1
|
Myburgh AM, Barnes A, Henriques R, Daniels SR. Congruent patterns of cryptic cladogenesis revealed using RADseq and Sanger sequencing in a velvet worm species complex (Onychophora: Peripatopsidae: Peripatopsis sedgwicki). Mol Phylogenet Evol 2024; 198:108132. [PMID: 38909874 DOI: 10.1016/j.ympev.2024.108132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
In the present study, first generation DNA sequencing (mitochondrial cytochrome c oxidase subunit one, COI) and reduced-representative genomic RADseq data were used to understand the patterns and processes of diversification of the velvet worm, Peripatopsis sedgwicki species complex across its distribution range in South Africa. For the RADseq data, three datasets (two primary and one supplementary) were generated corresponding to 1,259-11,468 SNPs, in order to assess the diversity and phylogeography of the species complex. Tree topologies for the two primary datasets were inferred using maximum likelihood and Bayesian inferences methods. Phylogenetic analyses using the COI datasets retrieved four distinct, well-supported clades within the species complex. Five species delimitation methods applied to the COI data (ASAP, bPTP, bGMYC, STACEY and iBPP) all showed support for the distinction of the Fort Fordyce Nature Reserve specimens. In the main P. sedgwicki species complex, the species delimitation methods revealed a variable number of operational taxonomic units and overestimated the number of putative taxa. Divergence time estimates coupled with the geographic exclusivity of species and phylogeographic results suggest recent cladogenesis during the Plio/Pleistocene. The RADseq data were subjected to a principal components analysis and a discriminant analysis of principal components, under a maximum-likelihood framework. The latter results corroborate the four main clades observed using the COI data, however, applying additional filtering revealed additional diversity. The high overall congruence observed between the RADseq data and COI data suggest that first generation sequence data remain a cheap and effective method for evolutionary studies, although RADseq does provide a far greater resolution of contemporary temporo-spatial patterns.
Collapse
Affiliation(s)
- Angus Macgregor Myburgh
- Department of Botany and Zoology, Private Bag X1, Stellenbosch University, 7602, South Africa
| | - Aaron Barnes
- Department of Botany and Zoology, Private Bag X1, Stellenbosch University, 7602, South Africa
| | - Romina Henriques
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, South Africa
| | - Savel R Daniels
- Department of Botany and Zoology, Private Bag X1, Stellenbosch University, 7602, South Africa.
| |
Collapse
|
2
|
Sato S, Derkarabetian S, Lord A, Giribet G. An ultraconserved element probe set for velvet worms (Onychophora). Mol Phylogenet Evol 2024; 197:108115. [PMID: 38810901 DOI: 10.1016/j.ympev.2024.108115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/04/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Onychophora are cryptic, soil-dwelling invertebrates known for their biogeographic affinities, diversity of reproductive modes, close phylogenetic relationship to arthropods, and peculiar prey capture mechanism. The 216 valid species of Onychophora are grouped into two families - Peripatopsidae and Peripatidae - and apart from a few relationships among major lineages within these two families, a stable phylogenetic backbone for the phylum has yet to be resolved. This has hindered our understanding of onychophoran biogeographic patterns, evolutionary history, and systematics. Neopatida, the Neotropical clade of peripatids, has proved particularly difficult, with recalcitrant nodes and low resolution, potentially due to rapid radiation of the group during the Cretaceous. Previous studies have had to compromise between number of loci and number of taxa due to limitations of Sanger sequencing and phylotranscriptomics, respectively. Additionally, aspects of their genome size and structure have made molecular phylogenetics difficult and data matrices have been affected by missing data. To address these issues, we leveraged recent, published transcriptomes and the first high quality genome for the phylum and designed a high affinity ultraconserved element (UCE) probe set for Onychophora. This new probe set, consisting of ∼ 20,000 probes that target 1,465 loci across both families, has high locus recovery and phylogenetic utility. Phylogenetic analyses recovered the monophyly of major clades of Onychophora and revealed a novel lineage from the Neotropics that challenges our current understanding of onychophoran biogeographic endemicity. This new resource could drastically increase the power of molecular datasets and potentially allow access to genomic scale data from archival museum specimens to further tackle the issues exasperating onychophoran systematics.
