1
|
Peacock DE, Iannella A, Sinclair RG, Kovaliski J. Surveillance of Wildlife Viruses: Insights from South Australia's Monitoring of Rabbit Haemorrhagic Disease Virus (RHDV GI.1 and GI.2). Viruses 2024; 16:1553. [PMID: 39459889 PMCID: PMC11512407 DOI: 10.3390/v16101553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
Surveillance of wildlife virus impacts can be passive or active. Both approaches have their strengths and weaknesses, especially regarding cost and knowledge that can be gained. Monitoring of rabbit haemorrhagic disease virus (GI.1 and GI.2) in South Australia has utilised both strategies and their methods and gained insights are discussed. Active strategies to monitor the continuing impact of rabbit haemorrhagic disease virus 2 (GI.2) on susceptible lagomorphs in countries such as the USA, Mexico, South Africa, Spain, France and Portugal are encouraged to gain critical insights into the evolution, spread and impact of this virus. Furthermore, there are lessons here for the international monitoring of diseases in wildlife, particularly where there is a risk of them becoming zoonotic.
Collapse
Affiliation(s)
- David E. Peacock
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Amy Iannella
- Foundation for Rabbit Free Australia, P.O. Box 145, Collinswood, Adelaide, SA 5081, Australia
| | - Ron G. Sinclair
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia
| | - John Kovaliski
- Independent Researcher, 6/43B Bridge Street Kensington, Kensington, SA 5068, Australia
| |
Collapse
|
2
|
Cooke B. Practical Suggestions for Assessing Rabbit Haemorrhagic Disease Virus 2 Risk to Endangered Native Lagomorphs in North America and Southern Africa. Viruses 2024; 16:1299. [PMID: 39205273 PMCID: PMC11359914 DOI: 10.3390/v16081299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
A new form of the rabbit haemorrhagic disease virus, RHDV2, first observed in European rabbits, has spread widely among different species of hares in Europe, jackrabbits and cottontails in North America, and hares in southern Africa. However, only limited surveillance studies have been undertaken so far. It is suggested that methods developed for controlling the disease in farmed rabbits in Europe and studying the efficacy of RHDV as a biological control agent in Australia could facilitate epidemiological research on those recently affected lagomorph species. This would enable the assessment of the risk of RHDV2 to native lagomorphs, including endangered species, and the determination of the main host species of RHDV2. Because RHDV2 has not spread equally through all lagomorph species, epidemiological studies could give insights into factors important for determining host susceptibility.
Collapse
Affiliation(s)
- Brian Cooke
- Foundation for Rabbit Free Australia, P.O. Box 145, Collinswood, Adelaide, SA 5081, Australia
| |
Collapse
|
3
|
Patel KK, Austin C, Warner K, Pickett M, Khabiri A, Mahzounieh M, Hemmatzadeh F, Taggart PL. The impact of integrating rabbit haemorrhagic disease virus (K5) release with pindone baiting on wild rabbit populations. Ecol Evol 2024; 14:e10991. [PMID: 38476706 PMCID: PMC10928239 DOI: 10.1002/ece3.10991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 03/14/2024] Open
Abstract
Several conventional and recently available tools are available for an integrated control of European rabbits in Australia. We quantified the impact of the release of rabbit haemorrhagic disease virus K5 (RHDV K5, hereafter K5) and pindone (2-pivalyl-1,3-indandione) baiting at 13 sites within Cudlee Creek fire scar in the Adelaide Hills, South Australia. K5 release was followed by pindone baiting between December 2021 and March 2022; the application of both control methods followed industry best practice. We counted rabbits using spotlights before and after the application of both control methods. Fly samples and livers from dead rabbits were collected to track K5 transmission within and between sites, and to detect the natural circulation of rabbit haemorrhagic disease virus 2 (RHDV2). K5 release had minimal impact on rabbit populations, with treated populations increasing by a mean of 65.5% at 14 days post-release and 27.9% at 77 days post-K5 release across all sites, comparable to the changes at control sites. K5 detection in flies up to 77 days post its release, and its detection in rabbit livers, demonstrates that it can survive and transmit in the environment for prolonged periods and that it can lethally infect some rabbits. This limited impact of K5 is consistent with previous studies and may be explained by pre-existing RHDV/RHDV2 immunity in the target populations or the presence of young rabbits with natural innate RHDV immunity. The detection of K5 in flies from control sites demonstrates that it was vectored beyond its release location. A reduction in rabbit counts post-pindone baiting was observed at most treatment sites, with a mean population reduction of 36.6% across all sites. Landholders need to carefully and strategically plan their integrated rabbit control programmes. Not all combinations of controls, even if theoretically logical, achieve meaningful outcomes for rabbit management.
Collapse
Affiliation(s)
- Kandarp K. Patel
- School of Animal and Veterinary SciencesThe University of AdelaideRoseworthySouth AustraliaAustralia
- Davies Livestock Research CentreThe University of AdelaideRoseworthySouth AustraliaAustralia
- Centre for Invasive Species SolutionsBruceAustralian Capital TerritoryAustralia
| | - Catherine Austin
- Landscapes Hills and FleurieuMount BarkerSouth AustraliaAustralia
| | - Katrina Warner
- Landscapes Hills and FleurieuMount BarkerSouth AustraliaAustralia
| | - Marcus Pickett
- Marcus Pickett Ecological ServicesLobethalSouth AustraliaAustralia
| | - Aliakbar Khabiri
- School of Animal and Veterinary SciencesThe University of AdelaideRoseworthySouth AustraliaAustralia
| | - Mohammadreza Mahzounieh
- School of Animal and Veterinary SciencesThe University of AdelaideRoseworthySouth AustraliaAustralia
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary SciencesThe University of AdelaideRoseworthySouth AustraliaAustralia
| | - Patrick L. Taggart
- School of Animal and Veterinary SciencesThe University of AdelaideRoseworthySouth AustraliaAustralia
- Centre for Invasive Species SolutionsBruceAustralian Capital TerritoryAustralia
- Bush Heritage AustraliaVictor HarborSouth AustraliaAustralia
- School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
4
|
Santoro S, Aguayo-Adán JA, Rouco C. Comparison of the Impact between Classical and Novel Strains of Rabbit Haemorrhagic Disease on Wild Rabbit Populations in Spain. BIOLOGY 2023; 12:biology12050728. [PMID: 37237540 DOI: 10.3390/biology12050728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
The outbreaks of two strains of rabbit haemorrhagic disease (RHD) (GI.1 and GI.2) in the Iberian Peninsula have caused substantial economic losses in commercial rabbitries and have affected the conservation of rabbit-sensitive predators due to the dramatic decline of their natural populations. However, the assessment of the impact of both RHD strains on wild rabbit populations has been limited to a few small-scale studies. Little is known about the overall impact within its native range. In this study, we described and compared the effects of GI.1 and GI.2 countrywide by using time series of hunting bag data widely available across the country and compared their trend during the first eight years after the first outbreak of GI.1 (i.e., 1998) and GI.2 (i.e., 2011), respectively. We used Gaussian generalised additive models (GAM) with the number of hunted rabbits as the response variable and year as the predictor to evaluate the non-linear temporal dynamics of the population at the national and regional community levels. The first GI.1 caused a population decline of around 53%, affecting most Spanish regional communities where the disease occurred. The positive trend observed after GI.1 in Spain ended with the initial outbreak of GI.2, which did not appear to cause a national population decline. In contrast, we found significant variability in the rabbit population trend among regional communities, where some increased, and others decreased. Such a disparity is unlikely to be explained by a single factor; rather, it appears to result from several factors, such as climatic conditions, host resistance improvement, virulence attenuation, or population density. Our study suggests that a national comprehensive hunting bag series could aid in elucidating the differences in the impact of emerging diseases on a large scale. Future research should focus on national longitudinal serological studies to shed light on the immunological status of rabbit populations in different regions to better understand the evolution of RHD strains and the resistance gained by the wild populations.
