1
|
Li Y, Zhang C, Cheng H, Lv L, Zhu X, Ma M, Xu Z, He J, Xie Y, Yang X, Liang X, Deng C, Liu G. FOXO4-DRI improves spermatogenesis in aged mice through reducing senescence-associated secretory phenotype secretion from Leydig cells. Exp Gerontol 2024; 195:112522. [PMID: 39025385 DOI: 10.1016/j.exger.2024.112522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Male ageing is always accompanied by decreased fertility. The forkhead O (FOXO) transcription factor FOXO4 is reported to be highly expressed in senescent cells. Upon activation, it binds p53 in the nucleus, preventing senescent cell apoptosis and maintaining senescent cells in situ. Leydig cells play key roles in assisting spermatogenesis. Leydig cell senescence leads to deterioration of the microenvironment of the testes and impairs spermatogenesis. In this study, we observed that FOXO4-DRI, a specific FOXO4- p53 binding blocker, induced apoptosis in senescent Leydig cells, reduced the secretion of certain Senescence-Associated Secretory Phenotype and improved the proliferation of cocultured GC-1 SPG cells. In naturally aged mice, FOXO4-DRI-treated aged mice exhibited increased sperm quality and improved spermatogenesis.
Collapse
Affiliation(s)
- Yanqing Li
- Sun Yat-Sen University, Reproductive Centre, The Sixth Affiliated Hospital Guangzhou, 510655, Guangdong, China
| | - Chi Zhang
- Sun Yat-sen University, Department of Urology, The Third Affiliated Hospital, 510630, Guangdong, China
| | - Haicheng Cheng
- Sun Yat-Sen University, Reproductive Centre, The Sixth Affiliated Hospital Guangzhou, 510655, Guangdong, China
| | - LinYan Lv
- Sun Yat-Sen University, Reproductive Centre, The Sixth Affiliated Hospital Guangzhou, 510655, Guangdong, China
| | - Xinning Zhu
- Sun Yat-Sen University, Reproductive Centre, The Sixth Affiliated Hospital Guangzhou, 510655, Guangdong, China
| | - Menghui Ma
- Sun Yat-Sen University, Reproductive Centre, The Sixth Affiliated Hospital Guangzhou, 510655, Guangdong, China
| | - Zhenhan Xu
- Sun Yat-Sen University, Reproductive Centre, The Sixth Affiliated Hospital Guangzhou, 510655, Guangdong, China
| | - Junxian He
- Sun Yat-Sen University, Reproductive Centre, The Sixth Affiliated Hospital Guangzhou, 510655, Guangdong, China
| | - Yun Xie
- Sun Yat-Sen University, Department of Andrology, The First Affiliated Hospital, Guangzhou 510062, Guangdong, China
| | - Xing Yang
- Sun Yat-Sen University, Reproductive Centre, The Sixth Affiliated Hospital Guangzhou, 510655, Guangdong, China
| | - Xiaoyan Liang
- Sun Yat-Sen University, Reproductive Centre, The Sixth Affiliated Hospital Guangzhou, 510655, Guangdong, China
| | - Chunhua Deng
- Sun Yat-Sen University, Department of Andrology, The First Affiliated Hospital, Guangzhou 510062, Guangdong, China
| | - Guihua Liu
- Sun Yat-Sen University, Reproductive Centre, The Sixth Affiliated Hospital Guangzhou, 510655, Guangdong, China.
