1
|
Okemo PA, Njaci I, Kim YM, McClure RS, Peterson MJ, Beliaev AS, Hixson KK, Mundree S, Williams B. Tripogon loliiformis tolerates rapid desiccation after metabolic and transcriptional priming during initial drying. Sci Rep 2023; 13:20613. [PMID: 37996547 PMCID: PMC10667271 DOI: 10.1038/s41598-023-47456-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Crop plants and undomesticated resilient species employ different strategies to regulate their energy resources and growth. Most crop species are sensitive to stress and prioritise rapid growth to maximise yield or biomass production. In contrast, resilient plants grow slowly, are small, and allocate their resources for survival in challenging environments. One small group of plants, termed resurrection plants, survive desiccation of their vegetative tissue and regain full metabolic activity upon watering. However, the precise molecular mechanisms underlying this extreme tolerance remain unknown. In this study, we employed a transcriptomics and metabolomics approach, to investigate the mechanisms of desiccation tolerance in Tripogon loliiformis, a modified desiccation-tolerant plant, that survives gradual but not rapid drying. We show that T. loliiformis can survive rapid desiccation if it is gradually dried to 60% relative water content (RWC). Furthermore, the gene expression data showed that T. loliiformis is genetically predisposed for desiccation in the hydrated state, as evidenced by the accumulation of MYB, NAC, bZIP, WRKY transcription factors along with the phytohormones, abscisic acid, salicylic acid, amino acids (e.g., proline) and TCA cycle sugars during initial drying. Through network analysis of co-expressed genes, we observed differential responses to desiccation between T. loliiformis shoots and roots. Dehydrating shoots displayed global transcriptional changes across broad functional categories, although no enrichment was observed during drying. In contrast, dehydrating roots showed distinct network changes with the most significant differences occurring at 40% RWC. The cumulative effects of the early stress responses may indicate the minimum requirements of desiccation tolerance and enable T. loliiformis to survive rapid drying. These findings potentially hold promise for identifying biotechnological solutions aimed at developing drought-tolerant crops without growth and yield penalties.
Collapse
Affiliation(s)
- Pauline A Okemo
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, Australia
| | - Isaac Njaci
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Young-Mo Kim
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ryan S McClure
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Alexander S Beliaev
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- Physical and Chemical Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kim K Hixson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
- Physical and Chemical Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Sagadevan Mundree
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Brett Williams
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia.
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
2
|
Rahat QUA, Hameed M, Fatima S, Ahmad MSA, Ashraf M, Ahmad F, Khalil S, Munir M, Shah SMR, Ahmad I, Younis A. Structural determinants of phytoremediation capacity in saltmarsh halophyte Diplachne fusca (L.) P. Beauv. ex Roem. & Schult. subsp. fusca. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:630-645. [PMID: 35862619 DOI: 10.1080/15226514.2022.2098251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Micro and macro-morphological features contribute to plants' tolerance to a variety of environmental pollutants. The contribution of such structural modifications in the phytoremediation potential of Diplachne fusca populations collected from five saline habitats were explored when treated with 100 to 400 mM NaCl for 75 days along with control. Structural modifications in the populations from the highest salinity included development of aerenchyma in stem instead of chlorenchyma, absence of excretory hairs in stem, and exceptionally large trichomes on the leaf surface to help excretion of excess salt. Large parenchyma cells provided more space for water and solute storage, while broad metaxylem vessels were linked to better conduction water and nutrients, which ultimately excreted via glandular hairs, microhairs, and vesicular hairs. Broad metaxylem vessels and exceptionally long hairs observed in the populations collected from 52 dS m-1. In conclusion, large stem aerenchyma, exceptionally large trichomes on the leaf surface, and tightly packed outer cortical region in roots with intensive sclerification just inside the epidermis accompanied with salt excretion via glandular hairs, microhairs, and vesicular hairs were the main anatomical modifications involved in the phytoremediation potential of D. fusca in hyper-saline environments.
