1
|
Meulders B, Marei WFA, Loier L, Leroy JLMR. Lipotoxicity and Oocyte Quality in Mammals: Pathogenesis, Consequences, and Reversibility. Annu Rev Anim Biosci 2025; 13:233-254. [PMID: 39565833 DOI: 10.1146/annurev-animal-111523-102249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Metabolic stress conditions are often characterized by upregulated lipolysis and subsequently increased serum free fatty acid (FFA) concentrations, leading to the uptake of FFAs by non-adipose tissues and impairment of their function. This phenomenon is known as lipotoxicity. The increased serum FFA concentrations are reflected in the ovarian follicular fluid, which can have harmful effects on oocyte development. Several studies using in vitro and in vivo mammalian models showed that altered oocyte metabolism, increased oxidative stress, and mitochondrial dysfunction are crucial mechanisms underlying this detrimental impact. Ultimately, this can impair offspring health through the persistence of defective mitochondria in the embryo, hampering epigenetic reprogramming and early development. In vitro and in vivo treatments to enhance oocyte mitochondrial function are increasingly being developed. This can help to improve pregnancy rates and safeguard offspring health in metabolically compromised individuals.
Collapse
Affiliation(s)
- Ben Meulders
- Gamete Research Centre, Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium; , , ,
| | - Waleed F A Marei
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Gamete Research Centre, Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium; , , ,
| | - Lien Loier
- Gamete Research Centre, Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium; , , ,
| | - Jo L M R Leroy
- Gamete Research Centre, Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium; , , ,
| |
Collapse
|
2
|
Moorkens K, Leroy JLMR, Quanico J, Baggerman G, Marei WFA. How the Oviduct Lipidomic Profile Changes over Time after the Start of an Obesogenic Diet in an Outbred Mouse Model. BIOLOGY 2023; 12:1016. [PMID: 37508445 PMCID: PMC10376370 DOI: 10.3390/biology12071016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/03/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
We investigated whether a high-fat/high-sugar (HF/HS) diet alters the lipidomic profile of the oviductal epithelium (OE) and studied the patterns of these changes over time. Female outbred Swiss mice were fed either a control (10% fat) or HF/HS (60% fat, 20% fructose) diet. Mice (n = 3 per treatment per time point) were sacrificed and oviducts were collected at 3 days and 1, 4, 8, 12 and 16 weeks on the diet. Lipids in the OE were imaged using matrix-assisted laser desorption ionisation mass spectrometry imaging. Discriminative m/z values and differentially regulated lipids were determined in the HF/HS versus control OEs at each time point. Feeding the obesogenic diet resulted in acute changes in the lipid profile in the OE already after 3 days, and thus even before the development of an obese phenotype. The changes in the lipid profile of the OE progressively increased and became more persistent after long-term HF/HS diet feeding. Functional annotation revealed a differential abundance of phospholipids, sphingomyelins and lysophospholipids in particular. These alterations appear to be not only caused by the direct accumulation of the excess circulating dietary fat but also a reduction in the de novo synthesis of several lipid classes, due to oxidative stress and endoplasmic reticulum dysfunction. The described diet-induced lipidomic changes suggest alterations in the OE functions and the oviductal microenvironment which may impact crucial reproductive events that take place in the oviduct, such as fertilization and early embryo development.