Collapse
Affiliation(s)
- Shoyo Sato
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA; Marine Biological Section, Department of Biology, University of Copenhagen, Universitetsparken 4, 2100 Copenhagen, Denmark(1).
| | - Shahan Derkarabetian
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA; San Diego Natural History Museum, Department of Entomology, San Diego, CA, USA(1)
| | - Arianna Lord
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
3
|
Nieto Lawrence JA, Daniels SR. Sample design in biodiversity studies matters: a fine-scale study of Lawrence's velvet worm, Peripatopsis lawrencei (Onychophora: Peripatopsidae), reveals hidden diversity. INVERTEBR SYST 2024; 38:IS23051. [PMID: 38744496 DOI: 10.1071/is23051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/15/2024] [Indexed: 05/16/2024]
Abstract
A fine-scale phylogenetic and phylogeographic analysis of Peripatopsis lawrencei s.l. was conducted with both mitochondrial and nuclear DNA sequence data, using both external morphology and scanning electron microscopy of taxonomically important characters. A total of 119 sequences were used for the mitochondrial cytochrome c oxidase subunit I (COI ) whereas a single representative specimen from each locality was sequenced for the nuclear 18S rRNA locus. Phylogenetic analyses were conducted on the total COI data set and the combined COI + 18S rRNA data set using a Bayesian analysis and maximum likelihood analyses. For the combined DNA sequence data set, a divergence time estimation was further undertaken in BEAST and specimens placed in a phylogenetic framework including all the described Peripatopsis species from South Africa. In addition, a phylogeographic study was conducted exclusively on P. lawrencei s.s. (clade A) using an analysis of molecular variance and haplotype network. Phylogenetic results indicated that, at the Oubos sample locality, two highly distinct genetic lineages were present (clades A and B), whereas a divergence time estimation suggests a Miocene cladogenesis of the novel Oubos lineage. Marked phylogeographic structure was observed for P. lawrencei s.s. (restricted to clade A) across the distribution range with limited maternal dispersal. Morphologically, the two sympatric lineages at Oubos A and B differed in leg pair number, ventral colour and dorsal scale rank counts, as evident from scanning electron microscopy. Our results support the recognition of a distinct species that occurs in sympatry with P. lawrencei s.s. The new species, P. aereus sp. nov. (clade B) is described and the implication for fine-scale taxonomic studies on saproxylic taxa is discussed. ZooBank: urn:lsid:zoobank.org:pub:AB6E0BDA-7B5F-4FD3-A863-BA7C814E278C.
Collapse
Affiliation(s)
- Julian A Nieto Lawrence
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Savel R Daniels
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
4
|
Oliveira IDS. An updated world checklist of velvet worms (Onychophora) with notes on nomenclature and status of names. Zookeys 2023; 1184:133-260. [PMID: 38023768 PMCID: PMC10680090 DOI: 10.3897/zookeys.1184.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/23/2023] [Indexed: 12/01/2023] Open
Abstract
More than a decade has passed since the publication of the only world checklist available for Onychophora. During this period, numerous nomenclatural acts and taxonomic changes have been suggested within the group and a wealth of novel data has been published on many taxa. Herein, the up-to-date taxonomic scenario within Onychophora is presented, with appraisal of name status. This checklist covers both extant (Peripatidae and Peripatopsidae) and fossil taxa, and each species is accompanied by information on synonyms, type designation, holotype location, type locality, and language of original description. Additional remarks include nomenclatural inconsistencies, synonymizations, name misspellings, conflicting collecting event data, availability of taxonomically informative molecular data, etc. According to the data, 237 species are currently assigned to Onychophora: 140 of Peripatopsidae, 92 of Peripatidae, and five fossil species with unclear relationship to extant taxa. Since the previous checklist, 37 species have been added to Onychophora, representing an increase of 18.5% in the diversity described for the group. Yet, taxonomic descriptions seem slow-paced, with an average of 3.6 onychophoran species being described annually. From the taxonomic standpoint, 216 species are valid, although many of them require morphological revision and molecular characterization; 21 species exhibit major taxonomic ambiguities and have been regarded as nomina dubia. Recurrent taxonomic issues identified in the literature include inaccurate collecting event data, doubtful taxonomic assignment of molecular sequences, and non-observance of nomenclatural rules. These and other taxonomic aspects are addressed herein in the light of the directives established by the International Code of Zoological Nomenclature.