Collapse
Affiliation(s)
| | - Mansoor Hameed
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Sana Fatima
- Department of Botany, The Government Sadiq College Women University, Bahawalpur, Pakistan
| | | | | | - Farooq Ahmad
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Sangam Khalil
- Department of Forestry, Range & Wildlife Management, The Islamia University of Bahawalpur, Pakistan
| | - Mehwish Munir
- Department of Botany, The Government Sadiq College Women University, Bahawalpur, Pakistan
| | | | - Iftikhar Ahmad
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Adnan Younis
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
3
|
Taratima W, Chomarsa T, Maneerattanarungroj P. Salinity Stress Response of Rice ( Oryza sativa L. cv. Luem Pua) Calli and Seedlings. SCIENTIFICA 2022; 2022:5616683. [PMID: 35859804 PMCID: PMC9293579 DOI: 10.1155/2022/5616683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/04/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Soil salinity limits plant growth and production. This research investigated a suitable medium for callus induction and plantlet regeneration in the Luem Pua rice cultivar. The effect of salt stress on seedling growth was determined using in vitro culture and soil conditions. An efficient protocol for callus induction has been developed by culture sterilized seeds on the Murashige and Skoog (MS, 1962) medium containing 0.5 mg/l benzyladenine (BA) with 1 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) that resulted in a 100% callus induction. Plantlet regeneration percentage of 49% was recorded on the MS medium containing 4 mg/l BA with 0.5 mg/l 1-naphthaleneacetic acid (NAA) after 4 weeks. For salt stress investigation, the calli were treated on an induction medium containing various concentrations of NaCl (0, 50, 100, 150, and 200 mM), while two-week-old rice seedlings were planted in soil and treated with the same concentration of NaCl for 4 weeks. In vitro culture revealed that callus survival percentage decreased when NaCl concentration increased, similar to soil culture. Seedling growth under salinity treatment also decreased when NaCl concentration increased, while other physiological parameters such as total chlorophyll, chlorophyll a, chlorophyll b, green intensity, and chlorophyll fluorescence under light conditions increased under salinity stress. These changes define the growth and physiological salinity tolerance characteristics of Luem Pua rice calli and seedlings. They can be utilized as a baseline for demand-driven in vitro rice propagation, providing useful information that can be combined with other agronomic features in rice development or breeding programs to improve the flexibility of abiotic stress-tolerant cultivars.
Collapse
Affiliation(s)
- Worasitikulya Taratima
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Titirat Chomarsa
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | | |
Collapse
|
4
|
Tebele SM, Marks RA, Farrant JM. Two Decades of Desiccation Biology: A Systematic Review of the Best Studied Angiosperm Resurrection Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122784. [PMID: 34961255 PMCID: PMC8706221 DOI: 10.3390/plants10122784] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 05/25/2023]
Abstract
Resurrection plants have an extraordinary ability to survive extreme water loss but still revive full metabolic activity when rehydrated. These plants are useful models to understand the complex biology of vegetative desiccation tolerance. Despite extensive studies of resurrection plants, many details underlying the mechanisms of desiccation tolerance remain unexplored. To summarize the progress in resurrection plant research and identify unexplored questions, we conducted a systematic review of 15 model angiosperm resurrection plants. This systematic review provides an overview of publication trends on resurrection plants, the geographical distribution of species and studies, and the methodology used. Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses protocol we surveyed all publications on resurrection plants from 2000 and 2020. This yielded 185 empirical articles that matched our selection criteria. The most investigated plants were Craterostigma plantagineum (17.5%), Haberlea rhodopensis (13.7%), Xerophyta viscosa (reclassified as X. schlechteri) (11.9%), Myrothamnus flabellifolia (8.5%), and Boea hygrometrica (8.1%), with all other species accounting for less than 8% of publications. The majority of studies have been conducted in South Africa, Bulgaria, Germany, and China, but there are contributions from across the globe. Most studies were led by researchers working within the native range of the focal species, but some international and collaborative studies were also identified. The number of annual publications fluctuated, with a large but temporary increase in 2008. Many studies have employed physiological and transcriptomic methodologies to investigate the leaves of resurrection plants, but there was a paucity of studies on roots and only one metagenomic study was recovered. Based on these findings we suggest that future research focuses on resurrection plant roots and microbiome interactions to explore microbial communities associated with these plants, and their role in vegetative desiccation tolerance.
