1
|
McCormack NM, Calabrese KA, Sun CM, Tully CB, Heier CR, Fiorillo AA. Deletion of miR-146a enhances therapeutic protein restoration in model of dystrophin exon skipping. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102228. [PMID: 38975000 PMCID: PMC11225849 DOI: 10.1016/j.omtn.2024.102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 05/22/2024] [Indexed: 07/09/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle disease caused by the absence of dystrophin protein. One current DMD therapeutic strategy, exon skipping, produces a truncated dystrophin isoform using phosphorodiamidate morpholino oligomers (PMOs). However, the potential of exon skipping therapeutics has not been fully realized as increases in dystrophin protein have been minimal in clinical trials. Here, we investigate how miR-146a-5p, which is highly elevated in dystrophic muscle, impacts dystrophin protein levels. We find inflammation strongly induces miR-146a in dystrophic, but not wild-type myotubes. Bioinformatics analysis reveals that the dystrophin 3' UTR harbors a miR-146a binding site, and subsequent luciferase assays demonstrate miR-146a binding inhibits dystrophin translation. In dystrophin-null mdx52 mice, co-injection of miR-146a reduces dystrophin restoration by an exon 51 skipping PMO. To directly investigate how miR-146a impacts therapeutic dystrophin rescue, we generated mdx52 with body-wide miR-146a deletion (146aX). Administration of an exon skipping PMO via intramuscular or intravenous injection markedly increases dystrophin protein levels in 146aX vs. mdx52 muscles while skipped dystrophin transcript levels are unchanged supporting a post-transcriptional mechanism of action. Together, these data show that miR-146a expression opposes therapeutic dystrophin restoration, suggesting miR-146a inhibition warrants further research as a potential DMD exon skipping co-therapy.
Collapse
Affiliation(s)
- Nikki M. McCormack
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| | - Kelsey A. Calabrese
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| | - Christina M. Sun
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| | - Christopher B. Tully
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| | - Christopher R. Heier
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| | - Alyson A. Fiorillo
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| |
Collapse
|
2
|
Bez Batti Angulski A, Hosny N, Cohen H, Martin AA, Hahn D, Bauer J, Metzger JM. Duchenne muscular dystrophy: disease mechanism and therapeutic strategies. Front Physiol 2023; 14:1183101. [PMID: 37435300 PMCID: PMC10330733 DOI: 10.3389/fphys.2023.1183101] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 07/13/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe, progressive, and ultimately fatal disease of skeletal muscle wasting, respiratory insufficiency, and cardiomyopathy. The identification of the dystrophin gene as central to DMD pathogenesis has led to the understanding of the muscle membrane and the proteins involved in membrane stability as the focal point of the disease. The lessons learned from decades of research in human genetics, biochemistry, and physiology have culminated in establishing the myriad functionalities of dystrophin in striated muscle biology. Here, we review the pathophysiological basis of DMD and discuss recent progress toward the development of therapeutic strategies for DMD that are currently close to or are in human clinical trials. The first section of the review focuses on DMD and the mechanisms contributing to membrane instability, inflammation, and fibrosis. The second section discusses therapeutic strategies currently used to treat DMD. This includes a focus on outlining the strengths and limitations of approaches directed at correcting the genetic defect through dystrophin gene replacement, modification, repair, and/or a range of dystrophin-independent approaches. The final section highlights the different therapeutic strategies for DMD currently in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
3
|
Liu Q, Yuan W, Yan Y, Jin B, You M, Liu T, Gao M, Li J, Gokulnath P, Vulugundam G, Li G, Xu B, Xiao J. Identification of a novel small-molecule inhibitor of miR-29b attenuates muscle atrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:527-540. [PMID: 36891498 PMCID: PMC9988425 DOI: 10.1016/j.omtn.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Muscle atrophy is debilitating and can be induced by several stressors. Unfortunately, there are no effective pharmacological treatment until now. MicroRNA (miR)-29b is an important target that we identified to be commonly involved in multiple types of muscle atrophy. Although sequence-specific inhibition of miR-29b has been developed, in this study, we report a novel small-molecule miR-29b inhibitor that targets miR-29b hairpin precursor (pre-miR-29b) (Targapremir-29b-066 [TGP-29b-066]) considering both its three-dimensional structure and the thermodynamics of interaction between pre-miR-29b and the small molecule. This novel small-molecule inhibitor has been demonstrated to attenuate muscle atrophy induced by angiotensin II (Ang II), dexamethasone (Dex), and tumor necrosis factor α (TNF-α) in C2C12 myotubes, as evidenced by increase in the diameter of myotube and decrease in the expression of Atrogin-1 and MuRF-1. Moreover, it can also attenuate Ang II-induced muscle atrophy in mice, as evidenced by a similar increase in the diameter of myotube, reduced Atrogin-1 and MuRF-1 expression, AKT-FOXO3A-mTOR signaling activation, and decreased apoptosis and autophagy. In summary, we experimentally identified and demonstrated a novel small-molecule inhibitor of miR-29b that could act as a potential therapeutic agent for muscle atrophy.
Collapse
Affiliation(s)
- Qi Liu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Weilin Yuan
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yuwei Yan
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Bing Jin
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Mengke You
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Tianqi Liu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Mingchun Gao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
| | - Jin Li
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Priyanka Gokulnath
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Bin Xu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
- Corresponding author Bin Xu, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
- Corresponding author Junjie Xiao, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.
| |
Collapse
|
4
|
Martinovich KM, Kicic A, Stick SM, Johnsen RD, Fletcher S, Wilton SD. Investigating the Implications of CFTR Exon Skipping Using a Cftr Exon 9 Deleted Mouse Model. Front Pharmacol 2022; 13:868863. [PMID: 35392567 PMCID: PMC8981082 DOI: 10.3389/fphar.2022.868863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Severity and disease progression in people with Cystic Fibrosis (CF) is typically dependent on their genotype. One potential therapeutic strategy for people with specific mutations is exon skipping with antisense oligonucleotides (AO). CFTR exon 9 is an in-frame exon and hence the exclusion of this exon would excise only 31 amino acids but not alter the reading frame of the remaining mRNA. Splice mutations 1209 + 1 G > C and 1209 + 2 T > G were documented to cause CFTR exon 9 skipping and these variants were reported to manifest as a milder CF disease, therefore exon 9 skipping could be beneficial for people with class I mutations that affect exon 9 such as p.Trp401X. While the impact of exon 9 skipping on gene expression and cellular pathways can be studied in cells in vitro, trace amount of full-length normal or mutated material could confound the evaluation. To overcome this limitation, the impact of CFTR exon 9 skipping on disease phenotype and severity is more effectively evaluated in a small animal model. It was hypothesised that antisense oligonucleotide-mediated skipping this particular exon could result in a "mild mouse CF phenotype". Methods: Cftr exon 9 deleted mice were generated using homologous recombination. Survival of homozygous (Cftr Δ9/Δ9 ) and heterozygous (Cftr Δ9/+ ) mice was compared to that of other CF mouse models, and lung and intestinal organ histology examined for any pathologies. Primary airway epithelial cells (pAECs) were harvested from Cftr Δ9/Δ9 mice and cultured at the Air Liquid Interface for CFTR functional assessment using Ussing Chamber analysis. Results: A Cftr Δ9/Δ9 mouse model presented with intestinal obstructions, and at time of weaning (21 days). Cftr Δ9/Δ9 mice had a survival rate of 83% that dropped to 38% by day 50. Histological sections of the small intestine from Cftr Δ9/Δ9 mice showed more goblet cells and mucus accumulation than samples from the Cftr Δ9/+ littermates. Airway epithelial cell cultures established from Cftr Δ9/Δ9 mice were not responsive to forskolin stimulation. Summary: The effect of Cftr exon 9 deletion on Cftr function was assessed and it was determined that the encoded Cftr isoform did not result in a milder "mouse CF disease phenotype," suggesting that Cftr exon 9 is not dispensable, although further investigation in human CF pAECs would be required to confirm this observation.
Collapse
Affiliation(s)
- Kelly M Martinovich
- School of Medicine, The University of Western Australia, Perth, WA, Australia.,Telethon Kids Institute, Wal-yan Respiratory Research Centre, Perth, WA, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Anthony Kicic
- School of Medicine, The University of Western Australia, Perth, WA, Australia.,Telethon Kids Institute, Wal-yan Respiratory Research Centre, Perth, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Perth, WA, Australia.,Department of Respiratory and Sleep Medicine, Perth Childrens Hospital, Nedlands, WA, Australia.,School of Population Health, Curtin University, Bentley, WA, Australia
| | - Stephen M Stick
- School of Medicine, The University of Western Australia, Perth, WA, Australia.,Telethon Kids Institute, Wal-yan Respiratory Research Centre, Perth, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Perth, WA, Australia.,Department of Respiratory and Sleep Medicine, Perth Childrens Hospital, Nedlands, WA, Australia
| | - Russell D Johnsen
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.,Perron Institute for Neurological and Translational Sciences, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.,Perron Institute for Neurological and Translational Sciences, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia.,PYC Therapeutics, Perth, WA, Australia
| | - Steve D Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.,Perron Institute for Neurological and Translational Sciences, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
5
|
Intramuscular Evaluation of Chimeric Locked Nucleic Acid/2' OMethyl-Modified Antisense Oligonucleotides for Targeted Exon 23 Skipping in Mdx Mice. Pharmaceuticals (Basel) 2021; 14:ph14111113. [PMID: 34832896 PMCID: PMC8622172 DOI: 10.3390/ph14111113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/02/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal disorder characterised by progressive muscle wasting. It is caused by mutations in the dystrophin gene, which disrupt the open reading frame leading to the loss of functional dystrophin protein in muscle fibres. Antisense oligonucleotide (AON)-mediated skipping of the mutated exon, which allows production of a truncated but partially functional dystrophin protein, has been at the forefront of DMD therapeutic research for over two decades. Nonetheless, novel nucleic acid modifications and AON designs are continuously being developed to improve the clinical benefit profile of current drugs in the DMD pipeline. We herein designed a series of 15mer and 20mer AONs, consisting of 2′O-Methyl (2′OMe)- and locked nucleic acid (LNA)-modified nucleotides in different percentage compositions, and assessed their efficiency in inducing exon 23 skipping and dystrophin restoration in locally injected muscles of mdx mice. We demonstrate that LNA/2′OMe AONs with a 30% LNA composition were significantly more potent in inducing exon skipping and dystrophin restoration in treated mdx muscles, compared to a previously tested 2′OMe AON and LNA/2′OMe chimeras with lower or higher LNA compositions. These results underscore the therapeutic potential of LNA/2′OMe AONs, paving the way for further experimentation to evaluate their benefit-toxicity profile following systemic delivery.
Collapse
|
6
|
Abstract
Duchenne muscular dystrophy (DMD) is a devastating, rare disease. While clinically described in the 19th century, the genetic foundation of DMD was not discovered until more than 100 years later. This genetic understanding opened the door to the development of genetic treatments for DMD. Over the course of the last 30 years, the research that supports this development has moved into the realm of clinical trials and regulatory drug approvals. Exon skipping to therapeutically restore the frame of an out-of-frame dystrophin mutation has taken center stage in drug development for DMD. The research reviewed here focuses on the clinical development of exon skipping for the treatment of DMD. In addition to the generation of clinical treatments that are being used for patient care, this research sets the stage for future therapeutic development with a focus on increasing efficacy while providing safety and addressing the multi-systemic aspects of DMD.
Collapse
Affiliation(s)
- Shin'ichi Takeda
- Honorary Director General, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
| | - Paula R Clemens
- Professor and Vice Chair of VA Affairs, Department of Neurology, University of Pittsburgh School of Medicine, Division Chief, Neurology, Medical Service Line, VA Pittsburgh Healthcare System, Pittsburgh, PA USA
| | - Eric P Hoffman
- Professor, Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University - State University of New York, Binghamton, NY USA
| |
Collapse
|
7
|
Chen M, Shi H, Gou S, Wang X, Li L, Jin Q, Wu H, Zhang H, Li Y, Wang L, Li H, Lin J, Guo W, Jiang Z, Yang X, Xu A, Zhu Y, Zhang C, Lai L, Li X. In vivo genome editing in mouse restores dystrophin expression in Duchenne muscular dystrophy patient muscle fibers. Genome Med 2021; 13:57. [PMID: 33845891 PMCID: PMC8042958 DOI: 10.1186/s13073-021-00876-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 03/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mutations in the DMD gene encoding dystrophin-a critical structural element in muscle cells-cause Duchenne muscular dystrophy (DMD), which is the most common fatal genetic disease. Clustered regularly interspaced short palindromic repeat (CRISPR)-mediated gene editing is a promising strategy for permanently curing DMD. METHODS In this study, we developed a novel strategy for reframing DMD mutations via CRISPR-mediated large-scale excision of exons 46-54. We compared this approach with other DMD rescue strategies by using DMD patient-derived primary muscle-derived stem cells (DMD-MDSCs). Furthermore, a patient-derived xenograft (PDX) DMD mouse model was established by transplanting DMD-MDSCs into immunodeficient mice. CRISPR gene editing components were intramuscularly delivered into the mouse model by adeno-associated virus vectors. RESULTS Results demonstrated that the large-scale excision of mutant DMD exons showed high efficiency in restoring dystrophin protein expression. We also confirmed that CRISPR from Prevotella and Francisella 1(Cas12a)-mediated genome editing could correct DMD mutation with the same efficiency as CRISPR-associated protein 9 (Cas9). In addition, more than 10% human DMD muscle fibers expressed dystrophin in the PDX DMD mouse model after treated by the large-scale excision strategies. The restored dystrophin in vivo was functional as demonstrated by the expression of the dystrophin glycoprotein complex member β-dystroglycan. CONCLUSIONS We demonstrated that the clinically relevant CRISPR/Cas9 could restore dystrophin in human muscle cells in vivo in the PDX DMD mouse model. This study demonstrated an approach for the application of gene therapy to other genetic diseases.
