1
|
Calatayud NE, Jacobs L, Della Togna G, Langhorne CJ, Mullen AC, Upton R. Hormonal induction and seasonal variation in male reproductive viability of the Southern Rocky Mountain boreal toad. Anim Reprod Sci 2024; 273:107678. [PMID: 39706041 DOI: 10.1016/j.anireprosci.2024.107678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/27/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
The Southern Rocky Mountain boreal toad (Anaxyrus boreas boreas) depends on both the rearing of wild-collected egg masses and a long-standing conservation breeding program (CBP), the latter of which heavily relies on assisted reproductive technologies (ARTs) to support wild populations. Achieving consistent reproductive success in the CBP, however, remains a significant challenge. Natural breeding has not led to a sustained increase in reproductive capacity, prompting the exploration of exogenous hormone treatments as an alternative strategy. This study specifically examined male responses to the administration of human chorionic gonadotropin (hCG), a previously tested hormone, in combination with gonadotropin-releasing hormone agonist (GnRH-A), either individually or together, to evaluate their effects on sperm induction and viability across different seasons. Insights into how hormone treatments and seasonality influence sperm acquisition can guide managers in improving breeding outcomes within ex situ populations by enhancing their understanding of reproductive health, applying hormone treatments at the optimal time of year, and determining the best timing for high quality sperm collection. These advancements can increase reproductive capacity and support long-term genetic management through biobanking. Results indicated that combining hCG and GnRH-A yielded the highest sperm quantity and quality, although further optimization of hormone dosages could improve outcomes. Seasonal factors significantly influenced hormonal efficacy, with variations in sperm concentration and quality observed across months.
Collapse
Affiliation(s)
- Natalie E Calatayud
- San Diego Zoo Wildlife Alliance, Beckman Center for Conservation Research, 15600 San Pasqual Valley Road, Escondido, CA 92025, USA; The Amphibian Survival Alliance, Newcastle, NSW, Australia.
| | - Leah Jacobs
- San Diego Zoo Wildlife Alliance, Beckman Center for Conservation Research, 15600 San Pasqual Valley Road, Escondido, CA 92025, USA
| | - Gina Della Togna
- The Amphibian Survival Alliance, Panama City, Panama; Smithsonian Tropical Research Institute, P.O. Box 0843-03092, Balboa, Ancón, Panama
| | | | - Amanda C Mullen
- University of Alabama at Birmingham (UAB), 1824 6th Ave S, Birmingham, AL 35233, USA
| | - Rose Upton
- Conservation Biology Research Group, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
2
|
Browne RK, Luo Q, Wang P, Mansour N, Kaurova SA, Gakhova EN, Shishova NV, Uteshev VK, Kramarova LI, Venu G, Bagaturov MF, Vaissi S, Heshmatzad P, Janzen P, Swegen A, Strand J, McGinnity D. The Sixth Mass Extinction and Amphibian Species Sustainability Through Reproduction and Advanced Biotechnologies, Biobanking of Germplasm and Somatic Cells, and Conservation Breeding Programs (RBCs). Animals (Basel) 2024; 14:3395. [PMID: 39682361 DOI: 10.3390/ani14233395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/05/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
Primary themes in intergenerational justice are a healthy environment, the perpetuation of Earth's biodiversity, and the sustainable management of the biosphere. However, the current rate of species declines globally, ecosystem collapses driven by accelerating and catastrophic global heating, and a plethora of other threats preclude the ability of habitat protection alone to prevent a cascade of amphibian and other species mass extinctions. Reproduction and advanced biotechnologies, biobanking of germplasm and somatic cells, and conservation breeding programs (RBCs) offer a transformative change in biodiversity management. This change can economically and reliably perpetuate species irrespective of environmental targets and extend to satisfy humanity's future needs as the biosphere expands into space. Currently applied RBCs include the hormonal stimulation of reproduction, the collection and refrigerated storage of sperm and oocytes, sperm cryopreservation, in vitro fertilization, and biobanking of germplasm and somatic cells. The benefits of advanced biotechnologies in development, such as assisted evolution and cloning for species adaptation or restoration, have yet to be fully realized. We broaden our discussion to include genetic management, political and cultural engagement, and future applications, including the extension of the biosphere through humanity's interplanetary and interstellar colonization. The development and application of RBCs raise intriguing ethical, theological, and philosophical issues. We address these themes with amphibian models to introduce the Multidisciplinary Digital Publishing Institute Special Issue, The Sixth Mass Extinction and Species Sustainability through Reproduction Biotechnologies, Biobanking, and Conservation Breeding Programs.