Collapse
Affiliation(s)
- Shandry M. Tebele
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town 7701, South Africa; (S.M.T.); (R.A.M.)
| | - Rose A. Marks
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town 7701, South Africa; (S.M.T.); (R.A.M.)
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Plant Resiliency Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Jill M. Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town 7701, South Africa; (S.M.T.); (R.A.M.)
| |
Collapse
|
5
|
Yathisha NS, Barbara P, Gügi B, Yogendra K, Jogaiah S, Azeddine D, Sharatchandra RG. Vegetative desiccation tolerance in Eragrostiella brachyphylla: biochemical and physiological responses. Heliyon 2020; 6:e04948. [PMID: 32995628 PMCID: PMC7509185 DOI: 10.1016/j.heliyon.2020.e04948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/24/2020] [Accepted: 09/11/2020] [Indexed: 11/22/2022] Open
Abstract
Eragrostiella brachyphylla is an angiosperm desiccation-tolerant resurrection plant, which can survive during desiccation in the air-dry state and recover completely on availability of water. The present study was conducted to understand the vegetative desiccation tolerance of Eragrostiella brachyphylla by evaluating its ability to recover the physiological, biochemical and morphological functions post desiccation. In order to understand the responses of Eragrostiella brachyphylla to desiccation and subsequent rehydration experiments were conducted in the hydrated state (HS), desiccated state (DS) and rehydrated state (RS). Scanning electron microscopy revealed significant changes between the three stages in the internal ultra-structures of leaves and stems. Compared to the other states, photosynthetic parameters such as chlorophyll a, chlorophyll b, total chlorophylland total carotenoid contents decreased significantly in the desiccated state. Superoxide radical (O2•-) content also increased, resulting in an oxidative burst during desiccation. Consequently, antioxidant enzymes such as catalase (CAT) superoxide dismutase (SOD) peroxidase (APX) and glutathione reductase (GR) activities were found to be significantly elevated in the desiccated state to avoid oxidative damage. Increased malondialdehyde (MDA) content and relative electrolyte leakage (REL) during desiccation provide evidence for membrane damage and loss of cell-wall integrity. During desiccation, the contents of osmolytes represented by sucrose and proline were found to increase to maintain cell structure integrity. After rehydration, all physiological, biochemical and morphological properties remain unchanged or slightly changed when compared to the hydrated state. Hence, we believe that these unique adaptations contribute to the remarkable desiccation-tolerance property of this plant.
Collapse
Affiliation(s)
- Neeragunda Shivaraj Yathisha
- Department of Studies and Research in Biotechnology and Microbiology, Tumkur University, Tumakuru, 57210, India
- Department of Studies and Research in Environmental Science, Kuvempu University, Shankaraghatta, Shimoga, 577451, India
| | - Plancot Barbara
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, Normandie University, University of Rouen, 76000, Rouen, France
- Fédération de Recherche “Normandie-Végétal”-FED 4277, 76000, Rouen, France
| | - Bruno Gügi
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, Normandie University, University of Rouen, 76000, Rouen, France
- Fédération de Recherche “Normandie-Végétal”-FED 4277, 76000, Rouen, France
| | - Kambalagere Yogendra
- Department of Studies and Research in Environmental Science, Kuvempu University, Shankaraghatta, Shimoga, 577451, India
| | - Sudisha Jogaiah
- Department of Studies and Research in Biotechnology and Microbiology, Karnataka University, Dharwad, India
| | - Driouich Azeddine
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, Normandie University, University of Rouen, 76000, Rouen, France
- Fédération de Recherche “Normandie-Végétal”-FED 4277, 76000, Rouen, France
| | | |
Collapse
|
6
|
Oliver MJ, Farrant JM, Hilhorst HWM, Mundree S, Williams B, Bewley JD. Desiccation Tolerance: Avoiding Cellular Damage During Drying and Rehydration. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:435-460. [PMID: 32040342 DOI: 10.1146/annurev-arplant-071219-105542] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Desiccation of plants is often lethal but is tolerated by the majority of seeds and by vegetative tissues of only a small number of land plants. Desiccation tolerance is an ancient trait, lost from vegetative tissues following the appearance of tracheids but reappearing in several lineages when selection pressures favored its evolution. Cells of all desiccation-tolerant plants and seeds must possess a core set of mechanisms to protect them from desiccation- and rehydration-induced damage. This review explores how desiccation generates cell damage and how tolerant cells assuage the complex array of mechanical, structural, metabolic, and chemical stresses and survive.Likewise, the stress of rehydration requires appropriate mitigating cellular responses. We also explore what comparative genomics, both structural and responsive, have added to our understanding of cellular protection mechanisms induced by desiccation, and how vegetative desiccation tolerance circumvents destructive, stress-induced cell senescence.
