1
|
Vargas JA, Sculaccio SA, Pinto APA, Pereira HD, Mendes LFS, Flores JF, Cobos M, Castro JC, Garratt RC, Leonardo DA. Structural insights into the Smirnoff-Wheeler pathway for vitamin C production in the Amazon fruit camu-camu. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2754-2771. [PMID: 38224521 DOI: 10.1093/jxb/erae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
l-Ascorbic acid (AsA, vitamin C) is a pivotal dietary nutrient with multifaceted importance in living organisms. In plants, the Smirnoff-Wheeler pathway is the primary route for AsA biosynthesis, and understanding the mechanistic details behind its component enzymes has implications for plant biology, nutritional science, and biotechnology. As part of an initiative to determine the structures of all six core enzymes of the pathway, the present study focuses on three of them in the model species Myrciaria dubia (camu-camu): GDP-d-mannose 3',5'-epimerase (GME), l-galactose dehydrogenase (l-GalDH), and l-galactono-1,4-lactone dehydrogenase (l-GalLDH). We provide insights into substrate and cofactor binding and the conformational changes they induce. The MdGME structure reveals a distorted substrate in the active site, pertinent to the catalytic mechanism. Mdl-GalDH shows that the way in which NAD+ association affects loop structure over the active site is not conserved when compared with its homologue in spinach. Finally, the structure of Mdl-GalLDH is described for the first time. This allows for the rationalization of previously identified residues which play important roles in the active site or in the formation of the covalent bond with FAD. In conclusion, this study enhances our understanding of AsA biosynthesis in plants, and the information provided should prove useful for biotechnological applications.
Collapse
Affiliation(s)
- Jhon A Vargas
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Susana A Sculaccio
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Andressa P A Pinto
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Humberto D'Muniz Pereira
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Luis F S Mendes
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Jhoao F Flores
- Institute of Biology, State University of Campinas, Rua Monteiro Lobato 255, Campinas, SP 13083-862, Brazil
| | - Marianela Cobos
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Psje. Los Paujiles S/N, 1600, Iquitos, Peru
- Departamento de Ciencias Biomédicas y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional de la Amazonia Peruana (UNAP), Zungarococha, Ciudad Universitaria. Iquitos, Perú
| | - Juan C Castro
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Psje. Los Paujiles S/N, 1600, Iquitos, Peru
- Departamento de Ciencias Biomédicas y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional de la Amazonia Peruana (UNAP), Zungarococha, Ciudad Universitaria. Iquitos, Perú
| | - Richard C Garratt
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Diego A Leonardo
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| |
Collapse
|
2
|
Smirnoff N, Wheeler GL. The ascorbate biosynthesis pathway in plants is known, but there is a way to go with understanding control and functions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2604-2630. [PMID: 38300237 PMCID: PMC11066809 DOI: 10.1093/jxb/erad505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/29/2024] [Indexed: 02/02/2024]
Abstract
Ascorbate (vitamin C) is one of the most abundant primary metabolites in plants. Its complex chemistry enables it to function as an antioxidant, as a free radical scavenger, and as a reductant for iron and copper. Ascorbate biosynthesis occurs via the mannose/l-galactose pathway in green plants, and the evidence for this pathway being the major route is reviewed. Ascorbate accumulation is leaves is responsive to light, reflecting various roles in photoprotection. GDP-l-galactose phosphorylase (GGP) is the first dedicated step in the pathway and is important in controlling ascorbate synthesis. Its expression is determined by a combination of transcription and translation. Translation is controlled by an upstream open reading frame (uORF) which blocks translation of the main GGP-coding sequence, possibly in an ascorbate-dependent manner. GGP associates with a PAS-LOV protein, inhibiting its activity, and dissociation is induced by blue light. While low ascorbate mutants are susceptible to oxidative stress, they grow nearly normally. In contrast, mutants lacking ascorbate do not grow unless rescued by supplementation. Further research should investigate possible basal functions of ascorbate in severely deficient plants involving prevention of iron overoxidation in 2-oxoglutarate-dependent dioxygenases and iron mobilization during seed development and germination.
Collapse
Affiliation(s)
- Nicholas Smirnoff
- Biosciences, Faculty of Health and Life Sciences, Exeter EX4 4QD, UK
| | | |
Collapse
|
3
|
Glasser NR, Cui D, Risser DD, Okafor CD, Balskus EP. Accelerating the discovery of alkyl halide-derived natural products using halide depletion. Nat Chem 2024; 16:173-182. [PMID: 38216751 PMCID: PMC10849952 DOI: 10.1038/s41557-023-01390-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/30/2023] [Indexed: 01/14/2024]
Abstract
Even in the genomic era, microbial natural product discovery workflows can be laborious and limited in their ability to target molecules with specific structural features. Here we leverage an understanding of biosynthesis to develop a workflow that targets the discovery of alkyl halide-derived natural products by depleting halide anions, a key biosynthetic substrate for enzymatic halogenation, from microbial growth media. By comparing the metabolomes of bacterial cultures grown in halide-replete and deficient media, we rapidly discovered the nostochlorosides, the products of an orphan halogenase-encoding gene cluster from Nostoc punctiforme ATCC 29133. We further found that these products, a family of unusual chlorinated glycolipids featuring the rare sugar gulose, are polymerized via an unprecedented enzymatic etherification reaction. Together, our results highlight the power of leveraging an understanding of biosynthetic logic to streamline natural product discovery.