Collapse
Affiliation(s)
- Menglong Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology; Zhongshan Medical School, Sun Yat-sen University; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Guangzhou, 510080, China
| | - Hui Shi
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shixue Gou
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaomin Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qin Jin
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Wu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Huili Zhang
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Yaqin Li
- Department of Neurology, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518017, Guangdong, China
| | - Liang Wang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology; Zhongshan Medical School, Sun Yat-sen University; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Guangzhou, 510080, China
| | - Huan Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology; Zhongshan Medical School, Sun Yat-sen University; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Guangzhou, 510080, China
| | - Jinfu Lin
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology; Zhongshan Medical School, Sun Yat-sen University; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Guangzhou, 510080, China
| | - Wenjing Guo
- Scientific Instruments Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong, China
| | - Zhiwu Jiang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiaoyu Yang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, Anhui, China
| | - Anding Xu
- Department of Neurology and Stroke Centre, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Yuling Zhu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology; Zhongshan Medical School, Sun Yat-sen University; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Guangzhou, 510080, China
| | - Cheng Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology; Zhongshan Medical School, Sun Yat-sen University; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Guangzhou, 510080, China.
| | - Liangxue Lai
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory, GRMH-GDL), Guangzhou, 510005, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiaoping Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Current address: Zhongshan Medical School, Sun Yat-sen University, No.72 Zhongshan Road 2, Guangzhou, 510080, China.
| |
Collapse
|
8
|
Cale JM, Greer K, Fletcher S, Wilton SD. Proof-of-Concept: Antisense Oligonucleotide Mediated Skipping of Fibrillin-1 Exon 52. Int J Mol Sci 2021; 22:ijms22073479. [PMID: 33801742 PMCID: PMC8037683 DOI: 10.3390/ijms22073479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Marfan syndrome is one of the most common dominantly inherited connective tissue disorders, affecting 2–3 in 10,000 individuals, and is caused by one of over 2800 unique FBN1 mutations. Mutations in FBN1 result in reduced fibrillin-1 expression, or the production of two different fibrillin-1 monomers unable to interact to form functional microfibrils. Here, we describe in vitro evaluation of antisense oligonucleotides designed to mediate exclusion of FBN1 exon 52 during pre-mRNA splicing to restore monomer homology. Antisense oligonucleotide sequences were screened in healthy control fibroblasts. The most effective sequence was synthesised as a phosphorodiamidate morpholino oligomer, a chemistry shown to be safe and effective clinically. We show that exon 52 can be excluded in up to 100% of FBN1 transcripts in healthy control fibroblasts transfected with PMO52. Immunofluorescent staining revealed the loss of fibrillin 1 fibres with ~50% skipping and the subsequent re-appearance of fibres with >80% skipping. However, the effect of exon skipping on the function of the induced fibrillin-1 isoform remains to be explored. Therefore, these findings demonstrate proof-of-concept that exclusion of an exon from FBN1 pre-mRNA can result in internally truncated but identical monomers capable of forming fibres and lay a foundation for further investigation to determine the effect of exon skipping on fibrillin-1 function.
Collapse
Affiliation(s)
- Jessica M. Cale
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (J.M.C.); (K.G.); (S.F.)
| | - Kane Greer
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (J.M.C.); (K.G.); (S.F.)
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (J.M.C.); (K.G.); (S.F.)
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA 6009, Australia
- PYC Therapeutics, Nedlands, WA 6009, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (J.M.C.); (K.G.); (S.F.)
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA 6009, Australia
- Correspondence: ; Tel.: +61-8-9360-2305
| |
Collapse
|
9
|
Mollanoori H, Rahmati Y, Hassani B, Havasi Mehr M, Teimourian S. Promising therapeutic approaches using CRISPR/Cas9 genome editing technology in the treatment of Duchenne muscular dystrophy. Genes Dis 2021; 8:146-156. [PMID: 33997161 PMCID: PMC8099695 DOI: 10.1016/j.gendis.2019.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/13/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy is an X-linked recessive hereditary monogenic disorder caused by inability to produce dystrophin protein. In most patients, the expression of dystrophin lost due to disrupting mutations in open reading frame. Despite the efforts in a large number of different therapeutic approaches to date, the treatments available for DMD remain mitigative and supportive to improve the symptoms of the disease, rather than to be curative. The advent of CRISPR/Cas9 technology has revolutionized genome editing scope and considered as pioneer in effective genomic engineering. Deletions or excisions of intragenic DNA by CRISPR as well as a similar strategy with exon skipping at the DNA level induced by antisense oligonucleotides, are new and promising approaches in correcting DMD gene, which restore the expression of a truncated but functional dystrophin protein. Also, CRISPR/Cas9 technology can be used to treat DMD by removing duplicated exons, precise correction of causative mutation by HDR-based pathway and inducing the expression of compensatory proteins such as utrophin. In this study, we briefly explained the molecular genetics of DMD and a historical overview of DMD gene therapy. We in particular focused on CRISPR/Cas9-mediated therapeutic approaches that used to treat DMD.
Collapse
Affiliation(s)
- Hasan Mollanoori
- Department of Medical Genetics, Iran University of Medical Sciences (IUMS), Tehran, 1449614535, Iran
| | - Yazdan Rahmati
- Department of Medical Genetics, Iran University of Medical Sciences (IUMS), Tehran, 1449614535, Iran
| | - Bita Hassani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, 1985717443, Iran
| | - Meysam Havasi Mehr
- Department of Physiology, Iran University of Medical Sciences (IUMS), Tehran, 1449614535, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, Iran University of Medical Sciences (IUMS), Tehran, 1449614535, Iran
| |
Collapse
|
10
|
Novak JS, Spathis R, Dang UJ, Fiorillo AA, Hindupur R, Tully CB, Mázala DA, Canessa E, Brown KJ, Partridge TA, Hathout Y, Nagaraju K. Interrogation of Dystrophin and Dystroglycan Complex Protein Turnover After Exon Skipping Therapy. J Neuromuscul Dis 2021; 8:S383-S402. [PMID: 34569969 PMCID: PMC8673539 DOI: 10.3233/jnd-210696] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Recently, the Food and Drug Administration granted accelerated approvals for four exon skipping therapies -Eteplirsen, Golodirsen, Viltolarsen, and Casimersen -for Duchenne Muscular Dystrophy (DMD). However, these treatments have only demonstrated variable and largely sub-therapeutic levels of restored dystrophin protein in DMD patients, limiting their clinical impact. To better understand variable protein expression and the behavior of truncated dystrophin protein in vivo, we assessed turnover dynamics of restored dystrophin and dystrophin glycoprotein complex (DGC) proteins in mdx mice after exon skipping therapy, compared to those dynamics in wild type mice, using a targeted, highly-reproducible and sensitive, in vivo stable isotope labeling mass spectrometry approach in multiple muscle tissues. Through statistical modeling, we found that restored dystrophin protein exhibited altered stability and slower turnover in treated mdx muscle compared with that in wild type muscle (∼44 d vs. ∼24 d, respectively). Assessment of mRNA transcript stability (quantitative real-time PCR, droplet digital PCR) and dystrophin protein expression (capillary gel electrophoresis, immunofluorescence) support our dystrophin protein turnover measurements and modeling. Further, we assessed pathology-induced muscle fiber turnover through bromodeoxyuridine (BrdU) labeling to model dystrophin and DGC protein turnover in the context of persistent fiber degeneration. Our findings reveal sequestration of restored dystrophin protein after exon skipping therapy in mdx muscle leading to a significant extension of its half-life compared to the dynamics of full-length dystrophin in normal muscle. In contrast, DGC proteins show constant turnover attributable to myofiber degeneration and dysregulation of the extracellular matrix (ECM) in dystrophic muscle. Based on our results, we demonstrate the use of targeted mass spectrometry to evaluate the suitability and functionality of restored dystrophin isoforms in the context of disease and propose its use to optimize alternative gene correction strategies in development for DMD.
Collapse
Affiliation(s)
- James S. Novak
- Center for Genetic Medicine Research, Children’sResearch Institute, Children’s National Hospital, Washington, DC, USA
- Department of Genomics and PrecisionMedicine, The George Washington University School of Medicine and Health Sciences, Washington DC, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington DC, USA
- Correspondence to: James Novak, 111 Michigan Avenue NW, Washington, DC, 20010-2916 USA. Tel.: +1 202 476 6135; E-mail: . and Kanneboyina Nagaraju, PO Box 6000, Binghamton, NY, 13902-6000 USA. Tel.: +1 607 777 5814; E-mail:
| | - Rita Spathis
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY USA
| | - Utkarsh J. Dang
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY USA
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Alyson A. Fiorillo
- Center for Genetic Medicine Research, Children’sResearch Institute, Children’s National Hospital, Washington, DC, USA
- Department of Genomics and PrecisionMedicine, The George Washington University School of Medicine and Health Sciences, Washington DC, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Ravi Hindupur
- Center for Genetic Medicine Research, Children’sResearch Institute, Children’s National Hospital, Washington, DC, USA
| | - Christopher B. Tully
- Center for Genetic Medicine Research, Children’sResearch Institute, Children’s National Hospital, Washington, DC, USA
| | - Davi A.G. Mázala
- Center for Genetic Medicine Research, Children’sResearch Institute, Children’s National Hospital, Washington, DC, USA
- Department of Kinesiology, College of Health Professionals, Towson University, Towson, MD, USA
| | - Emily Canessa
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY USA
| | | | - Terence A. Partridge
- Center for Genetic Medicine Research, Children’sResearch Institute, Children’s National Hospital, Washington, DC, USA
| | - Yetrib Hathout
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY USA
| | - Kanneboyina Nagaraju
- Department of Genomics and PrecisionMedicine, The George Washington University School of Medicine and Health Sciences, Washington DC, USA
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY USA
- Correspondence to: James Novak, 111 Michigan Avenue NW, Washington, DC, 20010-2916 USA. Tel.: +1 202 476 6135; E-mail: . and Kanneboyina Nagaraju, PO Box 6000, Binghamton, NY, 13902-6000 USA. Tel.: +1 607 777 5814; E-mail:
| |
Collapse
|
11
|
Wong TWY, Ahmed A, Yang G, Maino E, Steiman S, Hyatt E, Chan P, Lindsay K, Wong N, Golebiowski D, Schneider J, Delgado-Olguín P, Ivakine EA, Cohn RD. A novel mouse model of Duchenne muscular dystrophy carrying a multi-exonic Dmd deletion exhibits progressive muscular dystrophy and early-onset cardiomyopathy. Dis Model Mech 2020; 13:13/9/dmm045369. [PMID: 32988972 PMCID: PMC7522028 DOI: 10.1242/dmm.045369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a life-threatening neuromuscular disease caused by the lack of dystrophin, resulting in progressive muscle wasting and locomotor dysfunctions. By adulthood, almost all patients also develop cardiomyopathy, which is the primary cause of death in DMD. Although there has been extensive effort in creating animal models to study treatment strategies for DMD, most fail to recapitulate the complete skeletal and cardiac disease manifestations that are presented in affected patients. Here, we generated a mouse model mirroring a patient deletion mutation of exons 52-54 (Dmd Δ52-54). The Dmd Δ52-54 mutation led to the absence of dystrophin, resulting in progressive muscle deterioration with weakened muscle strength. Moreover, Dmd Δ52-54 mice present with early-onset hypertrophic cardiomyopathy, which is absent in current pre-clinical dystrophin-deficient mouse models. Therefore, Dmd Δ52-54 presents itself as an excellent pre-clinical model to evaluate the impact on skeletal and cardiac muscles for both mutation-dependent and -independent approaches.
Collapse
Affiliation(s)
- Tatianna Wai Ying Wong
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Abdalla Ahmed
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada.,Program in Translational Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Grace Yang
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Eleonora Maino
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sydney Steiman
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Elzbieta Hyatt
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Parry Chan
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Kyle Lindsay
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Nicole Wong
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | | | | | - Paul Delgado-Olguín
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada.,Program in Translational Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Evgueni A Ivakine
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada.,Department of Physiology, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ronald D Cohn
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Pediatrics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.,Department of Pediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
12
|
Thenmozhi R, Lee JS, Park NY, Choi BO, Hong YB. Gene Therapy Options as New Treatment for Inherited Peripheral Neuropathy. Exp Neurobiol 2020; 29:177-188. [PMID: 32624504 PMCID: PMC7344374 DOI: 10.5607/en20004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/21/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Inherited peripheral neuropathy (IPN) is caused by heterogeneous genetic mutations in more than 100 genes. So far, several treatment options for IPN have been developed and clinically evaluated using small molecules. However, gene therapy-based therapeutic strategies have not been aggressively investigated, likely due to the complexities of inheritance in IPN. Indeed, because the majority of the causative mutations of IPN lead to gain-of-function rather than loss-of-function, developing a therapeutic strategy is more difficult, especially considering gene therapy for genetic diseases began with the simple idea of replacing a defective gene with a functional copy. Recent advances in gene manipulation technology have brought novel approaches to gene therapy and its clinical application for IPN treatment. For example, in addition to the classically used gene replacement for mutant genes in recessively inherited IPN, other techniques including gene addition to modify the disease phenotype, modulations of target gene expression, and techniques to edit mutant genes have been developed and evaluated as potent therapeutic strategies for dominantly inherited IPN. In this review, the current status of gene therapy for IPN and future perspectives will be discussed.