Collapse
Affiliation(s)
- Ivo de Sena Oliveira
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, GermanyUniversity of KasselKasselGermany
- Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, 31270-901, Belo Horizonte, Minas Gerais, BrazilUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| |
Collapse
|
5
|
Costa CS, Mendes AC, Giupponi APDL. Epiperipatus puri sp. nov., a new velvet worm from Atlantic Forest in Southeastern Brazil (Onychophora, Peripatidae). PeerJ 2023; 11:e15384. [PMID: 37810772 PMCID: PMC10552768 DOI: 10.7717/peerj.15384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/18/2023] [Indexed: 10/10/2023] Open
Abstract
Epiperipatus ohausi (Bouvier, 1900) is the first species known from Rio de Janeiro, and more than 120 years later a new species is described in the state of Rio de Janeiro (RJ). In this study, we describe the second species in the state of Rio de Janeiro, which we are naming in honor of the indigenous population called puri who resided in southeastern coastal Brazil. The species can be diagnosed mainly by large dorsal primary papillae close to the insertion of the legs drawing a light band from the anterior to the posterior region of the body, and large dorsal primary papillae alternating on the dorsal plicae. Moreover, they are recognized in vivo by the color of the diamond-shaped marks brownish orange on the dorsal portion of the body. Epiperipatus puri sp. nov. morphologically seems to be related to Epiperipatus acacioi (Marcus & Marcus, 1995) by the shape of the primary papillae apical piece and to E. ohausi by the resemblance of dorsal papillae. The phylogeny shows a close relationship between the new species and E. ohausi in a clade with a still undescribed species from Rio de Janeiro, Brazil located within the Atlantic Forest, one of the most threatened biomes in the world.
Collapse
Affiliation(s)
- Cristiano Sampaio Costa
- Departament of Biology and Zoology, Universidade Federal de Mato Grosso—UFMT, Cuiabá, Mato Grosso, Brazil
| | - Amanda Cruz Mendes
- Departament of Zoology, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
6
|
Baker CM, Buckman-Young RS, Costa CS, Giribet G. Phylogenomic Analysis of Velvet Worms (Onychophora) Uncovers an Evolutionary Radiation in the Neotropics. Mol Biol Evol 2021; 38:5391-5404. [PMID: 34427671 PMCID: PMC8662635 DOI: 10.1093/molbev/msab251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Onychophora ("velvet worms") are charismatic soil invertebrates known for their status as a "living fossil," their phylogenetic affiliation to arthropods, and their distinctive biogeographic patterns. However, several aspects of their internal phylogenetic relationships remain unresolved, limiting our understanding of the group's evolutionary history, particularly with regard to changes in reproductive mode and dispersal ability. To address these gaps, we used RNA sequencing and phylogenomic analysis of transcriptomes to reconstruct the evolutionary relationships and infer divergence times within the phylum. We recovered a fully resolved and well-supported phylogeny for the circum-Antarctic family Peripatopsidae, which retains signals of Gondwanan vicariance and showcases the evolutionary lability of reproductive mode in the family. Within the Neotropical clade of Peripatidae, though, we found that amino acid-translated sequence data masked nearly all phylogenetic signal, resulting in highly unstable and poorly supported relationships. Analyses using nucleotide sequence data were able to resolve many more relationships, though we still saw discordant phylogenetic signal between genes, probably indicative of a rapid, mid-Cretaceous radiation in the group. Finally, we hypothesize that the unique reproductive mode of placentotrophic viviparity found in all Neotropical peripatids may have facilitated the multiple inferred instances of over-water dispersal and establishment on oceanic islands.