Collapse
Affiliation(s)
- Nathaniel R Glasser
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Dongtao Cui
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Douglas D Risser
- Department of Biology, University of the Pacific, Stockton, CA, USA
| | - C Denise Okafor
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
4
|
Lin Y, Zhu Y, Wang L, Zheng Y, Xie Y, Cai Q, He W, Xie H, Liu H, Wang Y, Cui L, Wei Y, Xie H, Zhang J. Overexpression of a GIPC glycosyltransferase gene, OsGMT1, suppresses plant immunity and delays heading time in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 331:111674. [PMID: 36948404 DOI: 10.1016/j.plantsci.2023.111674] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Glycosylinositol phosphorylceramides (GIPCs) are the major sphingolipids in the plant plasma membrane. In Arabidopsis, mutations of genes involved in the synthesis of GIPCs affect many physiological aspects of plants, including growth, pollen fertility, defense, and stress signaling. Loss of function of the GIPC MANNOSYL-TRANSFERASE1 (AtGMT1) results in GIPC misglycosylation and induces plant immune responses accompanied by a severely dwarfed phenotype, thus indicating that GIPCs play important roles in plant immunity. Here, we investigated the enzymatic activity and phenotypes of transgenic lines of OsGMT1, the ortholog of AtGMT1. Sphingolipidomic analysis indicated that OsGMT1 retained the enzymatic activity of GIPC hexose (Hex) glycosylation, but the knockout lines did not accumulate H2O2. In contrast, the OsGMT1 overexpression lines showed significant down-regulation of several defense-associated or cell wall synthesis-associated genes, and enhanced sensitivity to rice blast. Furthermore, we first demonstrated the sensitivity of rice cells to MoNLP1 protein through calcein AM release assays using rice protoplasts, thus legitimizing the presence of MoNLPs in rice blast fungus. In addition, yeast two-hybrid screens using OsGMT1 as bait revealed that OsGMT1 may regulate heading time through the OsHAP5C signaling pathway. Together, our findings suggested clear physiological functional differentiation of GMT1 orthologs between rice and Arabidopsis.
Collapse
Affiliation(s)
- Yuelong Lin
- College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory for Ecological Control of Crop Pests between Fujian and Taiwan/National Engineering Laboratory of Rice/South China Research Base of State Key Laboratory of Hybrid Rice/Incubating Base of State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology/Fuzhou Branch of National Rice Improvement Center/Key Laboratory of Hybrid Rice Germplasm Innovation and Molecular Breeding of Ministry of Agriculture and Rural Areas for South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, Fujian, China
| | - Yongsheng Zhu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory for Ecological Control of Crop Pests between Fujian and Taiwan/National Engineering Laboratory of Rice/South China Research Base of State Key Laboratory of Hybrid Rice/Incubating Base of State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology/Fuzhou Branch of National Rice Improvement Center/Key Laboratory of Hybrid Rice Germplasm Innovation and Molecular Breeding of Ministry of Agriculture and Rural Areas for South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, Fujian, China
| | - Lanning Wang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory for Ecological Control of Crop Pests between Fujian and Taiwan/National Engineering Laboratory of Rice/South China Research Base of State Key Laboratory of Hybrid Rice/Incubating Base of State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology/Fuzhou Branch of National Rice Improvement Center/Key Laboratory of Hybrid Rice Germplasm Innovation and Molecular Breeding of Ministry of Agriculture and Rural Areas for South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, Fujian, China
| | - Yanmei Zheng
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory for Ecological Control of Crop Pests between Fujian and Taiwan/National Engineering Laboratory of Rice/South China Research Base of State Key Laboratory of Hybrid Rice/Incubating Base of State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology/Fuzhou Branch of National Rice Improvement Center/Key Laboratory of Hybrid Rice Germplasm Innovation and Molecular Breeding of Ministry of Agriculture and Rural Areas for South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, Fujian, China
| | - Yunjie Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory for Ecological Control of Crop Pests between Fujian and Taiwan/National Engineering Laboratory of Rice/South China Research Base of State Key Laboratory of Hybrid Rice/Incubating Base of State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology/Fuzhou Branch of National Rice Improvement Center/Key Laboratory of Hybrid Rice Germplasm Innovation and Molecular Breeding of Ministry of Agriculture and Rural Areas for South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, Fujian, China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory for Ecological Control of Crop Pests between Fujian and Taiwan/National Engineering Laboratory of Rice/South China Research Base of State Key Laboratory of Hybrid Rice/Incubating Base of State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology/Fuzhou Branch of National Rice Improvement Center/Key Laboratory of Hybrid Rice Germplasm Innovation and Molecular Breeding of Ministry of Agriculture and Rural Areas for South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, Fujian, China