Collapse
Affiliation(s)
| | - Ji-Su Lee
- Stem Cell & Regenerative Medicne Institute, Samsung Medical Center, Seoul 06351, Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Na Young Park
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Korea
| | - Byung-Ok Choi
- Stem Cell & Regenerative Medicne Institute, Samsung Medical Center, Seoul 06351, Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Young Bin Hong
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Korea
| |
Collapse
|
13
|
Aupy P, Zarrouki F, Sandro Q, Gastaldi C, Buclez PO, Mamchaoui K, Garcia L, Vaillend C, Goyenvalle A. Long-Term Efficacy of AAV9-U7snRNA-Mediated Exon 51 Skipping in mdx52 Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:1037-1047. [PMID: 32462052 PMCID: PMC7240049 DOI: 10.1016/j.omtm.2020.04.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 01/16/2023]
Abstract
Gene therapy and antisense approaches hold promise for the treatment of Duchenne muscular dystrophy (DMD). The advantages of both therapeutic strategies can be combined by vectorizing antisense sequences into an adeno-associated virus (AAV) vector. We previously reported the efficacy of AAV-U7 small nuclear RNA (U7snRNA)-mediated exon skipping in the mdx mouse, the dys−/utr− mouse, and the golden retriever muscular dystrophy (GRMD) dog model. In this study, we examined the therapeutic potential of an AAV-U7snRNA targeting the human DMD exon 51, which could be applicable to 13% of DMD patients. A single injection of AAV9-U7 exon 51 (U7ex51) induces widespread and sustained levels of exon 51 skipping, leading to significant restoration of dystrophin and improvement of the dystrophic phenotype in the mdx52 mouse. However, levels of dystrophin re-expression are lower than the skipping levels, in contrast with previously reported results in the mdx mouse, suggesting that efficacy of exon skipping may vary depending on the targeted exon. Additionally, while low levels of exon skipping were measured in the brain, the dystrophin protein could not be detected, in line with a lack of improvement of their abnormal behavioral fear response. These results thus confirm the high therapeutic potential of the AAV-mediated exon-skipping approach, yet the apparent discrepancies between exon skipping and protein restoration levels suggest some limitations of this experimental model.
Collapse
Affiliation(s)
- Philippine Aupy
- Université Paris-Saclay, UVSQ, INSERM, END-ICAP, 78000 Versailles, France
| | - Faouzi Zarrouki
- Université Paris-Saclay, UVSQ, INSERM, END-ICAP, 78000 Versailles, France.,Neuroscience Paris-Saclay Institute (Neuro-PSI), UMR 9197, Université Paris Sud, CNRS, Université Paris Saclay, 91190 Orsay, France
| | - Quentin Sandro
- Université Paris-Saclay, UVSQ, INSERM, END-ICAP, 78000 Versailles, France
| | - Cécile Gastaldi
- LIA BAHN, Centre Scientifique de Monaco, 98000 Monaco, Monaco
| | | | - Kamel Mamchaoui
- Sorbonne Université, INSERM, Institut de Myologie, U974, Centre de Recherche en Myologie, 75013 Paris, France
| | - Luis Garcia
- Université Paris-Saclay, UVSQ, INSERM, END-ICAP, 78000 Versailles, France.,LIA BAHN, Centre Scientifique de Monaco, 98000 Monaco, Monaco
| | - Cyrille Vaillend
- Neuroscience Paris-Saclay Institute (Neuro-PSI), UMR 9197, Université Paris Sud, CNRS, Université Paris Saclay, 91190 Orsay, France
| | - Aurélie Goyenvalle
- Université Paris-Saclay, UVSQ, INSERM, END-ICAP, 78000 Versailles, France.,LIA BAHN, Centre Scientifique de Monaco, 98000 Monaco, Monaco
| |
Collapse
|
14
|
Raguraman P, Wang T, Ma L, Jørgensen PT, Wengel J, Veedu RN. Alpha-l-Locked Nucleic Acid-Modified Antisense Oligonucleotides Induce Efficient Splice Modulation In Vitro. Int J Mol Sci 2020; 21:ijms21072434. [PMID: 32244535 PMCID: PMC7177859 DOI: 10.3390/ijms21072434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 01/04/2023] Open
Abstract
Alpha-l-Locked nucleic acid (α-l-LNA) is a stereoisomeric analogue of locked nucleic acid (LNA), which possesses excellent biophysical properties and also exhibits high target binding affinity to complementary oligonucleotide sequences and resistance to nuclease degradations. Therefore, α-l-LNA nucleotides could be utilised to develop stable antisense oligonucleotides (AO), which can be truncated without compromising the integrity and efficacy of the AO. In this study, we explored the potential of α-l-LNA nucleotides-modified antisense oligonucleotides to modulate splicing by inducing Dmd exon-23 skipping in mdx mouse myoblasts in vitro. For this purpose, we have synthesised and systematically evaluated the efficacy of α-l-LNA-modified 2'-O-methyl phosphorothioate (2'-OMePS) AOs of three different sizes including 20mer, 18mer and 16mer AOs in parallel to fully-modified 2'-OMePS control AOs. Our results demonstrated that the 18mer and 16mer truncated AO variants showed slightly better exon-skipping efficacy when compared with the fully-23 modified 2'-OMePS control AOs, in addition to showing low cytotoxicity. As there was no previous report on using α-l-LNA-modified AOs in splice modulation, we firmly believe that this initial study could be beneficial to further explore and expand the scope of α-l-LNA-modified AO therapeutic molecules.
Collapse
Affiliation(s)
- Prithi Raguraman
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150 Australia; (P.R.); (T.W.)
- Perron Institute for Neurological and translational Science, Perth 6005, Australia
| | - Tao Wang
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150 Australia; (P.R.); (T.W.)
- Perron Institute for Neurological and translational Science, Perth 6005, Australia
| | - Lixia Ma
- School of Statistics, Henan University of Economics and Law, Zhengzhou 450001, China;
| | - Per Trolle Jørgensen
- Nucleic Acid Center, Department of Physics and Chemistry and Pharmacy, University of Southern Denmark, M 5230 Odense, Denmark; (P.T.J.); (J.W.)
| | - Jesper Wengel
- Nucleic Acid Center, Department of Physics and Chemistry and Pharmacy, University of Southern Denmark, M 5230 Odense, Denmark; (P.T.J.); (J.W.)
| | - Rakesh N. Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150 Australia; (P.R.); (T.W.)
- Perron Institute for Neurological and translational Science, Perth 6005, Australia
- Nucleic Acid Center, Department of Physics and Chemistry and Pharmacy, University of Southern Denmark, M 5230 Odense, Denmark; (P.T.J.); (J.W.)
- Correspondence:
| |
Collapse
|
15
|
Barthélémy F, Wang RT, Hsu C, Douine ED, Marcantonio EE, Nelson SF, Miceli MC. Targeting RyR Activity Boosts Antisense Exon 44 and 45 Skipping in Human DMD Skeletal or Cardiac Muscle Culture Models. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 18:580-589. [PMID: 31678734 PMCID: PMC6838898 DOI: 10.1016/j.omtn.2019.09.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/15/2019] [Accepted: 09/12/2019] [Indexed: 12/23/2022]
Abstract
Systemic delivery of antisense oligonucleotides (AO) for DMD exon skipping has proven effective for reframing DMD mRNA, rescuing dystrophin expression, and slowing disease progression in animal models. In humans with Duchenne muscular dystrophy treated with AOs, low levels of dystrophin have been induced, and modest slowing of disease progression has been observed, highlighting the need for improved efficiency of human skipping drugs. Here, we demonstrate that dantrolene and Rycals S107 and ARM210 potentiate AO-mediated exon skipping of exon 44 or exon 45 in patient-derived myotube cultures with appropriate mutations. Further, dantrolene is shown to boost AO-mediated exon skipping in patient-derived, induced cardiomyocyte cultures. Our findings further validate the ryanodine receptors (RyR) as the likely target responsible for exon skip boosting and demonstrate potential applicability beyond exon 51 skipping. These data provide preclinical support of dantrolene trial as an adjuvant to AO-mediated exon-skipping therapy in humans and identify a novel Rycal, ARM210, for development as a potential exon-skipping booster. Further, they highlight the value of mutation-specific DMD culture models for basic discovery, preclinical drug screening and translation of personalized genetic medicines.
Collapse
Affiliation(s)
- Florian Barthélémy
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, and College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, USA; Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, USA
| | - Richard T Wang
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher Hsu
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, and College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, USA; Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, USA
| | - Emilie D Douine
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Stanley F Nelson
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - M Carrie Miceli
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, and College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, USA; Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Shen X, Corey DR. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res 2019; 46:1584-1600. [PMID: 29240946 PMCID: PMC5829639 DOI: 10.1093/nar/gkx1239] [Citation(s) in RCA: 451] [Impact Index Per Article: 90.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022] Open
Abstract
RNA plays a central role in the expression of all genes. Because any sequence within RNA can be recognized by complementary base pairing, synthetic oligonucleotides and oligonucleotide mimics offer a general strategy for controlling processes that affect disease. The two primary antisense approaches for regulating expression through recognition of cellular RNAs are single-stranded antisense oligonucleotides and duplex RNAs. This review will discuss the chemical modifications and molecular mechanisms that make synthetic nucleic acid drugs possible. Lessons learned from recent clinical trials will be summarized. Ongoing clinical trials are likely to decisively test the adequacy of our current generation of antisense nucleic acid technologies and highlight areas where more basic research is needed.
Collapse
Affiliation(s)
- Xiulong Shen
- Departments of Pharmacology & Biochemistry, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | - David R Corey
- Departments of Pharmacology & Biochemistry, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| |
Collapse
|
17
|
Tsoumpra MK, Fukumoto S, Matsumoto T, Takeda S, Wood MJA, Aoki Y. Peptide-conjugate antisense based splice-correction for Duchenne muscular dystrophy and other neuromuscular diseases. EBioMedicine 2019; 45:630-645. [PMID: 31257147 PMCID: PMC6642283 DOI: 10.1016/j.ebiom.2019.06.036] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/31/2019] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked disorder characterized by progressive muscle degeneration, caused by the absence of dystrophin. Exon skipping by antisense oligonucleotides (ASOs) has recently gained recognition as therapeutic approach in DMD. Conjugation of a peptide to the phosphorodiamidate morpholino backbone (PMO) of ASOs generated the peptide-conjugated PMOs (PPMOs) that exhibit a dramatically improved pharmacokinetic profile. When tested in animal models, PPMOs demonstrate effective exon skipping in target muscles and prolonged duration of dystrophin restoration after a treatment regime. Herein we summarize the main pathophysiological features of DMD and the emergence of PPMOs as promising exon skipping agents aiming to rescue defective gene expression in DMD and other neuromuscular diseases. The listed PPMO laboratory findings correspond to latest trends in the field and highlight the obstacles that must be overcome prior to translating the animal-based research into clinical trials tailored to the needs of patients suffering from neuromuscular diseases.
Collapse
Key Words
- aso, antisense oligonucleotides
- cns, central nervous system
- cpp, cell penetrating peptide
- dgc, dystrophin glyco-protein complex
- dmd, duchenne muscular dystrophy
- fda, us food and drug administration
- pmo, phosphorodiamidate morpholino
- ppmo, peptide-conjugated pmos
- ps, phosphorothioate
- sma, spinal muscular atrophy
- 2ʹ-ome, 2ʹ-o-methyl
- 2ʹ-moe, 2ʹ-o-methoxyethyl
- 6mwt, 6-minute walk test
Collapse
Affiliation(s)
- Maria K Tsoumpra
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Kodaira-shi, Tokyo, Japan
| | - Seiji Fukumoto
- Fujii Memorial Institute of Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Toshio Matsumoto
- Fujii Memorial Institute of Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Kodaira-shi, Tokyo, Japan
| | | | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Kodaira-shi, Tokyo, Japan.
| |
Collapse
|
18
|
Nguyen KV. Potential epigenomic co-management in rare diseases and epigenetic therapy. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 38:752-780. [PMID: 31079569 DOI: 10.1080/15257770.2019.1594893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The purpose of this review is to highlight the impact of the alternative splicing process on human disease. Epigenetic regulation determines not only what parts of the genome are expressed but also how they are spliced. The recent progress in the field of epigenetics has important implications for the study of rare diseases. The role of epigenetics in rare diseases is a key issue in molecular physiology and medicine because not only rare diseases can benefit from epigenetic research, but can also provide useful principles for other common and complex disorders such as cancer, cardiovascular, type 2 diabetes, obesity, and neurological diseases. Predominantly, epigenetic modifications include DNA methylation, histone modification, and RNA-associated silencing. These modifications in the genome regulate numerous cellular activities. Disruption of epigenetic regulation process can contribute to the etiology of numerous diseases during both prenatal and postnatal life. Here, I discuss current knowledge about this matter including some current epigenetic therapies and future directions in the field by emphasizing on the RNA-based therapy via antisense oligonucleotides to correct splicing defects.