Collapse
Affiliation(s)
- Robert K Browne
- Sustainability America, Sarteneja, Corozal District, Belize 91011, Belize
| | - Qinghua Luo
- Hunan Engineering Technology Research Center for Amphibian and Reptile Resource Protection and Product Processing, College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
- Hunan Engineering Laboratory for Chinese Giant Salamander's Resource Protection and Comprehensive Utilization, School of Biological Resources and Environmental Sciences, Jishou University, Jishou 416000, China
| | - Pei Wang
- Hunan Engineering Laboratory for Chinese Giant Salamander's Resource Protection and Comprehensive Utilization, School of Biological Resources and Environmental Sciences, Jishou University, Jishou 416000, China
| | - Nabil Mansour
- Fujairah Research Centre, University of Science and Technology of Fujairah, Fujairah P.O. Box 2202, United Arab Emirates
| | - Svetlana A Kaurova
- Institute of Cell Biophysics, Russian Academy of Sciences, PSCBR RAS, Pushchino 142290, Moscow Region, Russia
| | - Edith N Gakhova
- Institute of Cell Biophysics, Russian Academy of Sciences, PSCBR RAS, Pushchino 142290, Moscow Region, Russia
| | - Natalia V Shishova
- Institute of Cell Biophysics, Russian Academy of Sciences, PSCBR RAS, Pushchino 142290, Moscow Region, Russia
| | - Victor K Uteshev
- Institute of Cell Biophysics, Russian Academy of Sciences, PSCBR RAS, Pushchino 142290, Moscow Region, Russia
| | - Ludmila I Kramarova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
| | - Govindappa Venu
- Centre for Applied Genetics, Department of Zoology, Jnana Bharathi Campus, Bangalore University, Bengaluru 560056, Karnataka, India
| | - Mikhail F Bagaturov
- IUCN/SSC/Athens Institute for Education and Research/Zoological Institute RAS, St. Petersburg 199034, Northern Region, Russia
- Leningrad Zoo, St. Petersburg 197198, Northern Region, Russia
| | - Somaye Vaissi
- Department of Biology, Faculty of Science, Razi University, Baghabrisham, Kermanshah 57146, Iran
| | - Pouria Heshmatzad
- Department of Biology, Faculty of Science, Razi University, Baghabrisham, Kermanshah 57146, Iran
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49138, Iran
| | - Peter Janzen
- Justus-von-Liebig-Schule, 47166 Duisburg, Germany
| | - Aleona Swegen
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Julie Strand
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7K, 9220 Aalborg Ost, Denmark and Randers Regnskov, Torvebryggen 11, 8900 Randers C, Denmark
| | - Dale McGinnity
- Ectotherm Department, Nashville Zoo at Grassmere, Nashville, TN 37211, USA
| |
Collapse
|
3
|
Browne RK, Luo Q, Wang P, Mansour N, Kaurova SA, Gakhova EN, Shishova NV, Uteshev VK, Kramarova LI, Venu G, Vaissi S, Taheri-Khas Z, Heshmatzad P, Bagaturov MF, Janzen P, Naranjo RE, Swegen A, Strand J, McGinnity D, Dunce I. Ecological Civilisation and Amphibian Sustainability through Reproduction Biotechnologies, Biobanking, and Conservation Breeding Programs (RBCs). Animals (Basel) 2024; 14:1455. [PMID: 38791672 PMCID: PMC11117272 DOI: 10.3390/ani14101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/23/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Intergenerational justice entitles the maximum retention of Earth's biodiversity. The 2022 United Nations COP 15, "Ecological Civilisation: Building a Shared Future for All Life on Earth", is committed to protecting 30% of Earth's terrestrial environments and, through COP 28, to mitigate the effects of the climate catastrophe on the biosphere. We focused this review on three core themes: the need and potential of reproduction biotechnologies, biobanks, and conservation breeding programs (RBCs) to satisfy sustainability goals; the technical state and current application of RBCs; and how to achieve the future potentials of RBCs in a rapidly evolving environmental and cultural landscape. RBCs include the hormonal stimulation of reproduction, the collection and storage of sperm and oocytes, and artificial fertilisation. Emerging technologies promise the perpetuation of species solely from biobanked biomaterials stored for perpetuity. Despite significant global declines and extinctions of amphibians, and predictions of a disastrous future for most biodiversity, practical support for amphibian RBCs remains limited mainly to a few limited projects in wealthy Western countries. We discuss the potential of amphibian RBCs to perpetuate amphibian diversity and prevent extinctions within multipolar geopolitical, cultural, and economic frameworks. We argue that a democratic, globally inclusive organisation is needed to focus RBCs on regions with the highest amphibian diversity. Prioritisation should include regional and international collaborations, community engagement, and support for RBC facilities ranging from zoos and other institutions to those of private carers. We tabulate a standard terminology for field programs associated with RBCs for publication and media consistency.