Collapse
Affiliation(s)
- Simone Santoro
- Departamento de Ciencias Integradas, Facultad de Ciencias Experimentales, Universidad de Huelva, 21071 Huelva, Spain
| | - Juan Antonio Aguayo-Adán
- Departamento de Botánica, Ecología y Fisiología Vegetal, Área de Ecología, Universidad de Córdoba, 14006 Códoba, Spain
| | - Carlos Rouco
- Departamento Biología Vegetal y Ecología, Área de Ecología, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
5
|
Fleming PA, Stobo-Wilson AM, Crawford HM, Dawson SJ, Dickman CR, Doherty TS, Fleming PJS, Newsome TM, Palmer R, Thompson JA, Woinarski JCZ. Distinctive diets of eutherian predators in Australia. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220792. [PMID: 36312571 PMCID: PMC9554524 DOI: 10.1098/rsos.220792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/16/2022] [Indexed: 06/01/2023]
Abstract
Introduction of the domestic cat and red fox has devastated Australian native fauna. We synthesized Australian diet analyses to identify traits of prey species in cat, fox and dingo diets, which prey were more frequent or distinctive to the diet of each predator, and quantified dietary overlap. Nearly half (45%) of all Australian terrestrial mammal, bird and reptile species occurred in the diets of one or more predators. Cat and dingo diets overlapped least (0.64 ± 0.27, n = 24 location/time points) and cat diet changed little over 55 years of study. Cats were more likely to have eaten birds, reptiles and small mammals than foxes or dingoes. Dingo diet remained constant over 53 years and constituted the largest mammal, bird and reptile prey species, including more macropods/potoroids, wombats, monotremes and bandicoots/bilbies than cats or foxes. Fox diet had greater overlap with both cats (0.79 ± 0.20, n = 37) and dingoes (0.73 ± 0.21, n = 42), fewer distinctive items (plant material, possums/gliders) and significant spatial and temporal heterogeneity over 69 years, suggesting the opportunity for prey switching (especially of mammal prey) to mitigate competition. Our study reinforced concerns about mesopredator impacts upon scarce/threatened species and the need to control foxes and cats for fauna conservation. However, extensive dietary overlap and opportunism, as well as low incidence of mesopredators in dingo diets, precluded resolution of the debate about possible dingo suppression of foxes and cats.
Collapse
Affiliation(s)
- Patricia A. Fleming
- Centre for Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| | - Alyson M. Stobo-Wilson
- NESP Threatened Species Recovery Hub, Charles Darwin University, Casuarina, Northern Territory 0909, Australia
- CSIRO Land and Water, PMB 44, Winnellie, Northern Territory 0822, Australia
| | - Heather M. Crawford
- Centre for Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| | - Stuart J. Dawson
- Centre for Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, Western Australia 6151, Australia
| | - Chris R. Dickman
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building A08, Camperdown, New South Wales 2006, Australia
| | - Tim S. Doherty
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building A08, Camperdown, New South Wales 2006, Australia
| | - Peter J. S. Fleming
- Vertebrate Pest Research Unit, NSW Department of Primary Industries, Orange Agricultural Institute, 1447 Forest Road, Orange, New South Wales 2800, Australia
- Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia
- Institute for Agriculture and the Environment, Centre for Sustainable Agricultural Systems, University of Southern Queensland, Toowoomba, Queensland 4350, Australia.