Collapse
Affiliation(s)
- Caitlin M Baker
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Rebecca S Buckman-Young
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Cristiano S Costa
- Laboratório de Sistemática e Taxonomia de Artrópodes Terrestres, Departamento de Biologia e Zoologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
7
|
Benavides LR, Daniels SR, Giribet G. Understanding the real magnitude of the arachnid order Ricinulei through deep Sanger sequencing across its distribution range and phylogenomics, with the formalization of the first species from the Lesser Antilles. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ligia R. Benavides
- Museum of Comparative Zoology Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA
| | - Savel R. Daniels
- Department of Botany and Zoology Stellenbosch University Matieland South Africa
| | - Gonzalo Giribet
- Museum of Comparative Zoology Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA
| |
Collapse
|
8
|
Heads M, Grehan JR. The Galápagos Islands: biogeographic patterns and geology. Biol Rev Camb Philos Soc 2021; 96:1160-1185. [PMID: 33749122 DOI: 10.1111/brv.12696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 11/29/2022]
Abstract
In the traditional biogeographic model, the Galápagos Islands appeared a few million years ago in a sea where no other islands existed and were colonized from areas outside the region. However, recent work has shown that the Galápagos hotspot is 139 million years old (Early Cretaceous), and so groups are likely to have survived at the hotspot by dispersal of populations onto new islands from older ones. This process of metapopulation dynamics means that species can persist indefinitely in an oceanic region, as long as new islands are being produced. Metapopulations can also undergo vicariance into two metapopulations, for example at active island arcs that are rifted by transform faults. We reviewed the geographic relationships of Galápagos groups and found 10 biogeographic patterns that are shared by at least two groups. Each of the patterns coincides spatially with a major tectonic structure; these structures include: the East Pacific Rise; west Pacific and American subduction zones; large igneous plateaus in the Pacific; Alisitos terrane (Baja California), Guerrero terrane (western Mexico); rifting of North and South America; formation of the Caribbean Plateau by the Galápagos hotspot, and its eastward movement; accretion of Galápagos hotspot tracks; Andean uplift; and displacement on the Romeral fault system. All these geological features were active in the Cretaceous, suggesting that geological change at that time caused vicariance in widespread ancestors. The present distributions are explicable if ancestors survived as metapopulations occupying both the Galápagos hotspot and other regions before differentiating, more or less in situ.
Collapse
Affiliation(s)
- Michael Heads
- Buffalo Museum of Science, 1020 Humboldt Parkway, Buffalo, NY, 14211-1293, U.S.A
| | - John R Grehan
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, 3215 Hull Rd, Gainesville, FL, 32611, U.S.A
| |
Collapse
|
9
|
Giribet G, Baker CM, Sharma PP. A revised phylogeny of the New Caledonian endemic genus Troglosiro (Opiliones : Cyphophthalmi : Troglosironidae) with the description of four new species. INVERTEBR SYST 2021. [DOI: 10.1071/is20042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Cyphophthalmi genus Troglosiro (the only genus of the family Troglosironidae) is endemic to New Caledonia, representing one of the oldest lineages of this emerged part of Zealandia. Its species are short-range endemics, many known from single localities. Here we examined the phylogenetic relationships of Troglosironidae using standard Sanger-sequenced markers (nuclear 18S rRNA, 28S rRNA, and mitochondrial 16S rRNA and cytochrome c oxidase subunit I) and a combination of phylogenetic methods, including parsimony under Direct Optimization and maximum likelihood with static homology. We also applied a diversity of species delimitation methods, including distance-based, topology-based and unsupervised machine learning to evaluate previous species designations. Finally, we used a combination of genetic and morphological information to describe four new species – T. dogny sp. nov., T. pin sp. nov., T. pseudojuberthiei sp. nov. and T. sharmai sp. nov. – and discuss them in the broader context of the phylogeny and biogeographic history of the family. A key to the species of Troglosiro is also provided.