Collapse
Affiliation(s)
- Khue Vu Nguyen
- a Department of Medicine, Biochemical Genetics and Metabolism, The Mitochondrial and Metabolic Disease Center, School of Medicine, University of California, San Diego , San Diego , CA , USA.,b Department of Pediatrics, UC San Diego School of Medicine , La Jolla , CA , USA
| |
Collapse
|
19
|
Systematic evaluation of 2'-Fluoro modified chimeric antisense oligonucleotide-mediated exon skipping in vitro. Sci Rep 2019; 9:6078. [PMID: 30988454 PMCID: PMC6465270 DOI: 10.1038/s41598-019-42523-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/02/2019] [Indexed: 01/16/2023] Open
Abstract
Antisense oligonucleotide (AO)-mediated splice modulation has been established as a therapeutic approach for tackling genetic diseases. Recently, Exondys51, a drug that aims to correct splicing defects in the dystrophin gene was approved by the US Food and Drug Administration (FDA) for the treatment of Duchenne muscular dystrophy (DMD). However, Exondys51 has relied on phosphorodiamidate morpholino oligomer (PMO) chemistry which poses challenges in the cost of production and compatibility with conventional oligonucleotide synthesis procedures. One approach to overcome this problem is to construct the AO with alternative nucleic acid chemistries using solid-phase oligonucleotide synthesis via standard phosphoramidite chemistry. 2′-Fluoro (2′-F) is a potent RNA analogue that possesses high RNA binding affinity and resistance to nuclease degradation with good safety profile, and an approved drug Macugen containing 2′-F-modified pyrimidines was approved for the treatment of age-related macular degeneration (AMD). In the present study, we investigated the scope of 2′-F nucleotides to construct mixmer and gapmer exon skipping AOs with either 2′-O-methyl (2′-OMe) or locked nucleic acid (LNA) nucleotides on a phosphorothioate (PS) backbone, and evaluated their efficacy in inducing exon-skipping in mdx mouse myotubes in vitro. Our results showed that all AOs containing 2′-F nucleotides induced efficient exon-23 skipping, with LNA/2′-F chimeras achieving better efficiency than the AOs without LNA modification. In addition, LNA/2′-F chimeric AOs demonstrated higher exonuclease stability and lower cytotoxicity than the 2′-OMe/2′-F chimeras. Overall, our findings certainly expand the scope of constructing 2′-F modified AOs in splice modulation by incorporating 2′-OMe and LNA modifications.
Collapse
|
20
|
Kameyama T, Ohuchi K, Funato M, Ando S, Inagaki S, Sato A, Seki J, Kawase C, Tsuruma K, Nishino I, Nakamura S, Shimazawa M, Saito T, Takeda S, Kaneko H, Hara H. Efficacy of Prednisolone in Generated Myotubes Derived From Fibroblasts of Duchenne Muscular Dystrophy Patients. Front Pharmacol 2018; 9:1402. [PMID: 30559667 PMCID: PMC6287205 DOI: 10.3389/fphar.2018.01402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/15/2018] [Indexed: 12/27/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a recessive X-linked form of muscular dystrophy characterized by progressive muscle degeneration. This disease is caused by the mutation or deletion of the dystrophin gene. Currently, there are no effective treatments and glucocorticoid administration is a standard care for DMD. However, the mechanism underlying prednisolone effects, which leads to increased walking, as well as decreased muscle wastage, is poorly understood. Our purpose in this study is to investigate the mechanisms of the efficacy of prednisolone for this disease. We converted fibroblasts of normal human cell line and a DMD patient sample to myotubes by MyoD transduction using a retroviral vector. In myotubes from the MyoD-transduced fibroblasts of the DMD patient, the myotube area was decreased and its apoptosis was increased. Furthermore, we confirmed that prednisolone could rescue these pathologies. Prednisolone increased the expression of not utrophin but laminin by down-regulation of MMP-2 mRNA. These results suggest that the up-regulation of laminin may be one of the mechanisms of the efficacy of prednisolone for DMD.
Collapse
Affiliation(s)
- Tsubasa Kameyama
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.,Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Kazuki Ohuchi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.,Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Michinori Funato
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Shiori Ando
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.,Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Satoshi Inagaki
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.,Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Arisu Sato
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.,Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Junko Seki
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Chizuru Kawase
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Kazuhiro Tsuruma
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Ichizo Nishino
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Takashi Saito
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Hideo Kaneko
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
21
|
Lim KRQ, Echigoya Y, Nagata T, Kuraoka M, Kobayashi M, Aoki Y, Partridge T, Maruyama R, Takeda S, Yokota T. Efficacy of Multi-exon Skipping Treatment in Duchenne Muscular Dystrophy Dog Model Neonates. Mol Ther 2018; 27:76-86. [PMID: 30448197 DOI: 10.1016/j.ymthe.2018.10.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in DMD, which codes for dystrophin. Because the progressive and irreversible degeneration of muscle occurs from childhood, earlier therapy is required to prevent dystrophic progression. Exon skipping by antisense oligonucleotides called phosphorodiamidate morpholino oligomers (PMOs), which restores the DMD reading frame and dystrophin expression, is a promising candidate for use in neonatal patients, yet the potential remains unclear. Here, we investigate the systemic efficacy and safety of early exon skipping in dystrophic dog neonates. Intravenous treatment of canine X-linked muscular dystrophy in Japan dogs with a 4-PMO cocktail resulted in ∼3%-27% in-frame exon 6-9 skipping and dystrophin restoration across skeletal muscles up to 14% of healthy levels. Histopathology was ameliorated with the reduction of fibrosis and/or necrosis area and centrally nucleated fibers, significantly in the diaphragm. Treatment induced cardiac multi-exon skipping, though dystrophin rescue was not detected. Functionally, treatment led to significant improvement in the standing test. Toxicity was not observed from blood tests. This is the first study to demonstrate successful multi-exon skipping treatment and significant functional improvement in dystrophic dogs. Early treatment was most beneficial for respiratory muscles, with implications for addressing pulmonary malfunction in patients.
Collapse
Affiliation(s)
- Kenji Rowel Q Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada
| | - Yusuke Echigoya
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; Laboratory of Biomedical Science, Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Tetsuya Nagata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Mutsuki Kuraoka
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Masanori Kobayashi
- Department of Reproduction, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-0023, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Terence Partridge
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA; Department of Integrative Systems Biology, George Washington University School of Medicine, Washington, DC 20010, USA
| | - Rika Maruyama
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan.
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; Muscular Dystrophy Canada Research Chair, Edmonton, AB T6G2H7, Canada.
| |
Collapse
|
22
|
Akpulat U, Wang H, Becker K, Contreras A, Partridge TA, Novak JS, Cirak S. Shorter Phosphorodiamidate Morpholino Splice-Switching Oligonucleotides May Increase Exon-Skipping Efficacy in DMD. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:534-542. [PMID: 30396145 PMCID: PMC6222172 DOI: 10.1016/j.omtn.2018.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022]
Abstract
Duchenne muscular dystrophy is a fatal muscle disease, caused by mutations in DMD, leading to loss of dystrophin expression. Phosphorodiamidate morpholino splice-switching oligonucleotides (PMO-SSOs) have been used to elicit the restoration of a partially functional truncated dystrophin by excluding disruptive exons from the DMD messenger. The 30-mer PMO eteplirsen (EXONDYS51) developed for exon 51 skipping is the first dystrophin-restoring, conditionally FDA-approved drug in history. Clinical trials had shown a dose-dependent variable and patchy dystrophin restoration. The main obstacle for efficient dystrophin restoration is the inadequate uptake of PMOs into skeletal muscle fibers at low doses. The excessive cost of longer PMOs has limited the utilization of higher dosing. We designed shorter 25-mer PMOs directed to the same eteplirsen-targeted region of exon 51 and compared their efficacies in vitro and in vivo in the mdx52 murine model. Our results showed that skipped-dystrophin induction was comparable between the 30-mer PMO sequence of eteplirsen and one of the shorter PMOs, while the other 25-mer PMOs showed lower exon-skipping efficacies. Shorter PMOs would make higher doses economically feasible, and high dosing would result in better drug uptake into muscle, induce higher levels of dystrophin restoration in DMD muscle, and, ultimately, increase the clinical efficacy.
Collapse
Affiliation(s)
- Ugur Akpulat
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany; Department of Pediatrics, University Hospital Cologne, Cologne 50937, Germany; Department of Medical Biology, Faculty of Medicine, Kastamonu University, Kastamonu 37100, Turkey
| | - Haicui Wang
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany; Department of Pediatrics, University Hospital Cologne, Cologne 50937, Germany
| | - Kerstin Becker
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany; Department of Pediatrics, University Hospital Cologne, Cologne 50937, Germany
| | - Adriana Contreras
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany; Department of Pediatrics, University Hospital Cologne, Cologne 50937, Germany
| | - Terence A Partridge
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC 20010, USA; Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
| | - James S Novak
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC 20010, USA; Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
| | - Sebahattin Cirak
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany.
| |
Collapse
|
23
|
Abstract
Duchenne muscular dystrophy (DMD) is a progressive X-linked degenerative muscle disease due to mutations in the DMD gene. Genetic confirmation has become standard in recent years. Improvements in the standard of care for DMD have led to improved survival. Novel treatments for DMD have focused on reducing the dystrophic mechanism of the muscle disease, modulating utrophin protein expression, and restoring dystrophin protein expression. Among the strategies to reduce the dystrophic mechanisms are 1) inhibiting inflammation, 2) promoting muscle growth and regeneration, 3) reducing fibrosis, and 4) facilitating mitochondrial function. The agents under investigation include a novel steroid, myostatin inhibitors, idebenone, an anti-CTGF antibody, a histone deacetylase inhibitor, and cardiosphere-derived cells. For utrophin modulation, AAV-mediated gene therapy with GALGT2 is currently being investigated to upregulate utrophin expression. Finally, the strategies for dystrophin protein restoration include 1) nonsense readthrough, 2) synthetic antisense oligonucleotides for exon skipping, and 3) AAV-mediated micro/minidystrophin gene delivery. With newer agents, we are witnessing the use of more advanced biotechnological methods. Although these potential breakthroughs provide significant promise, they may also raise new questions regarding treatment effect and safety.
Collapse
Affiliation(s)
- Perry B Shieh
- Department of Neurology, University of California, Los Angeles, 300 Medical Plaza, Suite B-200, Los Angeles, CA, 90095, USA.
| |
Collapse
|
24
|
Wang RT, Barthelemy F, Martin AS, Douine ED, Eskin A, Lucas A, Lavigne J, Peay H, Khanlou N, Sweeney L, Cantor RM, Miceli MC, Nelson SF. DMD genotype correlations from the Duchenne Registry: Endogenous exon skipping is a factor in prolonged ambulation for individuals with a defined mutation subtype. Hum Mutat 2018; 39:1193-1202. [PMID: 29907980 PMCID: PMC6175390 DOI: 10.1002/humu.23561] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/10/2018] [Accepted: 05/31/2018] [Indexed: 01/05/2023]
Abstract
Antisense oligonucleotide (AON)-mediated exon skipping is an emerging therapeutic for individuals with Duchenne muscular dystrophy (DMD). Skipping of exons adjacent to common exon deletions in DMD using AONs can produce in-frame transcripts and functional protein. Targeted skipping of DMD exons 8, 44, 45, 50, 51, 52, 53, and 55 is predicted to benefit 47% of affected individuals. We observed a correlation between mutation subgroups and age at loss of ambulation in the Duchenne Registry, a large database of phenotypic and genetic data for DMD (N = 765). Males amenable to exon 44 (N = 74) and exon 8 skipping (N = 18) showed prolonged ambulation compared to other exon skip groups and nonsense mutations (P = 0.035 and P < 0.01, respectively). In particular, exon 45 deletions were associated with prolonged age at loss of ambulation relative to the rest of the exon 44 skip amenable cohort and other DMD mutations. Exon 3-7 deletions also showed prolonged ambulation relative to all other exon 8 skippable mutations. Cultured myotubes from DMD patients with deletions of exons 3-7 or exon 45 showed higher endogenous skipping than other mutations, providing a potential biological rationale for our observations. These results highlight the utility of aggregating phenotypic and genotypic data for rare pediatric diseases to reveal progression differences, identify potentially confounding factors, and probe molecular mechanisms that may affect disease severity.