| | - Thomas M. Newsome
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building A08, Camperdown, New South Wales 2006, Australia
| | - Russell Palmer
- Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983, Australia
| | - Jim A. Thompson
- Queensland Museum Network, PO Box 3300, South Brisbane BC, Queensland 4101, Australia
| | - John C. Z. Woinarski
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, Northern Territory 0909, Australia
| |
Collapse
|
6
|
Patel KK, Strive T, Hall RN, Mutze G, Page B, Korcz M, Booth-Remmers M, Smith IL, Huang DN, Kovaliski J, Jayasinghe Ellakkala Appuhamilage RMJ, Taggart PL. Cross-protection, infection, and case fatality rates in wild European rabbits experimentally challenged with different rabbit haemorrhagic disease viruses. Transbound Emerg Dis 2022; 69:e1959-e1971. [PMID: 35315981 DOI: 10.1111/tbed.14530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/02/2022] [Accepted: 03/20/2022] [Indexed: 10/18/2022]
Abstract
Rabbit haemorrhagic disease virus 2 (RHDV2) is now the dominant calicivirus circulating in wild rabbit populations in Australia. This study compared the infection and case fatality rates of RHDV2 and two RHDVs in wild rabbits, as well as their ability to overcome immunity to the respective other strains. Wild rabbits were allocated to groups either blindly or based on prescreening for RHDV/RHDV2 antibodies at capture. Rabbits were monitored regularly until their death or humane killing at 7 days post infection. Liver and eyeball samples were collected for lagovirus testing and aging rabbits, respectively. At capture, rabbits showed high seroprevalence to RHDV2 but not to RHDV. In RHDV/RHDV2 seronegative rabbits at capture, infection rates were highest in those inoculated with RHDV2 (81.8%, 18/22), followed by K5 (53.8%, 7/13) and CZECH (40.0%, 2/5), but these differences were not statistically significant. In rabbits with previous exposure to RHDV2 at capture, infection rates were highest when inoculated with K5 (59.6%, 31/52) followed by CZECH (46.0%, 23/50), with infection rates higher in younger rabbits for both viruses. In RHDV/RHDV2 seronegative rabbits at capture, case fatality rates were highest for those inoculated with K5 (71.4%), followed by RHDV2 (50.0%) and CZECH (50.0%). In rabbits with previous exposure to RHDV2 at capture, case fatality rates were highest in rabbits inoculated with K5 (12.9%) followed by CZECH (8.7%), with no case fatalities following RHDV2 inoculation. Case fatality rates did not differ significantly between inoculums in either serostatus group at capture. Based on multivariable modelling, time to death post RHDV inoculation increased in rabbits with recent RHDV2 exposure compared to seronegative rabbits and with age. The results suggest that RHDV2 may cause higher mortalities than other variants in seronegative rabbit populations but that K5 may be more effective in reducing rabbit populations in an RHDV2-dominant landscape. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kandarp K Patel
- Biosecurity, Department of Primary Industries and Regions (PIRSA), Urrbrae, South Australia, 5064, Australia.,School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia.,Centre for Invasive Species Solutions, Australian Capital Territory, Bruce, 2617, Australia
| | - Tanja Strive
- Centre for Invasive Species Solutions, Australian Capital Territory, Bruce, 2617, Australia.,Health & Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, 2601, Australia
| | - Robyn N Hall
- Centre for Invasive Species Solutions, Australian Capital Territory, Bruce, 2617, Australia.,Health & Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, 2601, Australia
| | - Greg Mutze
- Biosecurity, Department of Primary Industries and Regions (PIRSA), Urrbrae, South Australia, 5064, Australia
| | - Bradley Page
- Biosecurity, Department of Primary Industries and Regions (PIRSA), Urrbrae, South Australia, 5064, Australia.,Centre for Invasive Species Solutions, Australian Capital Territory, Bruce, 2617, Australia
| | - Matthew Korcz
- Biosecurity, Department of Primary Industries and Regions (PIRSA), Urrbrae, South Australia, 5064, Australia
| | - Mahalia Booth-Remmers
- Biosecurity, Department of Primary Industries and Regions (PIRSA), Urrbrae, South Australia, 5064, Australia.,Australian Wildlife Conservancy, Subiaco, Western Australia, 6008, Australia
| | - Ina L Smith
- Centre for Invasive Species Solutions, Australian Capital Territory, Bruce, 2617, Australia
| | - D Nina Huang
- Centre for Invasive Species Solutions, Australian Capital Territory, Bruce, 2617, Australia.,Health & Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, 2601, Australia
| | - John Kovaliski
- Biosecurity, Department of Primary Industries and Regions (PIRSA), Urrbrae, South Australia, 5064, Australia.,Centre for Invasive Species Solutions, Australian Capital Territory, Bruce, 2617, Australia
| | - Ridma M J Jayasinghe Ellakkala Appuhamilage
- Biosecurity, Department of Primary Industries and Regions (PIRSA), Urrbrae, South Australia, 5064, Australia.,Centre for Invasive Species Solutions, Australian Capital Territory, Bruce, 2617, Australia
| | - Patrick L Taggart
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia.,Centre for Invasive Species Solutions, Australian Capital Territory, Bruce, 2617, Australia.,Vertebrate Pest Research Unit, Department of Primary Industries NSW, Queanbeyan, New South Wales, 2620, Australia
| |
Collapse
|
7
|
Fleming PA, Crawford HM, Stobo‐Wilson AM, Dawson SJ, Dickman CR, Dundas SJ, Gentle MN, Newsome TM, O’Connor J, Palmer R, Riley J, Ritchie EG, Speed J, Saunders G, Stuart JD, Thompson E, Turpin JM, Woinarski JC. Diet of the introduced red fox
Vulpes vulpes
in Australia: analysis of temporal and spatial patterns. Mamm Rev 2021. [DOI: 10.1111/mam.12251] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Patricia A. Fleming
- Centre for Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute Murdoch University 90 South Street Murdoch, Perth WA6150Australia
| | - Heather M. Crawford
- Centre for Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute Murdoch University 90 South Street Murdoch, Perth WA6150Australia
| | - Alyson M. Stobo‐Wilson
- NESP Threatened Species Recovery Hub Charles Darwin University Casuarina NT0909Australia
| | - Stuart J. Dawson
- Centre for Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute Murdoch University 90 South Street Murdoch, Perth WA6150Australia
| | - Christopher R. Dickman
- NESP Threatened Species Recovery Hub, Desert Ecology Research Group School of Life and Environmental Sciences University of Sydney Sydney NSW2006Australia
| | - Shannon J. Dundas
- NSW Department of Primary Industries 1447 Forest Rd Orange NSW2800Australia
| | - Matthew N. Gentle
- Pest Animal Research Centre Invasive Plants and Animals Biosecurity Queensland Toowoomba Qld4350Australia
| | - Thomas M. Newsome
- Global Ecology Lab School of Life and Environmental Sciences University of Sydney Sydney NSW2006Australia
| | - Julie O’Connor
- Sunshine Coast Regional Council 1 Omrah Avenue Caloundra Qld4551Australia
| | - Russell Palmer
- Science and Conservation Division Department of Biodiversity, Conservation and Attractions Bentley WA6983Australia
| | - Joanna Riley
- School of Biological Sciences University of Bristol BristolBS8 1THUK
| | - Euan G. Ritchie
- Centre for Integrative Ecology, School of Life and Environmental Sciences Deakin University Burwood Vic3125Australia
| | - James Speed
- Pest Animal Research Centre Invasive Plants and Animals Biosecurity Queensland Toowoomba Qld4350Australia
| | - Glen Saunders
- NSW Department of Primary Industries 1447 Forest Rd Orange NSW2800Australia
| | - John‐Michael D. Stuart
- Centre for Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute Murdoch University 90 South Street Murdoch, Perth WA6150Australia
| | - Eilysh Thompson
- Centre for Integrative Ecology, School of Life and Environmental Sciences Deakin University Burwood Vic3125Australia
| | - Jeff M. Turpin
- School of Environmental and Rural Science University of New England Armidale NSW2351Australia
| | - John C.Z. Woinarski
- NESP Threatened Species Recovery Hub Charles Darwin University Casuarina NT0909Australia
| |
Collapse
|
8
|
Abstract
Viral diseases, whether of animals or humans, are normally considered as problems to be managed. However, in Australia, two viruses have been used as landscape-scale therapeutics to control European rabbits (Oryctolagus cuniculus), the preeminent invasive vertebrate pest species. Rabbits have caused major environmental and agricultural losses and contributed to extinction of native species. It was not until the introduction of Myxoma virus that effective control of this pest was obtained at a continental scale. Subsequent coevolution of rabbit and virus saw a gradual reduction in the effectiveness of biological control that was partially ameliorated by the introduction of the European rabbit flea to act as an additional vector for the virus. In 1995, a completely different virus, Rabbit hemorrhagic disease virus (RHDV), escaped from testing and spread through the Australian rabbit population and again significantly reduced rabbit numbers and environmental impacts. The evolutionary pressures on this virus appear to be producing quite different outcomes to those that occurred with myxoma virus and the emergence and invasion of a novel genotype of RHDV in 2014 have further augmented control. Molecular studies on myxoma virus have demonstrated multiple proteins that manipulate the host innate and adaptive immune response; however the molecular basis of virus attenuation and reversion to virulence are not yet understood.