urn:lsid:zoobank.org:pub:93541314-8309-468C-BB77-B34C3A81137E
Collapse
|
10
|
Giribet G, Sheridan K, Baker CM, Painting CJ, Holwell GI, Sirvid PJ, Hormiga G. A molecular phylogeny of the circum-Antarctic Opiliones family Neopilionidae. INVERTEBR SYST 2021. [DOI: 10.1071/is21012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Opiliones family Neopilionidae is restricted to the terranes of the former temperate Gondwana: South America, Africa, Australia, New Caledonia and New Zealand. Despite decades of morphological study of this unique fauna, it has been difficult reconciling the classic species of the group (some described over a century ago) with recent cladistic morphological work and previous molecular work. Here we attempted to investigate the pattern and timing of diversification of Neopilionidae by sampling across the distribution range of the family and sequencing three markers commonly used in Sanger-based approaches (18S rRNA, 28S rRNA and cytochrome-c oxidase subunit I). We recovered a well-supported and stable clade including Ballarra (an Australian ballarrine) and the Enantiobuninae from South America, Australia, New Caledonia and New Zealand, but excluding Vibone (a ballarrine from South Africa). We further found a division between West and East Gondwana, with the South American Thrasychirus/Thrasychiroides always being sister group to an Australian–Zealandian (i.e. Australia + New Zealand + New Caledonia) clade. Resolution of the Australian–Zealandian taxa was analysis-dependent, but some analyses found Martensopsalis, from New Caledonia, as the sister group to an Australian–New Zealand clade. Likewise, the species from New Zealand formed a clade in some analyses, but Mangatangi often came out as a separate lineage from the remaining species. However, the Australian taxa never constituted a monophyletic group, with Ballarra always segregating from the remaining Australian species, which in turn constituted 1–3 clades, depending on the analysis. Our results identify several generic inconsistencies, including the possibility of Thrasychiroides nested within Thrasychirus, Forsteropsalis being paraphyletic with respect to Pantopsalis, and multiple lineages of Megalopsalis in Australia. In addition, the New Zealand Megalopsalis need generic reassignment: Megalopsalis triascuta will require its own genus and M. turneri is here transferred to Forsteropsalis, as Forsteropsalis turneri (Marples, 1944), comb. nov.
Collapse
|
11
|
Costa CS, Giribet FLS G, Pinto-Da-Rocha R. Morphological and molecular phylogeny of Epiperipatus (Onychophora: Peripatidae): a combined approach. Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Onychophora, or velvet worms, are a key group for understanding ecdysozoan evolution. It comprises two families: Peripatopsidae, largely of Austral distribution, and Peripatidae, which is circumtropical. The interrelationships between the members of Peripatidae present many taxonomic issues exacerbated in the radiation of the Neotropical species or Neopatida. To understand the phylogeny of Neopatida, and to test the information of such morphological characters, we gathered novel molecular and morphological datasets focusing on Neotropical specimens. Our data were analysed using a combination of parsimony and maximum likelihood for the individual and combined molecular and morphological datasets. An analysis of morphology alone was inconclusive, supporting the notion that morphological characters used in peripatid taxonomy have little power to resolve phylogenetic relationships among higher taxa in Neopatida. However, the analyses of molecular or combined data show a split of the Neotropical species into two clades, which we use to reassign genera. Epiperipatus, as currently understood, is non-monophyletic, because it includes species of monotypic genera. To avoid paraphyly of Epiperipatus, the following new combinations are proposed: Epiperipatus bouvieri (Fuhrmann, 1913), Epiperipatus hitoyensis (Oliveira et al., 2012a), Epiperipatus solorzanoi (Morera-Brenes & Monge-Nájera, 2010) and Epiperipatus sucuriuensis (Oliveira et al., 2015).