Collapse
Affiliation(s)
| | - Qinghua Luo
- School of Biological Resources and Environmental Sciences, Jishou University, Jishou 416000, China; (Q.L.); (P.W.)
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Pei Wang
- School of Biological Resources and Environmental Sciences, Jishou University, Jishou 416000, China; (Q.L.); (P.W.)
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Nabil Mansour
- Fujairah Research Centre (FRC), Al-Hilal Tower 3003, Fujairah P.O. Box 666, United Arab Emirates;
| | - Svetlana A. Kaurova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (S.A.K.); (E.N.G.); (N.V.S.); (V.K.U.)
| | - Edith N. Gakhova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (S.A.K.); (E.N.G.); (N.V.S.); (V.K.U.)
| | - Natalia V. Shishova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (S.A.K.); (E.N.G.); (N.V.S.); (V.K.U.)
| | - Victor K. Uteshev
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (S.A.K.); (E.N.G.); (N.V.S.); (V.K.U.)
| | - Ludmila I. Kramarova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia;
| | - Govindappa Venu
- Centre for Applied Genetics, Department of Zoology, Jnana Bharathi Campus, Bangalore University, Bengaluru 560056, India;
- Evolving Phylo Lab, Centre for Ecological Sciences, Indian Institute of Science, Bengaluru 560012, India
| | - Somaye Vaissi
- Department of Biology, Faculty of Science, Razi University, Kermanshah 57146, Iran; (S.V.); (Z.T.-K.)
| | - Zeynab Taheri-Khas
- Department of Biology, Faculty of Science, Razi University, Kermanshah 57146, Iran; (S.V.); (Z.T.-K.)
| | - Pouria Heshmatzad
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49138, Iran;
| | - Mikhail F. Bagaturov
- IUCN/SSC/Athens Institute for Education and Research/Zoological Institute RAS, St. Petersburg 199034, Russia;
| | - Peter Janzen
- Verband Deutscher Zoodirectoren/Justus-von-Liebig-Schule, 47166 Duisburg, Germany;
| | - Renato E. Naranjo
- Centro Jambatu de Investigación y Conservación de Anfibios, Fundación Jambatu, Giovanni, Farina 566 y Baltra, San Rafael, Quito 171102, Ecuador;
| | - Aleona Swegen
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan 2308, Australia;
| | - Julie Strand
- Department of Animal and Veterinary Science, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark;
| | - Dale McGinnity
- Ectotherm Department, Nashville Zoo at Grassmere, Nashville, TN 37211, USA;
| | | |
Collapse
|
4
|
Upton R, Calatayud NE, Clulow S, Brett D, Burton AL, Colyvas K, Mahony M, Clulow J. Refrigerated storage and cryopreservation of hormonally induced sperm in the threatened frog, Litoria aurea. Anim Reprod Sci 2024; 262:107416. [PMID: 38335623 DOI: 10.1016/j.anireprosci.2024.107416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
As sperm cryopreservation and other assisted reproductive technologies (ARTs) advance in common amphibian species, focus on applying non-lethal sperm collection methods to the conservation and genetic management of threatened species is imperative. The goal of this study was to examine the application of logistically practical ART protocols in a threatened frog (Litoria aurea). First, we tested the efficacy of various concentrations of human chorionic gonadotropin (hCG) (20, 40 IU/g bodyweight) and Gonadotropin releasing hormone antagonist (0.25 µg/g and 0.5 µg/g body weight GnRH-a) on the induction of spermatozoa. Using the samples obtained from the previous trials, we tested the effect of cold storage and cryopreservation protocols on long-term refrigerated storage and post-thaw sperm recovery. Our major findings include: (1) high quality sperm were induced with 20 and 40 IU/g bodyweight of (hCG); (2) proportions of live, motile sperm post-thaw, were recovered at higher levels than previously reported for L. aurea (>50%) when preserved with 15% v/v DMSO and 1% w/v sucrose; and (3) spermic urine stored at 5 °C retained motility for up to 14 days. Our findings demonstrate that the protocols developed in this study allowed for successful induction and recovery of high-quality spermatozoa from a threatened Australian anuran, L. aurea, providing a prime example of how ARTs can contribute to the conservation of rare and threatened species.