Collapse
|
9
|
Pacioni C, Vaughan TG, Strive T, Campbell S, Ramsey DSL. Field validation of phylodynamic analytical methods for inference on epidemiological processes in wildlife. Transbound Emerg Dis 2021; 69:1020-1029. [PMID: 33683829 DOI: 10.1111/tbed.14058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 11/30/2022]
Abstract
Amongst newly developed approaches to analyse molecular data, phylodynamic models are receiving much attention because of their potential to reveal changes to viral populations over short periods. This knowledge can be very important for understanding disease impacts. However, their accuracy needs to be fully understood, especially in relation to wildlife disease epidemiology, where sampling and prior knowledge may be limited. The release of the rabbit haemorrhagic disease virus (RHDV) as biological control in naïve rabbit populations in Australia in 1996 provides a unique data set with which to validate phylodynamic models. By comparing results obtained from RHDV sequence data with our current understanding of RHDV epidemiology in Australia, we evaluated the performances of these recently developed models. In line with our expectations, coalescent analyses detected a sharp increase in the virus population size in the first few months after release, followed by a more gradual increase. Phylodynamic analyses using a birth-death model generated effective reproductive number estimates (the average number of secondary infections per each infectious case, Re ) larger than one for most of the epochs considered. However, the possible range of the initial Re included estimates lower than one despite the known rapid spread of RHDV in Australia. Furthermore, the analyses that accounted for geographical structuring failed to converge. We argue that the difficulties that we encountered most likely stem from the fact that the samples available from 1996 to 2014 were too sparse with respect to both geographic and within outbreak coverage to adequately infer some of the model parameters. In general, while these phylodynamic analyses proved to be greatly informative in some regards, we caution that their interpretation may not be straightforward. We recommend further research to evaluate the robustness of these models to assumption violations and sensitivity to sampling regimes.
Collapse
Affiliation(s)
- Carlo Pacioni
- Arthur Rylah Institute for Environmental Research, Department of Environment, Land, Water and Planning, Heidelberg, VIC, Australia.,School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia.,Centre for Invasive Species Solutions, Bruce, ACT, Australia
| | - Timothy G Vaughan
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Tanja Strive
- Centre for Invasive Species Solutions, Bruce, ACT, Australia.,Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Susan Campbell
- Centre for Invasive Species Solutions, Bruce, ACT, Australia.,Department of Primary Industries and Regional Development, Albany, WA, Australia
| | - David S L Ramsey
- Arthur Rylah Institute for Environmental Research, Department of Environment, Land, Water and Planning, Heidelberg, VIC, Australia.,Centre for Invasive Species Solutions, Bruce, ACT, Australia
| |
Collapse
|
10
|
Read JL, Firn J, Grice AC, Murphy R, Ryan‐Colton E, Schlesinger CA. Ranking buffel: Comparative risk and mitigation costs of key environmental and socio-cultural threats in central Australia. Ecol Evol 2020; 10:12745-12763. [PMID: 33304491 PMCID: PMC7713970 DOI: 10.1002/ece3.6724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 11/08/2022] Open
Abstract
Changed fire regimes and the introduction of rabbits, cats, foxes, and large exotic herbivores have driven widespread ecological catastrophe in Australian arid and semi-arid zones, which encompass over two-thirds of the continent. These threats have caused the highest global mammal extinction rates in the last 200 years, as well as significantly undermining social, economic, and cultural practices of Aboriginal peoples of this region. However, a new and potentially more serious threat is emerging. Buffel grass (Cenchrus ciliaris L.) is a globally significant invader now widespread across central Australia, but the threat this ecological transformer species poses to biodiversity, ecosystem function, and culture has received relatively little attention. Our analyses suggest threats from buffel grass in arid and semi-arid areas of Australia are at least equivalent in magnitude to those posed by invasive animals and possibly higher, because unlike these more recognized threats, buffel has yet to occupy its potential distribution. Buffel infestation also increases the intensity and frequency of wildfires that affect biodiversity, cultural pursuits, and productivity. We compare the logistical and financial challenges of creating and maintaining areas free of buffel for the protection of biodiversity and cultural values, with the creation and maintenance of refuges from introduced mammals or from large-scale fire in natural habitats. The scale and expense of projected buffel management costs highlight the urgent policy, research, and financing initiatives essential to safeguard threatened species, ecosystems, and cultural values of Aboriginal people in central Australia.
Collapse
Affiliation(s)
| | - Jennifer Firn
- Queensland University of TechnologyBrisbaneQldAustralia
| | - Anthony C. Grice
- College of Science and EngineeringJames Cook UniversityTownsvilleQldAustralia
| | | | - Ellen Ryan‐Colton
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityAlice SpringsNTAustralia
| | - Christine A. Schlesinger
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityAlice SpringsNTAustralia
| |
Collapse
|
11
|
Schwensow N, Pederson S, Peacock D, Cooke B, Cassey P. Adaptive changes in the genomes of wild rabbits after 16 years of viral epidemics. Mol Ecol 2020; 29:3777-3794. [PMID: 32506669 DOI: 10.1111/mec.15498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 01/01/2023]
Abstract
Since its introduction to control overabundant invasive European rabbits (Oryctolagus cuniculus), the highly virulent rabbit haemorrhagic disease virus (RHDV) has caused regular annual disease outbreaks in Australian rabbit populations. Although initially reducing rabbit abundance by 60%, continent-wide, experimental evidence has since indicated increased genetic resistance in wild rabbits that have experienced RHDV-driven selection. To identify genetic adaptations, which explain the increased resistance to this biocontrol virus, we investigated genome-wide SNP (single nucleotide polymorphism) allele frequency changes in a South Australian rabbit population that was sampled in 1996 (pre-RHD genomes) and after 16 years of RHDV outbreaks. We identified several SNPs with changed allele frequencies within or close to genes potentially important for increased RHD resistance. The identified genes are known to be involved in virus infections and immune reactions or had previously been identified as being differentially expressed in healthy versus acutely RHDV-infected rabbits. Furthermore, we show in a simulation study that the allele/genotype frequency changes cannot be explained by drift alone and that several candidate genes had also been identified as being associated with surviving RHD in a different Australian rabbit population. Our unique data set allowed us to identify candidate genes for RHDV resistance that have evolved under natural conditions, and over a time span that would not have been feasible in an experimental setting. Moreover, it provides a rare example of host genetic adaptations to virus-driven selection in response to a suddenly emerging infectious disease.
