1
|
Shahid M, Zeyad MT, Syed A, Singh UB, Mohamed A, Bahkali AH, Elgorban AM, Pichtel J. Stress-Tolerant Endophytic Isolate Priestia aryabhattai BPR-9 Modulates Physio-Biochemical Mechanisms in Wheat ( Triticum aestivum L.) for Enhanced Salt Tolerance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10883. [PMID: 36078599 PMCID: PMC9518148 DOI: 10.3390/ijerph191710883] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 05/28/2023]
Abstract
In efforts to improve plant productivity and enhance defense mechanisms against biotic and abiotic stresses, endophytic bacteria have been used as an alternative to chemical fertilizers and pesticides. In the current study, 25 endophytic microbes recovered from plant organs of Triticum aestivum L. (wheat) were assessed for biotic (phyto-fungal pathogens) and abiotic (salinity, drought, and heavy metal) stress tolerance. Among the recovered isolates, BPR-9 tolerated maximum salinity (18% NaCl), drought (15% PEG-6000), and heavy metals (µg mL-1): Cd (1200), Cr (1000), Cu (1000), Pb (800), and Hg (30). Based on phenotypic and biochemical characteristics, as well as 16S rDNA gene sequencing, endophytic isolate BPR-9 was recognized as Priestia aryabhattai (accession no. OM743254.1). This isolate was revealed as a powerful multi-stress-tolerant crop growth promoter after extensive in-vitro testing for plant growth-promoting attributes, nutrient (phosphate, P; potassium, K; and zinc, Zn) solubilization efficiency, extracellular enzyme (protease, cellulase, amylase, lipase, and pectinase) synthesis, and potential for antagonistic activity against important fungal pathogens viz. Alternaria solani, Rhizoctonia solani, Fusarium oxysporum, and Ustilaginoidea virens. At elevated salt levels, increases were noted in indole-3-acetic acid; siderophores; P, K, and Zn-solubilization; ACC deaminase; and ammonia synthesized by Priestia aryabhattai. Additionally, under in-vitro plant bioassays, wheat seedlings inoculated with P. aryabhattai experienced superior growth compared to non-inoculated seedlings in high salinity (0-15% NaCl) environment. Under NaCl stress, germination rate, plant length, vigor indices, and leaf pigments of wheat seedlings significantly increased following P. aryabhattai inoculation. Furthermore, at 2%-NaCl, B. aryabhattai greatly and significantly (p ≤ 0.05) decreased relative leaf water content, membrane damage, and electrolyte leakage compared with the non-inoculated control. Catalase, superoxide dismutase, and peroxidase activity increased by 29, 32, and 21%, respectively, in wheat seedlings exposed to 2% NaCl and inoculated with the bacteria. The present findings demonstrate that endophytic P. aryabhattai strains might be used in the future as a multi-stress reducer and crop growth promoter in agronomically important crops including cereals.
Collapse
Affiliation(s)
- Mohammad Shahid
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau 275103, India
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Tarique Zeyad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau 275103, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Udai B. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau 275103, India
| | - Abdullah Mohamed
- Research Centre, Future University in Egypt, New Cairo 11835, Egypt
| | - Ali H. Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - John Pichtel
- Natural Resources and Environmental Management, Ball State University, Muncie, IN 47306, USA
| |
Collapse
|
2
|
Hayat K, Zhou Y, Menhas S, Bundschuh J, Hayat S, Ullah A, Wang J, Chen X, Zhang D, Zhou P. Pennisetum giganteum: An emerging salt accumulating/tolerant non-conventional crop for sustainable saline agriculture and simultaneous phytoremediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114876. [PMID: 32512425 DOI: 10.1016/j.envpol.2020.114876] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/07/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Soil salinity is a global threat to the environmental sustainability, in particular to the developing countries due to their limited resources for soil reclamation. In a greenhouse pot experiment, Pennisetum giganteum, was investigated for its tolerance to salt stress and simultaneous phytoremediation capability. 4 weeks post-germination, NaCl (10, 50, 150, 250, 350, 450 and 550 mM) and tap water (control) was applied after every 2 consecutive days for two weeks in a completely randomized design and their effects were established in the growth and physico-chemical aspects of these plants. Our results indicated that P. giganteum withstood high salt stress (with 550 mM NaCl tolerance threshold level). Interestingly, the plants grown under saline conditions had higher biomass yield when compared to the control. Furthermore, the antioxidant activity and proline content of plants under saline conditions were significantly (p < 0.05) higher than those of control plants, indicating their adaptability to high salt stress. Biochemical analysis such as chlorophyll contents, total soluble sugar, total phenol and protein contents revealed considerable differences between plants grown under higher NaCl stress compared to the control conditions. Additionally, significantly different ionic flux along with high K+/Na+ ratio was observed in plants grown under a range of saline conditions. The results obtained are therefore of value to indicate P. giganteum an eco-friendly alternate source for the phytoremediation of saline soils and may be used as base for future research on this plant. Effective strategies need to be adopted with this plant to reclaim saline-degraded as well as marginal soils.
Collapse
Affiliation(s)
- Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Yuanfei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Saiqa Menhas
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Jochen Bundschuh
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development & Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia
| | - Sikandar Hayat
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Abid Ullah
- Department of Botany, University of Malakand, Chakdara Dir Lower, 18800, Khyber Pakhtunkhwa, IR, Pakistan
| | - Juncai Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Xunfeng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China.
| |
Collapse
|