| | - Wei He
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory for Ecological Control of Crop Pests between Fujian and Taiwan/National Engineering Laboratory of Rice/South China Research Base of State Key Laboratory of Hybrid Rice/Incubating Base of State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology/Fuzhou Branch of National Rice Improvement Center/Key Laboratory of Hybrid Rice Germplasm Innovation and Molecular Breeding of Ministry of Agriculture and Rural Areas for South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, Fujian, China
| | - Hongguang Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory for Ecological Control of Crop Pests between Fujian and Taiwan/National Engineering Laboratory of Rice/South China Research Base of State Key Laboratory of Hybrid Rice/Incubating Base of State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology/Fuzhou Branch of National Rice Improvement Center/Key Laboratory of Hybrid Rice Germplasm Innovation and Molecular Breeding of Ministry of Agriculture and Rural Areas for South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, Fujian, China
| | - Haitao Liu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory for Ecological Control of Crop Pests between Fujian and Taiwan/National Engineering Laboratory of Rice/South China Research Base of State Key Laboratory of Hybrid Rice/Incubating Base of State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology/Fuzhou Branch of National Rice Improvement Center/Key Laboratory of Hybrid Rice Germplasm Innovation and Molecular Breeding of Ministry of Agriculture and Rural Areas for South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, Fujian, China
| | - Yingheng Wang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory for Ecological Control of Crop Pests between Fujian and Taiwan/National Engineering Laboratory of Rice/South China Research Base of State Key Laboratory of Hybrid Rice/Incubating Base of State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology/Fuzhou Branch of National Rice Improvement Center/Key Laboratory of Hybrid Rice Germplasm Innovation and Molecular Breeding of Ministry of Agriculture and Rural Areas for South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, Fujian, China
| | - Lili Cui
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory for Ecological Control of Crop Pests between Fujian and Taiwan/National Engineering Laboratory of Rice/South China Research Base of State Key Laboratory of Hybrid Rice/Incubating Base of State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology/Fuzhou Branch of National Rice Improvement Center/Key Laboratory of Hybrid Rice Germplasm Innovation and Molecular Breeding of Ministry of Agriculture and Rural Areas for South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, Fujian, China
| | - Yidong Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory for Ecological Control of Crop Pests between Fujian and Taiwan/National Engineering Laboratory of Rice/South China Research Base of State Key Laboratory of Hybrid Rice/Incubating Base of State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology/Fuzhou Branch of National Rice Improvement Center/Key Laboratory of Hybrid Rice Germplasm Innovation and Molecular Breeding of Ministry of Agriculture and Rural Areas for South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, Fujian, China
| | - Huaan Xie
- College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory for Ecological Control of Crop Pests between Fujian and Taiwan/National Engineering Laboratory of Rice/South China Research Base of State Key Laboratory of Hybrid Rice/Incubating Base of State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology/Fuzhou Branch of National Rice Improvement Center/Key Laboratory of Hybrid Rice Germplasm Innovation and Molecular Breeding of Ministry of Agriculture and Rural Areas for South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, Fujian, China.
| | - Jianfu Zhang
- College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory for Ecological Control of Crop Pests between Fujian and Taiwan/National Engineering Laboratory of Rice/South China Research Base of State Key Laboratory of Hybrid Rice/Incubating Base of State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology/Fuzhou Branch of National Rice Improvement Center/Key Laboratory of Hybrid Rice Germplasm Innovation and Molecular Breeding of Ministry of Agriculture and Rural Areas for South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, Fujian, China.