Collapse
Affiliation(s)
- Kerlijne Moorkens
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Jo L M R Leroy
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Jusal Quanico
- Centre for Proteomics, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Geert Baggerman
- Centre for Proteomics, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- Health Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Waleed F A Marei
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
3
|
Di Berardino C, Peserico A, Capacchietti G, Zappacosta A, Bernabò N, Russo V, Mauro A, El Khatib M, Gonnella F, Konstantinidou F, Stuppia L, Gatta V, Barboni B. High-Fat Diet and Female Fertility across Lifespan: A Comparative Lesson from Mammal Models. Nutrients 2022; 14:nu14204341. [PMID: 36297035 PMCID: PMC9610022 DOI: 10.3390/nu14204341] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022] Open
Abstract
Female reproduction focuses mainly on achieving fully grown follicles and competent oocytes to be successfully fertilized, as well as on nourishing the developing offspring once pregnancy occurs. Current evidence demonstrates that obesity and/or high-fat diet regimes can perturbate these processes, leading to female infertility and transgenerational disorders. Since the mechanisms and reproductive processes involved are not yet fully clarified, the present review is designed as a systematic and comparative survey of the available literature. The available data demonstrate the adverse influences of obesity on diverse reproductive processes, such as folliculogenesis, oogenesis, and embryo development/implant. The negative reproductive impact may be attributed to a direct action on reproductive somatic and germinal compartments and/or to an indirect influence mediated by the endocrine, metabolic, and immune axis control systems. Overall, the present review highlights the fragmentation of the current information limiting the comprehension of the reproductive impact of a high-fat diet. Based on the incidence and prevalence of obesity in the Western countries, this topic becomes a research challenge to increase self-awareness of dietary reproductive risk to propose solid and rigorous preventive dietary regimes, as well as to develop targeted pharmacological interventions.
Collapse
Affiliation(s)
- Chiara Di Berardino
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Alessia Peserico
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Correspondence:
| | - Giulia Capacchietti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Alex Zappacosta
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, A. Buzzati-Traverso Campus, via E. Ramarini 32, Monterotondo Scalo, 00015 Rome, Italy
| | - Valentina Russo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Annunziata Mauro
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Mohammad El Khatib
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Francesca Gonnella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Fani Konstantinidou
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Liborio Stuppia
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
4
|
Moorkens K, Leroy JLMR, Verheyen S, Marei WFA. Effects of an obesogenic diet on the oviduct depend on the duration of feeding. PLoS One 2022; 17:e0275379. [PMID: 36174086 PMCID: PMC9522283 DOI: 10.1371/journal.pone.0275379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/15/2022] [Indexed: 12/04/2022] Open
Abstract
Research question How long does it take for an obesogenic (high-fat/high-sugar, HF/HS) diet to influence the oviductal microenvironment? What are the affected cellular pathways and are they dependent on the genetic background of the mouse model? Design Female Swiss (outbred) and C57BL/6N (B6, inbred) mice were fed either a control (10% fat) or HF/HS (60% fat, 20% fructose) diet. Body weight was measured weekly. Mice were sacrificed at 3 days (3d), 1 week (1w), 4w, 8w, 12w and 16w on the diet (n = 5 per treatment per time point). Total cholesterol concentrations and inflammatory cytokines were measured in serum. Oviductal epithelial cells (OECs) were used to study the expression of genes involved in (mitochondrial) oxidative stress (OS), endoplasmic reticulum (ER) stress and inflammation using qPCR. Results Body weight and blood cholesterol increased significantly in the HF/HS mice in both strains compared to controls. In Swiss mice, HF/HS diet acutely increased ER-stress and OS-related genes in the OECs already after 3d. Subsequently, mitochondrial and cytoplasmic antioxidants were upregulated and ER-stress was alleviated at 1w. After 4-8w (mid-phase), the expression of ER-stress and OS-related genes was increased again and persisted throughout the late-phase (12-16w). Serum inflammatory cytokines and inflammatory marker-gene expression in the OECs were increased only in the late-phase. Some of the OEC stress responses were stronger or earlier in the B6. Conclusions OECs are sensitive to an obesogenic diet and may exhibit acute stress responses already after a few days of feeding. This may impact the oviductal microenvironment and contribute to diet-induced subfertility.