Collapse
Affiliation(s)
- Nina Schwensow
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany.,Centre for Applied Conservation Science, and School of Biological Sciences, University of Adelaide, SA, Australia
| | - Stephen Pederson
- Bioinformatics Hub, School of Biological Sciences, University of Adelaide, SA, Australia
| | - David Peacock
- Biosecurity SA, Adelaide, SA, Australia.,School of Animal and Veterinary Science, University of Adelaide, Roseworthy, SA, Australia
| | - Brian Cooke
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| | - Phillip Cassey
- Centre for Applied Conservation Science, and School of Biological Sciences, University of Adelaide, SA, Australia
| |
Collapse
|
12
|
Short-term pain before long-term gain? Suppression of invasive primary prey temporarily increases predation on native lizards. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02239-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Precipitous Declines in Northern Gulf of Mexico Invasive Lionfish Populations Following the Emergence of an Ulcerative Skin Disease. Sci Rep 2020; 10:1934. [PMID: 32020056 PMCID: PMC7000744 DOI: 10.1038/s41598-020-58886-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/22/2020] [Indexed: 11/08/2022] Open
Abstract
Invasive Indo-Pacific lionfish Pterois volitans/miles have become well-established in many western Atlantic marine habitats and regions. However, high densities and low genetic diversity could make their populations susceptible to disease. We examined changes in northern Gulf of Mexico (nGOM) lionfish populations following the emergence of an ulcerative skin disease in August 2017, when estimated disease prevalence was as high as 40%. Ulcerated female lionfish had 9% lower relative condition compared to non-ulcerated females. Changes in lionfish size composition indicated a potential recruitment failure in early summer 2018, when the proportion of new recruits declined by >80%. Remotely operated vehicle surveys during 2016–2018 indicated lionfish population density declined in 2018 by 75% on natural reefs. The strongest declines (77–79%) in lionfish density were on high-density (>25 lionfish per 100 m2) artificial reefs, which declined to similar levels as low-density (<15 lionfish per 100 m2) artificial reefs that had prior lionfish removals. Fisheries-dependent sampling indicated lionfish commercial spearfishing landings, commercial catch per unit effort (CPUE), and lionfish tournament CPUE also declined approximately 50% in 2018. Collectively, these results provide correlative evidence for density-dependent epizootic population control, have implications for managing lionfish and impacted native species, and improve our understanding of biological invasions.
Collapse
|
14
|
Strive T, Piper M, Huang N, Mourant R, Kovaliski J, Capucci L, Cox TE, Smith I. Retrospective serological analysis reveals presence of the emerging lagovirus RHDV2 in Australia in wild rabbits at least five months prior to its first detection. Transbound Emerg Dis 2019; 67:822-833. [PMID: 31665828 DOI: 10.1111/tbed.13403] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022]
Abstract
The lagovirus rabbit haemorrhagic disease virus (RHDV) has been circulating in Australia since the mid-1990s when it was released to control overabundant rabbit populations. In recent years, the viral diversity of different RHDVs in Australia has increased, and currently four different types of RHDV are known to be circulating. To allow for ongoing epidemiological studies and impact assessments of these viruses on Australian wild rabbit populations, it is essential that serological tools are updated. To this end, reference sera were produced against all four virulent RHDVs (RHDV, RHDV2 and two different strains of RHDVa) known to be present in Australia and tested in a series of available immunological assays originally developed for the prototype RHDV, to assess patterns of cross-reactivity and the usefulness of these assays to detect lagovirus antibodies, either in a generic or specific manner. Enzyme-linked immunosorbent assays (ELISAs) developed to detect antibody isotypes IgM, IgA and IgG were sufficiently cross-reactive to detect antibodies raised against all four virulent lagoviruses. For the more specific detection of antibodies to the antigenically more different RHDV2, a competition ELISA was adapted using RHDV2-specific monoclonal antibodies in combination with Australian viral antigen. Archival serum banks from a long-term rabbit monitoring site where rabbits were sampled quarterly over a period of 6 years were re-screened using this assay and revealed serological evidence for the arrival of RHDV2 in this population at least 5 months prior to its initial detection in Australia in a dead rabbit in May 2015. The serological methods and reference reagents described here will provide valuable tools to study presence, prevalence and impact of RHDV2 on Australian rabbit populations; however, the discrimination of different antigenic variants of RHDVs as well as mixed infections at the serological level remains challenging.