| |
Collapse
|
5
|
Castro JC, Castro CG, Cobos M. Genetic and biochemical strategies for regulation of L-ascorbic acid biosynthesis in plants through the L-galactose pathway. FRONTIERS IN PLANT SCIENCE 2023; 14:1099829. [PMID: 37021310 PMCID: PMC10069634 DOI: 10.3389/fpls.2023.1099829] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Vitamin C (L-ascorbic acid, AsA) is an essential compound with pleiotropic functions in many organisms. Since its isolation in the last century, AsA has attracted the attention of the scientific community, allowing the discovery of the L-galactose pathway, which is the main pathway for AsA biosynthesis in plants. Thus, the aim of this review is to analyze the genetic and biochemical strategies employed by plant cells for regulating AsA biosynthesis through the L-galactose pathway. In this pathway, participates eight enzymes encoded by the genes PMI, PMM, GMP, GME, GGP, GPP, GDH, and GLDH. All these genes and their encoded enzymes have been well characterized, demonstrating their participation in AsA biosynthesis. Also, have described some genetic and biochemical strategies that allow its regulation. The genetic strategy includes regulation at transcriptional and post-transcriptional levels. In the first one, it was demonstrated that the expression levels of the genes correlate directly with AsA content in the tissues/organs of the plants. Also, it was proved that these genes are light-induced because they have light-responsive promoter motifs (e.g., ATC, I-box, GT1 motif, etc.). In addition, were identified some transcription factors that function as activators (e.g., SlICE1, AtERF98, SlHZ24, etc.) or inactivators (e.g., SlL1L4, ABI4, SlNYYA10) regulate the transcription of these genes. In the second one, it was proved that some genes have alternative splicing events and could be a mechanism to control AsA biosynthesis. Also, it was demonstrated that a conserved cis-acting upstream open reading frame (5'-uORF) located in the 5'-untranslated region of the GGP gene induces its post-transcriptional repression. Among the biochemical strategies discovered is the control of the enzyme levels (usually by decreasing their quantities), control of the enzyme catalytic activity (by increasing or decreasing its activity), feedback inhibition of some enzymes (GME and GGP), subcellular compartmentation of AsA, the metabolon assembly of the enzymes, and control of AsA biosynthesis by electron flow. Together, the construction of this basic knowledge has been establishing the foundations for generating genetically improved varieties of fruits and vegetables enriched with AsA, commonly used in animal and human feed.
Collapse
Affiliation(s)
- Juan C. Castro
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Iquitos, Peru
- Departamento Académico de Ciencias Biomédicas y Biotecnología (DACBB), Facultad de Ciencias Biológicas (FCB), Universidad Nacional de la Amazonia Peruana (UNAP), Iquitos, Peru
| | - Carlos G. Castro
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Iquitos, Peru
| | - Marianela Cobos
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Iquitos, Peru
- Departamento Académico de Ciencias Biomédicas y Biotecnología (DACBB), Facultad de Ciencias Biológicas (FCB), Universidad Nacional de la Amazonia Peruana (UNAP), Iquitos, Peru
| |
Collapse
|
6
|
Maruta T. How does light facilitate vitamin C biosynthesis in leaves? Biosci Biotechnol Biochem 2022; 86:1173-1182. [PMID: 35746883 DOI: 10.1093/bbb/zbac096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/14/2022] [Indexed: 11/14/2022]
Abstract
Plants store ascorbate in high concentrations, particularly in their leaves. Ascorbate is an excellent antioxidant that acts as an indispensable photoprotectant. The D-mannose/L-galactose pathway is responsible for ascorbate biosynthesis in plants. Light facilitates ascorbate biosynthesis in a light intensity-dependent manner to enhance ascorbate pool size in leaves, and photosynthesis is required for this process. Light- and photosynthesis-dependent activation of the rate-limiting enzyme GDP-L-galactose phosphorylase (GGP) plays a critical role in ascorbate pool size regulation. In addition, the tight regulation of ascorbate biosynthesis by ascorbate itself has been proposed. Ascorbate represses GGP translation in a dose-dependent manner through the upstream open reading frame in the 5'-untranslated regions of the gene, which may compete with the light-dependent activation of ascorbate biosynthesis. This review focuses on ascorbate biosynthesis based on past and latest findings and critically discusses how light activates this process.
Collapse
Affiliation(s)
- Takanori Maruta
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, Japan
| |
Collapse
|
7
|
Beerens K, Gevaert O, Desmet T. GDP-Mannose 3,5-Epimerase: A View on Structure, Mechanism, and Industrial Potential. Front Mol Biosci 2022; 8:784142. [PMID: 35087867 PMCID: PMC8787198 DOI: 10.3389/fmolb.2021.784142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
GDP-mannose 3,5-epimerase (GM35E, GME) belongs to the short-chain dehydrogenase/reductase (SDR) protein superfamily and catalyses the conversion of GDP-d-mannose towards GDP-l-galactose. Although the overall reaction seems relatively simple (a double epimerization), the enzyme needs to orchestrate a complex set of chemical reactions, with no less than 6 catalysis steps (oxidation, 2x deprotonation, 2x protonation and reduction), to perform the double epimerization of GDP-mannose to GDP-l-galactose. The enzyme is involved in the biosynthesis of vitamin C in plants and lipopolysaccharide synthesis in bacteria. In this review, we provide a clear overview of these interesting epimerases, including the latest findings such as the recently characterized bacterial and thermostable GM35E representative and its mechanism revision but also focus on their industrial potential in rare sugar synthesis and glycorandomization.
