1
|
Cissé YM, Montgomery KR, Zierden HC, Hill EM, Kane PJ, Huang W, Kane MA, Bale TL. Maternal preconception stress produces sex-specific effects at the maternal:fetal interface to impact offspring development and phenotypic outcomes†. Biol Reprod 2024; 110:339-354. [PMID: 37971364 PMCID: PMC10873277 DOI: 10.1093/biolre/ioad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Entering pregnancy with a history of adversity, including adverse childhood experiences and racial discrimination stress, is a predictor of negative maternal and fetal health outcomes. Little is known about the biological mechanisms by which preconception adverse experiences are stored and impact future offspring health outcomes. In our maternal preconception stress (MPS) model, female mice underwent chronic stress from postnatal days 28-70 and were mated 2 weeks post-stress. Maternal preconception stress dams blunted the pregnancy-induced shift in the circulating extracellular vesicle proteome and reduced glucose tolerance at mid-gestation, suggesting a shift in pregnancy adaptation. To investigate MPS effects at the maternal:fetal interface, we probed the mid-gestation placental, uterine, and fetal brain tissue transcriptome. Male and female placentas differentially regulated expression of genes involved in growth and metabolic signaling in response to gestation in an MPS dam. We also report novel offspring sex- and MPS-specific responses in the uterine tissue apposing these placentas. In the fetal compartment, MPS female offspring reduced expression of neurodevelopmental genes. Using a ribosome-tagging transgenic approach we detected a dramatic increase in genes involved in chromatin regulation in a PVN-enriched neuronal population in females at PN21. While MPS had an additive effect on high-fat-diet (HFD)-induced weight gain in male offspring, both MPS and HFD were necessary to induce significant weight gain in female offspring. These data highlight the preconception period as a determinant of maternal health in pregnancy and provides novel insights into mechanisms by which maternal stress history impacts offspring developmental programming.
Collapse
Affiliation(s)
- Yasmine M Cissé
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristen R Montgomery
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hannah C Zierden
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elizabeth M Hill
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patrick J Kane
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Tracy L Bale
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Gaillard V, Chastant S, England G, Forman O, German AJ, Suchodolski JS, Villaverde C, Chavatte-Palmer P, Péron F. Environmental risk factors in puppies and kittens for developing chronic disorders in adulthood: A call for research on developmental programming. Front Vet Sci 2022; 9:944821. [PMID: 36619947 PMCID: PMC9816871 DOI: 10.3389/fvets.2022.944821] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Many dogs and cats are affected by chronic diseases that significantly impact their health and welfare and relationships with humans. Some of these diseases can be challenging to treat, and a better understanding of early-life risk factors for diseases occurring in adulthood is key to improving preventive veterinary care and husbandry practices. This article reviews early-life risk factors for obesity and chronic enteropathy, and for chronic behavioral problems, which can also be intractable with life-changing consequences. Aspects of early life in puppies and kittens that can impact the risk of adult disorders include maternal nutrition, establishment of the gut microbiome, maternal behavior, weaning, nutrition during growth, growth rate, socialization with conspecifics and humans, rehoming and neutering. Despite evidence in some species that the disorders reviewed here reflect the developmental origins of health and disease (DOHaD), developmental programming has rarely been studied in dogs and cats. Priorities and strategies to increase knowledge of early-life risk factors and DOHaD in dogs and cats are discussed. Critical windows of development are proposed: preconception, gestation, the suckling period, early growth pre-neutering or pre-puberty, and growth post-neutering or post-puberty to adult size, the durations of which depend upon species and breed. Challenges to DOHaD research in these species include a large number of breeds with wide genetic and phenotypic variability, and the existence of many mixed-breed individuals. Moreover, difficulties in conducting prospective lifelong cohort studies are exacerbated by discontinuity in pet husbandry between breeders and subsequent owners, and by the dispersed nature of pet ownership.
Collapse
Affiliation(s)
- Virginie Gaillard
- Research and Development Center, Royal Canin, Aimargues, France,*Correspondence: Virginie Gaillard ✉
| | - Sylvie Chastant
- NeoCare, Université de Toulouse, Ecole Nationale Vétérinaire de Toulouse (ENVT), Toulouse, France
| | - Gary England
- School of Veterinary Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Oliver Forman
- Wisdom Panel, Kinship, Waltham-on-the-Wolds, Leicestershire, United Kingdom
| | - Alexander J. German
- Institute of Life Course and Medical Sciences of Small Animal Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | | | - Pascale Chavatte-Palmer
- Université Paris-Saclay, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Biologie de la Reproduction, Environnement, Epigénétique et Développement (BREED), Jouy-en-Josas, France,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Franck Péron
- Research and Development Center, Royal Canin, Aimargues, France
| |
Collapse
|
3
|
Ramos-Ibeas P, Gimeno I, Cañón-Beltrán K, Gutiérrez-Adán A, Rizos D, Gómez E. Senescence and Apoptosis During in vitro Embryo Development in a Bovine Model. Front Cell Dev Biol 2020; 8:619902. [PMID: 33392207 PMCID: PMC7775420 DOI: 10.3389/fcell.2020.619902] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
According to the World Health Organization, infertility affects up to 14% of couples under reproductive age, leading to an exponential rise in the use of assisted reproduction as a route for conceiving a baby. In the same way, thousands of embryos are produced in cattle and other farm animals annually, leading to increased numbers of individuals born. All reproductive manipulations entail deviations of natural phenotypes and genotypes, with in vitro embryo technologies perhaps showing the biggest effects, although these alterations are still emerging. Most of these indications have been provided by animal models, in particular the bovine species, due to its similarities to human early embryo development. Oocytes and embryos are highly sensitive to environmental stress in vivo and in vitro. Thus, during in vitro culture, a number of stressful conditions affect embryonic quality and viability, inducing subfertility and/or long-term consequences that may reach the offspring. A high proportion of the embryos produced in vitro are arrested at a species-specific stage of development during the first cell divisions. These arrested embryos do not show signs of programmed cell death during early cleavage stages. Instead, defective in vitro produced embryos would enter a permanent cell cycle arrest compatible with cellular senescence, in which they show active metabolism and high reactive oxygen species levels. Later in development, mainly during the morula and blastocyst stages, apoptosis would mediate the elimination of certain cells, accomplishing both a physiological role in to balancing cell proliferation and death, and a pathological role preventing the transmission of damaged cells with an altered genome. The latter would acquire relevant importance in in vitro produced embryos that are submitted to stressful environmental stimuli. In this article, we review the mechanisms mediating apoptosis and senescence during early embryo development, with a focus on in vitro produced bovine embryos. Additionally, we shed light on the protective role of senescence and apoptosis to ensure that unhealthy cells and early embryos do not progress in development, avoiding long-term detrimental effects.