Collapse
Affiliation(s)
- Tanja Strive
- Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia.,Centre for Invasive Species Solutions, University of Canberra, Bruce, Australia
| | - Melissa Piper
- Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia
| | - Nina Huang
- Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia.,Centre for Invasive Species Solutions, University of Canberra, Bruce, Australia
| | - Roslyn Mourant
- Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia
| | - John Kovaliski
- Department of Primary Industries and Regions, Biosecurity SA, Adelaide, Australia
| | - Lorenzo Capucci
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna 'Bruno Ubertini' (IZSLER), OIE Reference Laboratory for Rabbit Haemorrhagic Disease, Brescia, Italy
| | - Tarnya E Cox
- Centre for Invasive Species Solutions, University of Canberra, Bruce, Australia.,Vertebrate Pest Research Unit, New South Wales Department of Primary Industries, Orange, Australia
| | - Ina Smith
- Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia
| |
Collapse
|
15
|
Prowse TA, O'Connor PJ, Collard SJ, Rogers DJ. Eating away at protected areas: Total grazing pressure is undermining public land conservation. Glob Ecol Conserv 2019. [DOI: 10.1016/j.gecco.2019.e00754] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
16
|
Punctuated Evolution of Myxoma Virus: Rapid and Disjunct Evolution of a Recent Viral Lineage in Australia. J Virol 2019; 93:JVI.01994-18. [PMID: 30728252 DOI: 10.1128/jvi.01994-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/23/2019] [Indexed: 11/20/2022] Open
Abstract
Myxoma virus (MYXV) has been evolving in a novel host species-European rabbits-in Australia since 1950. Previous studies of viruses sampled from 1950 to 1999 revealed a remarkably clock-like evolutionary process across all Australian lineages of MYXV. Through an analysis of 49 newly generated MYXV genome sequences isolated in Australia between 2008 and 2017, we show that MYXV evolution in Australia can be characterized by three lineages, one of which exhibited a greatly elevated rate of evolutionary change and a dramatic breakdown of temporal structure. Phylogenetic analysis revealed that this apparently punctuated evolutionary event occurred between 1996 and 2012. The branch leading to the rapidly evolving lineage contained a relatively high number of nonsynonymous substitutions, and viruses in this lineage reversed a mutation found in the progenitor standard laboratory strain (SLS) and all previous sequences that disrupts the reading frame of the M005L/R gene. Analysis of genes encoding proteins involved in DNA synthesis or RNA transcription did not reveal any mutations likely to cause rapid evolution. Although there was some evidence for recombination across the MYXV phylogeny, this was not associated with the increase in the evolutionary rate. The period from 1996 to 2012 saw significant declines in wild rabbit numbers, due to the introduction of rabbit hemorrhagic disease and prolonged drought in southeastern Australia, followed by the partial recovery of populations. It is therefore possible that a rapidly changing environment for virus transmission changed the selection pressures faced by MYXV, altering the course and pace of virus evolution.IMPORTANCE The coevolution of myxoma virus (MYXV) and European rabbits in Australia is one of the most important natural experiments in evolutionary biology, providing insights into virus adaptation to new hosts and the evolution of virulence. Previous studies of MYXV evolution have also shown that the virus evolves both relatively rapidly and in a strongly clock-like manner. Using newly acquired MYXV genome sequences from Australia, we show that the virus has experienced a dramatic change in evolutionary behavior over the last 20 years, with a breakdown in clock-like structure, the appearance of a rapidly evolving virus lineage, and the accumulation of multiple nonsynonymous and indel mutations. We suggest that this punctuated evolutionary event may reflect a change in selection pressures as rabbit numbers declined following the introduction of rabbit hemorrhagic disease virus and drought in the geographic regions inhabited by rabbits.
Collapse
|
17
|
Wells K, Fordham DA, Brook BW, Cassey P, Cox T, O'Hara RB, Schwensow NI. Disentangling synergistic disease dynamics: Implications for the viral biocontrol of rabbits. J Anim Ecol 2018; 87:1418-1428. [DOI: 10.1111/1365-2656.12871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/14/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Konstans Wells
- The Environment Institute and School of Biological Sciences The University of Adelaide Adelaide SA Australia
- Environmental Futures Research Institute Griffith University Brisbane QLD Australia
| | - Damien A. Fordham
- The Environment Institute and School of Biological Sciences The University of Adelaide Adelaide SA Australia
- Center for Macroecology, Evolution, and Climate National Museum of Denmark University of Copenhagen Copenhagen Denmark
| | - Barry W. Brook
- The Environment Institute and School of Biological Sciences The University of Adelaide Adelaide SA Australia
- School of Natural Sciences University of Tasmania Hobart TAS Australia
| | - Phillip Cassey
- The Environment Institute and School of Biological Sciences The University of Adelaide Adelaide SA Australia
| | - Tarnya Cox
- Vertebrate Pest Research Unit NSW Department Primary Industries Orange NSW Australia
| | - Robert B. O'Hara
- Department of Mathematical Sciences Norwegian University of Science and Technology Trondheim Norway
| | - Nina I. Schwensow
- The Environment Institute and School of Biological Sciences The University of Adelaide Adelaide SA Australia
- Institute of Evolutionary Ecology and Conservation Genomics University of Ulm Ulm Germany
| |
Collapse
|
18
|
Barnett LK, Prowse TAA, Peacock DE, Mutze GJ, Sinclair RG, Kovaliski J, Cooke BD, Bradshaw CJA. Previous exposure to myxoma virus reduces survival of European rabbits during outbreaks of rabbit haemorrhagic disease. J Appl Ecol 2018. [DOI: 10.1111/1365-2664.13187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Louise K. Barnett
- Global EcologyCollege of Science and EngineeringFlinders University Adelaide South Australia Australia
| | - Thomas A. A. Prowse
- School of Mathematical SciencesUniversity of Adelaide Adelaide South Australia Australia
| | - David E. Peacock
- Biosecurity South AustraliaDepartment of Primary Industries and Regions Adelaide South Australia Australia
| | - Gregory J. Mutze
- Biosecurity South AustraliaDepartment of Primary Industries and Regions Adelaide South Australia Australia
| | - Ron G. Sinclair
- School of Biological SciencesUniversity of Adelaide Adelaide South Australia Australia
| | - John Kovaliski
- Biosecurity South AustraliaDepartment of Primary Industries and Regions Adelaide South Australia Australia
| | - Brian D. Cooke
- Institute for Applied EcologyUniversity of Canberra Canberra ACT Australia
| | - Corey J. A. Bradshaw
- Global EcologyCollege of Science and EngineeringFlinders University Adelaide South Australia Australia
| |
Collapse
|
19
|
Detecting European Rabbit ( Oryctolagus cuniculus) Disease Outbreaks by Monitoring Digital Media. J Wildl Dis 2018; 54:544-547. [PMID: 29667872 DOI: 10.7589/2017-05-121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Digital media and digital search tools offer simple and effective means to monitor for pathogens and disease outbreaks in target organisms. Using tools such as Rich Site Summary feeds, and Google News and Google Scholar specific key word searches, international digital media were actively monitored from 2012 to 2016 for pathogens and disease outbreaks in the taxonomic order Lagomorpha, with a specific focus on the European rabbit ( Oryctolagus cuniculus). The primary objective was identifying pathogens for assessment as potential new biocontrol agents for Australia's pest populations of the European rabbit. A number of pathogens were detected in digital media reports. Additional benefits arose in the regular provision of case reports and research on myxomatosis and rabbit haemorrhagic disease virus that assisted with current research.
Collapse
|
20
|
Mutze G, De Preu N, Mooney T, Koerner D, McKenzie D, Sinclair R, Kovaliskli J, Peacock D. Substantial numerical decline in South Australian rabbit populations following the detection of rabbit haemorrhagic disease virus 2. Vet Rec 2018. [PMID: 29519856 DOI: 10.1136/vr.104734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Lagovirus europaeus GI.2, also commonly known as rabbit haemorrhagic disease virus 2, was first detected at two long-term monitoring sites for European rabbits, Oryctolagus cuniculus, in South Australia, in mid-2016. Numbers of rabbits in the following 12-18 months were reduced to approximately 20 per cent of average numbers in the preceding 10 years. The impact recorded at the two South Australian sites, if widespread in Australia and persistent for several years, is likely to be of enormous economic and environmental benefit.