Collapse
Affiliation(s)
- Richard T. Wang
- Department of Human GeneticsDavid Geffen School of MedicineUniversity of California ,Los AngelesCalifornia
- Center for Duchenne Muscular DystrophyUniversity of California, Los Angeles,Los AngelesCalifornia
| | - Florian Barthelemy
- Center for Duchenne Muscular DystrophyUniversity of California, Los Angeles,Los AngelesCalifornia
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine and College of Letters and SciencesUniversity of California, Los Angeles, Los AngelesCalifornia
| | - Ann S. Martin
- Parent Project Muscular DystrophyHackensackNew Jersey
| | - Emilie D. Douine
- Department of Human GeneticsDavid Geffen School of MedicineUniversity of California ,Los AngelesCalifornia
- Center for Duchenne Muscular DystrophyUniversity of California, Los Angeles,Los AngelesCalifornia
| | - Ascia Eskin
- Department of Human GeneticsDavid Geffen School of MedicineUniversity of California ,Los AngelesCalifornia
- Center for Duchenne Muscular DystrophyUniversity of California, Los Angeles,Los AngelesCalifornia
| | - Ann Lucas
- Parent Project Muscular DystrophyHackensackNew Jersey
| | | | - Holly Peay
- Parent Project Muscular DystrophyHackensackNew Jersey
- RTI InternationalResearch Triangle ParkNorth Carolina
| | - Negar Khanlou
- Department of Pathology and Laboratory Medicine, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCalifornia
| | - Lee Sweeney
- Department of Pharmacology and TherapeuticsUniversity of FloridaGainesvilleFlorida
| | - Rita M. Cantor
- Department of Human GeneticsDavid Geffen School of MedicineUniversity of California ,Los AngelesCalifornia
| | - M. Carrie Miceli
- Center for Duchenne Muscular DystrophyUniversity of California, Los Angeles,Los AngelesCalifornia
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine and College of Letters and SciencesUniversity of California, Los Angeles, Los AngelesCalifornia
- Molecular Biology InstituteUniversity of California, Los AngelesCaliforniaLos Angeles
| | - Stanley F. Nelson
- Department of Human GeneticsDavid Geffen School of MedicineUniversity of California ,Los AngelesCalifornia
- Center for Duchenne Muscular DystrophyUniversity of California, Los Angeles,Los AngelesCalifornia
- Department of Pathology and Laboratory Medicine, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCalifornia
| |
Collapse
|
25
|
Han G, Lin C, Ning H, Gao X, Yin H. Long-Term Morpholino Oligomers in Hexose Elicits Long-Lasting Therapeutic Improvements in mdx Mice. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 12:478-489. [PMID: 30195785 PMCID: PMC6070676 DOI: 10.1016/j.omtn.2018.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 12/24/2022]
Abstract
Approval of antisense oligonucleotide eteplirsen highlights the promise of exon-skipping therapeutics for Duchenne muscular dystrophy patients. However, the limited efficacy of eteplirsen underscores the importance to improve systemic delivery and efficacy. Recently, we demonstrated that a glucose and fructose (GF) delivery formulation effectively potentiates phosphorodiamidate morpholino oligomer (PMO). Considering the clinical potential of GF, it is important to determine the long-term compatibility and efficacy with PMO in mdx mice prior to clinical translation. Here, we report that yearlong administration of a clinically applicable PMO dose (50 mg/kg/week for 3 weeks followed by 50 mg/kg/month for 11 months) with GF elicited sustainably high levels of dystrophin expression in mdx mice, with up to 45% of the normal level of dystrophin restored in most peripheral muscles without any detectable toxicity. Importantly, PMO-GF resulted in phenotypical rescue and mitochondrial biogenesis with functional improvement. Carbohydrate metabolites measurements revealed improved metabolic and energetic conditions after PMO-GF treatment in mdx mice without metabolic anomaly. Collectively, our study shows PMO-GF’s ability to elicit long-lasting therapeutic effects with tolerable toxicity and represents a new treatment modality for Duchenne muscular dystrophy, and provides guidelines for antisense oligonucleotides with GF in clinical use.
Collapse
Affiliation(s)
- Gang Han
- School of Medical Laboratory and Department of Cell Biology, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Caorui Lin
- School of Medical Laboratory and Department of Cell Biology, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Hanhan Ning
- School of Medical Laboratory and Department of Cell Biology, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Xianjun Gao
- School of Medical Laboratory and Department of Cell Biology, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - HaiFang Yin
- School of Medical Laboratory and Department of Cell Biology, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China.
| |
Collapse
|
26
|
Viola HM, Johnstone VP, Adams AM, Fletcher S, Hool LC. A Morpholino Oligomer Therapy Regime That Restores Mitochondrial Function and Prevents mdx Cardiomyopathy. JACC Basic Transl Sci 2018; 3:391-402. [PMID: 30062225 PMCID: PMC6059013 DOI: 10.1016/j.jacbts.2018.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/15/2018] [Indexed: 02/07/2023]
Abstract
Current clinical trials demonstrate Duchenne muscular dystrophy (DMD) patients receiving phosphorodiamidate morpholino oligomer (PMO) therapy exhibit improved ambulation and stable pulmonary function; however, cardiac abnormalities remain. Utilizing the same PMO chemistry as current clinical trials, we have identified a non-toxic PMO treatment regimen that restores metabolic activity and prevents DMD cardiomyopathy. We propose that a treatment regimen of this nature may have the potential to significantly improve morbidity and mortality from DMD by improving ambulation, stabilizing pulmonary function, and preventing the development of cardiomyopathy.
Collapse
Key Words
- DMD, Duchenne muscular dystrophy
- ICa-L, L-type Ca2+ channel
- JC-1, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide
- L-type calcium channels
- PMO, phosphorodiamidate morpholino oligomer
- RT-PCR, reverse transcriptase polymerase chain reaction
- cardiomyopathy
- mdx, murine model of Duchenne muscular dystrophy
- mitochondria
- wt, wild type
- Ψm, mitochondrial membrane potential
Collapse
Affiliation(s)
- Helena M. Viola
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Victoria P.A. Johnstone
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Abbie M. Adams
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
| | - Susan Fletcher
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
- Perron Institute for Neuroscience and Translational Science, and Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Livia C. Hool
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| |
Collapse
|
27
|
Iyer PS, Mavoungou LO, Ronzoni F, Zemla J, Schmid-Siegert E, Antonini S, Neff LA, Dorchies OM, Jaconi M, Lekka M, Messina G, Mermod N. Autologous Cell Therapy Approach for Duchenne Muscular Dystrophy using PiggyBac Transposons and Mesoangioblasts. Mol Ther 2018; 26:1093-1108. [PMID: 29503200 PMCID: PMC6079556 DOI: 10.1016/j.ymthe.2018.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 01/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal muscle-wasting disease currently without cure. We investigated the use of the PiggyBac transposon for full-length dystrophin expression in murine mesoangioblast (MABs) progenitor cells. DMD murine MABs were transfected with transposable expression vectors for full-length dystrophin and transplanted intramuscularly or intra-arterially into mdx/SCID mice. Intra-arterial delivery indicated that the MABs could migrate to regenerating muscles to mediate dystrophin expression. Intramuscular transplantation yielded dystrophin expression in 11%-44% of myofibers in murine muscles, which remained stable for the assessed period of 5 months. The satellite cells isolated from transplanted muscles comprised a fraction of MAB-derived cells, indicating that the transfected MABs may colonize the satellite stem cell niche. Transposon integration site mapping by whole-genome sequencing indicated that 70% of the integrations were intergenic, while none was observed in an exon. Muscle resistance assessment by atomic force microscopy indicated that 80% of fibers showed elasticity properties restored to those of wild-type muscles. As measured in vivo, transplanted muscles became more resistant to fatigue. This study thus provides a proof-of-principle that PiggyBac transposon vectors may mediate full-length dystrophin expression as well as functional amelioration of the dystrophic muscles within a potential autologous cell-based therapeutic approach of DMD.
Collapse
Affiliation(s)
- Pavithra S Iyer
- Institute of Biotechnology, University of Lausanne, Lausanne, Switzerland
| | - Lionel O Mavoungou
- Institute of Biotechnology, University of Lausanne, Lausanne, Switzerland
| | - Flavio Ronzoni
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Joanna Zemla
- Institute of Nuclear Physics, Polish Academy of Sciences, 31342 Krakow, Poland
| | | | | | - Laurence A Neff
- School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, 1211 Geneva, Switzerland
| | - Olivier M Dorchies
- School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, 1211 Geneva, Switzerland
| | - Marisa Jaconi
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Malgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, 31342 Krakow, Poland
| | | | - Nicolas Mermod
- Institute of Biotechnology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
28
|
Self-assembling asymmetric peptide-dendrimer micelles - a platform for effective and versatile in vitro nucleic acid delivery. Sci Rep 2018; 8:4832. [PMID: 29556057 PMCID: PMC5859181 DOI: 10.1038/s41598-018-22902-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/12/2018] [Indexed: 12/18/2022] Open
Abstract
Despite advancements in the development of high generation cationic-dendrimer systems for delivery of nucleic acid-based therapeutics, commercially available chemical agents suffer from major drawbacks such as cytotoxicity while being laborious and costly to synthesize. To overcome the aforementioned limitations, low-generation cationic peptide asymmetric dendrimers with side arm lipid (cholic and decanoic acid) conjugation were designed, synthesized and systematically screened for their ability to self-assemble into micelles using dynamic light scattering. Cytotoxicity profiling revealed that our entire asymmetric peptide dendrimer library when trialled alone, or as asymmetric dendrimer micelle-nucleic acid complexes, were non-cytotoxic across a broad concentration range. Further, the delivery efficiency of asymmetric peptide dendrimers in H-4-II-E (rat hepatoma), H2K (mdx mouse myoblast), and DAOY (human medulloblastoma) cells demonstrated that cholic acid-conjugated asymmetric dendrimers possess far superior delivery efficiency when compared to the commercial standards, Lipofectamine 2000 or Lipofectin®.
Collapse
|
29
|
Jain HV, Boehler JF, Nagaraju K, Beaucage SL. Synthesis, Characterization, and Function of an RNA-Based Transfection Reagent. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2018; 72:4.81.1-4.81.29. [PMID: 29927123 PMCID: PMC6020023 DOI: 10.1002/cpnc.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A synthetic 8-mer, amphipathic, trans-acting poly-2'-O-methyluridylic thiophosphate triester RNA element (2'-OMeUtaPS) can be prepared using solid-phase synthesis protocols. 2'-OMeUtaPS efficiently mediates the delivery of uncharged polyA-tailed phosphorodiamidate morpholino (PMO) sequences in HeLa pLuc 705 cells, as evidenced by flow cytometry measurements. In this cell line, 2'-OMeUtaPS-mediated transfection of an antisense polyA-tailed PMO sequence induces alternative splicing of an aberrant luciferase pre-mRNA splice site, leading to restoration of functional luciferase, as quantitatively measured using a typical luciferase assay. 2'-OMeUtaPS is also potent at delivering an uncharged antisense polyA-tailed PMO sequence in muscle cells of the mdx mouse model of muscular dystrophy; targeting the polyA-tailed PMO sequence against a splice site of the pre-mRNA encoding mutated dystrophin triggers an alternate splicing event that results in excision of the mutated exon (exon 23) from the pre-mRNA and production of functional dystrophin, as demonstrated by agarose gel electrophoresis. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Harsh V Jain
- Laboratory of Biological Chemistry, Food and Drug Administration, Silver Spring, Maryland
| | - Jessica F Boehler
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, District of Columbia
- The Institute for Biomedical Sciences, The George Washington University, Washington, District of Columbia
| | - Kanneboyina Nagaraju
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, District of Columbia
- Department of Pharmaceutical Sciences, Binghamton University, Binghamton, New York
| | - Serge L Beaucage
- Laboratory of Biological Chemistry, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
30
|
Wang DW, Mokhonova EI, Kendall GC, Becerra D, Naeini YB, Cantor RM, Spencer MJ, Nelson SF, Miceli MC. Repurposing Dantrolene for Long-Term Combination Therapy to Potentiate Antisense-Mediated DMD Exon Skipping in the mdx Mouse. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:180-191. [PMID: 29858053 PMCID: PMC5992346 DOI: 10.1016/j.omtn.2018.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 01/16/2023]
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in DMD, resulting in loss of dystrophin, which is essential to muscle health. DMD “exon skipping” uses anti-sense oligo-nucleotides (AONs) to force specific exon exclusion during mRNA processing to restore reading frame and rescue of partially functional dystrophin protein. Although exon-skipping drugs in humans show promise, levels of rescued dystrophin protein remain suboptimal. We previously identified dantrolene as a skip booster when combined with AON in human DMD cultures and short-term mdx dystrophic mouse studies. Here, we assess the effect of dantrolene/AON combination on DMD exon-23 skipping over long-term mdx treatment under conditions that better approximate potential human dosing. To evaluate the dantrolene/AON combination treatment effect on dystrophin induction, we assayed three AON doses, with and without oral dantrolene, to assess multiple outcomes across different muscles. Meta-analyses of the results of statistical tests from both the quadriceps and diaphragm assessing contributions of dantrolene beyond AON, across all AON treatment groups, provide strong evidence that dantrolene modestly boosts exon skipping and dystrophin rescue while reducing muscle pathology in mdx mice (p < 0.0087). These findings support a trial of combination dantrolene/AON to increase exon-skipping efficacy and highlight the value of combinatorial approaches and Food and Drug Administration (FDA) drug re-purposing for discovery of unsuspected therapeutic application and rapid translation.
Collapse
Affiliation(s)
- Derek W Wang
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, USA; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine and College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ekaterina I Mokhonova
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, USA; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine and College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, USA; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Genevieve C Kendall
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Diana Becerra
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, USA; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yalda B Naeini
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rita M Cantor
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Melissa J Spencer
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, USA; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Stanley F Nelson
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - M Carrie Miceli
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, USA; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine and College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
31
|
Nakamura A, Aoki Y, Tsoumpra M, Yokota T, Takeda S. In Vitro Multiexon Skipping by Antisense PMOs in Dystrophic Dog and Exon 7-Deleted DMD Patient. Methods Mol Biol 2018; 1828:151-163. [PMID: 30171540 PMCID: PMC6557157 DOI: 10.1007/978-1-4939-8651-4_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Antisense oligonucleotide induced exon skipping emerges as a promising therapeutic strategy for patients suffering from a devastating muscle disorder Duchenne muscular dystrophy (DMD). Systemic administration of antisense phosphorodiamidate morpholino oligomers (PMOs) targeting exons 6 and 8 in dystrophin mRNA of the canine X-linked muscular dystrophy model in Japan (CXMDJ) that lacks exon 7, restored dystrophin expression throughout skeletal muscle and ameliorated skeletal muscle pathology and function. However, the antisense PMO regime used in CXMDJ could not be considered for a direct application to DMD patients so far, because this type of mutation is quite rare. We have identified a DMD patient with an exon 7 deletion; and tried a direct translation of the antisense PMOs used in dog models to the DMD patient's cells. We converted fibroblasts obtained from CXMDJ dogs and from the DMD patient to myotubes by MyoD transduction using fluorescence-activated cell sorting (FACS). We subsequently designed antisense PMOs targeting identical regions of dog and human dystrophin exons 6 and 8 and administered them as a cocktail to the in vitro generated dog or human myotubes. In both cases, we observed comparable skipping efficacy of exons 6 and 8 and restoration of dystrophin protein. The accompanying skipping of exon 9, which does not alter the reading frame, varied according to the cell origin. The antisense PMOs originally administered to the CXMDJ dog model were capable of inducing multi-exon skipping of the dystrophin gene on the FACS-aided MyoD-transduced fibroblasts derived from an exon 7-deleted DMD patient. These data support the suitability of dog as a laboratory model for DMD because the similarity of dystrophin sequences allowed a successful translation of the dog's PMOs to DMD patients cells.