Collapse
Affiliation(s)
- Priscila Ramos-Ibeas
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - Isabel Gimeno
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Gijón, Spain
| | - Karina Cañón-Beltrán
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - Dimitrios Rizos
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - Enrique Gómez
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Gijón, Spain
| |
Collapse
|
4
|
Garcia-Dominguez X, Juarez JD, Vicente JS, Marco-Jiménez F. Impact of embryo technologies on secondary sex ratio in rabbit. Cryobiology 2020; 97:60-65. [PMID: 33053364 DOI: 10.1016/j.cryobiol.2020.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 01/20/2023]
Abstract
Increasing evidence indicates that assisted reproductive technologies (ARTs) disturb skewed sex-ratio and induce sex-dimorphic postnatal effects. Undoubtedly, the combination of multiple ovulation and embryo transfer (MOET) together with the use of vitrification technique (MOVET) is currently being used in breeding programs. However, since the first case of sex skewing reported in 1991, the accumulative and long-term transmission of skewed sex-ratio to future generations has not been thoroughly evaluated. Here we test as MOVET program induce a skewed sex ratio, and we consider skewed sex ratio transmission to future generations. To this end, we first evaluated the F1 generation, demonstrating that a MOVET program causes a severe imbalance skewed secondary sex ratio (SSR) towards male by 12%. This imbalanced persist after a second MOVET program (F2 generation), with an accumulative skewed SSR towards male by 25%. Finally, using a crossbred generation derived from crossing F1 males derived from a MOVET program with naturally-conceived (NC) females, we show that the imbalance skewed SRR persist. Bodyweight comparison between MOVET animals and NC counterparts revealed significant changes at birth, weaning and adulthood. However, there was a significant interaction between F2 MOVET animals and sex, demonstrating an apparent accumulative sex-dimorphic effect. At adulthood, MOVET derived males presented a lower body weight. In conclusion, we show that the MOVET program causes a direct, accumulative and long-term transmission of skewed SSR.
Collapse
Affiliation(s)
- Ximo Garcia-Dominguez
- Laboratory of Biotechnology of Reproduction, Institute for Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022, Valencia, Spain
| | - Jorge D Juarez
- Laboratory of Biotechnology of Reproduction, Institute for Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022, Valencia, Spain
| | - José S Vicente
- Laboratory of Biotechnology of Reproduction, Institute for Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022, Valencia, Spain
| | - Francisco Marco-Jiménez
- Laboratory of Biotechnology of Reproduction, Institute for Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022, Valencia, Spain.
| |
Collapse
|
5
|
Muñoz M, Gatien J, Salvetti P, Martín-González D, Carrocera S, Gómez E. Nuclear magnetic resonance analysis of female and male pre-hatching embryo metabolites at the embryo-maternal interface. Metabolomics 2020; 16:47. [PMID: 32270352 DOI: 10.1007/s11306-020-01672-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/25/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Bovine female and male embryos differentially release metabolites with signalling effects to culture media. However, it is unknown if the embryo-maternal interface (EMI) metabolome is modified by embryonic sex. OBJECTIVE To analyse using a combination of 1H NMR and a co-culture of endometrial cells the EMI. RESULTS Twenty-six metabolites were identified and quantified in the EMI, nine metabolites reflected the sex of the embryo rather than their presence. CONCLUSIONS 1H NMR is sensitive enough to perform quantitative analysis of sex-induced differences in the EMI. These results may help to understand the embryo-maternal dialogue on the basis of embryonic sex.
Collapse
Affiliation(s)
- M Muñoz
- Centro de Biotecnología Animal - SERIDA, Camino de Rioseco, 1225, Gijón, Spain.