Collapse
Affiliation(s)
- Melvin J Oliver
- Plant Genetics Research Unit, US Department of Agriculture, Agricultural Research Service, Columbia, Missouri 65211, USA
- Current affiliation: Division of Plant Sciences, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA;
| | - Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town 7700, South Africa;
| | - Henk W M Hilhorst
- Laboratory of Plant Physiology, Wageningen University, 6706 PB Wageningen, The Netherlands;
| | - Sagadevan Mundree
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Gardens Point Campus, Brisbane, 4001 Queensland, Australia; ,
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Gardens Point Campus, Brisbane, 4001 Queensland, Australia; ,
| | - J Derek Bewley
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada;
| |
Collapse
|
7
|
Radermacher AL, du Toit SF, Farrant JM. Desiccation-Driven Senescence in the Resurrection Plant Xerophyta schlechteri (Baker) N.L. Menezes: Comparison of Anatomical, Ultrastructural, and Metabolic Responses Between Senescent and Non-Senescent Tissues. FRONTIERS IN PLANT SCIENCE 2019; 10:1396. [PMID: 31737017 PMCID: PMC6831622 DOI: 10.3389/fpls.2019.01396] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/09/2019] [Indexed: 05/30/2023]
Abstract
Drought-induced senescence is a degenerative process that involves the degradation of cellular metabolites and photosynthetic pigments and uncontrolled dismantling of cellular membranes and organelles. Angiosperm resurrection plants display vegetative desiccation tolerance and avoid drought-induced senescence in most of their tissues. Developmentally older tissues, however, fail to recover during rehydration and ultimately senesce. Comparison of the desiccation-associated responses of older senescent tissues (ST) with non-ST (NST) will allow for understanding of mechanisms promoting senescence in the former and prevention of senescence in the latter. In the monocotyledonous resurrection plant Xerophyta schlechteri (Baker) N.L. Menezes*, leaf tips senesce following desiccation, whereas the rest of the leaf blade survives. We characterized structural and metabolic changes in ST and NST at varying water contents during desiccation and rehydration. Light and transmission electron microscopy was used to follow anatomical and subcellular responses, and metabolic differences were studied using gas chromatography-mass spectrometry and colorimetric metabolite assays. The results show that drying below 35% relative water content (0.7 gH2O/g dry mass) in ST resulted in the initiation of age-related senescence hallmarks and that these tissues continue this process after rehydration. We propose that an age-related desiccation sensitivity occurs in older tissues, in a process metabolically similar to that observed during age-related senescence in Arabidopsis thaliana.
