Biology, University of Virginia, PO Box 400328, Charlottesville, VA, 22904, USA
| | - Sana Saeed
- Department of Plant Biology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - C Lane Scher
- Department of Biology, University of Virginia, PO Box 400328, Charlottesville, VA, 22904, USA
| | - Srinidhi V Holalu
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA, 94720, USA
| | - Daniel Yang
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA, 94720, USA
| | - Julin N Maloof
- Department of Plant Biology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Benjamin K Blackman
- Department of Biology, University of Virginia, PO Box 400328, Charlottesville, VA, 22904, USA
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA, 94720, USA
| | - Stacey L Harmer
- Department of Plant Biology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
5
|
Shemesh-Mayer E, Ben-Michael T, Rotem N, Rabinowitch HD, Doron-Faigenboim A, Kosmala A, Perlikowski D, Sherman A, Kamenetsky R. Garlic (Allium sativum L.) fertility: transcriptome and proteome analyses provide insight into flower and pollen development. FRONTIERS IN PLANT SCIENCE 2015; 6:271. [PMID: 25972879 PMCID: PMC4411974 DOI: 10.3389/fpls.2015.00271] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/05/2015] [Indexed: 05/18/2023]
Abstract
Commercial cultivars of garlic, a popular condiment, are sterile, making genetic studies and breeding of this plant challenging. However, recent fertility restoration has enabled advanced physiological and genetic research and hybridization in this important crop. Morphophysiological studies, combined with transcriptome and proteome analyses and quantitative PCR validation, enabled the identification of genes and specific processes involved in gametogenesis in fertile and male-sterile garlic genotypes. Both genotypes exhibit normal meiosis at early stages of anther development, but in the male-sterile plants, tapetal hypertrophy after microspore release leads to pollen degeneration. Transcriptome analysis and global gene-expression profiling showed that >16,000 genes are differentially expressed in the fertile vs. male-sterile developing flowers. Proteome analysis and quantitative comparison of 2D-gel protein maps revealed 36 significantly different protein spots, 9 of which were present only in the male-sterile genotype. Bioinformatic and quantitative PCR validation of 10 candidate genes exhibited significant expression differences between male-sterile and fertile flowers. A comparison of morphophysiological and molecular traits of fertile and male-sterile garlic flowers suggests that respiratory restrictions and/or non-regulated programmed cell death of the tapetum can lead to energy deficiency and consequent pollen abortion. Potential molecular markers for male fertility and sterility in garlic are proposed.
Collapse
Affiliation(s)
- Einat Shemesh-Mayer
- Agricultural Research Organization, The Volcani Center, Institute of Plant ScienceBet Dagan, Israel
- The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Robert H. Smith Institute of Plant Science and Genetics in Agriculture, The Hebrew University of JerusalemRehovot, Israel
| | - Tomer Ben-Michael
- Agricultural Research Organization, The Volcani Center, Institute of Plant ScienceBet Dagan, Israel
- The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Robert H. Smith Institute of Plant Science and Genetics in Agriculture, The Hebrew University of JerusalemRehovot, Israel
| | - Neta Rotem
- The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Robert H. Smith Institute of Plant Science and Genetics in Agriculture, The Hebrew University of JerusalemRehovot, Israel
| | - Haim D. Rabinowitch
- The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Robert H. Smith Institute of Plant Science and Genetics in Agriculture, The Hebrew University of JerusalemRehovot, Israel
| | - Adi Doron-Faigenboim
- Agricultural Research Organization, The Volcani Center, Institute of Plant ScienceBet Dagan, Israel
| | - Arkadiusz Kosmala
- Department of Environmental Stress Biology, Institute of Plant Genetics of the Polish Academy of SciencesPoznan, Poland
| | - Dawid Perlikowski
- Department of Environmental Stress Biology, Institute of Plant Genetics of the Polish Academy of SciencesPoznan, Poland
| | - Amir Sherman
- Agricultural Research Organization, The Volcani Center, Institute of Plant ScienceBet Dagan, Israel
| | - Rina Kamenetsky
- Agricultural Research Organization, The Volcani Center, Institute of Plant ScienceBet Dagan, Israel
| |
Collapse
|