| | - J Gatien
- ALLICE, Experimental Facilities, Le Perroi, 37380, Nouzilly, France
| | - P Salvetti
- ALLICE, Experimental Facilities, Le Perroi, 37380, Nouzilly, France
| | - D Martín-González
- Centro de Biotecnología Animal - SERIDA, Camino de Rioseco, 1225, Gijón, Spain
| | - S Carrocera
- Centro de Biotecnología Animal - SERIDA, Camino de Rioseco, 1225, Gijón, Spain
| | - E Gómez
- Centro de Biotecnología Animal - SERIDA, Camino de Rioseco, 1225, Gijón, Spain
| |
Collapse
|
6
|
Angove JL, Forder REA. The avian maternal environment: exploring the physiological mechanisms driving progeny performance. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1729675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- J. L. Angove
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| | - R. E. A. Forder
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| |
Collapse
|
7
|
PLGA nanoparticles with multiple modes are a biologically safe nanocarrier for mammalian development and their offspring. Biomaterials 2018; 183:43-53. [PMID: 30149229 DOI: 10.1016/j.biomaterials.2018.08.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/08/2018] [Accepted: 08/20/2018] [Indexed: 01/02/2023]
Abstract
Nano-sized particles (NPs) of various materials have been extensively used as therapeutic and diagnostic agents, drug delivery systems, and biomedical devices. However, the biological impacts of NP exposure during early embryogenesis on following development and next generations have not been investigated. Here, we demonstrated that polylactic-co-glycolic acid (PLGA)-NPs were not toxic and did not perturb development of preimplantation mouse embryos in vitro. Moreover, subsequent fetal development in vivo after embryo transfer proceeded normally and healthy pups were born without any genetic aberrations, suggesting biosafety of PLGA-NPs during developmental processes. TRITC-labeled PLGA-NPs, named TRITC nano-tracer (TnT) were used to visualize the successful delivery of the NPs into sperms, oocytes and early embryos. Various molecular markers for early embryogenesis demonstrated that TnT treatment at various developmental stages did not compromise embryo development to the blastocyst. mRNA-Seq analyses reinforced that TnT treatment did not significantly affect mRNA landscapes of blastocysts which undergo embryo implantation critical for following developmental processes. Moreover, when 2-cell embryos exposed to TnT were transferred into pseudopregnant recipients, healthy offspring were born without any distinct morphologic and chromosomal abnormalities. TnT treatment did not affect the sex ratio of the exposed embryos after birth. When mated with male mice, female mice that were exposed to TnT during early embryogenesis produced a comparable number of pups as control females. Furthermore, the phenotypes of the offspring of mice experienced TnT at their early life clearly demonstrated that TnT did not elicit any negative transgenerational effects on mammalian development.
Collapse
|
8
|
Pérez-Cerezales S, Ramos-Ibeas P, Rizos D, Lonergan P, Bermejo-Alvarez P, Gutiérrez-Adán A. Early sex-dependent differences in response to environmental stress. Reproduction 2017; 155:R39-R51. [PMID: 29030490 DOI: 10.1530/rep-17-0466] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 12/14/2022]
Abstract
Developmental plasticity enables the appearance of long-term effects in offspring caused by exposure to environmental stressors during embryonic and foetal life. These long-term effects can be traced to pre- and post-implantation development, and in both cases, the effects are usually sex specific. During preimplantation development, male and female embryos exhibit an extensive transcriptional dimorphism mainly driven by incomplete X chromosome inactivation. These early developmental stages are crucial for the establishment of epigenetic marks that will be conserved throughout development, making it a particularly susceptible period for the appearance of long-term epigenetic-based phenotypes. Later in development, gonadal formation generates hormonal differences between the sexes, and male and female placentae exhibit different responses to environmental stressors. The maternal environment, including hormones and environmental insults during pregnancy, contributes to sex-specific placental development that controls genetic and epigenetic programming during foetal development, regulating sex-specific differences, including sex-specific epigenetic responses to environmental hazards, leading to long-term effects. This review summarizes several human and animal studies examining sex-specific responses to environmental stressors during both the periconception period (caused by differences in sex chromosome dosage) and placental development (caused by both sex chromosomes and hormones). The identification of relevant sex-dependent trajectories caused by sex chromosomes and/or sex hormones is essential to define diagnostic markers and prevention/intervention protocols.
Collapse
Affiliation(s)
| | | | | | - Pat Lonergan
- School of Agriculture and Food ScienceUniversity College Dublin, Dublin, Ireland
| | | | | |
Collapse
|
9
|
Kou H, Wang GH, Pei LG, Zhang L, Shi C, Guo Y, Wu DF, Wang H. Effects of prenatal caffeine exposure on glucose homeostasis of adult offspring rats. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2017; 104:89. [DOI: 10.1007/s00114-017-1510-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 08/30/2017] [Accepted: 09/30/2017] [Indexed: 10/18/2022]
|
10
|
Gross N, Kropp J, Khatib H. Sexual Dimorphism of miRNAs Secreted by Bovine In vitro-produced Embryos. Front Genet 2017; 8:39. [PMID: 28421107 PMCID: PMC5378762 DOI: 10.3389/fgene.2017.00039] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/20/2017] [Indexed: 01/29/2023] Open
Abstract
Sexual dimorphism of bovine blastocysts has previously been observed through differences in development, cell death, metabolism, telomere length, DNA methylation, and transcriptomics. However, dimorphism in the secretion of miRNAs to culture media has not yet been evaluated. The objectives of this study were to determine if sex-specific blastocyst miRNA secretion occurs and to further investigate the role these miRNAs may have in the interaction between a blastocyst and the maternal environment. In vitro embryo culture was performed and media from male and female blastocysts was collected into sex-specific pools. Profiling of 68 miRNAs revealed a total of eight miRNAs that were differentially expressed between female and male-conditioned media. Validation by qPCR confirmed higher expression of miR-22 (P < 0.05), miR-122 (P < 0.05), and miR-320a (P < 0.05) in female media for three additional biological replicates. To examine the potential roles of secreted miRNAs to the media in communication with the maternal environment, miR-22, miR-122, and miR-320a were each supplemented to four replicates of primary bovine endometrial epithelial cell culture. Uptake of miR-122 (P < 0.05) and miR-320a (P < 0.05) was detected, and a trend of uptake was detected for miR-22 (P > 0.05). Further, expression of the progesterone receptor transcript, a predicted target of all three miRNAs, was found to be upregulated in the cells following supplementation of miR-122 (P < 0.05) and miR-320a (P < 0.05), and a trend upregulation of the transcript was observed following miR-22 (P > 0.05) supplementation. This work demonstrates that male and female conceptuses are able to differentially secrete miRNAs at the blastocyst stage and that these miRNAs have the ability to induce a transcriptomic response when applied to maternal cells. This knowledge builds on the known dimorphic differences in conceptuses at the blastocyst stage and demonstrates a role for blastocyst-secreted miRNAs in cell-cell communication.