Collapse
Affiliation(s)
- Akinori Nakamura
- Third Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan.
- Department of Neurology, Matsumoto Medical Center, National Hospital Organization, Matsumoto, Japan.
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Maria Tsoumpra
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, AB, Canada
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
32
|
Abstract
Since its discovery in 1977, much has been known about RNA splicing and how it plays a central role in human development, function, and, notably, disease. Defects in RNA splicing account for at least 10% of all genetic disorders, with the number expected to increase as more information is uncovered on the contribution of noncoding genomic regions to disease. Splice modulation through the use of antisense oligonucleotides (AOs) has emerged as a promising avenue for the treatment of these disorders. In fact, two splice-switching AOs have recently obtained approval from the US Food and Drug Administration: eteplirsen (Exondys 51) for Duchenne muscular dystrophy, and nusinersen (Spinraza) for spinal muscular atrophy. These work by exon skipping and exon inclusion, respectively. In this chapter, we discuss the early development of AO-based splice modulation therapy-its invention, first applications, and its evolution into the approach we are now familiar with. We give a more extensive history of exon skipping in particular, as it is the splice modulation approach given the most focus in this book.
Collapse
Affiliation(s)
- Kenji Rowel Q Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
33
|
Novak JS, Hogarth MW, Boehler JF, Nearing M, Vila MC, Heredia R, Fiorillo AA, Zhang A, Hathout Y, Hoffman EP, Jaiswal JK, Nagaraju K, Cirak S, Partridge TA. Myoblasts and macrophages are required for therapeutic morpholino antisense oligonucleotide delivery to dystrophic muscle. Nat Commun 2017; 8:941. [PMID: 29038471 PMCID: PMC5643396 DOI: 10.1038/s41467-017-00924-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/07/2017] [Indexed: 01/15/2023] Open
Abstract
Exon skipping is a promising therapeutic strategy for Duchenne muscular dystrophy (DMD), employing morpholino antisense oligonucleotides (PMO-AO) to exclude disruptive exons from the mutant DMD transcript and elicit production of truncated dystrophin protein. Clinical trials for PMO show variable and sporadic dystrophin rescue. Here, we show that robust PMO uptake and efficient production of dystrophin following PMO administration coincide with areas of myofiber regeneration and inflammation. PMO localization is sustained in inflammatory foci where it enters macrophages, actively differentiating myoblasts and newly forming myotubes. We conclude that efficient PMO delivery into muscle requires two concomitant events: first, accumulation and retention of PMO within inflammatory foci associated with dystrophic lesions, and second, fusion of PMO-loaded myoblasts into repairing myofibers. Identification of these factors accounts for the variability in clinical trials and suggests strategies to improve this therapeutic approach to DMD.Exon skipping is a strategy for the treatment of Duchenne muscular dystrophy, but has variable efficacy. Here, the authors show that dystrophin restoration occurs preferentially in areas of myofiber regeneration, where antisense oligonucleotides are stored in macrophages and delivered to myoblasts and newly formed myotubes.
Collapse
Affiliation(s)
- James S Novak
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA.,Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA.,Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Marshall W Hogarth
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA
| | - Jessica F Boehler
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA.,Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Marie Nearing
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA
| | - Maria C Vila
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA.,Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Raul Heredia
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA
| | - Alyson A Fiorillo
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA.,Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA.,Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Aiping Zhang
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA
| | - Yetrib Hathout
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA.,Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA.,Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA.,Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY, 13902, USA
| | - Eric P Hoffman
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA.,Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA.,Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA.,Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY, 13902, USA
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA.,Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA.,Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Kanneboyina Nagaraju
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA.,Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA.,Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA.,Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY, 13902, USA
| | - Sebahattin Cirak
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA.,Institute for Human Genetics, University Hospital Cologne, Cologne, 50923, Germany.,Department of Pediatrics, University Hospital Cologne, Cologne, 50923, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, 50931, Germany
| | - Terence A Partridge
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA. .,Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA. .,Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA.
| |
Collapse
|
34
|
Le BT, Adams AM, Fletcher S, Wilton SD, Veedu RN. Rational Design of Short Locked Nucleic Acid-Modified 2'-O-Methyl Antisense Oligonucleotides for Efficient Exon-Skipping In Vitro. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 9:155-161. [PMID: 29246294 PMCID: PMC5633351 DOI: 10.1016/j.omtn.2017.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 01/16/2023]
Abstract
Locked nucleic acid is a prominent nucleic acid analog with unprecedented target binding affinity to cDNA and RNA oligonucleotides and shows remarkable stability against nuclease degradation. Incorporation of locked nucleic acid nucleotides into an antisense oligonucleotide (AO) sequence can reduce the length required without compromising the efficacy. In this study, we synthesized a series of systematically truncated locked nucleic acid-modified 2′-O-methyl AOs on a phosphorothioate (PS) backbone that were designed to induce skipping exon 23 from the dystrophin transcript in H-2Kb-tsA58 mdx mouse myotubes in vitro. The results clearly demonstrated that shorter AOs (16- to 14-mer) containing locked nucleic acid nucleotides efficiently induced dystrophin exon 23 skipping compared with the corresponding 2′-O-methyl AOs. Our remarkable findings contribute significantly to the existing knowledge about the designing of short LNA-modified oligonucleotides for exon-skipping applications, which will help reduce the cost of exon-skipping AOs and potential toxicities, particularly the 2′-OMe-based oligos, by further reducing the length of AOs.
Collapse
Affiliation(s)
- Bao T Le
- Centre for Comparative Genomics, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
| | - Abbie M Adams
- Centre for Comparative Genomics, Murdoch University, Perth, WA 6150, Australia
| | - Susan Fletcher
- Centre for Comparative Genomics, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
| | - Stephen D Wilton
- Centre for Comparative Genomics, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
| | - Rakesh N Veedu
- Centre for Comparative Genomics, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.
| |
Collapse
|
35
|
Jain HV, Boehler JF, Verthelyi D, Nagaraju K, Beaucage SL. An amphipathic trans-acting phosphorothioate RNA element delivers an uncharged phosphorodiamidate morpholino sequence in mdx mouse myotubes. RSC Adv 2017; 7:42519-42528. [PMID: 28989703 PMCID: PMC5625301 DOI: 10.1039/c7ra04247g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
An efficient method for the delivery of uncharged polyA-tailed phosphorodiamidate morpholino sequences (PMO) in mammalian cells consists of employing a synthetic 8-mer amphipathic trans-acting poly-2'-O-methyluridylic thiophosphate triester element (2'-OMeUtaPS) as a transfection reagent. Unlike the dTtaPS DNA-based element, this RNA element is potent at delivering polyA-tailed PMO sequences to HeLa pLuc 705 cells or to myotube muscle cells. However, much like dTtaPS, the 2'-OMeUtaPS-mediated internalization of PMO sequences occurs through an energy-dependent mechanism; macropinocytosis appears to be the predominant endocytic pathway used for cellular uptake. The transfected PMO sequences induce alternate splicing of either the pre-mRNA encoding luciferase in HeLa pLuc 705 cells or the excision of exon 23 from the pre-mRNA encoding dystrophin in myotube muscle cells of the mdx mouse model of muscular dystrophy with an efficiency comparable to that of commercial cationic lipid reagents but without detrimental cytotoxicity.
Collapse
Affiliation(s)
- H V Jain
- Division of Biotechnology Review and Research IV, CDER, FDA, 10903 New Hampshire Avenue, Silver Spring, Maryland 20933, USA
| | - J F Boehler
- Research Center for Genetic Medicine, Children's National Medical Center, 111 Michigan Avenue, NW Washington, DC 20010, USA
- The Institute for Biomedical Sciences, The George Washington University, Washington, DC 20037, USA
| | - D Verthelyi
- Division of Biotechnology Review and Research III, CDER, FDA, 10903 New Hampshire Avenue, Silver Spring, Maryland 20933, USA
| | - K Nagaraju
- Research Center for Genetic Medicine, Children's National Medical Center, 111 Michigan Avenue, NW Washington, DC 20010, USA
- Department of Pharmaceutical Sciences, AB-G34, Binghamton University, P.O. Box 6000, Binghamton, New York 13902, USA
| | - S L Beaucage
- Division of Biotechnology Review and Research IV, CDER, FDA, 10903 New Hampshire Avenue, Silver Spring, Maryland 20933, USA
| |
Collapse
|
36
|
Aartsma-Rus A, Straub V, Hemmings R, Haas M, Schlosser-Weber G, Stoyanova-Beninska V, Mercuri E, Muntoni F, Sepodes B, Vroom E, Balabanov P. Development of Exon Skipping Therapies for Duchenne Muscular Dystrophy: A Critical Review and a Perspective on the Outstanding Issues. Nucleic Acid Ther 2017; 27:251-259. [PMID: 28796573 PMCID: PMC5649120 DOI: 10.1089/nat.2017.0682] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a rare, severe, progressive muscle-wasting disease leading to disability and premature death. Patients lack the muscle membrane-stabilizing protein dystrophin. Antisense oligonucleotide (AON)-mediated exon skipping is a therapeutic approach that aims to induce production of partially functional dystrophins. Recently, an AON targeting exon 51 became the first of its class to be approved by the United States regulators [Food and Drug Administration (FDA)] for the treatment of DMD. A unique aspect of the exon-skipping approach for DMD is that, depending on the size and location of the mutation, different exons need to be skipped. This challenge raises a number of questions regarding the development and regulatory approval of those individual compounds. In this study, we present a perspective on those questions, following a European stakeholder meeting involving academics, regulators, and representatives from industry and patient organizations, and in the light of the most recent scientific and regulatory experience.
Collapse
Affiliation(s)
- Annemieke Aartsma-Rus
- 1 Department of Human Genetics, Leiden University Medical Center , Leiden, the Netherlands .,2 John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Volker Straub
- 2 John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Robert Hemmings
- 3 Medicines and Healthcare Product Regulatory Agency , London, United Kingdom
| | - Manuel Haas
- 4 Central Nervous System and Ophthalmology, Scientific and Regulatory Management Department, Human Medicines Evaluation Division, European Medicines Agency , London, United Kingdom
| | | | | | - Eugenio Mercuri
- 7 Department of Pediatric Neurology, Catholic University , Rome, Italy .,8 Centro Clinico Nemo, Policlinico Gemelli , Rome, Italy
| | - Francesco Muntoni
- 9 Dubowitz Neuromuscular Center, UCL Great Ormond Street Institute of Child Health , London, United Kingdom
| | - Bruno Sepodes
- 10 Faculdade de Farmácia, Universidade de Lisboa , Lisboa, Portugal
| | - Elizabeth Vroom
- 11 United Parent Project Muscular Dystrophy , Amsterdam, the Netherlands
| | - Pavel Balabanov
- 4 Central Nervous System and Ophthalmology, Scientific and Regulatory Management Department, Human Medicines Evaluation Division, European Medicines Agency , London, United Kingdom
| |
Collapse
|
37
|
Johnstone VPA, Viola HM, Hool LC. Dystrophic Cardiomyopathy-Potential Role of Calcium in Pathogenesis, Treatment and Novel Therapies. Genes (Basel) 2017; 8:genes8040108. [PMID: 28338606 PMCID: PMC5406855 DOI: 10.3390/genes8040108] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 01/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by defects in the DMD gene and results in progressive wasting of skeletal and cardiac muscle due to an absence of functional dystrophin. Cardiomyopathy is prominent in DMD patients, and contributes significantly to mortality. This is particularly true following respiratory interventions that reduce death rate and increase ambulation and consequently cardiac load. Cardiomyopathy shows an increasing prevalence with age and disease progression, and over 95% of patients exhibit dilated cardiomyopathy by the time they reach adulthood. Development of the myopathy is complex, and elevations in intracellular calcium, functional muscle ischemia, and mitochondrial dysfunction characterise the pathophysiology. Current therapies are limited to treating symptoms of the disease and there is therefore an urgent need to treat the underlying genetic defect. Several novel therapies are outlined here, and the unprecedented success of phosphorodiamidate morpholino oligomers (PMOs) in preclinical and clinical studies is overviewed.
Collapse
Affiliation(s)
- Victoria P A Johnstone
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia.
| | - Helena M Viola
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia.
| | - Livia C Hool
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia.
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia.
| |
Collapse
|
38
|
Lentiviral vectors can be used for full-length dystrophin gene therapy. Sci Rep 2017; 7:44775. [PMID: 28303972 PMCID: PMC5356018 DOI: 10.1038/srep44775] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 02/13/2017] [Indexed: 12/13/2022] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is caused by a lack of dystrophin expression in patient muscle fibres. Current DMD gene therapy strategies rely on the expression of internally deleted forms of dystrophin, missing important functional domains. Viral gene transfer of full-length dystrophin could restore wild-type functionality, although this approach is restricted by the limited capacity of recombinant viral vectors. Lentiviral vectors can package larger transgenes than adeno-associated viruses, yet lentiviral vectors remain largely unexplored for full-length dystrophin delivery. In our work, we have demonstrated that lentiviral vectors can package and deliver inserts of a similar size to dystrophin. We report a novel approach for delivering large transgenes in lentiviruses, in which we demonstrate proof-of-concept for a ‘template-switching’ lentiviral vector that harnesses recombination events during reverse-transcription. During this work, we discovered that a standard, unmodified lentiviral vector was efficient in delivering full-length dystrophin to target cells, within a total genomic load of more than 15,000 base pairs. We have demonstrated gene therapy with this vector by restoring dystrophin expression in DMD myoblasts, where dystrophin was expressed at the sarcolemma of myotubes after myogenic differentiation. Ultimately, our work demonstrates proof-of-concept that lentiviruses can be used for permanent full-length dystrophin gene therapy, which presents a significant advancement in developing an effective treatment for DMD.