Collapse
Affiliation(s)
- Cristiano S Costa
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, nº 321, Cidade Universitária, São Paulo, SP, CEP, Brazil
| | - Gonzalo Giribet FLS
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Ricardo Pinto-Da-Rocha
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, nº 321, Cidade Universitária, São Paulo, SP, CEP, Brazil
| |
Collapse
|
12
|
The Unique Antimicrobial Recognition and Signaling Pathways in Tardigrades with a Comparison Across Ecdysozoa. G3-GENES GENOMES GENETICS 2020; 10:1137-1148. [PMID: 31969428 PMCID: PMC7056985 DOI: 10.1534/g3.119.400734] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tardigrades are microscopic animals known to withstand unfavorable abiotic conditions. These animals are also constantly exposed to biotic stresses, including parasites and internal microbiomes. However, the tardigrade immune mechanisms against these biotic stresses are largely uncharacterized. Due to the contentious phylogenetic position of tardigrades, it is not intuitive whether they possess an immune system more similar to that of arthropods (e.g., Toll, Imd, and JNK pathways of the Drosophila melanogaster antimicrobial response) or to that of nematodes (e.g., the Tir-1/Nsy-1/Sek-1/Pmk-1/Atf-7 signaling cassette [called Tir-1 pathway here]) in Caenorhabditis elegans). In this study, comparative genomic analyses were conducted to mine homologs of canonical D. melanogaster and C. elegans immune pathway genes from eight tardigrades (Echiniscoides cf. sigismundi, Echiniscus testudo, Hypsibius exemplaris, Mesobiotus philippinicus, Milnesium tardigradum, Paramacrobiotus richtersi, Richtersius cf. coronifer, and Ramazzottius varieornatus) and four non-arthropod ecdysozoans (two onychophorans: Epiperipatus sp. and Opisthopatus kwazululandi; one nematomorph: Paragordius varius; and one priapulan: Priapulus caudatus) in order to provide insights into the tardigrade antimicrobial system. No homologs of the intracellular components of the Toll pathway were detected in any of the tardigrades examined. Likewise, no homologs of most of the Imd pathway genes were detected in any of the tardigrades or any of the other non-arthropod ecdysozoans. Both the JNK and Tir-1 pathways, on the other hand, were found to be conserved across ecdysozoans. Interestingly, tardigrades had no detectable homologs of NF-κB, the major activator of antimicrobial response gene expression. Instead, tardigrades appear to possess NF-κB distantly related NFAT homologs. Overall, our results show that tardigrades have a unique gene pathway repertoire that differs from that of other ecdysozoans. Our study also provides a framework for future studies on tardigrade immune responses.