Collapse
Affiliation(s)
- Nicole Gross
- Department of Animal Sciences, University of Wisconsin, MadisonWI, USA
| | - Jenna Kropp
- Department of Animal Sciences, University of Wisconsin, MadisonWI, USA
| | - Hasan Khatib
- Department of Animal Sciences, University of Wisconsin, MadisonWI, USA
| |
Collapse
|
11
|
Abstract
Intrauterine growth restriction (IUGR) has been defined in several ways, but in general describes a condition in which the fetus exhibits poor growth in utero. This complication of pregnancy poses a significant public health burden as well as increased morbidity and mortality for the offspring. In human IUGR, alteration in fetal glucose and insulin homeostasis occurs in an effort to conserve energy and survive at the expense of fetal growth in an environment of inadequate nutrient provision. Several animal models of IUGR have been utilized to study the effects of IUGR on fetal glucose handling, as well as the postnatal reprogramming of energy metabolite handling, which may be unmasked in adulthood as a maladaptive propensity for cardiometabolic disease. This developmental programming may be mediated in part by epigenetic modification of essential regulators of glucose homeostasis. Several pharmacological therapies and nonpharmacological lifestyle modifications have shown early promise in mitigating the risk for or severity of adult metabolic phenotypes but still require further study of unanticipated and/or untoward side effects.
Collapse
Affiliation(s)
- Sherin U Devaskar
- Department of Pediatrics, Division of Neonatology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Alison Chu
- Department of Pediatrics, Division of Neonatology, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
12
|
Chavatte-Palmer P, Tarrade A, Kiefer H, Duranthon V, Jammes H. Breeding animals for quality products: not only genetics. Reprod Fertil Dev 2017; 28:94-111. [PMID: 27062878 DOI: 10.1071/rd15353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The effect of the Developmental Origins of Health and Disease on the spread of non-communicable diseases is recognised by world agencies such as the United Nations and the World Health Organization. Early environmental effects on offspring phenotype also apply to domestic animals and their production traits. Herein, we show that maternal nutrition not only throughout pregnancy, but also in the periconception period can affect offspring phenotype through modifications of gametes, embryos and placental function. Because epigenetic mechanisms are key processes in mediating these effects, we propose that the study of epigenetic marks in gametes may provide additional information for domestic animal selection.
Collapse
Affiliation(s)
| | - Anne Tarrade
- INRA, UMR 1198 Biologie du Développement et Reproduction, 78350 Jouy en Josas, France
| | - Hélène Kiefer
- INRA, UMR 1198 Biologie du Développement et Reproduction, 78350 Jouy en Josas, France
| | - Véronique Duranthon
- INRA, UMR 1198 Biologie du Développement et Reproduction, 78350 Jouy en Josas, France
| | - Hélène Jammes
- INRA, UMR 1198 Biologie du Développement et Reproduction, 78350 Jouy en Josas, France
| |
Collapse
|
13
|
Developmental plasticity in the neural control of breathing. Exp Neurol 2017; 287:176-191. [DOI: 10.1016/j.expneurol.2016.05.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/13/2016] [Accepted: 05/26/2016] [Indexed: 12/14/2022]
|
14
|
Mamrut S, Avidan N, Staun-Ram E, Ginzburg E, Truffault F, Berrih-Aknin S, Miller A. Integrative analysis of methylome and transcriptome in human blood identifies extensive sex- and immune cell-specific differentially methylated regions. Epigenetics 2016; 10:943-57. [PMID: 26291385 DOI: 10.1080/15592294.2015.1084462] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The relationship between DNA methylation and gene expression is complex and elusive. To further elucidate these relations, we performed an integrative analysis of the methylome and transcriptome of 4 circulating immune cell subsets (B cells, monocytes, CD4(+), and CD8(+) T cells) from healthy females. Additionally, in light of the known sex bias in the prevalence of several immune-mediated diseases, the female datasets were compared with similar public available male data sets. Immune cell-specific differentially methylated regions (DMRs) were found to be highly similar between sexes, with an average correlation coefficient of 0.82; however, numerous sex-specific DMRs, shared by the cell subsets, were identified, mainly on autosomal chromosomes. This provides a list of highly interesting candidate genes to be studied in disorders with sexual dimorphism, such as autoimmune diseases. Immune cell-specific DMRs were mainly located in the gene body and intergenic region, distant from CpG islands but overlapping with enhancer elements, indicating that distal regulatory elements are important in immune cell specificity. In contrast, sex-specific DMRs were overrepresented in CpG islands, suggesting that the epigenetic regulatory mechanisms of sex and immune cell specificity may differ. Both positive and, more frequently, negative correlations between subset-specific expression and methylation were observed, and cell-specific DMRs of both interactions were associated with similar biological pathways, while sex-specific DMRs were linked to networks of early development or estrogen receptor and immune-related molecules. Our findings of immune cell- and sex-specific methylome and transcriptome profiles provide novel insight on their complex regulatory interactions and may particularly contribute to research of immune-mediated diseases.