Collapse
Affiliation(s)
- Rose Upton
- The Conservation Biology Research Group, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308 Australia.
| | - Natalie E Calatayud
- San Diego Zoo Global-Beckman Center for Conservation Research, 15600 San Pasqual Valley Road, Escondido, CA 92027, USA
| | - Simon Clulow
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
| | - Darcie Brett
- The Conservation Biology Research Group, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308 Australia
| | - Alana L Burton
- The Conservation Biology Research Group, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308 Australia
| | - Kim Colyvas
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
| | - Michael Mahony
- The Conservation Biology Research Group, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308 Australia
| | - John Clulow
- The Conservation Biology Research Group, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308 Australia
| |
Collapse
|
5
|
Hobbs RJ, Upton R, Calatayud NE, Silla AJ, Daly J, McFadden MS, O’Brien JK. Cryopreservation Cooling Rate Impacts Post-Thaw Sperm Motility and Survival in Litoria booroolongensis. Animals (Basel) 2023; 13:3014. [PMID: 37835620 PMCID: PMC10571529 DOI: 10.3390/ani13193014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The cryopreservation and storage of gametes (biobanking) can provide a long-term, low-cost option for the preservation of population genetic diversity and is particularly impactful when applied to manage selective breeding within conservation breeding programs (CBPs). This study aimed to develop a sperm cryopreservation protocol for the critically endangered Booroolong frog (Litoria booroolongensis) to capture founder genetics within the recently established (est. 2019) CBP for this species. Hormone-induced sperm release was achieved using established protocols, and spermic urine samples were collected over a 6-h period. Pooled spermic urine samples (n = 3 males) were divided equally between two cryoprotectant (CPA) treatments and diluted by 1:5 (sperm:CPA) with either 15% (v/v) dimethyl sulfoxide + 1% (w/v) sucrose in simplified amphibian Ringer's (SAR; CPAA) or 10% (v/v) dimethylformamide + 10% (w/v) trehalose dihydrate in SAR (CPAB). The samples were cryopreserved in 0.25 mL straws using either a programmable freezer (FrA) or an adapted dry shipper method (FrB). The thawed samples were activated via dilution in water and assessed for viability and motility using both manual assessment and computer-assisted sperm analysis (CASA; 0 h, 0.5 h post-thaw). Upon activation, the survival and recovery of motility (total motility, forward progression and velocity) of cryopreserved sperm suspensions were higher for sperm preserved using FrB than FrA, regardless of CPA composition. This work supports our long-term goal to pioneer the integration of biobanked cryopreserved sperm with population genetic management to maximize restoration program outcomes for Australian amphibian species.
Collapse
Affiliation(s)
- Rebecca J. Hobbs
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, NSW 2088, Australia (J.K.O.)
| | - Rose Upton
- Conservation Biology Research Group, School of Environmental and Life Sciences, The University of Newcastle, Newcastle, NSW 2308, Australia
| | - Natalie E. Calatayud
- Beckman Center for Conservation Research, San Diego Zoo Wildlife Alliance, 15600 San Pasqual Valley Road, Escondido, CA 92025, USA
| | - Aimee J. Silla
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia;
| | - Jonathan Daly
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, NSW 2088, Australia (J.K.O.)