Collapse
Affiliation(s)
- Kerlijne Moorkens
- Department of Veterinary Sciences, Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Antwerp, Belgium
- * E-mail:
| | - Jo L. M. R. Leroy
- Department of Veterinary Sciences, Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Sara Verheyen
- Department of Veterinary Sciences, Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Waleed F. A. Marei
- Department of Veterinary Sciences, Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Antwerp, Belgium
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Desmet KLJ, Marei WFA, Richard C, Sprangers K, Beemster GTS, Meysman P, Laukens K, Declerck K, Vanden Berghe W, Bols PEJ, Hue I, Leroy JLMR. Oocyte maturation under lipotoxic conditions induces carryover transcriptomic and functional alterations during post-hatching development of good-quality blastocysts: novel insights from a bovine embryo-transfer model. Hum Reprod 2021; 35:293-307. [PMID: 32112081 DOI: 10.1093/humrep/dez248] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
STUDY QUESTION Does oocyte maturation under lipolytic conditions have detrimental carry-over effects on post-hatching embryo development of good-quality blastocysts after transfer? SUMMARY ANSWER Surviving, morphologically normal blastocysts derived from bovine oocytes that matured under lipotoxic conditions exhibit long-lasting cellular dysfunction at the transcriptomic and metabolic levels, which coincides with retarded post-hatching embryo development. WHAT IS KNOWN ALREADY There is increasing evidence showing that following maturation in pathophysiologically relevant lipotoxic conditions (as in obesity or metabolic syndrome), surviving blastocysts of good (transferable) morphological quality have persistent transcriptomic and epigenetic alteration even when in vitro embryo culture takes place under standard conditions. However, very little is known about subsequent development in the uterus after transfer. STUDY DESIGN, SIZE, DURATION Bovine oocytes were matured in vitro in the presence of pathophysiologically relevant, high non-esterified fatty acid (NEFA) concentrations (HIGH PA), or in basal NEFA concentrations (BASAL) as a physiological control. Eight healthy multiparous non-lactating Holstein cows were used for embryo transfers. Good-quality blastocysts (pools of eight) were transferred per cow, and cows were crossed over for treatments in the next replicate. Embryos were recovered 7 days later and assessed for post-hatching development, phenotypic features and gene expression profile. Blastocysts from solvent-free and NEFA-free maturation (CONTROL) were also tested for comparison. PARTICIPANTS/MATERIALS, SETTING, METHODS Recovered Day 14 embryos were morphologically assessed and dissected into embryonic disk (ED) and extraembryonic tissue (EXT). Samples of EXT were cultured for 24 h to assess cellular metabolic activity (glucose and pyruvate consumption and lactate production) and embryos' ability to signal for maternal recognition of pregnancy (interferon-τ secretion; IFN-τ). ED and EXT samples were subjected to RNA sequencing to evaluate the genome-wide transcriptome patterns. MAIN RESULTS AND THE ROLE OF CHANCE The embryo recovery rate at Day 14 p.i. was not significantly different among treatment groups (P > 0.1). However, higher proportions of HIGH PA embryos were retarded in growth (in spherical stage) compared to the more elongated tubular stage embryos in the BASAL group (P < 0.05). Focusing on the normally developed tubular embryos in both groups, HIGH PA exposure resulted in altered cellular metabolism and altered transcriptome profile particularly in pathways related to redox-regulating mechanisms, apoptosis, cellular growth, interaction and differentiation, energy metabolism and epigenetic mechanisms, compared to BASAL embryos. Maturation under BASAL conditions did not have any significant effects on post-hatching development and cellular functions compared to CONTROL. LARGE-SCALE DATA The datasets of RNA sequencing analysis are available in the NCBI's Gene Expression Omnibus (GEO) repository, series accession number GSE127889 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE127889). Datasets of differentially expressed genes and their gene ontology functions are available in the Mendeley datasets at http://dx.doi.org/10.17632/my2z7dvk9j.2. LIMITATIONS, REASONS FOR CAUTION The bovine model was used here to allow non-invasive embryo transfer and post-hatching recovery on Day 14. There are physiological differences in some characteristics of post-hatching embryo development between human and cows, such as embryo elongation and trophoblastic invasion. However, the main carry-over effects of oocyte maturation under lipolytic conditions described here are evident at the cellular level and therefore may also occur during post-hatching development in other species including humans. In addition, post-hatching development was studied here under a healthy uterine environment to focus on carry-over effects originating from the oocyte, whereas additional detrimental effects may be induced by maternal metabolic disorders due to adverse changes in the uterine microenvironment. RNA sequencing results were not verified by qPCR, and no solvent control was included. WIDER IMPLICATIONS OF THE FINDINGS Our observations may increase the awareness of the importance of maternal metabolic stress at the level of the preovulatory oocyte in relation to carry-over effects that may persist in the transferrable embryos. It should further stimulate new research about preventive and protective strategies to optimize maternal metabolic health around conception to maximize embryo viability and thus fertility outcome. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Flemish Research Fund (FWO grant 11L8716N and FWO project 42/FAO10300/6541). The authors declare there are no conflicts of interest.