Collapse
Affiliation(s)
| | | | - Tom Desmet
- *Correspondence: Koen Beerens, ; Tom Desmet,
| |
Collapse
|
8
|
Alvarez Quispe C, Da Costa M, Beerens K, Desmet T. Exploration of archaeal nucleotide sugar epimerases unveils a new and highly promiscuous GDP-Gal4E subgroup. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
9
|
Chen M, Fang X, Wang Z, Shangguan L, Liu T, Chen C, Liu Z, Ge M, Zhang C, Zheng T, Fang J. Multi-omics analyses on the response mechanisms of 'Shine Muscat' grapevine to low degree of excess copper stress (Low-ECS). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117278. [PMID: 33964687 DOI: 10.1016/j.envpol.2021.117278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Copper stress is one of the most severe heavy metal stresses in plants. Grapevine has a relatively higher copper tolerance than other fruit crops. However, there are no reports regarding the tolerance mechanisms of the 'Shine Muscat' ('SM') grape to a low degree of excess copper stress (Low-ECS). Based on the physiological indicators and multi-omics (transcriptome, proteome, metabolome, and microRNAome) data, 8 h (h) after copper treatment was the most severe stress time point. Nonetheless, copper stress was alleviated 64 h after treatment. Cu ion transportation, photosynthesis pathway, antioxidant system, hormone metabolism, and autophagy were the primary response systems in 'SM' grapevine under Low-ECS. Numerous genes and proteins, such as HMA5, ABC transporters, PMM, GME, DHAR, MDHAR, ARGs, and ARPs, played essential roles in the 'SM' grapevine's response to Low-ECS. This work was carried out to gain insights into the multi-omics responses of 'SM' grapevine to Low-ECS. This study provides genetic and agronomic information that will guide better vinery management and breeding copper-resistant grape cultivars.
Collapse
Affiliation(s)
- Mengxia Chen
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Xiang Fang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Zicheng Wang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Lingfei Shangguan
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China.
| | - Tianhua Liu
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Chun Chen
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Zhongjie Liu
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Mengqing Ge
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Chuan Zhang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Ting Zheng
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Jinggui Fang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| |
Collapse
|
10
|
Chen W, Hu T, Ye J, Wang B, Liu G, Wang Y, Yuan L, Li J, Li F, Ye Z, Zhang Y. A CCAAT-binding factor, SlNFYA10, negatively regulates ascorbate accumulation by modulating the D-mannose/L-galactose pathway in tomato. HORTICULTURE RESEARCH 2020; 7:200. [PMID: 33328457 PMCID: PMC7705693 DOI: 10.1038/s41438-020-00418-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 05/04/2023]
Abstract
Ascorbic acid (AsA), an important antioxidant and growth regulator, and it is essential for plant development and human health. Specifically, humans have to acquire AsA from dietary sources due to their inability to synthesize it. The AsA biosynthesis pathway in plants has been elucidated, but its regulatory mechanism remains largely unknown. In this report, we biochemically identified a CCAAT-box transcription factor (SlNFYA10) that can bind to the promoter of SlGME1, which encodes GDP-Man-3',5'-epimerase, a pivotal enzyme in the D-mannose/L-galactose pathway. Importantly, SlNFYA10 simultaneously binds to the promoter of SlGGP1, a downstream gene of SlGME1 in the D-mannose/L-galactose pathway. Binding assays in yeast and functional analyses in plants have confirmed that SlNFYA10 exerts a negative effect on the expression of both SlGME1 and SlGGP1. Transgenic tomato lines overexpressing SlNFYA10 show decreased levels of SlGME1 and SlGGP1 abundance and AsA concentration in their leaves and fruits, accompanied by enhanced sensitivity to oxidative stress. Overall, SlNFYA10 is the first CCAAT-binding factor identified to date to negatively regulate the AsA biosynthetic pathway at multiple sites and modulate plant responses to oxidative stress.
Collapse
Affiliation(s)
- Weifang Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Tixu Hu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Jie Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Bing Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Genzhong Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ying Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Lei Yuan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Jiaming Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Fangman Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
- HZAU Chuwei Institute of Advanced Seeds, 430070, Wuhan, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China.