Collapse
|
13
|
Barnes A, Reiss T, Daniels SR. Systematics of the Peripatopsis clavigera species complex (Onychophora : Peripatopsidae) reveals cryptic cladogenic patterning, with the description of five new species. INVERTEBR SYST 2020. [DOI: 10.1071/is19071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During the present study, DNA sequence data, gross morphology and scanning electron microscopy (SEM) were used to examine cryptic species boundaries in the velvet worm, Peripatopsis clavigera species complex, from the southern Cape Afrotemperate forest belt in South Africa. Sequence data were generated for the mitochondrial COI and the nuclear 18S rRNA loci and phylogenetically analysed using both a Bayesian inference and a maximum-likelihood approach. Both the COI data and the combined DNA sequence topology (COI+18S) revealed the presence of five clades within the Peripatopsis clavigera species complex, and revealed that specimens from Tulbagh were distantly related and represented a sixth clade. The evolutionary distinction of the five clades was corroborated to varying degrees by the four species-delimitation methods (ABGD, PTP, GMYC and STACEY); however, both the gross morphological data and the SEM provided limited diagnostic differences between the five clades. Furthermore, the COI haplotype network and phylogeographic analyses provided evidence of genetic isolation between lineages that are currently syntopic. The distribution of genealogically exclusive and widespread maternal lineages was atypical among velvet worms and did not reflect the general trend of genetic and geographical isolation. Instead, lineages exhibited admixture among localities, a result most likely due to fluctuations in climatic conditions affecting the southern Cape Afrotemperate forest during the Pliocene–Pleistocene period as evident from our divergence time estimations. Four novel, narrow-range endemic species – P. ferox, sp. nov., P. mellaria, sp. nov., P. edenensis, sp. nov. and P. mira, sp. nov. – are described within the P. clavigera species complex, whereas the Tulbagh specimens are described as P. tulbaghensis, sp. nov. Collectively, these results demonstrate that Peripatopsis likely contains several undescribed species.
Collapse
|
14
|
Baker CM, Sheridan K, Derkarabetian S, Pérez-González A, Vélez S, Giribet G. Molecular phylogeny and biogeography of the temperate Gondwanan family Triaenonychidae (Opiliones : Laniatores) reveals pre-Gondwanan regionalisation, common vicariance, and rare dispersal. INVERTEBR SYST 2020. [DOI: 10.1071/is19069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Triaenonychidae Sørensen in L. Koch, 1886 is a large family of Opiliones with ~480 described species broadly distributed across temperate forests in the Southern Hemisphere. However, it remains poorly understood taxonomically, as no comprehensive phylogenetic work has ever been undertaken. In this study we capitalise on samples largely collected by us during the last two decades and use Sanger DNA-sequencing techniques to produce a large phylogenetic tree with 300 triaenonychid terminals representing nearly 50% of triaenonychid genera and including representatives from all the major geographic areas from which they are known. Phylogenetic analyses using maximum likelihood and Bayesian inference methods recover the family as diphyletic, placing Lomanella Pocock, 1903 as the sister group to the New Zealand endemic family Synthetonychiidae Forster, 1954. With the exception of the Laurasian representatives of the family, all landmasses contain non-monophyletic assemblages of taxa. To determine whether this non-monophyly was the result of Gondwanan vicariance, ancient cladogenesis due to habitat regionalisation, or more recent over-water dispersal, we inferred divergence times. We found that most divergence times between landmasses predate Gondwanan breakup, though there has been at least one instance of transoceanic dispersal – to New Caledonia. In all, we identify multiple places in the phylogeny where taxonomic revision is needed, and transfer Lomanella outside of Triaenonychidae in order to maintain monophyly of the family.
Collapse
|
15
|
Joshi J, Karanth PK, Edgecombe GD. The out-of-India hypothesis: evidence from an ancient centipede genus, Rhysida (Chilopoda: Scolopendromorpha) from the Oriental Region, and systematics of Indian species. Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The Oriental Region has been a focus of biogeographical research for more than two centuries. We examined systematics and biogeography of the centipede genus Rhysida in this region. A robust species hypothesis for the Indian subcontinental and Southeast Asian Rhysida clade uses molecular, morphological and distribution data. Twelve species are recognized in two monophyletic species complexes, eight belonging to the Rhysida immarginata and four to the Rhysida longipes species complex. They include Rhysida aspinosa, Rhysida crassispina, R. immarginata, R. longipes and seven new species, five of which are formally named in this paper: Rhysida ikhalama, Rhysida konda, Rhysida lewisi, Rhysida pazhuthara and Rhysida sada The nine Rhysida species are documented taxonomically and their morphological variation is reviewed. An integrative systematic approach reveals that diversity of Rhysida in the Indian subcontinent has been underestimated. Both species complexes started to diversify in the Early to Late Cretaceous in the Indian subcontinent. The out-of-India hypothesis is supported in both clades, because Southeast Asian species are nested in Indian subcontinental clades. Historical biogeographical analyses suggest two independent post-collision dispersal events, one in the immarginata clade and another where R. longipes expanded its range into Southeast Asia.