Collapse
Affiliation(s)
- Karolien L J Desmet
- Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Waleed F A Marei
- Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium.,Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Christophe Richard
- UMR Biologie du Développement et Reproduction, Institut National de la Recherche Agronomique (INRA), École Nationale Vétérinaire d'Alford, Université Paris-Saclay, 78352 Jouy-en-Josas, France
| | - Katrien Sprangers
- Integrated Molecular Plant Physiology Research Group (IMPRES), Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
| | - Gerrit T S Beemster
- Integrated Molecular Plant Physiology Research Group (IMPRES), Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
| | - Pieter Meysman
- Biomedical Informatics Research Center Antwerp, Department of Mathematics and Computer Science, University of Antwerp, 2610 Wilrijk, Belgium
| | - Kris Laukens
- Biomedical Informatics Research Center Antwerp, Department of Mathematics and Computer Science, University of Antwerp, 2610 Wilrijk, Belgium
| | - Ken Declerck
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Wim Vanden Berghe
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Peter E J Bols
- Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Isabelle Hue
- UMR Biologie du Développement et Reproduction, Institut National de la Recherche Agronomique (INRA), École Nationale Vétérinaire d'Alford, Université Paris-Saclay, 78352 Jouy-en-Josas, France
| | - Jo L M R Leroy
- Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
6
|
De Bie J, Smits A, Marei WFA, Leroy JLMR. Capacity of Trolox to improve the development and quality of metabolically compromised bovine oocytes and embryos invitro during different windows of development. Reprod Fertil Dev 2021; 33:291-304. [PMID: 33573714 DOI: 10.1071/rd20194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/01/2020] [Indexed: 11/23/2022] Open
Abstract
Trials to improve oocyte developmental competence under metabolic stress by using antioxidants may start before or after oocyte maturation. In the present conceptual study, we aimed to identify the most efficient timing of antioxidant application in relation to a metabolic insult using a bovine invitro embryo production model. Pathophysiological concentrations of palmitic acid (PA) were used to induce metabolic stress during oocyte maturation or embryo development. Trolox (TR; antioxidant) treatment prior to, during or after the PA insult was tested to evaluate the protective, neutralising and rescuing capacity of TR respectively. Changes in embryo developmental competence, mitochondrial activity, reactive oxygen species (ROS) concentrations, blastocyst cell allocation and apoptosis and cell stress-related gene expression were monitored. The improvement in developmental capacity was most obvious when oocytes were preloaded with TR before the PA insult. This protective effect could be explained by the observed combination of increased mitochondrial activity with reduced ROS production. This resulted in blastocysts with normal cell counts and apoptosis, as well as increased nuclear factor erythroid 2-related factor 2 (NRF2) expression (a marker for redox regulatory processes) and normalised the expression of the mitochondrial transcription factor A (TFAM), a marker of mitochondrial biogenesis. These results indicate that 'pretreatment' of oocytes with antioxidants produces embryos that seem to be more resilient to a metabolic stress insult.