Collapse
Affiliation(s)
| | | | - Jill M. Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
8
|
Asami P, Rupasinghe T, Moghaddam L, Njaci I, Roessner U, Mundree S, Williams B. Roots of the Resurrection Plant Tripogon loliiformis Survive Desiccation Without the Activation of Autophagy Pathways by Maintaining Energy Reserves. FRONTIERS IN PLANT SCIENCE 2019; 10:459. [PMID: 31105716 PMCID: PMC6494956 DOI: 10.3389/fpls.2019.00459] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/27/2019] [Indexed: 05/18/2023]
Abstract
Being sessile, plants must regulate energy balance, potentially via source-sink relations, to compromise growth with survival in stressful conditions. Crops are sensitive, possibly because they allocate their energy resources toward growth and yield rather than stress tolerance. In contrast, resurrection plants tightly regulate sugar metabolism and use a series of physiological adaptations to suppress cell death in their vegetative tissue to regain full metabolic capacity from a desiccated state within 72 h of watering. Previously, we showed that shoots of the resurrection plant Tripogon loliiformis, initiate autophagy upon dehydration as one strategy to reinstate homeostasis and suppress cell death. Here, we describe the relationship between energy status, sugar metabolism, trehalose-mediated activation of autophagy pathways and investigate whether shoots and roots utilize similar desiccation tolerance strategies. We show that despite containing high levels of trehalose, dehydrated Tripogon roots do not display elevated activation of autophagy pathways. Using targeted and non-targeted metabolomics, transmission electron microscopy (TEM) and transcriptomics we show that T. loliiformis engages a strategy similar to the long-term drought responses of sensitive plants and continues to use the roots as a sink even during sustained stress. Dehydrating T. loliiformis roots contained more sucrose and trehalose-6-phosphate compared to shoots at an equivalent water content. The increased resources in the roots provides sufficient energy to cope with stress and thus autophagy is not required. These results were confirmed by the absence of autophagosomes in roots by TEM. Upregulation of sweet genes in both shoots and roots show transcriptional regulation of sucrose translocation from leaves to roots and within roots during dehydration. Differences in the cell's metabolic status caused starkly different cell death responses between shoots and roots. These findings show how shoots and roots utilize different stress response strategies and may provide candidate targets that can be used as tools for the improvement of stress tolerance in crops.
Collapse
Affiliation(s)
- Pauline Asami
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Thusitha Rupasinghe
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Lalehvash Moghaddam
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Isaac Njaci
- Biosciences Eastern and Central Africa-International Livestock Research Institute, Nairobi, Kenya
| | - Ute Roessner
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Sagadevan Mundree
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Njaci I, Williams B, Castillo-González C, Dickman MB, Zhang X, Mundree S. Genome-Wide Investigation of the Role of MicroRNAs in Desiccation Tolerance in the Resurrection Grass Tripogon loliiformis. PLANTS (BASEL, SWITZERLAND) 2018; 7:E68. [PMID: 30200279 PMCID: PMC6161015 DOI: 10.3390/plants7030068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/24/2018] [Accepted: 08/29/2018] [Indexed: 12/15/2022]
Abstract
Drought causes approximately two-thirds of crop and yield loss worldwide. To sustain future generations, there is a need to develop robust crops with enhanced water use efficiency. Resurrection plants are naturally resilient and tolerate up to 95% water loss with the ability to revive upon watering. Stress is genetically encoded and resilient species may garner tolerance by tightly regulating the expression of stress-related genes. MicroRNAs (miRNAs) post-transcriptionally regulate development and other stress response processes in eukaryotes. However, their role in resurrection plant desiccation tolerance is poorly understood. In this study, small RNA sequencing and miRNA expression profiling was conducted using Tripogon loliiformis plants subjected to extreme water deficit conditions. Differentially expressed miRNA profiles, target mRNAs, and their regulatory processes were elucidated. Gene ontology enrichment analysis revealed that development, stress response, and regulation of programmed cell death biological processes; Oxidoreductase and hydrolyase molecular activities; and SPL, MYB, and WRKY transcription factors were targeted by miRNAs during dehydration stress, indicating the indispensable regulatory role of miRNAs in desiccation tolerance. This study provides insights into the molecular mechanisms of desiccation tolerance in the resurrection plant T. loliiformis. This information will be useful in devising strategies for crop improvement on enhanced drought tolerance and water use efficiency.
Collapse
Affiliation(s)
- Isaac Njaci
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Claudia Castillo-González
- Department of Biochemistry and Biophysics, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA.
| | - Martin B Dickman
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA.
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA.