| |
Collapse
|
2
|
Xia TJ, Xie FY, Fan QC, Yin S, Ma JY. Analysis of factors affecting testicular spermatogenesis capacity by using the tissue transcriptome data from GTEx. Reprod Toxicol 2023; 117:108359. [PMID: 36870580 DOI: 10.1016/j.reprotox.2023.108359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
In human, endo- or exogeneous factors might alter the cellular composition, the endocrine and inflammatory micro-environments and the metabolic balance in testis. These factors will further impair the testicular spermatogenesis capacity and alter the transcriptome of testis. Conversely, it should be possible that the alteration of the transcriptomes in testes be used as an indicator to evaluate the testicular spermatogenesis capacity and to predict the causing factors. In this study, using the transcriptome data of human testes and whole blood which were collected by the genotype-tissue expression project (GTEx), we analyzed the transcriptome differences in human testes and explored those factors that affecting spermatogenesis. As a result, testes were clustered into five clusters according to their transcriptomic features, and each cluster of testes was evaluated as having different spermatogenesis capacity. High rank genes of each cluster and the differentially expressed genes in lower functional testes were analyzed. Transcripts in whole blood which may be associated with testis function were also analyzed by the correlation test. As a result, factors such as immune response, oxygen transport, thyrotropin, prostaglandin and tridecapeptide neurotensin were found associated with spermatogenesis. These results revealed multiple clues about the spermatogenesis regulation in testis and provided potential targets to improve the fertility of men in clinic.
Collapse
Affiliation(s)
- Tian-Jin Xia
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China; Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Feng-Yun Xie
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qi-Cheng Fan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Shen Yin
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Jun-Yu Ma
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| |
Collapse
|
3
|
Dong S, Chen C, Zhang J, Gao Y, Zeng X, Zhang X. Testicular aging, male fertility and beyond. Front Endocrinol (Lausanne) 2022; 13:1012119. [PMID: 36313743 PMCID: PMC9606211 DOI: 10.3389/fendo.2022.1012119] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/26/2022] [Indexed: 11/15/2022] Open
Abstract
Normal spermatogenesis and sperm function are crucial for male fertility. The effects of healthy testicular aging and testicular premature aging on spermatogenesis, sperm function, and the spermatogenesis microenvironment cannot be ignored. Compared with younger men, the testis of older men tends to have disturbed spermatogenic processes, sperm abnormalities, sperm dysfunction, and impaired Sertoli and Leydig cells, which ultimately results in male infertility. Various exogenous and endogenous factors also contribute to pathological testicular premature aging, such as adverse environmental stressors and gene mutations. Mechanistically, Y-chromosomal microdeletions, increase in telomere length and oxidative stress, accumulation of DNA damage with decreased repair ability, alterations in epigenetic modifications, miRNA and lncRNA expression abnormalities, have been associated with impaired male fertility due to aging. In recent years, the key molecules and signaling pathways that regulate testicular aging and premature aging have been identified, thereby providing new strategies for diagnosis and treatment. This review provides a comprehensive overview of the underlying mechanisms of aging on spermatogenesis. Furthermore, potential rescue measures for reproductive aging have been discussed. Finally, the inadequacy of testicular aging research and future directions for research have been envisaged to aid in the diagnosis and treatment of testicular aging and premature aging.
Collapse
Affiliation(s)
- Shijue Dong
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Chen Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Jiali Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Yuan Gao
- Laboratory Animal Center, Nantong University, Nantong, China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| |
Collapse
|
4
|
Frungieri MB, Calandra RS, Bartke A, Matzkin ME. Male and female gonadal ageing: its impact on health span and life span. Mech Ageing Dev 2021; 197:111519. [PMID: 34139215 DOI: 10.1016/j.mad.2021.111519] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023]
Abstract
Ageing is linked to changes in the hypothalamic-pituitary-gonadal axis and a progressive decline in gonadal function. While women become infertile when they enter menopause, fertility decline in ageing men does not necessarily involve a complete cessation of spermatogenesis. Gonadal dysfunction in elderly people is characterized by morphological, endocrine and metabolic alterations affecting the reproductive function and quality of life. With advancing age, sexuality turns into a critical emotional and physical factor actually defining the number of years that ageing people live a healthy life. Gonadal ageing correlates with comorbidities and an increased risk of age-related diseases including diabetes, kidney problems, cardiovascular failures and cancer. This article briefly summarizes the current state of knowledge on ovarian and testicular senescence, explores the experimental models used in the study of gonadal ageing, and describes the local pro-inflammatory, oxidative and apoptotic events and the associated signalling pathways that take place in the gonads while people get older. Overall, literature reports that ageing exacerbates a mutual crosstalk among oxidative stress, apoptosis and the inflammatory response in the gonads leading to detrimental effects on fertility. Data also highlight the clinical implications of novel therapeutic interventions using antioxidant, anti-apoptotic and anti-inflammatory drugs on health span and life span.