Collapse
Affiliation(s)
- J De Bie
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - A Smits
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - W F A Marei
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; and Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - J L M R Leroy
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; and Corresponding author.
| |
Collapse
|
7
|
Ramos-Ibeas P, Gimeno I, Cañón-Beltrán K, Gutiérrez-Adán A, Rizos D, Gómez E. Senescence and Apoptosis During in vitro Embryo Development in a Bovine Model. Front Cell Dev Biol 2020; 8:619902. [PMID: 33392207 PMCID: PMC7775420 DOI: 10.3389/fcell.2020.619902] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
According to the World Health Organization, infertility affects up to 14% of couples under reproductive age, leading to an exponential rise in the use of assisted reproduction as a route for conceiving a baby. In the same way, thousands of embryos are produced in cattle and other farm animals annually, leading to increased numbers of individuals born. All reproductive manipulations entail deviations of natural phenotypes and genotypes, with in vitro embryo technologies perhaps showing the biggest effects, although these alterations are still emerging. Most of these indications have been provided by animal models, in particular the bovine species, due to its similarities to human early embryo development. Oocytes and embryos are highly sensitive to environmental stress in vivo and in vitro. Thus, during in vitro culture, a number of stressful conditions affect embryonic quality and viability, inducing subfertility and/or long-term consequences that may reach the offspring. A high proportion of the embryos produced in vitro are arrested at a species-specific stage of development during the first cell divisions. These arrested embryos do not show signs of programmed cell death during early cleavage stages. Instead, defective in vitro produced embryos would enter a permanent cell cycle arrest compatible with cellular senescence, in which they show active metabolism and high reactive oxygen species levels. Later in development, mainly during the morula and blastocyst stages, apoptosis would mediate the elimination of certain cells, accomplishing both a physiological role in to balancing cell proliferation and death, and a pathological role preventing the transmission of damaged cells with an altered genome. The latter would acquire relevant importance in in vitro produced embryos that are submitted to stressful environmental stimuli. In this article, we review the mechanisms mediating apoptosis and senescence during early embryo development, with a focus on in vitro produced bovine embryos. Additionally, we shed light on the protective role of senescence and apoptosis to ensure that unhealthy cells and early embryos do not progress in development, avoiding long-term detrimental effects.
Collapse
Affiliation(s)
- Priscila Ramos-Ibeas
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - Isabel Gimeno
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Gijón, Spain
| | - Karina Cañón-Beltrán
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - Dimitrios Rizos
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - Enrique Gómez
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Gijón, Spain
| |
Collapse
|
8
|
Reproductive Performance of Dairy Cows Fed a Diet Supplemented with n-3 Polyunsaturated Fatty Acids – A Review. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The aim of this review is to summarize the current state of knowledge of reproductive performance of high-yielding dairy cows fed a diet supplemented with n-3 fatty acids (FA s), and to recommend a feeding schedule that can increase the success rate in reproduction. Dietary supplementation with fat, especially FA, has become an accepted strategy for supporting the fertility of high-yielding dairy cows. The two main categories of FA s, unsaturated fatty acids (UFA s) and saturated fatty acids (SFA s), exert distinct effects on reproductive functions, with UFA having a conclusively beneficial impact. Polyunsaturated fatty acids (PUFAs) are of particular importance on account of their biological properties. Standard feedstuffs (such as soybean) are rich in n-6 FA s, whereas few feedstuffs contain n-3 FA s. Neither the n-3 nor n-6 PUFA s are synthetized by the animal. Several field experiments have indicated that the recommended schedule of n-3 supplementation should last 160–170 days, from the eighth week before calving to 100 or 120 days postpartum. Supplementation of the diet thus covers the period from the late preantral stage of the follicle, the entire development of the antrum, oocyte ovulation, and fertilization, as well as the development of the preattachment embryo and its implantation. The following effects are among the important beneficial results of supplementation with n-3 FA s: a higher number of antral follicles suitable for ovum pick-up (OPU), larger dominant follicles and corresponding CL, better quality oocytes and embryos, and higher implantation rates resulting from improved uterine environment (e.g., reduced synthesis of luteolytic PGF2α). We conclude that dietary supplementation for high-yielding dairy cows with n-3 FA s supports ovarian functions and helps the embryo to survive in the adverse environment of the reproductive tract of the postpartum cow.