- HZAU Chuwei Institute of Advanced Seeds, 430070, Wuhan, China.
| |
Collapse
|
11
|
Van Overtveldt S, Da Costa M, Gevaert O, Joosten HJ, Beerens K, Desmet T. Determinants of the Nucleotide Specificity in the Carbohydrate Epimerase Family 1. Biotechnol J 2020; 15:e2000132. [PMID: 32761842 DOI: 10.1002/biot.202000132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/20/2020] [Indexed: 11/09/2022]
Abstract
In recent years, carbohydrate epimerases have attracted increasing attention as promising biocatalysts for the production of specialty sugars and derivatives. The vast majority of these enzymes are active on nucleotide-activated sugars, rather than on their free counterparts. Although such epimerases are known to have a clear preference for a particular nucleotide (UDP, GDP, CDP, or ADP), very little is known about the determinants of the respective specificities. In this work, sequence motifs are identified that correlate with the different nucleotide specificities in one of the main epimerase superfamilies, carbohydrate epimerase 1 (CEP1). To confirm their relevance, GDP- and CDP-specific residues are introduced into the UDP-glucose 4-epimerase from Thermus thermophilus, resulting in a 3-fold and 13-fold reduction in KM for GDP-Glc and CDP-Glc, respectively. Moreover, several variants are severely crippled in UDP-Glc activity, which further underlines the crucial role of the identified positions. Hence, the analysis should prove to be valuable for the further exploration and application of epimerases involved in carbohydrate synthesis.
Collapse
Affiliation(s)
- Stevie Van Overtveldt
- Centre for Synthetic Biology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent, 9000, Belgium
| | - Matthieu Da Costa
- Centre for Synthetic Biology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent, 9000, Belgium
| | - Ophelia Gevaert
- Centre for Synthetic Biology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent, 9000, Belgium
| | - Henk-Jan Joosten
- Bio-Prodict BV, Nieuwe Marktstraat 54E, Nijmegen, 6511 AA, The Netherlands
| | - Koen Beerens
- Centre for Synthetic Biology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent, 9000, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent, 9000, Belgium
| |
Collapse
|
12
|
Vitamin C in Plants: From Functions to Biofortification. Antioxidants (Basel) 2019; 8:antiox8110519. [PMID: 31671820 PMCID: PMC6912510 DOI: 10.3390/antiox8110519] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 12/18/2022] Open
Abstract
Vitamin C (l-ascorbic acid) is an excellent free radical scavenger, not only for its capability to donate reducing equivalents but also for the relative stability of the derived monodehydroascorbate radical. However, vitamin C is not only an antioxidant, since it is also a cofactor for numerous enzymes involved in plant and human metabolism. In humans, vitamin C takes part in various physiological processes, such as iron absorption, collagen synthesis, immune stimulation, and epigenetic regulation. Due to the functional loss of the gene coding for l-gulonolactone oxidase, humans cannot synthesize vitamin C; thus, they principally utilize plant-based foods for their needs. For this reason, increasing the vitamin C content of crops could have helpful effects on human health. To achieve this objective, exhaustive knowledge of the metabolism and functions of vitamin C in plants is needed. In this review, the multiple roles of vitamin C in plant physiology as well as the regulation of its content, through biosynthetic or recycling pathways, are analyzed. Finally, attention is paid to the strategies that have been used to increase the content of vitamin C in crops, emphasizing not only the improvement of nutritional value of the crops but also the acquisition of plant stress resistance.
Collapse
|
13
|
Tyapkina DY, Kochieva EZ, Slugina MA. Vitamin C in fleshy fruits: biosynthesis, recycling, genes, and enzymes. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
L-ascorbic acid (vitamin C) is a plant secondary metabolite that has a variety of functions both in plant tissues and in the human body. Plants are the main source of vitamin C in human nutrition, especially citrus, rose hip, tomato, strawberry, pepper, papaya, kiwi, and currant fruits. However, in spite of the biological significance of L-ascorbic acid, the pathways of its biosynthesis in plants were fully understood only in 2007 by the example of a model plant Arabidopsis thaliana. In the present review, the main biosynthetic pathways of vitamin C are described: the L-galactose pathway, L-gulose pathway, galacturonic and myo-inositol pathway. To date, the best studied is the L-galactose pathway (Smyrnoff–Wheeler pathway). Only for this pathway all the enzymes and the entire cascade of reactions have been described. For other pathways, only hypothetical metabolites are proposed and not all the catalyzing enzymes have been identified. The key genes participating in ascorbic acid biosynthesis and accumulation in fleshy fruits are highlighted. Among them are L-galactose pathway proteins (GDP-mannose phosphorylase (GMP, VTC1), GDP-D-mannose epimerase (GME), GDP-L-galactose phosphorylase (GGP, VTC2/VTC5), L-galactose-1-phosphate phosphatase (GPP/VTC4), L-galactose-1-dehydrogenase (GalDH), and L-galactono1,4-lactone dehydrogenase (GalLDH)); D-galacturonic pathway enzymes (NADPH-dependent D-galacturonate reductase (GalUR)); and proteins, controlling the recycling of ascorbic acid (dehydroascorbate reductase (DHAR1) and monodehydroascorbate reductase (MDHAR)). Until now, there is no clear and unequivocal evidence for the existence of one predominant pathway of vitamin C biosynthesis in fleshy fruits. For example, the L-galactose pathway is predominant in peach and kiwi fruits, whereas the D-galacturonic pathway seems to be the most essential in grape and strawberry fruits. However, in some plants, such as citrus and tomato fruits, there is a switch between different pathways during ripening. It is noted that the final ascorbic acid content in fruits depends not only on biosynthesis but also on the rate of its oxidation and recirculation.