Collapse
Affiliation(s)
- Greg Mutze
- Biosecurity SA, Department of Primary Industries and Regions South Australia, Adelaide, South Australia, Australia
| | - Nicki De Preu
- Ardeotis Biological Consultants, Watervale, South Australia, Australia
| | - Trish Mooney
- Department of Environment, Water and Natural Resources, Port Augusta, South Australia, Australia
| | - Dylan Koerner
- Department of Environment, Water and Natural Resources, Port Augusta, South Australia, Australia
| | - Darren McKenzie
- Department of Environment, Water and Natural Resources, Port Augusta, South Australia, Australia
| | - Ron Sinclair
- Biosecurity SA, Department of Primary Industries and Regions South Australia, Adelaide, South Australia, Australia
| | - John Kovaliskli
- Biosecurity SA, Department of Primary Industries and Regions South Australia, Adelaide, South Australia, Australia
| | - David Peacock
- Biosecurity SA, Department of Primary Industries and Regions South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
21
|
Delibes-Mateos M, Farfán MÁ, Rouco C, Olivero J, Márquez AL, Fa JE, Vargas JM, Villafuerte R. A large-scale assessment of European rabbit damage to agriculture in Spain. PEST MANAGEMENT SCIENCE 2018; 74:111-119. [PMID: 28722344 DOI: 10.1002/ps.4658] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/31/2017] [Accepted: 06/13/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Numerous small and medium-sized mammal pests cause widespread and economically significant damage to crops all over the globe. However, most research on pest species has focused on accounts of the level of damage. There are fewer studies concentrating on the description of crop damage caused by pests at large geographical scales, or on analysis of the ecological and anthropogenic factors correlated with these observed patterns. We investigated the relationship between agricultural damage by the European rabbit (Oryctolagus cuniculus) and environmental and anthropogenic variables throughout Spain. RESULTS Rabbit damage was mainly concentrated within the central-southern regions of Spain. We found that rabbit damage increased significantly between the early 2000s and 2013. Greater losses were typical of those areas where farming dominated and natural vegetation was scarce, where main railways and highways were present, and where environmental conditions were generally favourable for rabbit populations to proliferate. CONCLUSION From our analysis, we suggest that roads and railway lines act as potential corridors along which rabbits can spread. The recent increase in Spain of such infrastructure may explain the rise in rabbit damage reported in this study. Our approach is valuable as a method for assessing drivers of wildlife pest damage at large spatial scales, and can be used to propose methods to reduce human - wildlife conflict. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Miguel Delibes-Mateos
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
- Instituto de Estudios Sociales Avanzados (CSIC), Córdoba, Spain
| | - Miguel Ángel Farfán
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Biogea Consultores, Málaga, Spain
| | - Carlos Rouco
- Departamento de Zoología, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Jesús Olivero
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Ana Luz Márquez
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - John E Fa
- Division of Biology and Conservation Ecology, School of Science and the Environment, Manchester Metropolitan University, Manchester, UK
| | - Juan Mario Vargas
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | | |
Collapse
|
22
|
Cooke BD, Soriguer RC. Do dingoes protect Australia's small mammal fauna from introduced mesopredators? Time to consider history and recent events. FOOD WEBS 2017. [DOI: 10.1016/j.fooweb.2016.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Hall RN, Capucci L, Matthaei M, Esposito S, Kerr PJ, Frese M, Strive T. An in vivo system for directed experimental evolution of rabbit haemorrhagic disease virus. PLoS One 2017; 12:e0173727. [PMID: 28288206 PMCID: PMC5348035 DOI: 10.1371/journal.pone.0173727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/24/2017] [Indexed: 11/25/2022] Open
Abstract
The calicivirus Rabbit haemorrhagic disease virus (RHDV) is widely used in Australia as a biocontrol agent to manage wild European rabbit (Oryctolagus cuniculus) populations. However, widespread herd immunity limits the effectiveness of the currently used strain, CAPM V-351. To overcome this, we developed an experimental platform for the selection and characterisation of novel RHDV strains. As RHDV does not replicate in cell culture, variant viruses were selected by serially passaging a highly virulent RHDV field isolate in immunologically naïve laboratory rabbits that were passively immunised 18–24 hours post-challenge with a neutralising monoclonal antibody. After seven passages, two amino acid substitutions in the P2 domain of the capsid protein became fixed within the virus population. Furthermore, a synonymous substitution within the coding sequence of the viral polymerase appeared and was also maintained in all subsequent passages. These findings demonstrate proof-of-concept that RHDV evolution can be experimentally manipulated to select for virus variants with altered phenotypes, in this case partial immune escape.
Collapse
Affiliation(s)
- Robyn N. Hall
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
- Invasive Animals Cooperative Research Centre, University of Canberra, Canberra, ACT, Australia
| | - Lorenzo Capucci
- IZSLER, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini”, Brescia, Italy
| | - Markus Matthaei
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Simona Esposito
- IZSLER, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini”, Brescia, Italy
| | - Peter J. Kerr
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Michael Frese
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
- Invasive Animals Cooperative Research Centre, University of Canberra, Canberra, ACT, Australia
- Health Research Institute, University of Canberra, Canberra, ACT, Australia
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| | - Tanja Strive
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
- Invasive Animals Cooperative Research Centre, University of Canberra, Canberra, ACT, Australia
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
- * E-mail:
| |
Collapse
|
24
|
Peacock D, Kovaliski J, Sinclair R, Mutze G, Iannella A, Capucci L. RHDV2 overcoming RHDV immunity in wild rabbits ( Oryctolagus cuniculus) in Australia. Vet Rec 2017; 180:280. [PMID: 28082661 DOI: 10.1136/vr.104135] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2016] [Indexed: 12/26/2022]
Affiliation(s)
- D Peacock
- Biosecurity SA, Adelaide, SA, Australia
| | | | - R Sinclair
- The University of Adelaide, Adelaide, SA, Australia
| | - G Mutze
- Biosecurity SA, Adelaide, SA, Australia
| | - A Iannella
- The University of Adelaide, Adelaide, SA, Australia
| | - L Capucci
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia, Brescia, Italy
| |
Collapse
|
25
|
Jennings S, Mutze G. Multiple warren use by subadult wild rabbits, Oryctolagus cuniculus, and its implications for disease transmission. WILDLIFE RESEARCH 2017. [DOI: 10.1071/wr17042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Contact rates are a key determinant of disease transmission. Territorial behaviour has generally been considered to limit contact between European rabbits occupying different warrens, particularly during the breeding season.