Collapse
|
9
|
Rescue Potential of Supportive Embryo Culture Conditions on Bovine Embryos Derived from Metabolically Compromised Oocytes. Int J Mol Sci 2020; 21:ijms21218206. [PMID: 33147848 PMCID: PMC7663530 DOI: 10.3390/ijms21218206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
Elevated non-esterified fatty acid (NEFA), predominantly palmitic acid (PA), concentrations in blood and follicular fluid are a common feature in maternal metabolic disorders such as obesity. This has a direct negative impact on oocyte developmental competence and the resulting blastocyst quality. We use NEFA-exposure during bovine oocyte in vitro maturation (IVM) as a model to mimic oocyte maturation under maternal metabolic stress conditions. However, the impact of supportive embryo culture conditions on these metabolically compromised zygotes are not known yet. We investigated if the addition of anti-apoptotic, antioxidative and mitogenic factors (namely, Insulin-Transferrin-Selenium (ITS) or serum) to embryo culture media would rescue development and important embryo quality parameters (cell proliferation, apoptosis, cellular metabolism and gene expression patterns) of bovine embryos derived from high PA- or high NEFA-exposed oocytes when compared to controls (exposed to basal NEFA concentrations). ITS supplementation during in vitro culture of PA-exposed oocytes supported the development of lower quality embryos during earlier development. However, surviving blastocysts were of inferior quality. In contrast, addition of serum to the culture medium did not improve developmental competence of PA-exposed oocytes. Furthermore, surviving embryos displayed higher apoptotic cell indices and an aberrant cellular metabolism. We conclude that some supportive embryo culture supplements like ITS and serum may increase IVF success rates of metabolically compromised oocytes but this may increase the risk of reduced embryo quality and may thus have other long-term consequences.
Collapse
|
10
|
Grzesiak M, Maj D, Hrabia A. Effects of dietary supplementation with algae, sunflower oil or soybean oil on folliculogenesis in the rabbit ovary during sexual maturation. Acta Histochem 2020; 122:151581. [PMID: 32778243 DOI: 10.1016/j.acthis.2020.151581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022]
Abstract
This study aimed to examine the effects of algae (rich in omega-3 fatty acids), sunflower oil (rich in omega-6 fatty acids) and soybean oil (rich in omega-6 fatty acids) on the entire folliculogenesis in juvenile and sexually mature rabbits. After weaning, rabbits were randomly divided into four experimental groups of 14 animals each. Control animals received non-supplemented pellets, while in the other groups, the pellets contained 1% marine algae, 3% sunflower oil or 3% soybean oil. Animals from each group were slaughtered at 12 weeks of age (n = 7 per group) or at 18 weeks of age (n = 7 per group). The ovaries were harvested and fixed for hematoxylin-eosin staining, immunohistochemical localization of PCNA and TUNEL assay. Algae-enriched diet markedly decreased the number of primordial and primary follicles, while addition of sunflower oil reduced the number of primary follicles in 12-week-old rabbits. The number of antral follicles was higher following algae supplementation, but lower after addition of soybean oil in that age group. Proliferating index was decreased following supplementation with algae and soybean oil in juvenile rabbits, whereas it was increased after addition of algae and decreased following vegetable oils in mature ones. Dietary PUFAs did not impact apoptosis in the rabbit ovary of both age groups. The obtained results suggest that PUFA-enriched diet regulate either early folliculogenesis or antral follicle development in rabbits that might influence reproductive performance as a consequence. It appears that observed effects are attributed to sexual maturity.
Collapse
Affiliation(s)
- Malgorzata Grzesiak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Dorota Maj
- Department of Genetics, Animal Breeding and Ethology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059, Krakow, Poland.