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Michael S. McFadden
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, NSW 2088, Australia (J.K.O.)
| | - Justine K. O’Brien
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, NSW 2088, Australia (J.K.O.)
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Anastas ZM, Byrne PG, O'Brien JK, Hobbs RJ, Upton R, Silla AJ. The Increasing Role of Short-Term Sperm Storage and Cryopreservation in Conserving Threatened Amphibian Species. Animals (Basel) 2023; 13:2094. [PMID: 37443891 DOI: 10.3390/ani13132094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Multidisciplinary approaches to conserve threatened species are required to curb biodiversity loss. Globally, amphibians are facing the most severe declines of any vertebrate class. In response, conservation breeding programs have been established in a growing number of amphibian species as a safeguard against further extinction. One of the main challenges to the long-term success of conservation breeding programs is the maintenance of genetic diversity, which, if lost, poses threats to the viability and adaptive potential of at-risk populations. Integrating reproductive technologies into conservation breeding programs can greatly assist genetic management and facilitate genetic exchange between captive and wild populations, as well as reinvigorate genetic diversity from expired genotypes. The generation of offspring produced via assisted fertilisation using frozen-thawed sperm has been achieved in a small but growing number of amphibian species and is poised to be a valuable tool for the genetic management of many more threatened species globally. This review discusses the role of sperm storage in amphibian conservation, presents the state of current technologies for the short-term cold storage and cryopreservation of amphibian sperm, and discusses the generation of cryo-derived offspring.
Collapse
Affiliation(s)
- Zara M Anastas
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Phillip G Byrne
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Justine K O'Brien
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, NSW 2088, Australia
| | - Rebecca J Hobbs
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, NSW 2088, Australia
| | - Rose Upton
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Aimee J Silla
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
7
|
Nolan N, Hayward MW, Klop-Toker K, Mahony M, Lemckert F, Callen A. Complex Organisms Must Deal with Complex Threats: How Does Amphibian Conservation Deal with Biphasic Life Cycles? Animals (Basel) 2023; 13:1634. [PMID: 37238064 PMCID: PMC10215276 DOI: 10.3390/ani13101634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The unprecedented rate of global amphibian decline is attributed to The Anthropocene, with human actions triggering the Sixth Mass Extinction Event. Amphibians have suffered some of the most extreme declines, and their lack of response to conservation actions may reflect challenges faced by taxa that exhibit biphasic life histories. There is an urgent need to ensure that conservation measures are cost-effective and yield positive outcomes. Many conservation actions have failed to meet their intended goals of bolstering populations to ensure the persistence of species into the future. We suggest that past conservation efforts have not considered how different threats influence multiple life stages of amphibians, potentially leading to suboptimal outcomes for their conservation. Our review highlights the multitude of threats amphibians face at each life stage and the conservation actions used to mitigate these threats. We also draw attention to the paucity of studies that have employed multiple actions across more than one life stage. Conservation programs for biphasic amphibians, and the research that guides them, lack a multi-pronged approach to deal with multiple threats across the lifecycle. Conservation management programs must recognise the changing threat landscape for biphasic amphibians to reduce their notoriety as the most threatened vertebrate taxa globally.
Collapse
Affiliation(s)
- Nadine Nolan
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; (M.W.H.); (K.K.-T.); (M.M.); (A.C.)
| | - Matthew W. Hayward
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; (M.W.H.); (K.K.-T.); (M.M.); (A.C.)
| | - Kaya Klop-Toker
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; (M.W.H.); (K.K.-T.); (M.M.); (A.C.)
| | - Michael Mahony
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; (M.W.H.); (K.K.-T.); (M.M.); (A.C.)
| | - Frank Lemckert
- Eco Logical Australia Pty Ltd., Perth, WA 6000, Australia;
| | - Alex Callen
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; (M.W.H.); (K.K.-T.); (M.M.); (A.C.)