Collapse
|
39
|
Counsell JR, Asgarian Z, Meng J, Ferrer V, Vink CA, Howe SJ, Waddington SN, Thrasher AJ, Muntoni F, Morgan JE, Danos O. Lentiviral vectors can be used for full-length dystrophin gene therapy. Sci Rep 2017; 7:79. [PMID: 28250438 PMCID: PMC5427806 DOI: 10.1038/s41598-017-00152-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 02/13/2017] [Indexed: 01/08/2023] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is caused by a lack of dystrophin expression in patient muscle fibres. Current DMD gene therapy strategies rely on the expression of internally deleted forms of dystrophin, missing important functional domains. Viral gene transfer of full-length dystrophin could restore wild-type functionality, although this approach is restricted by the limited capacity of recombinant viral vectors. Lentiviral vectors can package larger transgenes than adeno-associated viruses, yet lentiviral vectors remain largely unexplored for full-length dystrophin delivery. In our work, we have demonstrated that lentiviral vectors can package and deliver inserts of a similar size to dystrophin. We report a novel approach for delivering large transgenes in lentiviruses, in which we demonstrate proof-of-concept for a 'template-switching' lentiviral vector that harnesses recombination events during reverse-transcription. During this work, we discovered that a standard, unmodified lentiviral vector was efficient in delivering full-length dystrophin to target cells, within a total genomic load of more than 15,000 base pairs. We have demonstrated gene therapy with this vector by restoring dystrophin expression in DMD myoblasts, where dystrophin was expressed at the sarcolemma of myotubes after myogenic differentiation. Ultimately, our work demonstrates proof-of-concept that lentiviruses can be used for permanent full-length dystrophin gene therapy, which presents a significant advancement in developing an effective treatment for DMD.
Collapse
Affiliation(s)
- John R Counsell
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
- UCL Cancer Institute, Paul O 'Gorman Building, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
- Molecular and Cellular Immunology, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK.
- Gene Transfer Technology Group, Institute for Womens Health, University College London, 86-96, Chenies Mews, London, UK.
| | - Zeinab Asgarian
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Jinhong Meng
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Veronica Ferrer
- UCL Cancer Institute, Paul O 'Gorman Building, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Conrad A Vink
- Molecular and Cellular Immunology, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Steven J Howe
- Molecular and Cellular Immunology, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Womens Health, University College London, 86-96, Chenies Mews, London, UK
- MRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Adrian J Thrasher
- Molecular and Cellular Immunology, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Jennifer E Morgan
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Olivier Danos
- UCL Cancer Institute, Paul O 'Gorman Building, University College London, 72 Huntley Street, London, WC1E 6BT, UK
- Biogen, 14 Cambridge Center, Cambridge, MA, 02142, USA
| |
Collapse
|
40
|
Abstract
Most of the human genome encodes RNAs that do not code for proteins. These non-coding RNAs (ncRNAs) may affect normal gene expression and disease progression, making them a new class of targets for drug discovery. Because their mechanisms of action are often novel, developing drugs to target ncRNAs will involve equally novel challenges. However, many potential problems may already have been solved during the development of technologies to target mRNA. Here, we discuss the growing field of ncRNA - including microRNA, intronic RNA, repetitive RNA and long non-coding RNA - and assess the potential and challenges in their therapeutic exploitation.
Collapse
Affiliation(s)
- Masayuki Matsui
- Departments of Pharmacology and Biochemistry, UT Southwestern, Dallas, Texas 75390-9041, USA
| | - David R Corey
- Departments of Pharmacology and Biochemistry, UT Southwestern, Dallas, Texas 75390-9041, USA
| |
Collapse
|
41
|
Viral Vector-Mediated Antisense Therapy for Genetic Diseases. Genes (Basel) 2017; 8:genes8020051. [PMID: 28134780 PMCID: PMC5333040 DOI: 10.3390/genes8020051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/04/2017] [Accepted: 01/17/2017] [Indexed: 01/16/2023] Open
Abstract
RNA plays complex roles in normal health and disease and is becoming an important target for therapeutic intervention; accordingly, therapeutic strategies that modulate RNA function have gained great interest over the past decade. Antisense oligonucleotides (AOs) are perhaps the most promising strategy to modulate RNA expression through a variety of post binding events such as gene silencing through degradative or non-degradative mechanisms, or splicing modulation which has recently demonstrated promising results. However, AO technology still faces issues like poor cellular-uptake, low efficacy in target tissues and relatively rapid clearance from the circulation which means repeated injections are essential to complete therapeutic efficacy. To overcome these limitations, viral vectors encoding small nuclear RNAs have been engineered to shuttle antisense sequences into cells, allowing appropriate subcellular localization with pre-mRNAs and permanent correction. In this review, we outline the different strategies for antisense therapy mediated by viral vectors and provide examples of each approach. We also address the advantages and limitations of viral vector use, with an emphasis on their clinical application.
Collapse
|
42
|
Chen S, Le BT, Rahimizadeh K, Shaikh K, Mohal N, Veedu RN. Synthesis of a Morpholino Nucleic Acid (MNA)-Uridine Phosphoramidite, and Exon Skipping Using MNA/2'-O-Methyl Mixmer Antisense Oligonucleotide. Molecules 2016; 21:molecules21111582. [PMID: 27879669 PMCID: PMC6274534 DOI: 10.3390/molecules21111582] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 01/14/2023] Open
Abstract
In this study, we synthesised a morpholino nucleoside-uridine (MNA-U) phosphoramidite and evaluated the potential of a MNA-modified antisense oligonucleotide (AO) sequences to induce exon 23 skipping in mdx mouse myotubes in vitro towards extending the applicability of morpholino chemistry with other nucleotide monomers. We designed, synthesised, and compared exon skipping efficiencies of 20 mer MNA-modified 2'-O-methyl RNA mixmer AO on a phosphorothioate backbone (MNA/2'-OMePS) to the corresponding fully modified 2'-O-methyl RNA AO (2'-OMePS) as a control. Our results showed that the MNA/2'-OMePS efficiently induced exon 23 skipping. As expected, the 2'-OMePS AO control yielded efficient exon 23 skipping. Under the applied conditions, both the AOs showed minor products corresponding to exon 22/23 dual exon skipping in low yield. As these are very preliminary data, more detailed studies are necessary; however, based on the preliminary results, MNA nucleotides might be useful in constructing antisense oligonucleotides.
Collapse
Affiliation(s)
- Suxiang Chen
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia.
- Western Australian Neuroscience Research Institute, Perth 6150, Australia.
| | - Bao T Le
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia.
- Western Australian Neuroscience Research Institute, Perth 6150, Australia.
| | - Kamal Rahimizadeh
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia.
| | - Khalil Shaikh
- GMK Research Laboratories Pvt. Ltd., Mallapur, Hyderabad 500 076, India.
| | - Narinder Mohal
- GMK Research Laboratories Pvt. Ltd., Mallapur, Hyderabad 500 076, India.
| | - Rakesh N Veedu
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia.
- Western Australian Neuroscience Research Institute, Perth 6150, Australia.
| |
Collapse
|
43
|
Fletcher S, Bellgard MI, Price L, Akkari AP, Wilton SD. Translational development of splice-modifying antisense oligomers. Expert Opin Biol Ther 2016; 17:15-30. [PMID: 27805416 DOI: 10.1080/14712598.2017.1250880] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Antisense nucleic acid analogues can interact with pre-mRNA motifs and influence exon or splice site selection and thereby alter gene expression. Design of antisense molecules to target specific motifs can result in either exon exclusion or exon inclusion during splicing. Novel drugs exploiting the antisense concept are targeting rare, life-limiting diseases; however, the potential exists to treat a wide range of conditions by antisense-mediated splice intervention. Areas covered: In this review, the authors discuss the clinical translation of novel molecular therapeutics to address the fatal neuromuscular disorders Duchenne muscular dystrophy and spinal muscular atrophy. The review also highlights difficulties posed by issues pertaining to restricted participant numbers, variable phenotype and disease progression, and the identification and validation of study endpoints. Expert opinion: Translation of novel therapeutics for Duchenne muscular dystrophy and spinal muscular atrophy has been greatly advanced by multidisciplinary research, academic-industry partnerships and in particular, the engagement and support of the patient community. Sponsors, supporters and regulators are cooperating to deliver new drugs and identify and define meaningful outcome measures. Non-conventional and adaptive trial design could be particularly suited to clinical evaluation of novel therapeutics and strategies to treat serious, rare diseases that may be problematic to study using more conventional clinical trial structures.
Collapse
Affiliation(s)
- S Fletcher
- a Centre for Neuromuscular and Neurological Disorders , University of Western Australia , Nedlands , Western Australia , Australia.,b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia
| | - M I Bellgard
- b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia
| | - L Price
- a Centre for Neuromuscular and Neurological Disorders , University of Western Australia , Nedlands , Western Australia , Australia.,b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia
| | - A P Akkari
- b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia.,d Shiraz Pharmaceuticals, Inc , Chapel Hill , NC , USA
| | - S D Wilton
- a Centre for Neuromuscular and Neurological Disorders , University of Western Australia , Nedlands , Western Australia , Australia.,b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia
| |
Collapse
|
44
|
Hildyard JC, Wells DJ. Investigating Synthetic Oligonucleotide Targeting of Mir31 in Duchenne Muscular Dystrophy. PLOS CURRENTS 2016; 8. [PMID: 27525173 PMCID: PMC4972457 DOI: 10.1371/currents.md.99d88e72634387639707601b237467d7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Exon-skipping via synthetic antisense oligonucleotides represents one of the most promising potential therapies for Duchenne muscular dystrophy (DMD), yet this approach is highly sequence-specific and thus each oligonucleotide is of benefit to only a subset of patients. The discovery that dystrophin mRNA is subject to translational suppression by the microRNA miR31, and that miR31 is elevated in the muscle of DMD patients, raises the possibility that the same oligonucleotide chemistries employed for exon skipping could be directed toward relieving this translational block. This approach would act synergistically with exon skipping where possible, but by targeting the 3'UTR it would further be of benefit to the many DMD patients who express low levels of in-frame transcript. We here present investigations into the feasibility of combining exon skipping with several different strategies for miR31-modulation, using both in vitro models and the mdx mouse (the classical animal model of DMD), and monitoring effects on dystrophin at the transcriptional and translational level. We show that despite promising results from our cell culture model, our in vivo data failed to demonstrate similarly reproducible enhancement of dystrophin translation, suggesting that miR31-modulation may not be practical under current oligonucleotide approaches. Possible explanations for this disappointing outcome are discussed, along with suggestions for future investigations.
Collapse
Affiliation(s)
- John Cw Hildyard
- Department of Comparative and Biomedical Sciences, The Royal Veterinary College, London, UK
| | - Dominic J Wells
- Department of Comparative and Biomedical Sciences, The Royal Veterinary College, London, UK
| |
Collapse
|
45
|
Godi C, Ambrosi A, Nicastro F, Previtali SC, Santarosa C, Napolitano S, Iadanza A, Scarlato M, Natali Sora MG, Tettamanti A, Gerevini S, Cicalese MP, Sitzia C, Venturini M, Falini A, Gatti R, Ciceri F, Cossu G, Torrente Y, Politi LS. Longitudinal MRI quantification of muscle degeneration in Duchenne muscular dystrophy. Ann Clin Transl Neurol 2016; 3:607-22. [PMID: 27606343 PMCID: PMC4999593 DOI: 10.1002/acn3.319] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/22/2016] [Accepted: 04/30/2016] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the usefulness of magnetic resonance imaging (MRI) in detecting the progression of Duchenne muscular dystrophy (DMD) by quantification of fat infiltration (FI) and muscle volume index (MVI, a residual-to-total muscle volume ratio). METHODS Twenty-six patients (baseline age: 5-12 years) with genetically proven DMD were longitudinally analyzed with lower limb 3T MRI, force measurements, and functional tests (Gowers, 10-m time, North Star Ambulatory Assessment, 6-min walking test). Five age-matched controls were also examined, with a total of 85 MRI studies. Semiquantitative (scores) and quantitative MRI (qMRI) analyses (signal intensity ratio - SIR, lower limb MVI, and individual muscle MVI) were carried out. Permutation and regression analyses according to both age and functional test-outcomes were calculated. Age-related quantitative reference curves of SIRs and MVIs were generated. RESULTS FI was present on glutei and adductor magnus in all patients since the age of 5, with a proximal-to-distal progression and selective sparing of sartorius and gracilis. Patients' qMRI measures were significantly different from controls' and among age classes. qMRI were more sensitive than force measurements and functional tests in assessing disease progression, allowing quantification also after loss of ambulation. Age-related curves with percentile values were calculated for SIRs and MVIs, to provide a reference background for future experimental therapy trials. SIRs and MVIs significantly correlated with all clinical measures, and could reliably predict functional outcomes and loss of ambulation. INTERPRETATIONS qMRI-based indexes are sensitive measures that can track the progression of DMD and represent a valuable tool for follow-up and clinical studies.