| |
Collapse
|
11
|
Marei WFA, Smits A, Mohey-Elsaeed O, Pintelon I, Ginneberge D, Bols PEJ, Moerloose K, Leroy JLMR. Differential effects of high fat diet-induced obesity on oocyte mitochondrial functions in inbred and outbred mice. Sci Rep 2020; 10:9806. [PMID: 32555236 PMCID: PMC7299992 DOI: 10.1038/s41598-020-66702-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022] Open
Abstract
Maternal obesity can cause reduced oocyte quality and subfertility. Mitochondrial dysfunction plays a central role here, and most often inbred mouse models are used to study these pathways. We hypothesized that the mouse genetic background can influence the impact of high fat diet (HFD)-induced obesity on oocyte quality. We compared the inbred C57BL/6 (B6) and the outbred Swiss strains after feeding a HFD for 13w. HFD-mice had increased body weight gain, hypercholesterolemia, and increased oocyte lipid droplet (LD) accumulation in both strains. LD distribution was strain-dependent. In Swiss mouse oocytes, HFD significantly increased mitochondrial inner membrane potential (MMP), reactive oxygen species concentrations, mitochondrial ultrastructural abnormalities (by 46.4%), and endoplasmic reticulum (ER) swelling, and decreased mtDNA copy numbers compared with Swiss controls (P < 0.05). Surprisingly, B6-control oocytes exhibited signs of cellular stress compared to the Swiss controls (P < 0.05); upregulated gene expression of ER- and oxidative stress markers, high mitochondrial ultrastructural abnormalities (48.6%) and ER swelling. Consequently, the HFD impact on B6 oocyte quality was less obvious, with 9% higher mitochondrial abnormalities, and no additive effect on MMP and stress marks compared to B6 control (P > 0.1). Interestingly, mtDNA in B6-HFD oocytes was increased suggesting defective mitophagy. In conclusion, we show evidence that the genetic background or inbreeding can affect mitochondrial functions in oocytes and may influence the impact of HFD on oocyte quality. These results should create awareness when choosing and interpreting data obtained from different mouse models before extrapolating to human applications.
Collapse
Affiliation(s)
- Waleed F A Marei
- Gamete Research Centre, University of Antwerp, 2610, Wilrijk, Belgium. .,Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Anouk Smits
- Gamete Research Centre, University of Antwerp, 2610, Wilrijk, Belgium
| | - Omnia Mohey-Elsaeed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.,Laboratory of Cell Biology & Histology, University of Antwerp, 2610, Wilrijk, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology & Histology, University of Antwerp, 2610, Wilrijk, Belgium
| | - Daisy Ginneberge
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter E J Bols
- Gamete Research Centre, University of Antwerp, 2610, Wilrijk, Belgium
| | - Katrien Moerloose
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jo L M R Leroy
- Gamete Research Centre, University of Antwerp, 2610, Wilrijk, Belgium
| |
Collapse
|
12
|
Proteomic changes in oocytes after in vitro maturation in lipotoxic conditions are different from those in cumulus cells. Sci Rep 2019; 9:3673. [PMID: 30842615 PMCID: PMC6403224 DOI: 10.1038/s41598-019-40122-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
Maternal lipolytic metabolic disorders result in a lipotoxic microenvironment in the ovarian follicular fluid (FF) which deteriorates oocyte quality. Although cellular stress response mechanisms are well defined in somatic cells, they remain largely unexplored in oocytes, which have distinct organelle structure and nuclear transcription patterns. Here we used shotgun proteomic analyses to study cellular responses of bovine oocytes and cumulus cells (CCs) after in vitro maturation under lipotoxic conditions; in the presence of pathophysiological palmitic acid (PA) concentration as a model. Differentially regulated proteins (DRPs) were mainly localized in the endoplasmic reticulum, mitochondria and nuclei of CCs and oocytes, however the DRPs and their direction of change were cell-type specific. Proteomic changes in PA-exposed CCs were predominantly pro-apoptotic unfolded protein responses (UPRs), mitochondrial and metabolic dysfunctions, and apoptotic pathways. This was also functionally confirmed. Interestingly, although the oocytes were enclosed by CCs during PA exposure, elevated cellular stress levels were also evident. However, pro-survival UPRs, redox regulatory and compensatory metabolic mechanisms were prominent despite evidence of mitochondrial dysfunction, oxidative stress, and reduced subsequent embryo development. The data provides a unique insight that enriches the understanding of the cellular stress responses in metabolically-compromised oocytes and forms a fundamental base to identify new targets for fertility treatments as discussed within.