Collapse
Affiliation(s)
| | - Praveen K Karanth
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
16
|
Blackburn DC, Giribet G, Soltis DE, Stanley EL. Predicting the Impact of Describing New Species on Phylogenetic Patterns. Integr Org Biol 2019; 1:obz028. [PMID: 33791542 PMCID: PMC7671110 DOI: 10.1093/iob/obz028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Although our inventory of Earth’s biodiversity remains incomplete, we still require analyses using the Tree of Life to understand evolutionary and ecological patterns. Because incomplete sampling may bias our inferences, we must evaluate how future additions of newly discovered species might impact analyses performed today. We describe an approach that uses taxonomic history and phylogenetic trees to characterize the impact of past species discoveries on phylogenetic knowledge using patterns of branch-length variation, tree shape, and phylogenetic diversity. This provides a framework for assessing the relative completeness of taxonomic knowledge of lineages within a phylogeny. To demonstrate this approach, we use recent large phylogenies for amphibians, reptiles, flowering plants, and invertebrates. Well-known clades exhibit a decline in the mean and range of branch lengths that are added each year as new species are described. With increased taxonomic knowledge over time, deep lineages of well-known clades become known such that most recently described new species are added close to the tips of the tree, reflecting changing tree shape over the course of taxonomic history. The same analyses reveal other clades to be candidates for future discoveries that could dramatically impact our phylogenetic knowledge. Our work reveals that species are often added non-randomly to the phylogeny over multiyear time-scales in a predictable pattern of taxonomic maturation. Our results suggest that we can make informed predictions about how new species will be added across the phylogeny of a given clade, thus providing a framework for accommodating unsampled undescribed species in evolutionary analyses.
Collapse
Affiliation(s)
- D C Blackburn
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - G Giribet
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - D E Soltis
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - E L Stanley
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
17
|
Benavides LR, Cosgrove JG, Harvey MS, Giribet G. Phylogenomic interrogation resolves the backbone of the Pseudoscorpiones tree of life. Mol Phylogenet Evol 2019; 139:106509. [DOI: 10.1016/j.ympev.2019.05.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 01/03/2023]
|
18
|
Costa CS, Chagas-Junior A, Pinto-da-Rocha R. Redescription of Epiperipatus edwardsii, and descriptions of five new species of Epiperipatus from Brazil (Onychophora: Peripatidae). ZOOLOGIA 2018. [DOI: 10.3897/zoologia.35.e23366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Epiperipatusedwardsii(Blanchard, 1847) is redescribed based on fresh material collected near the type locality. Additionally, five new species of velvet worms of the genusEpiperipatusClark, 1913 from Brazil are described:Epiperipatushyperbolicussp. nov.,Epiperipatuslucernasp. nov.,Epiperipatustitanicussp. nov. (Holotypes deposited in MNRJ: Murici, Alagoas State),Epiperipatusbeckerisp. nov. (Holotype female deposited in MNRJ: Camacan, Bahia State) andEpiperipatusmarajoarasp. nov. (Holotype male deposited in MZUSP: Breves, Marajó island, Pará State). The peculiar shape of the primary papillae (artichoke-like) ofE.titanicussp. nov. andE.beckerisp. nov. is documented for the first time.Epiperipatustitanicussp. nov. has the largest number of pairs of oncopods (38 for males and 39 for females) among the Brazilian Onychophora. We also provide an identification key for Brazilian species ofEpiperipatus.
Collapse
|