Collapse
Affiliation(s)
- D. Y. Tyapkina
- Institute of Bioengineering, Research Center of Biotechnology, RAS
| | - E. Z. Kochieva
- Institute of Bioengineering, Research Center of Biotechnology, RAS;
Lomonosov Moscow State University
| | - M. A. Slugina
- Institute of Bioengineering, Research Center of Biotechnology, RAS;
Lomonosov Moscow State University
| |
Collapse
|
14
|
Patterns of genome-wide allele-specific expression in hybrid rice and the implications on the genetic basis of heterosis. Proc Natl Acad Sci U S A 2019; 116:5653-5658. [PMID: 30833384 PMCID: PMC6431163 DOI: 10.1073/pnas.1820513116] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Utilization of heterosis has greatly increased productivity of many crops globally. Allele-specific expression (ASE) has been suggested as a mechanism for causing heterosis. We performed a genome-wide analysis of ASE in three tissues of an elite rice hybrid grown under four conditions. The analysis identified 3,270 genes showing various patterns of ASE in response to developmental and environmental cues, which provides a glimpse of the ASE landscape in the hybrid genome. We showed that the ASE patterns may have distinct implications in the genetic basis of heterosis, especially in light of the classical dominance and overdominance hypotheses. The genes showing ASE provide the candidates for future studies of the genetic and molecular mechanism of heterosis. Utilization of heterosis has greatly increased the productivity of many crops worldwide. Although tremendous progress has been made in characterizing the genetic basis of heterosis using genomic technologies, molecular mechanisms underlying the genetic components are much less understood. Allele-specific expression (ASE), or imbalance between the expression levels of two parental alleles in the hybrid, has been suggested as a mechanism of heterosis. Here, we performed a genome-wide analysis of ASE by comparing the read ratios of the parental alleles in RNA-sequencing data of an elite rice hybrid and its parents using three tissues from plants grown under four conditions. The analysis identified a total of 3,270 genes showing ASE (ASEGs) in various ways, which can be classified into two patterns: consistent ASEGs such that the ASE was biased toward one parental allele in all tissues/conditions, and inconsistent ASEGs such that ASE was found in some but not all tissues/conditions, including direction-shifting ASEGs in which the ASE was biased toward one parental allele in some tissues/conditions while toward the other parental allele in other tissues/conditions. The results suggested that these patterns may have distinct implications in the genetic basis of heterosis: The consistent ASEGs may cause partial to full dominance effects on the traits that they regulate, and direction-shifting ASEGs may cause overdominance. We also showed that ASEGs were significantly enriched in genomic regions that were differentially selected during rice breeding. These ASEGs provide an index of the genes for future pursuit of the genetic and molecular mechanism of heterosis.
Collapse
|
15
|
Fenech M, Amaya I, Valpuesta V, Botella MA. Vitamin C Content in Fruits: Biosynthesis and Regulation. FRONTIERS IN PLANT SCIENCE 2019; 9:2006. [PMID: 30733729 PMCID: PMC6353827 DOI: 10.3389/fpls.2018.02006] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/31/2018] [Indexed: 05/19/2023]
Abstract
Throughout evolution, a number of animals including humans have lost the ability to synthesize ascorbic acid (ascorbate, vitamin C), an essential molecule in the physiology of animals and plants. In addition to its main role as an antioxidant and cofactor in redox reactions, recent reports have shown an important role of ascorbate in the activation of epigenetic mechanisms controlling cell differentiation, dysregulation of which can lead to the development of certain types of cancer. Although fruits and vegetables constitute the main source of ascorbate in the human diet, rising its content has not been a major breeding goal, despite the large inter- and intraspecific variation in ascorbate content in fruit crops. Nowadays, there is an increasing interest to boost ascorbate content, not only to improve fruit quality but also to generate crops with elevated stress tolerance. Several attempts to increase ascorbate in fruits have achieved fairly good results but, in some cases, detrimental effects in fruit development also occur, likely due to the interaction between the biosynthesis of ascorbate and components of the cell wall. Plants synthesize ascorbate de novo mainly through the Smirnoff-Wheeler pathway, the dominant pathway in photosynthetic tissues. Two intermediates of the Smirnoff-Wheeler pathway, GDP-D-mannose and GDP-L-galactose, are also precursors of the non-cellulosic components of the plant cell wall. Therefore, a better understanding of ascorbate biosynthesis and regulation is essential for generation of improved fruits without developmental side effects. This is likely to involve a yet unknown tight regulation enabling plant growth and development, without impairing the cell redox state modulated by ascorbate pool. In certain fruits and developmental conditions, an alternative pathway from D-galacturonate might be also relevant. We here review the regulation of ascorbate synthesis, its close connection with the cell wall, as well as different strategies to increase its content in plants, with a special focus on fruits.