Collapse
|
13
|
Zarezadeh R, Mehdizadeh A, Leroy JLMR, Nouri M, Fayezi S, Darabi M. Action mechanisms of n-3 polyunsaturated fatty acids on the oocyte maturation and developmental competence: Potential advantages and disadvantages. J Cell Physiol 2018; 234:1016-1029. [PMID: 30073662 DOI: 10.1002/jcp.27101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
Abstract
Infertility is a growing problem worldwide. Currently, in vitro fertilization (IVF) is widely performed to treat infertility. However, a high percentage of IVF cycles fails, due to the poor developmental potential of the retrieved oocyte to generate viable embryos. Fatty acid content of the follicular microenvironment can affect oocyte maturation and the subsequent developmental competence. Saturated and monounsaturated fatty acids are mainly used by follicle components as primary energy sources whereas polyunsaturated fatty acids (PUFAs) play a wide range of roles. A large body of evidence supports the beneficial effects of n-3 PUFAs in prevention, treatment, and amelioration of some pathophysiological conditions including heart diseases, cancer, diabetes, and psychological disorders. Nevertheless, current findings regarding the effects of n-3 PUFAs on reproductive outcomes in general and on oocyte quality more specifically are inconsistent. This review attempts to provide a comprehensive overview of potential molecular mechanisms by which n-3 PUFAs affect oocyte maturation and developmental competence, particularly in the setting of IVF and thereby aims to elucidate the reasons behind current discrepancies around this topic.
Collapse
Affiliation(s)
- Reza Zarezadeh
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jo L M R Leroy
- Department of Veterinary Sciences, Gamete Research Center, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - Mohammad Nouri
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Fayezi
- Infertility and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Université de Nice Sophia Antipolis, Inserm U1091 - CNRS U7277, Nice 06034, France
| | - Masoud Darabi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Marei WFA, Khalil WA, Pushpakumara APG, El-Harairy MA, Abo El-Atta AMA, Wathes DC, Fouladi-Nashta A. Polyunsaturated fatty acids influence offspring sex ratio in cows. Int J Vet Sci Med 2018; 6:S36-S40. [PMID: 30761319 PMCID: PMC6161865 DOI: 10.1016/j.ijvsm.2018.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/14/2018] [Accepted: 01/30/2018] [Indexed: 01/08/2023] Open
Abstract
Dietary polyunsaturated fatty acids (PUFAs) can influence fertility in farm animals. Some evidence in mice and sheep have suggested that PUFAs may influence offspring sex ratio, which may have significant value for cattle production. To test this hypothesis, three groups of Holstein cows were supplemented with either 0%, 3% or 5% protected fat (PF) in the form of calcium salt of fatty acids (rich in omega-6) from 14–21 days pre-partum until conception. Proven-fertile frozen semen from the same ejaculate was used for insemination. Calf sex recorded at birth was 8/19 (42.1%) male offspring in the control group, increasing to 14/20 (70%, P > 0.05) and 17/20 (85%, P < 0.05) in 3% and 5% PF, respectively. To test if this effect was caused by a direct influence on the oocyte, we supplemented bovine cumulus oocyte complexes during in vitro maturation with either omega-3 alpha-linolenic acid (ALA), omega-6 linoleic acid (LA) or trans-10, cis-12 conjugated linoleic acid (CLA). Sex ratio of the produced transferable embryos was determined using PCR of SRY gene. Similar to the in vivo results, sex ratio was skewed to the male side in the embryos derived from LA- and CLA-treated oocytes (79% and 71%) compared to control and ALA-treated oocytes (44% and 54%, respectively). These results indicate that both dietary and in vitro supplementation of omega-6 PUFAs can skew the sex ratio towards the male side in cattle. Further experiments are required to confirm this effect on a larger scale and to study the mechanisms of action that might be involved.
Collapse
Affiliation(s)
- Waleed F A Marei
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Wael A Khalil
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Anil P G Pushpakumara
- Department of Farm Animal Production and Health, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Sri Lanka
| | - Mostafa A El-Harairy
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed M A Abo El-Atta
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - D Claire Wathes
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
| | - Ali Fouladi-Nashta
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
| |
Collapse
|