| | - Sagadevan Mundree
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| |
Collapse
|
10
|
Asami P, Mundree S, Williams B. Saving for a rainy day: Control of energy needs in resurrection plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 271:62-66. [PMID: 29650158 DOI: 10.1016/j.plantsci.2018.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/27/2018] [Accepted: 03/02/2018] [Indexed: 05/02/2023]
Abstract
Plants constantly respond to threats in their environment by balancing their energy needs with growth, defence and survival. Some plants such as the small group of resilient angiosperms, the resurrection plants, do this better than most. Resurrection plants possess the capacity to tolerate desiccation in vegetative tissue and upon watering, regain full metabolic capacity within 72 h. Knowledge of how these plants survive such extremes has advanced in the last few decades, but the molecular mechanics remain elusive. Energy and water metabolism, cell cycle control, growth, senescence and cell death all play key roles in resurrection plant stress tolerance. Some resurrection plants suppress growth to improve energy efficiency and survival while sensitive species exhaust energy resources rapidly, have a diminished capacity to respond and die. How do the stress and energy metabolism responses employed by resurrection plants differ to those used by sensitive plants? In this perspective, we summarise recent findings defining the relationships between energy metabolism, stress tolerance and programmed cell death and speculate important roles for this regulation in resurrection plants. If we want to harness the strategies of resurrection plants for crop improvement, first we must understand the processes that underpin energy metabolism during growth and stress.
Collapse
Affiliation(s)
- Pauline Asami
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, P.O. Box 2434, Brisbane 4001, QLD, Australia
| | - Sagadevan Mundree
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, P.O. Box 2434, Brisbane 4001, QLD, Australia
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, P.O. Box 2434, Brisbane 4001, QLD, Australia.
| |
Collapse
|
11
|
Le TTT, Williams B, Mundree SG. An osmotin from the resurrection plant Tripogon loliiformis (TlOsm) confers tolerance to multiple abiotic stresses in transgenic rice. PHYSIOLOGIA PLANTARUM 2018; 162:13-34. [PMID: 28466470 DOI: 10.1111/ppl.12585] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 05/18/2023]
Abstract
Osmotin is a key protein associated with abiotic and biotic stress response in plants. In this study, an osmotin from the resurrection plant Tripogon loliiformis (TlOsm) was characterized and functionally analyzed under abiotic stress conditions in T. loliiformis as well as in transgenic Nicotiana tabacum (tobacco) and Oryza sativa (rice) plants. Real-time PCR analysis on mixed elicitor cDNA libraries from T. loliiformis showed that TlOsm was upregulated a 1000-fold during the early stages of osmotic stresses (cold, drought, and salinity) in both shoots and roots but downregulated in shoots during heat stress. There was no change in TlOsm gene expression in roots of heat-stressed plants and during plant development. The plasma membrane localization of TlOsm was showed in fluorescent-tagged TlOsm tobacco plants using confocal laser scanning microscopic analysis. Transgenic rice plants expressing TlOsm were assessed for enhanced tolerance to salinity, drought and cold stresses. Constitutively expressed TlOsm in transgenic rice plants showed increased tolerance to cold, drought and salinity stress when compared with the wild-type and vector control counterparts. This was evidenced by maintained growth, retained higher water content and membrane integrity, and improved survival rate of TlOsm-expressing plants. The results thus indicate the involvement of TlOsm in plant response to multiple abiotic stresses, possibly through the signaling pathway, and highlight its potential applications for engineering crops with improved tolerance to cold, drought and salinity stress.
Collapse
Affiliation(s)
- Trang T T Le
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Australia
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Australia
| | - Sagadevan G Mundree
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
12
|
Aidar SDT, Chaves ARDM, Fernandes Júnior PI, Oliveira MDS, Costa Neto BPD, Calsa Junior T, Morgante CV. Vegetative desiccation tolerance of Tripogon spicatus (Poaceae) from the tropical semiarid region of northeastern Brazil. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:1124-1133. [PMID: 32480638 DOI: 10.1071/fp17066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/14/2017] [Indexed: 06/11/2023]
Abstract
The vegetative desiccation tolerance of Tripogon spicatus (Nees) Ekman was confirmed by its ability to recover the physiological functionality of intact plants previously subjected to extreme dehydration. Photosynthesis became undetectable when leaf relative water content (RWCleaf) achieved ~60%, whereas photochemical variables showed a partial decrease. Until the minimum RWCleaf of 6.41%, total chl decreased by 9%, and total carotenoids increased by 29%. Superoxide dismutase (SOD) activity decreased by 57%, on average, during dehydration, but catalase (CAT) and peroxidase (APX) activities showed no significant differences throughout the experiment. Malondialdehyde (MDA) content increased by 151%, total leaf and root amino acids decreased by 62% and 77%, respectively, whereas leaf and root proline decreased by 40% and 61%, respectively, until complete desiccation. After rehydration, leaves completely recovered turgidity and total chl contents. Carotenoids and MDA remained high, whereas SOD was 60% lower than the measured average measured before dehydration. With the exception of root amino acid contents, total amino acids and proline concentrations recovered completely. Gas exchange and photochemical variables remained substantially higher 4 days after rehydration, compared with the control. Besides increasing MDA, the overall physiological results showed that membrane functionality was preserved, leading to the vegetative desiccation tolerance of T. spicatus during the dehydration-rehydration cycle.