Collapse
Affiliation(s)
- Shimrat Mamrut
- a Rappaport Faculty of Medicine; Technion-Israel Institute of Technology ; Haifa , Israel
| | - Nili Avidan
- a Rappaport Faculty of Medicine; Technion-Israel Institute of Technology ; Haifa , Israel
| | - Elsebeth Staun-Ram
- a Rappaport Faculty of Medicine; Technion-Israel Institute of Technology ; Haifa , Israel
| | - Elizabeta Ginzburg
- a Rappaport Faculty of Medicine; Technion-Israel Institute of Technology ; Haifa , Israel
| | - Frederique Truffault
- b INSERM - U974/CNRS UMR7215//UPMC UM76/AIM; Institute of Myology Pitie-Salpetriere ; Paris , France
| | - Sonia Berrih-Aknin
- b INSERM - U974/CNRS UMR7215//UPMC UM76/AIM; Institute of Myology Pitie-Salpetriere ; Paris , France
| | - Ariel Miller
- a Rappaport Faculty of Medicine; Technion-Israel Institute of Technology ; Haifa , Israel.,c Division of Neuroimmunology; Lady Davis Carmel Medical Center ; Haifa , Israel
| |
Collapse
|
15
|
Shojaei Saadi HA, Gagné D, Fournier É, Baldoceda Baldeon LM, Sirard MA, Robert C. Responses of bovine early embryos to S-adenosyl methionine supplementation in culture. Epigenomics 2016; 8:1039-60. [PMID: 27419740 DOI: 10.2217/epi-2016-0022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM There is a growing concern about the potential adverse effects of high dose folic acid (FA) supplementation before and during pregnancy. FA metabolism generates S-adenosyl methionine (SAM) which is an important cofactor of epigenetic programming. We sought to assess the impact of a large dose of SAM on early embryo development. MATERIALS & METHODS In vitro cultured bovine embryos were treated with SAM from the eight-cell stage to the blastocyst stage. In addition to the phenotype, the genome-wide epigenetic and transcription profiles were analyzed. RESULTS Treatment significantly improved embryo hatching and caused a shift in sex ratio in favor of males. SAM caused genome-wide hypermethylation mainly in exonic regions and in CpG islands. Although differentially expressed genes were associated with response to nutrients and developmental processes, no correspondence was found with the differentially methylated regions, suggesting that cellular responses to SAM treatment during early embryo development may not require DNA methylation-driven changes. CONCLUSION Since bovine embryos were not indifferent to SAM, effects of large-dose FA supplements on early embryonic development in humans cannot be ruled out.
Collapse
Affiliation(s)
- Habib A Shojaei Saadi
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Département des sciences animales, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Dominic Gagné
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Département des sciences animales, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Éric Fournier
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Département des sciences animales, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Luis Manuel Baldoceda Baldeon
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Département des sciences animales, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Marc-André Sirard
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Département des sciences animales, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Claude Robert
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Département des sciences animales, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
16
|
Velazquez MA, Smith CGC, Smyth NR, Osmond C, Fleming TP. Advanced maternal age causes adverse programming of mouse blastocysts leading to altered growth and impaired cardiometabolic health in post-natal life. Hum Reprod 2016; 31:1970-80. [PMID: 27402911 PMCID: PMC4991661 DOI: 10.1093/humrep/dew177] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/17/2016] [Indexed: 12/27/2022] Open
Abstract
STUDY QUESTION Does advanced maternal age (AMA) in mice affect cardiometabolic health during post-natal life in offspring derived from an assisted reproduction technology (ART) procedure? SUMMARY ANSWER Offspring derived from blastocysts collected from aged female mice displayed impaired body weight gain, blood pressure, glucose metabolism and organ allometry during post-natal life compared with offspring derived from blastocysts from young females; since all blastocysts were transferred to normalized young mothers, this effect is independent of maternal pregnancy conditions. WHAT IS KNOWN ALREADY Although studies in mice have shown that AMA can affect body weight and behaviour of offspring derived from natural reproduction, data on the effects of AMA on offspring cardiometabolic health during post-natal development are not available. Given the increasing use of ART to alleviate infertility in women of AMA, it is pivotal to develop ART-AMA models addressing the effects of maternal aging on offspring health. STUDY DESIGN, SIZE, DURATION Blastocysts from old (34-39 weeks) or young (8-9 weeks) C57BL/6 females mated with young CBA males (13-15 weeks) were either subjected to differential cell staining (inner cell mass and trophectoderm) or underwent embryo transfer (ET) into young MF1 surrogates (8-9 weeks) to produce young (Young-ET, 9 litters) and old (Old-ET, 10 litters) embryo-derived offspring. Offspring health monitoring was carried out for 30 weeks. PARTICIPANTS/MATERIALS, SETTING, METHODS All animals were fed with standard chow. Blood pressure was measured at post-natal Weeks 9, 15 and 21, and at post-natal Week 30 a glucose tolerance test (GTT) was performed. Two days after the GTT mice were killed for organ allometry. Blastocyst cell allocation variables were evaluated by T-test and developmental data were analysed with a multilevel random effects regression model. MAIN RESULTS AND THE ROLE OF CHANCE The total number of cells in blastocysts from aged mice was decreased (P < 0.05) relative to young mice due to a lower number of cells in the trophectoderm (mean ± SEM: 34.5 ± 2.1 versus 29.6 ± 1.0). Weekly body