Collapse
Affiliation(s)
- Mónica B Frungieri
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires, C1428ADN, Argentina; Cátedra de Química, Ciclo Básico Común, Ciudad de Buenos Aires, C1405CAE, Argentina.
| | - Ricardo S Calandra
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires, C1428ADN, Argentina
| | - Andrzej Bartke
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University, School of Medicine, Springfield, IL 62702, USA
| | - María E Matzkin
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires, C1428ADN, Argentina; Cátedra de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, C1121ABG, Argentina
| |
Collapse
|
5
|
Santiago J, Silva JV, Alves MG, Oliveira PF, Fardilha M. Testicular Aging: An Overview of Ultrastructural, Cellular, and Molecular Alterations. J Gerontol A Biol Sci Med Sci 2020; 74:860-871. [PMID: 29688289 DOI: 10.1093/gerona/gly082] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Indexed: 11/12/2022] Open
Abstract
The trend in parenthood at an older age is increasing for both men and women in developed countries, raising concerns about the reproductive ability, and the consequences for the offspring's health. While reproductive activity in women stops with menopause, a complete cessation of the reproductive potential does not occur in men. Although several studies have been published on the effects of aging on semen parameters and spermatozoa DNA integrity, literature on impact of aging on the testis, particularly cellular, and molecular alterations, has been, so far, limited and controversial. This work discusses the current knowledge on testicular aging in humans and other mammals, covering topics from tissue ultrastructure, to cellular and molecular alterations. Aging affects male reproductive function at multiple levels, from sperm production and quality, to the morphology and histology of the male reproductive system. The morphological and functional changes that occur in the testes result in variations in the levels of many hormones, changes in molecules involved in mitochondrial function, receptors, and signaling proteins. Despite knowing that these age-related alterations occur, their real impact on male fertility and reproductive health are still far from being fully understood, highlighting that research in the field is crucial.
Collapse
Affiliation(s)
- Joana Santiago
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, Portugal
| | - Joana V Silva
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, Portugal.,Reproductive Genetics and Embryo-fetal Development Group, Institute for Innovation and Health Research (I3S), University of Porto, Portugal.,Department of Microscopy, Laboratory of Cell Biology, and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal
| | - Marco G Alves
- Department of Genetics, Faculty of Medicine, University of Porto, Portugal
| | - Pedro F Oliveira
- Reproductive Genetics and Embryo-fetal Development Group, Institute for Innovation and Health Research (I3S), University of Porto, Portugal.,Department of Microscopy, Laboratory of Cell Biology, and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal.,Department of Genetics, Faculty of Medicine, University of Porto, Portugal
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, Portugal
| |
Collapse
|
6
|
Martínez-Hernández J, Seco-Rovira V, Beltrán-Frutos E, Ferrer C, Canteras M, Sánchez-Huertas MDM, Pastor LM. Testicular histomorphometry and the proliferative and apoptotic activities of the seminiferous epithelium in Syrian hamster during spontaneous recrudescence after exposure to short photoperiod. Reprod Domest Anim 2018; 53:1041-1051. [DOI: 10.1111/rda.13201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/20/2018] [Accepted: 04/03/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Jesús Martínez-Hernández
- Department of Cell Biology and Histology, Medical School; IMIB-Arrixaca; Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia; Murcia Spain
| | - Vicente Seco-Rovira
- Department of Cell Biology and Histology, Medical School; IMIB-Arrixaca; Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia; Murcia Spain
| | - Ester Beltrán-Frutos
- Department of Cell Biology and Histology, Medical School; IMIB-Arrixaca; Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia; Murcia Spain
| | - Concepción Ferrer
- Department of Cell Biology and Histology, Medical School; IMIB-Arrixaca; Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia; Murcia Spain