Aims
We investigated warren use by subadult rabbits during a period of low population density to determine their potential role in transmission of rabbit haemorrhagic disease and myxomatosis.
Methods
Subadult rabbits were radio-collared in late summer and relocated twice-weekly for 25 weeks, during which time they grew to adult size and breeding commenced.
Key results
Rabbits of both sexes used an average of four warrens each on a regular basis, even after older rabbits had commenced breeding. Warrens used by individual rabbits formed a continuously overlapping, irregular array. Subadult rabbits did not belong to separate social groups that utilised separate groups of warrens.
Conclusions
Subadult or young adult rabbits did not display the same territorial warren fidelity that had been previously described for rabbits. They have potential to carry pathogens between warrens at a landscape scale.
Implications
Movement of subadult rabbits between warrens is therefore likely to play a critical role in disease transmission, particularly when population density is low. This may help to explain the prevalent seasonality of RHD epizootics in spring when first-born litters of each breeding season typically reach that size.
Collapse
|
26
|
Schwensow N, Mazzoni CJ, Marmesat E, Fickel J, Peacock D, Kovaliski J, Sinclair R, Cassey P, Cooke B, Sommer S. High adaptive variability and virus-driven selection on major histocompatibility complex (MHC) genes in invasive wild rabbits in Australia. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1329-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Pedler RD, Brandle R, Read JL, Southgate R, Bird P, Moseby KE. Rabbit biocontrol and landscape-scale recovery of threatened desert mammals. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2016; 30:774-782. [PMID: 26852773 DOI: 10.1111/cobi.12684] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 12/16/2015] [Indexed: 06/05/2023]
Abstract
Funding for species conservation is insufficient to meet the current challenges facing global biodiversity, yet many programs use expensive single-species recovery actions and neglect broader management that addresses threatening processes. Arid Australia has the world's worst modern mammalian extinction record, largely attributable to competition from introduced herbivores, particularly European rabbits (Oryctolagus cuniculus) and predation by feral cats (Felis catus) and foxes (Vulpes vulpes). The biological control agent rabbit hemorrhagic disease virus (RHDV) was introduced to Australia in 1995 and resulted in dramatic, widespread rabbit suppression. We compared the area of occupancy and extent of occurrence of 4 extant species of small mammals before and after RHDV outbreak, relative to rainfall, sampling effort, and rabbit and predator populations. Despite low rainfall during the first 14 years after RHDV, 2 native rodents listed by the International Union for Conservation of Nature (IUCN), the dusky hopping-mouse (Notomys fuscus) and plains mouse (Pseudomys australis), increased their extent of occurrence by 241-365%. A threatened marsupial micropredator, the crest-tailed mulgara (Dasycercus cristicauda), underwent a 70-fold increase in extent of occurrence and a 20-fold increase in area of occupancy. Both bottom-up and top-down trophic effects were attributed to RHDV, namely decreased competition for food resources and declines in rabbit-dependent predators. Based on these sustained increases, these 3 previously threatened species now qualify for threat-category downgrading on the IUCN Red List. These recoveries are on a scale rarely documented in mammals and give impetus to programs aimed at targeted use of RHDV in Australia, rather than simply employing top-down threat-based management of arid ecosystems. Conservation programs that take big-picture approaches to addressing threatening processes over large spatial scales should be prioritized to maximize return from scarce conservation funding. Further, these should be coupled with long-term ecological monitoring, a critical tool in detecting and understanding complex ecosystem change.
Collapse
Affiliation(s)
- Reece D Pedler
- Department for Environment, Water and Natural Resources, South Australia, SA Arid Lands Region, P.O. Box 78 Port Augusta, South Australia, 5700, Australia
| | - Robert Brandle
- Department for Environment, Water and Natural Resources, South Australia, SA Arid Lands Region, P.O. Box 78 Port Augusta, South Australia, 5700, Australia
| | - John L Read
- University of Adelaide, North Terrace, Adelaide, 5005, Australia
- Ecological Horizons, P.O. Box 207 Kimba, South Australia, 5641, Australia
| | - Richard Southgate
- Envisage Environmental Services, P.O. Box 305 Kingscote, South Australia, 5223, Australia
| | - Peter Bird
- NRM Biosecurity, Department of Primary Industries and Regions, South Australia, GPO Box 1671 Adelaide, South Australia, 5001, Australia
| | - Katherine E Moseby
- University of Adelaide, North Terrace, Adelaide, 5005, Australia
- Ecological Horizons, P.O. Box 207 Kimba, South Australia, 5641, Australia
| |
Collapse
|
28
|
Mutze G, Cooke B, Jennings S. Density-dependent grazing impacts of introduced European rabbits and sympatric kangaroos on Australian native pastures. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1168-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Mutze G. Barking up the wrong tree? Are livestock or rabbits the greater threat to rangeland biodiversity in southern Australia? RANGELAND JOURNAL 2016. [DOI: 10.1071/rj16047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Increasing provision of permanent water points has put most Australian pastoral rangelands within grazing distance of sheep, cattle, kangaroos and large feral herbivores, and there is concern that grazing-sensitive native plants will be lost as a result. Proposals have been developed to conserve plant biodiversity by permanently excluding livestock from any areas that are remote from permanent water, or to buy back pastoral properties and remove existing water points to create large reserves. There is, however, little evidence that water-remote areas provide refuge for grazing-sensitive plants, nor consistent evidence of plant biodiversity loss along gradients of increasing livestock grazing pressure in proximity to water. One of the reasons why that evidence might be lacking is that most livestock studies have not considered the grazing impact of sympatric European rabbits, the most widespread and abundant wild herbivore in southern Australia. Numerous studies have shown that rabbit grazing has a major impact on rangeland vegetation and can prevent regeneration at densities which may be too low to be thought important. Plant biodiversity gradients are readily discernible along gradients of rabbit density in livestock-free reserves. Rabbits are therefore likely to be a significant confounding factor when assessing livestock impacts, or possibly the primary cause of observed patterns of plant diversity. If so, attempts to preserve plant biodiversity by removing livestock are destined to fail in rabbit-grazed areas. Public funds for biodiversity conservation in the pastoral zone might be better spent on co-investment with pastoralists for rabbit control on conservatively stocked properties, rather than on restricting pastoral use of land in livestock-free, rabbit-infested reserves.
Collapse
|