weight did not differ in male offspring, but an increase in body weight from Week 13 onwards was observed in Old-ET females (final body weight at post-natal Week 30: 38.5 ± 0.8 versus 33.4 ± 0.8 g, P < 0.05). Blood pressure was increased in Old-ET offspring at Weeks 9-15 in males (Week 9: 108.5 ± 3.13 versus 100.8 ± 1.5 mmHg, Week 15: 112.9 ± 3.2 versus 103.4 ± 2.1 mmHg) and Week 15 in females (115.9 ± 3.7 versus 102.8 ± 0.7 mmHg; all P < 0.05 versus Young-ET). The GTT results and organ allometry were not affected in male offspring. In contrast, Old-ET females displayed a greater (P < 0.05) peak glucose concentration at 30 min during the GTT (21.1 ± 0.4 versus 17.8 ± 1.16 mmol/l) and their spleen weight (88.2 ± 2.6 ± 105.1 ± 4.6 mg) and several organ:body weight ratios (g/g × 10(3)) were decreased (P < 0.05 versus Young-ET), including the heart (3.7 ± 0.06 versus 4.4 ± 0.08), lungs (4.4 ± 0.1 versus 5.0 ± 0.1), spleen (2.4 ± 0.06 versus 3.2 ± 0.1) and liver (36.4 ± 0.6 versus 39.1 ± 0.9). LIMITATIONS, REASONS FOR CAUTION Results from experimental animal models cannot be extrapolated to humans. Nevertheless, they are valuable to develop conceptual models that can produce hypotheses for eventual testing in the target species (i.e. humans). WIDER IMPLICATIONS OF THE FINDINGS Our data show that offspring from mouse embryos from aged mothers can develop altered phenotypes during post-natal development compared with embryos from young mothers. Because all embryos were transferred into young mothers for the duration of pregnancy to normalize the maternal in vivo environment, our findings indicate that adverse programming via AMA is already established at the blastocyst stage. Whilst human embryos display increased aneuploidy compared with mouse, we believe our data have implications for women of AMA undergoing assisted reproduction, including surrogacy programmes. STUDY FUNDING/COMPETING INTERESTS This work was supported through the European Union FP7-CP-FP Epihealth programme (278418) to T.P.F. and the BBSRC (BB/F007450/1) to T.P.F. The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- M A Velazquez
- Centre for Biological Sciences, University of Southampton, Southampton SO16 6YD, UK School of Agriculture, Food & Rural Development, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - C G C Smith
- Centre for Biological Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - N R Smyth
- Centre for Biological Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - C Osmond
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton SO16 6YD, UK
| | - T P Fleming
- Centre for Biological Sciences, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
17
|
Chavatte-Palmer P, Robles M, Tarrade A, Duranthon V. Gametes, Embryos, and Their Epigenome: Considerations for Equine Embryo Technologies. J Equine Vet Sci 2016. [DOI: 10.1016/j.jevs.2016.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Tan K, Wang Z, Zhang Z, An L, Tian J. IVF affects embryonic development in a sex-biased manner in mice. Reproduction 2016; 151:443-53. [DOI: 10.1530/rep-15-0588] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/28/2016] [Indexed: 11/08/2022]
Abstract
Increasing evidence indicates that IVF (IVF includes in vitro fertilization and culture) embryos and babies are associated with a series of health complications, and some of them show sex-dimorphic patterns. Therefore, we hypothesized that IVF procedures have sex-biased or even sex-specific effects on embryonic and fetal development. Here, we demonstrate that IVF-induced side effects show significant sexual dimorphic patterns from the pre-implantation to the prenatal stage. During the pre-implantation stage, female IVF embryos appear to be more vulnerable to IVF-induced effects, including an increased percentage of apoptosis (7.22±1.94 vs 0.71±0.76, P<0.01), and dysregulated expression of representative sex-dimorphic genes (Xist, Hprt, Pgk1 and Hsp70). During the mid-gestation stage, IVF males had a higher survival rate than IVF females at E13.5 (male:female=1.33:1), accompanied with a female-biased pregnancy loss. In addition, while both IVF males and females had reduced placental vasculogenesis/angiogenesis, the compensatory placental overgrowth was more evident in IVF males. During the late-gestation period, IVF fetuses had a higher sex ratio (male:female=1.48:1) at E19.5, and both male and female IVF placentas showed overgrowth. After birth, IVF males grew faster than their in vivo (IVO) counterparts, while IVF females showed a similar growth pattern with IVO females. The present study provides a new insight into understanding IVF-induced health complications during embryonic and fetal development. By understanding and minimizing these sex-biased effects of the IVF process, the health of IVF-conceived babies may be improved in the future.
Collapse
|
19
|
Chavatte-Palmer P, Vialard F, Tarrade A, Dupont C, Duranthon V, Lévy R. [DOHaD and pre- or peri-conceptional programming]. Med Sci (Paris) 2016; 32:57-65. [PMID: 26850608 DOI: 10.1051/medsci/20163201010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The pre- and peri-conceptional periods (before and just after fertilization, until the blastocyst stage) are critical in the context of the Developmental Origins of Health and Disease (DOHaD). Maternal in vivo environment, in particular nutrition, can disturb the apposition of epigenetic marks throughout gametogenesis, fertilization and the first steps of embryonic development, which are times during which major epigenetic changes take place. The in vitro environment, in the case of assisted reproduction techniques, also affects epigenetic marks. Whilst the embryo is a target of these changes, female and male gametes are both target and vector of these epigenetic changes, thus leading to multigenerational effects. Long term consequences on the phenotype of offspring vary according to the sex of the vector parent, the sex of the individual and the generation.