| | - Manuel Canteras
- Department of Statistics, Medical School; University of Murcia; Murcia Spain
| | - María del Mar Sánchez-Huertas
- Department of Cell Biology and Histology, Medical School; IMIB-Arrixaca; Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia; Murcia Spain
| | - Luis Miguel Pastor
- Department of Cell Biology and Histology, Medical School; IMIB-Arrixaca; Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia; Murcia Spain
| |
Collapse
|
7
|
Beltrán-Frutos E, Seco-Rovira V, Ferrer C, Madrid JF, Sáez FJ, Canteras M, Pastor LM. Cellular changes in the hamster testicular interstitium with ageing and after exposure to short photoperiod. Reprod Fertil Dev 2016; 28:838-51. [DOI: 10.1071/rd14117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 10/09/2014] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to evaluate the cellular changes that occur in the hamster testicular interstitium in two very different physiological situations involving testicular involution: ageing and exposure to a short photoperiod. The animals were divided into an ‘age group’ with three subgroups – young, adult and old animals – and a ‘regressed group’ with animals subjected to a short photoperiod. The testicular interstitium was characterised by light and electron microscopy. Interstitial cells were studied histochemically with regard to their proliferation, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP in situ nick end labelling (TUNEL+) and testosterone synthetic activity. We identified two types of Leydig cell: Type A cells showed a normal morphology, while Type B cells appeared necrotic. With ageing, pericyte proliferation decreased but there was no variation in the index of TUNEL-positive Leydig cells. In the regressed group, pericyte proliferation was greater and TUNEL-positive cells were not observed in the interstitium. The testicular interstitium suffered few ultrastructural changes during ageing and necrotic Leydig cells were observed. In contrast, an ultrastructural involution of Leydig cells with no necrosis was observed in the regressed group. In conclusion, the testicular interstitium of Mesocricetus auratus showed different cellular changes in the two groups (age and regressed), probably due to the irreversible nature of ageing and the reversible character of changes induced by short photoperiod.
Collapse
|
8
|
Seco-Rovira V, Beltrán-Frutos E, Ferrer C, Saez FJ, Madrid JF, Canteras M, Pastor LM. Testicular histomorphometry and the proliferative and apoptotic activities of the seminiferous epithelium in Syrian hamster (Mesocricetus auratus) during regression owing to short photoperiod. Andrology 2015; 3:598-610. [DOI: 10.1111/andr.12037] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/09/2015] [Accepted: 03/05/2015] [Indexed: 12/13/2022]
Affiliation(s)
- V. Seco-Rovira
- Department of Cell Biology and Histology; Medical School; IMIB-Arrixaca; Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia; Murcia Spain
| | - E. Beltrán-Frutos
- Department of Cell Biology and Histology; Medical School; IMIB-Arrixaca; Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia; Murcia Spain
| | - C. Ferrer
- Department of Cell Biology and Histology; Medical School; IMIB-Arrixaca; Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia; Murcia Spain
| | - F. J. Saez
- Department of Cell Biology and Histology UFI 11/44; School of Medicine and Dentistry; University of the Basque Country UPV/EHU; Leioa Spain
| | - J. F. Madrid
- Department of Cell Biology and Histology; Medical School; IMIB-Arrixaca; Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia; Murcia Spain
| | - M. Canteras
- Department of Statistics; Medical School; University of Murcia; Murcia Spain
| | - L. M. Pastor
- Department of Cell Biology and Histology; Medical School; IMIB-Arrixaca; Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia; Murcia Spain
| |
Collapse
|
9
|
Bernal-Mañas CM, Cortes S, Morales E, Horn R, Seco-Rovira V, Beltran-Frutos E, Ferrer C, Canteras M, Pastor LM. Influence of histological degree of seminiferous tubular degeneration and stage of seminiferous cycle on the proliferation of spermatogonia in aged Syrian hamster (Mesocricetus auratus). Andrologia 2013; 46:672-9. [PMID: 23869747 DOI: 10.1111/and.12134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2013] [Indexed: 11/27/2022] Open
Abstract