Collapse
Affiliation(s)
- Saulo de T Aidar
- Empresa Brasileira de Pesquisa Agropecuária Embrapa Semiárido, Rodovia BR 428, km 152, PO Box 23, Petrolina, Pernambuco, Brazil
| | - Agnaldo R de M Chaves
- Empresa Brasileira de Pesquisa Agropecuária Embrapa Semiárido, Rodovia BR 428, km 152, PO Box 23, Petrolina, Pernambuco, Brazil
| | - Paulo I Fernandes Júnior
- Empresa Brasileira de Pesquisa Agropecuária Embrapa Semiárido, Rodovia BR 428, km 152, PO Box 23, Petrolina, Pernambuco, Brazil
| | - Melquisedec de S Oliveira
- Universidade Federal de Pernambuco (UFPE), Departamento de Genética, Avenida Professor Moraes Rego, 1235, Cidade Universitária, CEP 50670420, Recife, Pernambuco, Brazil
| | - Benjamim P da Costa Neto
- Universidade de Pernambuco (UPE), Rodovia BR 203, Km 2, sem número, CEP 56328903, Petrolina, Pernambuco, Brazil
| | - Tercílio Calsa Junior
- Universidade Federal de Pernambuco (UFPE), Departamento de Genética, Avenida Professor Moraes Rego, 1235, Cidade Universitária, CEP 50670420, Recife, Pernambuco, Brazil
| | - Carolina V Morgante
- Empresa Brasileira de Pesquisa Agropecuária Embrapa Semiárido, Rodovia BR 428, km 152, PO Box 23, Petrolina, Pernambuco, Brazil
| |
Collapse
|
13
|
Kabbage M, Kessens R, Bartholomay LC, Williams B. The Life and Death of a Plant Cell. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:375-404. [PMID: 28125285 DOI: 10.1146/annurev-arplant-043015-111655] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Like all eukaryotic organisms, plants possess an innate program for controlled cellular demise termed programmed cell death (PCD). Despite the functional conservation of PCD across broad evolutionary distances, an understanding of the molecular machinery underpinning this fundamental program in plants remains largely elusive. As in mammalian PCD, the regulation of plant PCD is critical to development, homeostasis, and proper responses to stress. Evidence is emerging that autophagy is key to the regulation of PCD in plants and that it can dictate the outcomes of PCD execution under various scenarios. Here, we provide a broad and comparative overview of PCD processes in plants, with an emphasis on stress-induced PCD. We also discuss the implications of the paradox that is functional conservation of apoptotic hallmarks in plants in the absence of core mammalian apoptosis regulators, what that means, and whether an equivalent form of death occurs in plants.
Collapse
Affiliation(s)
- Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53706;
| | - Ryan Kessens
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53706;
| | - Lyric C Bartholomay
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Queensland 4001, Australia;
| |
Collapse
|
14
|
Barak S, Farrant JM. Extremophyte adaptations to salt and water deficit stress. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:v-x. [PMID: 32480487 DOI: 10.1071/fpv43n7_fo] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plants that can survive and even thrive in extreme environments (extremophytes) are likely treasure boxes of plant adaptations to environmental stresses. These species represent excellent models for understanding mechanisms of stress tolerance that may not be present in stress-sensitive species, as well as for identifying genetic determinants to develop stress-tolerant crops. This special issue of Functional Plant Biology focuses on physiological and molecular processes that enable extremophytes to naturally survive high levels of salt or desiccation.
Collapse
Affiliation(s)
- Simon Barak
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 8499000, Israel
| | - Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| |
Collapse
|