Collapse
Affiliation(s)
- Pascale Chavatte-Palmer
- UMR BDR, INRA, ENVA, Université Paris Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - François Vialard
- Unité Gamète-Implantation-Gestation, EA7404 Université de Versailles Saint-Quentin-en-Yvelines et Centre hospitalier intercommunal de Poissy St-Germain, laboratoire assistance médicale à la procréation-cytogénétique, France
| | - Anne Tarrade
- UMR BDR, INRA, ENVA, Université Paris Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - Charlotte Dupont
- UMR BDR, INRA, ENVA, Université Paris Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France - APHP, hôpital Jean Verdier, 93140, Bondy, France
| | - Véronique Duranthon
- UMR BDR, INRA, ENVA, Université Paris Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - Rachel Lévy
- APHP, hôpital Jean Verdier, 93140, Bondy, France
| |
Collapse
|
20
|
Brun JM, Bernadet MD, Cornuez A, Leroux S, Bodin L, Basso B, Davail S, Jaglin M, Lessire M, Martin X, Sellier N, Morisson M, Pitel F. Influence of grand-mother diet on offspring performances through the male line in Muscovy duck. BMC Genet 2015; 16:145. [PMID: 26690963 PMCID: PMC4687110 DOI: 10.1186/s12863-015-0303-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 12/10/2015] [Indexed: 01/28/2023] Open
Abstract
Background In mammals, multigenerational environmental effects have been documented by either epidemiological studies in human or animal experiments in rodents. Whether such phenomena also occur in birds for more than one generation is still an open question. The objective of this study was to investigate if a methionine deficiency experienced by a mother (G0) could affect her grand-offspring phenotypes (G2 hybrid mule ducks and G2 purebred Muscovy ducks), through their Muscovy sons (G1). Muscovy drakes are used for the production of mule ducks, which are sterile offspring of female common duck (Anas platyrhynchos) and Muscovy drakes (Cairina moschata). In France, mule ducks are bred mainly for the production of “foie gras”, which stems from hepatic steatosis under two weeks of force-feeding (FF). Two groups of female Muscovy ducks received either a methionine deficient diet or a control diet. Their sons were mated to Muscovy or to common duck females to produce Muscovy or Mule ducks, respectively. Several traits were measured in the G2 progenies, concerning growth, feed efficiency during FF, body composition after FF, and quality of foie gras and magret. Results In the G2 mule duck progeny, grand-maternal methionine deficiency (GMMD) decreased 4, 8, and 12 week body weights but increased weight gain and feed efficiency during FF, and abdominal fat weight. The plasmatic glucose and triglyceride contents at the end of FF were higher in the methionine deficient group. In the G2 purebred Muscovy progeny, GMMD tended to decrease 4 week body weight in both sexes, and decreased weight gain between the ages of 4 and 12 weeks, 12 week body weight, and body weight at the end of FF in male offspring only. GMMD tended to increase liver weight and increased the carcass proportion of liver in both sexes. Conclusion Altogether, these results show that the mother’s diet is able to affect traits linked to growth and to lipid metabolism in the offspring of her sons, in Muscovy ducks. Whether this transmission through the father of information induced in the grand-mother by the environment is epigenetic remains to be demonstrated. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0303-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jean-Michel Brun
- UMR INRA, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENSAT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENVT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France.
| | - Marie-Dominique Bernadet
- Institut National de la Recherche Agronomique, Unité Expérimentale des Palmipèdes à Foie Gras, UE89, 40280, Benquet, France.
| | - Alexis Cornuez
- Institut National de la Recherche Agronomique, Unité Expérimentale des Palmipèdes à Foie Gras, UE89, 40280, Benquet, France.
| | - Sophie Leroux
- UMR INRA, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENSAT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENVT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France.
| | - Loys Bodin
- UMR INRA, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENSAT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENVT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France.
| | - Benjamin Basso
- UMR INRA, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENSAT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENVT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,Present addresses: ITSAP-Institut de l'Abeille, Site Agroparc, 84914, Avignon, France. .,UMT Protection des Abeilles dans l'Environnement, CS 40506, 84914, Avignon, France.
| | - Stéphane Davail
- UMR5254 IUT des Pays de l'Adour-CNRS, 40004, Mont de Marsan Cedex, France.
| | - Mathilde Jaglin
- UMR5254 IUT des Pays de l'Adour-CNRS, 40004, Mont de Marsan Cedex, France.
| | - Michel Lessire
- Institut National de la Recherche Agronomique, UR83 Unité de Recherche Avicole, 37380, Nouzilly, France.
| | - Xavier Martin
- Institut National de la Recherche Agronomique, Unité Expérimentale des Palmipèdes à Foie Gras, UE89, 40280, Benquet, France.
| | - Nadine Sellier
- Institut National de la Recherche Agronomique, Pôle d'Expérimentation Avicole de Tours, UE1295, 37380, Nouzilly, France.
| | - Mireille Morisson
- UMR INRA, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENSAT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENVT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France.
| | - Frédérique Pitel
- UMR INRA, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENSAT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENVT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France.
| |
Collapse
|
21
|
Houde AA, Ruchat SM, Allard C, Baillargeon JP, St-Pierre J, Perron P, Gaudet D, Brisson D, Hivert MF, Bouchard L. LRP1B, BRD2 and CACNA1D: new candidate genes in fetal metabolic programming of newborns exposed to maternal hyperglycemia. Epigenomics 2015; 7:1111-22. [PMID: 26586120 DOI: 10.2217/epi.15.72] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM To assess the associations between gestational diabetes mellitus (GDM) and DNA methylation levels at genes related to energy metabolism. PATIENTS & METHODS Ten loci were selected from our recent epigenome-wide association study on GDM. DNA methylation levels were quantified by bisulfite pyrosequencing in 80 placenta and cord blood samples (20 exposed to GDM) from an independent birth cohort (Gen3G). RESULTS We did not replicate association between DNA methylation and GDM. However, in normoglycemic women, glucose levels were associated with DNA methylation changes at LRP1B and BRD2 and at CACNA1D and LRP1B gene loci in placenta and cord blood, respectively. CONCLUSION These results suggest that maternal glucose levels, within the normal range, are associated with DNA methylation changes at genes related to energy metabolism and previously associated with GDM. Maternal glycemia might thus be involved in fetal metabolic programming.