Collapse
Affiliation(s)
- Claudia Godi
- Neuroradiology Department Neuroradiology Research Group and CERMAC San Raffaele Scientific Institute and Vita-Salute San Raffaele University Milan Italy
| | - Alessandro Ambrosi
- CUSSB University Centre for Biomedical Sciences Vita-Salute San Raffaele University Milan Italy
| | - Francesca Nicastro
- Laboratory of Analysis and Rehabilitation of Motor Function Division of Neuroscience San Raffaele Scientific Institute Milan Italy
| | - Stefano C Previtali
- Division of Neuroscience Institute of Experimental Neurology (INSpe) San Raffaele Scientific Institute Milan Italy
| | - Corrado Santarosa
- Neuroradiology Department Neuroradiology Research Group and CERMAC San Raffaele Scientific Institute and Vita-Salute San Raffaele University Milan Italy
| | - Sara Napolitano
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET) and Pediatric Immunohematology and Bone Marrow Transplantation Unit San Raffaele Scientific Institute Milan Italy
| | - Antonella Iadanza
- Neuroradiology Department Neuroradiology Research Group and CERMAC San Raffaele Scientific Institute and Vita-Salute San Raffaele University Milan Italy
| | - Marina Scarlato
- Division of Neuroscience Institute of Experimental Neurology (INSpe) San Raffaele Scientific Institute Milan Italy
| | - Maria Grazia Natali Sora
- Division of Neuroscience Institute of Experimental Neurology (INSpe) San Raffaele Scientific Institute Milan Italy
| | - Andrea Tettamanti
- Laboratory of Analysis and Rehabilitation of Motor Function Division of Neuroscience San Raffaele Scientific Institute Milan Italy
| | - Simonetta Gerevini
- Neuroradiology Department Neuroradiology Research Group and CERMAC San Raffaele Scientific Institute and Vita-Salute San Raffaele University Milan Italy
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET) and Pediatric Immunohematology and Bone Marrow Transplantation Unit San Raffaele Scientific Institute Milan Italy
| | - Clementina Sitzia
- Stem Cell Laboratory Department of Pathophysiology and Transplantation Universitá degli Studi di Milano Fondazione IRCCS Cá Granda Ospedale Maggiore Policlinico Centro Dino Ferrari, Milan Italy
| | - Massimo Venturini
- Radiology Department San Raffaele Scientific Institute and Vita-Salute San Raffaele University Milan Italy
| | - Andrea Falini
- Neuroradiology Department Neuroradiology Research Group and CERMAC San Raffaele Scientific Institute and Vita-Salute San Raffaele University Milan Italy
| | - Roberto Gatti
- Laboratory of Analysis and Rehabilitation of Motor Function Division of Neuroscience San Raffaele Scientific Institute Milan Italy
| | - Fabio Ciceri
- Hematology and BMT Unit San Raffaele Scientific Institute and Vita-Salute San Raffaele University Milan Italy
| | - Giulio Cossu
- Institute of Inflammation and Repair University of Manchester Manchester United Kingdom
| | - Yvan Torrente
- Stem Cell Laboratory Department of Pathophysiology and Transplantation Universitá degli Studi di Milano Fondazione IRCCS Cá Granda Ospedale Maggiore Policlinico Centro Dino Ferrari, Milan Italy
| | - Letterio S Politi
- Neuroradiology Department Neuroradiology Research Group and CERMAC San Raffaele Scientific Institute and Vita-Salute San Raffaele University Milan Italy; Neuroimaging Research Division of Hematology/Oncology Boston Children's Hospital Boston MA USA; Department of Pediatrics Harvard Medical School Boston MA USA; University of Massachusetts Memorial Medical Center and University of Massachusetts Medical School Worcester MA USA
| |
Collapse
|
46
|
Havens MA, Hastings ML. Splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic Acids Res 2016; 44:6549-63. [PMID: 27288447 PMCID: PMC5001604 DOI: 10.1093/nar/gkw533] [Citation(s) in RCA: 314] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/02/2016] [Indexed: 01/09/2023] Open
Abstract
Splice-switching oligonucleotides (SSOs) are short, synthetic, antisense, modified nucleic acids that base-pair with a pre-mRNA and disrupt the normal splicing repertoire of the transcript by blocking the RNA–RNA base-pairing or protein–RNA binding interactions that occur between components of the splicing machinery and the pre-mRNA. Splicing of pre-mRNA is required for the proper expression of the vast majority of protein-coding genes, and thus, targeting the process offers a means to manipulate protein production from a gene. Splicing modulation is particularly valuable in cases of disease caused by mutations that lead to disruption of normal splicing or when interfering with the normal splicing process of a gene transcript may be therapeutic. SSOs offer an effective and specific way to target and alter splicing in a therapeutic manner. Here, we discuss the different approaches used to target and alter pre-mRNA splicing with SSOs. We detail the modifications to the nucleic acids that make them promising therapeutics and discuss the challenges to creating effective SSO drugs. We highlight the development of SSOs designed to treat Duchenne muscular dystrophy and spinal muscular atrophy, which are currently being tested in clinical trials.
Collapse
Affiliation(s)
- Mallory A Havens
- Department of Biology, Lewis University, Romeoville, IL 60446, USA
| | - Michelle L Hastings
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|
47
|
Li K, Turner AN, Chen M, Brosius SN, Schoeb TR, Messiaen LM, Bedwell DM, Zinn KR, Anastasaki C, Gutmann DH, Korf BR, Kesterson RA. Mice with missense and nonsense NF1 mutations display divergent phenotypes compared with human neurofibromatosis type I. Dis Model Mech 2016; 9:759-67. [PMID: 27482814 PMCID: PMC4958313 DOI: 10.1242/dmm.025783] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/25/2016] [Indexed: 12/19/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a common genetic disorder characterized by the occurrence of nerve sheath tumors and considerable clinical heterogeneity. Some translational studies have been limited by the lack of animal models available for assessing patient-specific mutations. In order to test therapeutic approaches that might restore function to the mutated gene or gene product, we developed mice harboring NF1 patient-specific mutations including a nonsense mutation (c.2041C>T; p.Arg681*) and a missense mutation (c.2542G>C; p.Gly848Arg). The latter is associated with the development of multiple plexiform neurofibromas along spinal nerve roots. We demonstrate that the human nonsense NF1(Arg681*) and missense NF1(Gly848Arg) mutations have different effects on neurofibromin expression in the mouse and each recapitulates unique aspects of the NF1 phenotype, depending upon the genetic context when assessed in the homozygous state or when paired with a conditional knockout allele. Whereas the missense Nf1(Gly848Arg) mutation fails to produce an overt phenotype in the mouse, animals homozygous for the nonsense Nf1(Arg681*) mutation are not viable. Mice with one Nf1(Arg681*) allele in combination with a conditional floxed Nf1 allele and the DhhCre transgene (Nf1(4F/Arg681*); DhhCre) display disorganized nonmyelinating axons and neurofibromas along the spinal column, which leads to compression of the spinal cord and paralysis. This model will be valuable for preclinical testing of novel nonsense suppression therapies using drugs to target in-frame point mutations that create premature termination codons in individuals with NF1.
Collapse
Affiliation(s)
- Kairong Li
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ashley N Turner
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Min Chen
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stephanie N Brosius
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA Medical Scientist Training Program, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Trenton R Schoeb
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ludwine M Messiaen
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David M Bedwell
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kurt R Zinn
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bruce R Korf
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Robert A Kesterson
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
48
|
Xu R, Singhal N, Serinagaoglu Y, Chandrasekharan K, Joshi M, Bauer JA, Janssen PML, Martin PT. Deletion of Galgt2 (B4Galnt2) reduces muscle growth in response to acute injury and increases muscle inflammation and pathology in dystrophin-deficient mice. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 185:2668-84. [PMID: 26435413 DOI: 10.1016/j.ajpath.2015.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/14/2015] [Accepted: 06/29/2015] [Indexed: 01/06/2023]
Abstract
Transgenic overexpression of Galgt2 (official name B4Galnt2) in skeletal muscle stimulates the glycosylation of α dystroglycan (αDG) and the up-regulation of laminin α2 and dystrophin surrogates known to inhibit muscle pathology in mouse models of congenital muscular dystrophy 1A and Duchenne muscular dystrophy. Skeletal muscle Galgt2 gene expression is also normally increased in the mdx mouse model of Duchenne muscular dystrophy compared with the wild-type mice. To assess whether this increased endogenous Galgt2 expression could affect disease, we quantified muscular dystrophy measures in mdx mice deleted for Galgt2 (Galgt2(-/-)mdx). Galgt2(-/-) mdx mice had increased heart and skeletal muscle pathology and inflammation, and also worsened cardiac function, relative to age-matched mdx mice. Deletion of Galgt2 in wild-type mice also slowed skeletal muscle growth in response to acute muscle injury. In each instance where Galgt2 expression was elevated (developing muscle, regenerating muscle, and dystrophic muscle), Galgt2-dependent glycosylation of αDG was also increased. Overexpression of Galgt2 failed to inhibit skeletal muscle pathology in dystroglycan-deficient muscles, in contrast to previous studies in dystrophin-deficient mdx muscles. This study demonstrates that Galgt2 gene expression and glycosylation of αDG are dynamically regulated in muscle and that endogenous Galgt2 gene expression can ameliorate the extent of muscle pathology, inflammation, and dysfunction in mdx mice.
Collapse
Affiliation(s)
- Rui Xu
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Neha Singhal
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Yelda Serinagaoglu
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Kumaran Chandrasekharan
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Mandar Joshi
- Department of Pediatrics, University of Kentucky College of Medicine, Kentucky Children's Hospital, Lexington, Kentucky
| | - John A Bauer
- Department of Pediatrics, University of Kentucky College of Medicine, Kentucky Children's Hospital, Lexington, Kentucky
| | - Paulus M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Paul T Martin
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio.
| |
Collapse
|
49
|
A high-throughput screening assay for the functional delivery of splice-switching oligonucleotides in human melanoma cells. Methods Mol Biol 2016; 1297:187-96. [PMID: 25896004 DOI: 10.1007/978-1-4939-2562-9_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since the conception of RNA nanotechnology (Cell, 94:147, 1998), there has been tremendous interest in its application for the functional delivery of RNA into cells. Splice-switching oligonucleotides (SSOs) are an emerging antisense drug class with the ability to therapeutically modify gene expression. A wide variety of chemical modifications have been devised to try to increase the activity and stability of SSOs. Also, as with most nucleic acid therapeutics, delivery into the cell is the major hurdle for in vivo and clinical applications. As a result, various RNA nanoparticles are being constructed for targeted delivery of therapeutics. However, it is difficult to find a practical assay to measure splice-switching activity. Here, we describe a model delivery system that can be used as a convenient, high-throughput assay to quantitatively measure the functional delivery and splicing redirection in a live human melanoma cell line.
Collapse
|
50
|
Toh ZYC, Thandar Aung-Htut M, Pinniger G, Adams AM, Krishnaswarmy S, Wong BL, Fletcher S, Wilton SD. Deletion of Dystrophin In-Frame Exon 5 Leads to a Severe Phenotype: Guidance for Exon Skipping Strategies. PLoS One 2016; 11:e0145620. [PMID: 26745801 PMCID: PMC4706350 DOI: 10.1371/journal.pone.0145620] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 12/07/2015] [Indexed: 12/03/2022] Open
Abstract
Duchenne and Becker muscular dystrophy severity depends upon the nature and location of the DMD gene lesion and generally correlates with the dystrophin open reading frame. However, there are striking exceptions where an in-frame genomic deletion leads to severe pathology or protein-truncating mutations (nonsense or frame-shifting indels) manifest as mild disease. Exceptions to the dystrophin reading frame rule are usually resolved after molecular diagnosis on muscle RNA. We report a moderate/severe Becker muscular dystrophy patient with an in-frame genomic deletion of DMD exon 5. This mutation has been reported by others as resulting in Duchenne or Intermediate muscular dystrophy, and the loss of this in-frame exon in one patient led to multiple splicing events, including omission of exon 6, that disrupts the open reading frame and is consistent with a severe phenotype. The patient described has a deletion of dystrophin exon 5 that does not compromise recognition of exon 6, and although the deletion does not disrupt the reading frame, his clinical presentation is more severe than would be expected for classical Becker muscular dystrophy. We suggest that the dystrophin isoform lacking the actin-binding sequence encoded by exon 5 is compromised, reflected by the phenotype resulting from induction of this dystrophin isoform in mouse muscle in vivo. Hence, exon skipping to address DMD-causing mutations within DMD exon 5 may not yield an isoform that confers marked clinical benefit. Additional studies will be required to determine whether multi-exon skipping strategies could yield more functional dystrophin isoforms, since some BMD patients with larger in-frame deletions in this region have been reported with mild phenotypes.
Collapse
Affiliation(s)
- Zhi Yon Charles Toh
- Western Australian Neuroscience Research Institute, Perth, Australia
- University of Western Australia, Perth, Australia
| | | | - Gavin Pinniger
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Australia
| | - Abbie M. Adams
- Western Australian Neuroscience Research Institute, Perth, Australia
- University of Western Australia, Perth, Australia
- Centre for Comparative Genomics, Murdoch University, Perth, Australia
| | | | - Brenda L. Wong
- Department of Paediatrics, Department of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Sue Fletcher
- Western Australian Neuroscience Research Institute, Perth, Australia
- University of Western Australia, Perth, Australia
- Centre for Comparative Genomics, Murdoch University, Perth, Australia
| | - Steve D. Wilton
- Western Australian Neuroscience Research Institute, Perth, Australia
- University of Western Australia, Perth, Australia
- Centre for Comparative Genomics, Murdoch University, Perth, Australia
- * E-mail:
| |
Collapse
|