The ageing testis is associated with germ loss in the seminiferous epithelium and a decrease in spermatogonia proliferation. In this work, we study whether the stages of the seminiferous epithelium cycle and/or the degree of histological tubular degeneration resulting from ageing is related with this decrease in spermatogonia proliferation. Eleven hamsters were used, five aged 6 months and six aged 24 months. In both groups, the proliferative activity was studied by BrdU immunostaining. The number of BrdU-positive and BrdU-negative cells was measured, providing the overall proliferation index in adult and aged testes. The mean number of BrdU-positive cells was also determined for each degree of histological degeneration of seminiferous epithelium, and a spermatogonia proliferation index was obtained for each stage of the seminiferous cycle. Ageing caused an overall decrease in the BrdU-positive cell percentage and a decrease in the number of BrdU-positive cells in the tubular sections with hypospermatogenesis, the sloughing of germ cells and maturation arrest, these changes being similar in both young and old animals. The spermatogonia proliferation index was only seen to be significantly lower in ageing hamster in stages VII-VIII of the seminiferous epithelium cycle. In conclusion, the overall decrease in proliferation observed in aged seminiferous epithelium is correlated with an increase in the number of degenerated sections of the seminiferous tubules, and this decrease is a phenomenon which occurs in specific stages of the seminiferous cycle.
Collapse
Affiliation(s)
- C M Bernal-Mañas
- Department of Cell Biology and Histology, Aging Institute, IMIB, School of Medicine, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pastor LM, Zuasti A, Ferrer C, Bernal-Mañas CM, Morales E, Beltrán-Frutos E, Seco-Rovira V. Proliferation and apoptosis in aged and photoregressed mammalian seminiferous epithelium, with particular attention to rodents and humans. Reprod Domest Anim 2011; 46:155-64. [PMID: 20149139 DOI: 10.1111/j.1439-0531.2009.01573.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Imbalances in the proliferation and apoptosis processes are involved in numerous epithelial alterations. In the seminiferous epithelium, normal spermatogenesis is regulated by spermatogonia proliferation and germ cell apoptosis, and both processes are involved in diverse pathological alterations of the seminiferous epithelium. Other physiological phenomena including aging and short photoperiod, in which apoptosis and proliferation seem to play important roles, cause testicular changes. Aging is accompanied by diminished proliferation and increased apoptosis, the latter occurring in specific states of the seminiferous cycle and considered the cause of epithelium involution. However, there is no clear evidence concerning whether proliferation decreases in the spermatogonia themselves or is due to an alteration in the cell microenvironment that surrounds them. As regards the factors that regulate the process, the data are scant, but it is considered that the diminution of c-kit expression in the spermatagonia, together with the diminution in antiapoptotic factors (Bcl-x(L))) of the intrinsic molecular pathway of apoptosis play a part in epithelial regression. A short photoperiod, especially in rodents, produces a gradual involution of the seminiferous epithelium, which is related with increased apoptosis during the regression phase and a diminution of apoptosis during recrudescence. Proliferative activity varies, especially during the total regression phase, when it usually increases in the undifferentiated spermatogonia. In other species showing seasonal reproduction, however, decreased proliferation is considered the main factor in the regression of the seminiferous epithelium. Little is known about how both phenomena are regulated, although data in rodents suggest that both the intrinsic and extrinsic pathways of apoptosis contribute to the increase in this process. In conclusion, regression of the seminiferous epithelium in physiological situations, as in many pathological situations, is a result of alterations in equilibrium between the proliferation and apoptosis of germinal cell types. However, both physiological phenomena showed important differences as regard proliferation/apoptosis and their regulation pathways, probably as a result of their irreversible or reversible character.