| |
Collapse
|
8
|
Howell LG, Mawson PR, Comizzoli P, Witt RR, Frankham R, Clulow S, O'Brien JK, Clulow J, Marinari P, Rodger JC. Modeling genetic benefits and financial costs of integrating biobanking into the conservation breeding of managed marsupials. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14010. [PMID: 36178038 DOI: 10.1111/cobi.14010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/10/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Managed breeding programs are an important tool in marsupial conservation efforts but may be costly and have adverse genetic effects in unavoidably small captive colonies. Biobanking and assisted reproductive technologies (ARTs) could help overcome these challenges, but further demonstration of their potential is required to improve uptake. We used genetic and economic models to examine whether supplementing hypothetical captive populations of dibblers (Parantechinus apicalis) and numbats (Myrmecobius fasciatus) with biobanked founder sperm through ARTs could reduce inbreeding, lower required colony sizes, and reduce program costs. We also asked practitioners of the black-footed ferret (Mustela nigripes) captive recovery program to complete a questionnaire to examine the resources and model species research pathways required to develop an optimized biobanking protocol in the black-footed ferret. We used data from this questionnaire to devise similar costed research pathways for Australian marsupials. With biobanking and assisted reproduction, inbreeding was reduced on average by between 80% and 98%, colony sizes were on average 99% smaller, and program costs were 69- to 83-fold lower. Integrating biobanking made long-standing captive genetic retention targets possible in marsupials (90% source population heterozygosity for a minimum of 100 years) within realistic cost frameworks. Lessons from the use of biobanking technology that contributed to the recovery of the black-footed ferret include the importance of adequate research funding (US$4.2 million), extensive partnerships that provide access to facilities and equipment, colony animals, appropriate research model species, and professional and technical staff required to address knowledge gaps to deliver an optimized biobanking protocol. Applied research investment of A$133 million across marsupial research pathways could deliver biobanking protocols for 15 of Australia's most at-risk marsupial species and 7 model species. The technical expertise and ex situ facilities exist to emulate the success of the black-footed ferret recovery program in threatened marsupials using these research pathways. All that is needed now for significant and cost-effective conservation gains is greater investment by policy makers in marsupial ARTs.
Collapse
Affiliation(s)
- Lachlan G Howell
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
- FAUNA Research Alliance, Kahibah, New South Wales, Australia
| | - Peter R Mawson
- Perth Zoo, Department of Biodiversity, Conservation and Attractions, South Perth, Western Australia, Australia
| | - Pierre Comizzoli
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, D.C., USA
| | - Ryan R Witt
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- FAUNA Research Alliance, Kahibah, New South Wales, Australia
| | - Richard Frankham
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
- Australian Museum, Sydney, New South Wales, Australia
| | - Simon Clulow
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Justine K O'Brien
- Taronga Institute of Science and Learning, Taronga Conservation Society, Mosman, New South Wales, Australia
| | - John Clulow
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- FAUNA Research Alliance, Kahibah, New South Wales, Australia
| | - Paul Marinari
- Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, Virginia, USA
| | - John C Rodger
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- FAUNA Research Alliance, Kahibah, New South Wales, Australia
| |
Collapse
|
9
|
Howell LG, Witt RR. Emerging arguments for reproductive technologies in wildlife and their implications for assisted reproduction and conservation of threatened marsupials. Theriogenology 2023; 198:19-29. [PMID: 36529108 DOI: 10.1016/j.theriogenology.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Assisted reproductive technologies (ARTs) have significant potential to make a meaningful contribution to the conservation of threatened wildlife. This is true of Australia's iconic, and endangered koala (Phascolarctos cinereus). If developed, ARTs could offer a solution to manage genetic diversity and costs in breeding programs and may provide frozen repositories for either insurance or the practical production of genetically resilient koalas for release and on-ground recovery. Holding back the wider use of ARTs for koalas and other wildlife is a lack of funding to close the remaining knowledge gaps in the marsupial reproductive sciences and develop the reproductive tools needed. This lack of funding is arguably driven by a poor understanding of the potential contribution ARTs could make to threatened species management. We present a review of our cross-disciplinary and accessible strategy to draw much needed public attention and funding for the development of ARTs in wildlife, using emerging cost and genetic modelling arguments and the koala as a case study.