Collapse
Affiliation(s)
- Andrée-Anne Houde
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada.,ECOGENE-21 & Clinical Research Center & Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada
| | - Stephanie-May Ruchat
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada.,ECOGENE-21 & Clinical Research Center & Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada
| | - Catherine Allard
- Department of Medicine, Division of Endocrinology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Patrice Baillargeon
- Department of Medicine, Division of Endocrinology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Julie St-Pierre
- ECOGENE-21 & Clinical Research Center & Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada.,Department of Pediatrics, Chicoutimi Hospital, Saguenay, QC, Canada.,Department of Health Sciences, Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | - Patrice Perron
- ECOGENE-21 & Clinical Research Center & Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada.,Department of Medicine, Division of Endocrinology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Daniel Gaudet
- ECOGENE-21 & Clinical Research Center & Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada.,Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Diane Brisson
- ECOGENE-21 & Clinical Research Center & Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada.,Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Marie-France Hivert
- Department of Medicine, Division of Endocrinology, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, MA, USA.,General Medicine Division, Massachusetts General Hospital, Boston, MA, USA
| | - Luigi Bouchard
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada.,ECOGENE-21 & Clinical Research Center & Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada
| |
Collapse
|
22
|
Denicol AC, Leão BCS, Dobbs KB, Mingoti GZ, Hansen PJ. Influence of Sex on Basal and Dickkopf-1 Regulated Gene Expression in the Bovine Morula. PLoS One 2015. [PMID: 26196299 PMCID: PMC4510475 DOI: 10.1371/journal.pone.0133587] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Sex affects function of the developing mammalian embryo as early as the preimplantation period. There were two goals of the current objective. The first was to determine the degree and nature of differences in gene expression between female and male embryos in the cow at the morula stage of development. The second objective was to determine whether DKK1, a molecule known to alter differentiation of the blastocyst, would affect gene expression differently for female and male morulae. In Experiment 1, female and male embryos were treated with DKK1 at Day 5 after insemination. Morulae were harvested 24 h after treatment, pooled in groups of 20 for microarray analysis and RNA subjected to analysis of gene expression by microarray hybridization. There were 662 differentially expressed genes between females and males and 128 of these genes had a fold change ≥ 1.5 between the two sexes. Of the genes upregulated in females, 49.5% were located in the X chromosome. Functional analysis predicted that cell survival was greater in female embryos. Experiment 2 involved a similar design except that transcripts for 12 genes previously reported to be affected by sex, DKK1 or the interaction were quantified by quantitative polymerase chain reaction. Expression of all genes tested that were affected by sex in experiment 1 was affected in a similar manner in Experiment 2. In contrast, effects of DKK1 on gene expression were largely not repeatable in Experiment 2. The exception was for the Hippo signaling gene AMOT, which was inhibited by DKK1. In Experiment 3, embryos produced by fertilization with unsorted sperm were treated with DKK1 at Day 5 and abundance of transcripts for CDX2, GATA6, and NANOG determined at Days 5, 6 and 7 after insemination. There was no effect of DKK1 on expression of any of the three genes. In conclusion, female and male bovine embryos have a different pattern of gene expression as early as the morula stage, and this is due to a large extent to expression of genes in the X chromosomes in females. Differential gene expression between female and male embryos is likely the basis for increased resistance to cell death signals in female embryos and disparity in responses of female and male embryos to changes in the maternal environment.
Collapse
Affiliation(s)
- Anna C Denicol
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Beatriz C S Leão
- Laboratory of Physiology of Reproduction, School of Veterinary Medicine, Universidade Estadual Paulista-UNESP, Araçatuba, SP, Brazil
| | - Kyle B Dobbs
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Gisele Z Mingoti
- Laboratory of Physiology of Reproduction, School of Veterinary Medicine, Universidade Estadual Paulista-UNESP, Araçatuba, SP, Brazil
| | - Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
23
|
Sun C, Velazquez MA, Marfy-Smith S, Sheth B, Cox A, Johnston DA, Smyth N, Fleming TP. Mouse early extra-embryonic lineages activate compensatory endocytosis in response to poor maternal nutrition. Development 2014; 141:1140-50. [DOI: 10.1242/dev.103952] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mammalian extra-embryonic lineages perform the crucial role of nutrient provision during gestation to support embryonic and fetal growth. These lineages derive from outer trophectoderm (TE) and internal primitive endoderm (PE) in the blastocyst and subsequently give rise to chorio-allantoic and visceral yolk sac placentae, respectively. We have shown maternal low protein diet exclusively during mouse preimplantation development (Emb-LPD) is sufficient to cause a compensatory increase in fetal and perinatal growth that correlates positively with increased adult-onset cardiovascular, metabolic and behavioural disease. Here, to investigate early mechanisms of compensatory nutrient provision, we assessed the influence of maternal Emb-LPD on endocytosis within extra-embryonic lineages using quantitative imaging and expression of markers and proteins involved. Blastocysts collected from Emb-LPD mothers within standard culture medium displayed enhanced TE endocytosis compared with embryos from control mothers with respect to the number and collective volume per cell of vesicles with endocytosed ligand and fluid and lysosomes, plus protein expression of megalin (Lrp2) LDL-family receptor. Endocytosis was also stimulated using similar criteria in the outer PE-like lineage of embryoid bodies formed from embryonic stem cell lines generated from Emb-LPD blastocysts. Using an in vitro model replicating the depleted amino acid (AA) composition found within the Emb-LPD uterine luminal fluid, we show TE endocytosis response is activated through reduced branched-chain AAs (leucine, isoleucine, valine). Moreover, activation appears mediated through RhoA GTPase signalling. Our data indicate early embryos regulate and stabilise endocytosis as a mechanism to compensate for poor maternal nutrient provision.
Collapse
Affiliation(s)
- Congshan Sun
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Miguel A. Velazquez
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Stephanie Marfy-Smith
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Bhavwanti Sheth
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Andy Cox
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - David A. Johnston
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Neil Smyth
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Tom P. Fleming
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| |
Collapse
|