Collapse
Affiliation(s)
- L M Pastor
- Department of Cellular Biology and Histology, Aging Institute, Medical School, University of Murcia, Murcia, Spain.
| | | | | | | | | | | | | |
Collapse
|
11
|
Figueiredo ML, Dayan S, Kim Y, McBride J, Kupper TS, Wong DTW. Expression of cell-cycle regulator CDK2-associating protein 1 (p12CDK2AP1) in transgenic mice induces testicular and ovarian atrophy in vivo. Mol Reprod Dev 2007; 73:987-97. [PMID: 16496417 DOI: 10.1002/mrd.20458] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The novel cell-cycle regulator p12(CDK2AP1) (p12) gene encodes a cyclin-dependent kinase 2 (CDK2) partner that participates in cell-cycle regulation, apoptosis, and proliferation. CDK2 has been implicated in maintenance of gonadal homeostasis, as knockout mice display reproductive abnormalities. To investigate the role of p12 in homeostasis of gonadal tissues in vivo, we generated a transgenic mouse model driven by the human keratin 14 promoter, reported to target transgene expression to gonadal tissues and also stratified epithelia. Overexpression of the transgene was associated with a gonadal atrophy phenotype in mice of both sexes, yet fertility was not impaired. Histological evaluation of testes showed seminiferous tubule degeneration and decreased tubule diameter. Female transgenic mice had small ovaries, with a higher number of atretic follicles/mm(2) as compared to control nontransgenic mice. Also observed was increased germ cell apoptosis in both sexes (TUNEL). These results suggest that overexpression of p12 leads to testicular and ovarian abnormalities, a phenotype closely related to that of cdk2-/- mice. In combination, these observations suggest that the p12/CDK2 signaling pathways are carefully orchestrated to maintain proper gonadal tissue homeostasis. We suggest that the mechanisms of this regulation may be through p12-mediated altered expression of gonadal-specific genes and apoptotic pathways.
Collapse
Affiliation(s)
- M L Figueiredo
- Laboratory of Head and Neck Cancer Research, School of Dentistry and Dental Research Institute, University of California at Los Angeles, Division of Head & Neck Surgery/Otolaryngology, Jonsson Comprehensive Cancer Center, 90095, USA
| | | | | | | | | | | |
Collapse
|
12
|
Bernal-Mañas CM, Morales E, Pastor LM, Pinart E, Bonet S, Rosa PDL, Dolors Briz M, Zuasti A, Ferrer C, Canteras M. Proliferation and apoptosis of spermatogonia in postpuberal boar (Sus domesticus) testes with spontaneous unilateral and bilateral abdominal cryptorchidism. Acta Histochem 2005; 107:365-72. [PMID: 16185749 DOI: 10.1016/j.acthis.2005.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 07/12/2005] [Accepted: 07/19/2005] [Indexed: 11/28/2022]
Abstract
Cryptorchidism is a frequent male sexual disorder in mammals, which affects the histology of the tunica propria, interstitial tissue, blood vessels, seminiferous epithelium and testis functioning. In this paper, proliferation and apoptosis were examined in the seminiferous epithelium of both testes from unaffected boars and from boars suffering unilateral and bilateral cryptorchidism. In germ cells, proliferation was studied using the immunohistochemical PCNA technique, and apoptosis was analysed by in situ TUNEL labelling. An index was obtained for the proliferation and apoptosis observed in seminiferous tubules. In abdominal testes the epithelium contained few spermatogonia and Sertoli cells. In the testes of unaffected boars, numerous spermatogonia proliferated, whereas in cryptorchid testes such proliferation was lower and the proliferation/apoptosis ratio diminished. In the unaffected group, the TUNEL-positive germ cells were spermatogonia and spermatocytes in different phases of meiosis. In abdominal testes, the TUNEL-positive germ cells were spermatogonia alone. The apoptosis index of both abdominal and scrotal testes was similar. In conclusion, spontaneous cryptorchid testes showed a lower rate of spermatogonia proliferation in the seminiferous epithelium.
Collapse
Affiliation(s)
- Carmen M Bernal-Mañas
- Department of Cell Biology, School of Medicine, University of Murcia, 30100 Murcia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|