Collapse
Affiliation(s)
- Lachlan G Howell
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia; Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University Geelong, Melbourne Burwood Campus, 221 Burwood Highway, Burwood, VIC, 3125, Australia; FAUNA Research Alliance, Kahibah, NSW, 2290, Australia.
| | - Ryan R Witt
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia; FAUNA Research Alliance, Kahibah, NSW, 2290, Australia.
| |
Collapse
|
10
|
Recovering an endangered frog species through integrative reproductive technologies. Theriogenology 2022; 191:141-152. [DOI: 10.1016/j.theriogenology.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022]
|
11
|
Howell LG, Johnston SD, O’Brien JK, Frankham R, Rodger JC, Ryan SA, Beranek CT, Clulow J, Hudson DS, Witt RR. Modelling Genetic Benefits and Financial Costs of Integrating Biobanking into the Captive Management of Koalas. Animals (Basel) 2022; 12:990. [PMID: 35454237 PMCID: PMC9028793 DOI: 10.3390/ani12080990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/27/2022] Open
Abstract
Zoo and wildlife hospital networks are set to become a vital component of Australia's contemporary efforts to conserve the iconic and imperiled koala (Phascolarctos cinereus). Managed breeding programs held across zoo-based networks typically face high economic costs and can be at risk of adverse genetic effects typical of unavoidably small captive colonies. Emerging evidence suggests that biobanking and associated assisted reproductive technologies could address these economic and genetic challenges. We present a modelled scenario, supported by detailed costings, where these technologies are optimized and could be integrated into conservation breeding programs of koalas across the established zoo and wildlife hospital network. Genetic and economic modelling comparing closed captive koala populations suggest that supplementing them with cryopreserved founder sperm using artificial insemination or intracytoplasmic sperm injection could substantially reduce inbreeding, lower the required colony sizes of conservation breeding programs, and greatly reduce program costs. Ambitious genetic retention targets (maintaining 90%, 95% and 99% of source population heterozygosity for 100 years) could be possible within realistic cost frameworks, with output koalas suited for wild release. Integrating biobanking into the zoo and wildlife hospital network presents a cost-effective and financially feasible model for the uptake of these tools due to the technical and research expertise, captive koala colonies, and ex situ facilities that already exist across these networks.
Collapse
Affiliation(s)
- Lachlan G. Howell
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University Geelong, Melbourne Burwood Campus, 221 Burwood Highway, Burwood, VIC 3125, Australia
- School of Environmental and Life Sciences, Biology Building, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.C.R.); (S.A.R.); (C.T.B.); (J.C.)
- FAUNA Research Alliance, P.O. Box 5092, Kahibah, NSW 2290, Australia
| | - Stephen D. Johnston
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD 4343, Australia;
| | - Justine K. O’Brien
- Taronga Institute of Science and Learning, Taronga Conservation Society, Bradleys Head Rd., Mosman, NSW 2088, Australia;
| | - Richard Frankham
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia;
| | - John C. Rodger
- School of Environmental and Life Sciences, Biology Building, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.C.R.); (S.A.R.); (C.T.B.); (J.C.)
- FAUNA Research Alliance, P.O. Box 5092, Kahibah, NSW 2290, Australia
| | - Shelby A. Ryan
- School of Environmental and Life Sciences, Biology Building, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.C.R.); (S.A.R.); (C.T.B.); (J.C.)
- FAUNA Research Alliance, P.O. Box 5092, Kahibah, NSW 2290, Australia
| | - Chad T. Beranek
- School of Environmental and Life Sciences, Biology Building, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.C.R.); (S.A.R.); (C.T.B.); (J.C.)
- FAUNA Research Alliance, P.O. Box 5092, Kahibah, NSW 2290, Australia
| | - John Clulow
- School of Environmental and Life Sciences, Biology Building, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.C.R.); (S.A.R.); (C.T.B.); (J.C.)
- FAUNA Research Alliance, P.O. Box 5092, Kahibah, NSW 2290, Australia
| | - Donald S. Hudson
- Port Stephens Koala & Wildlife Preservation Society LTD., t/a Port Stephens Koala Hospital, One Mile, NSW 2316, Australia;
| | - Ryan R. Witt
- School of Environmental and Life Sciences, Biology Building, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.C.R.); (S.A.R.); (C.T.B.); (J.C.)
- FAUNA Research Alliance, P.O. Box 5092, Kahibah, NSW 2290, Australia
| |
Collapse
|
12
|
Clulow S, Clulow J, Marcec-Greaves R, Della Togna G, Calatayud NE. Common goals, different stages: the state of the ARTs for reptile and amphibian conservation. Reprod Fertil Dev 2022; 34:i-ix. [PMID: 35275052 DOI: 10.1071/rdv34n5_fo] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Amphibians and reptiles are highly threatened vertebrate taxa with large numbers of species threatened with extinction. With so many species at risk, conservation requires the efficient and cost-effective application of all the tools available so that as many species as possible are assisted. Biobanking of genetic material in genetic resource banks (GRBs) in combination with assisted reproductive technologies (ARTs) to retrieve live animals from stored materials are two powerful, complementary tools in the conservation toolbox for arresting and reversing biodiversity decline for both amphibians and reptiles. However, the degree of development of the ARTs and cryopreservation technologies differ markedly between these two groups. These differences are explained in part by different perceptions of the taxa, but also to differing reproductive anatomy and biology between the amphibians and reptiles. Artificial fertilisation with cryopreserved sperm is becoming a more widely developed and utilised technology for amphibians. However, in contrast, artificial insemination with production of live progeny has been reported in few reptiles, and while sperm have been successfully cryopreserved, there are still no reports of the production of live offspring generated from cryopreserved sperm. In both amphibians and reptiles, a focus on sperm cryopreservation and artificial fertilisation or artificial insemination has been at the expense of the development and application of more advanced technologies such as cryopreservation of the female germline and embryonic genome, or the use of sophisticated stem cell/primordial germ cell cryopreservation and transplantation approaches. This review accompanies the publication of ten papers on amphibians and twelve papers on reptiles reporting advances in ARTs and biobanking for the herpetological taxa.
Collapse
Affiliation(s)
- Simon Clulow
- Centre for Conservation Ecology & Genomics, Institute for Applied Ecology, University of Canberra, Bruce, ACT 2617, Australia
| | - John Clulow
- University of Newcastle, Conservation Biology Research Group, University Drive, Callaghan, NSW 2308, Australia
| | | | - Gina Della Togna
- Universidad Interamericana de Panama, Direccion de Investigacion, Campus Central, Avenida Ricardo J. Alfaro, Panama City, Panama; and Smithsonian Tropical Research Institute, Panama Amphibian Rescue and Conservation Project, Panama
| | - Natalie E Calatayud
- San Diego Zoo Wildlife Alliance, Beckman Center for Conservation Research, 15600 San Pasqual valley Road, Escondido, CA 92025, USA; and Conservation Science Network, 24 Thomas Street, Mayfield, NSW 2304, Australia
| |
Collapse
|
13
|
Scheele BC, Hollanders M, Hoffmann EP, Newell DA, Lindenmayer DB, McFadden M, Gilbert DJ, Grogan LF. Conservation translocations for amphibian species threatened by chytrid fungus: A review, conceptual framework, and recommendations. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.524] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ben C. Scheele
- Fenner School of Environment and Society Australian National University Canberra Australian Capital Territory Australia
| | - Matthijs Hollanders
- Faculty of Science and Engineering Southern Cross University Lismore New South Wales Australia
| | - Emily P. Hoffmann
- Fenner School of Environment and Society Australian National University Canberra Australian Capital Territory Australia
- School of Biological Sciences The University of Western Australia Crawley Western Australia Australia
| | - David A. Newell
- Faculty of Science and Engineering Southern Cross University Lismore New South Wales Australia
| | - David B. Lindenmayer
- Fenner School of Environment and Society Australian National University Canberra Australian Capital Territory Australia
| | - Michael McFadden
- Taronga Conservation Society Australia Mosman New South Wales Australia
| | - Deon J. Gilbert
- Wildlife Conservation and Science Zoos Victoria Parkville Victoria Australia
| | - Laura F. Grogan
- Centre for Planetary Health and Food Security, School of Environment and Science Griffith University Southport Queensland Australia
| |
Collapse
|