Collapse
Affiliation(s)
- Mario Fenech
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | - Iraida Amaya
- Instituto Andaluz de Investigación y Formación Agraria y Pesquera, Area de Genómica y Biotecnología, Centro de Málaga, Spain
| | - Victoriano Valpuesta
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | - Miguel A. Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
16
|
Tao J, Wu H, Li Z, Huang C, Xu X. Molecular Evolution of GDP-D-Mannose Epimerase ( GME), a Key Gene in Plant Ascorbic Acid Biosynthesis. FRONTIERS IN PLANT SCIENCE 2018; 9:1293. [PMID: 30233629 PMCID: PMC6132023 DOI: 10.3389/fpls.2018.01293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/17/2018] [Indexed: 05/04/2023]
Abstract
The widespread ascorbic acid (AsA) plays a vital role in plant development and abiotic stress tolerance, but AsA concentration varies greatly among different plants. GDP-D-mannose epimerase (GME), which catalyzes GDP-D-mannose to GDP-L-galactose or GDP-L-gulose, is a key enzyme in plant AsA biosynthesis pathway. Functions and expression patterns of GME have been well studied in previous works, however, little information is known about the evolutionary patterns of the gene. In this study, GME gene structure, corresponding conserved protein motifs and evolutionary relationships were systematically analyzed. A total of 111 GME gene sequences were retrieved from 59 plant genomes, which representing almost all the major lineages of Viridiplantae: dicotyledons, monocotyledons, gymnosperms, pteridophytes, bryophytes, and chlorophytes. Results showed that homologs of GME were widely present in Viridiplantae. GME gene structures were conservative in higher plants, while varied greatly in the basal subgroups of the phylogeny including lycophytes, bryophytes, and chlorophytes, suggesting GME gene structure might have undergone severe differentiation at lower plant and then gradually fixed as plant evolution. The basic motifs of GME were strongly conserved throughout Viridiplantae, suggesting the conserved function of the protein. Molecular evolution analysis showed that strong purifying selection was the predominant force in the evolution of GME. A few branches and sites under episodic diversifying selection were identified and most of the branches located in the subgroup of chlorphytes, indicating episodic diversifying selection at a few branches and sites may play a role in the evolution of GME and diversifying selection may have occurred at the early stage of Viridiplantae. Our results provide novel insights into functional conservation and the evolution of GME.
Collapse
Affiliation(s)
- Junjie Tao
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Institute of Kiwifruit, Jiangxi Agricultural University, Nanchang, China
| | - Han Wu
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Institute of Kiwifruit, Jiangxi Agricultural University, Nanchang, China
| | - Zhangyun Li
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Institute of Kiwifruit, Jiangxi Agricultural University, Nanchang, China
| | - Chunhui Huang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Institute of Kiwifruit, Jiangxi Agricultural University, Nanchang, China
| | - Xiaobiao Xu
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Institute of Kiwifruit, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Xiaobiao Xu,
| |
Collapse
|
17
|
Qi T, Liu Z, Fan M, Chen Y, Tian H, Wu D, Gao H, Ren C, Song S, Xie D. GDP-D-mannose epimerase regulates male gametophyte development, plant growth and leaf senescence in Arabidopsis. Sci Rep 2017; 7:10309. [PMID: 28871157 PMCID: PMC5583398 DOI: 10.1038/s41598-017-10765-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/14/2017] [Indexed: 11/09/2022] Open
Abstract
Plant GDP-D-mannose epimerase (GME) converts GDP-D-mannose to GDP-L-galactose, a precursor of both L-ascorbate (vitamin C) and cell wall polysaccharides. However, the genetic functions of GME in Arabidopsis are unclear. In this study, we found that mutations in Arabidopsis GME affect pollen germination, pollen tube elongation, and transmission and development of the male gametophyte through analysis of the heterozygous GME/gme plants and the homozygous gme plants. Arabidopsis gme mutants also exhibit severe growth defects and early leaf senescence. Surprisingly, the defects in male gametophyte in the gme plants are not restored by L-ascorbate, boric acid or GDP-L-galactose, though boric acid rescues the growth defects of the mutants, indicating that GME may regulate male gametophyte development independent of L-ascorbate and GDP-L-galactose. These results reveal key roles for Arabidopsis GME in reproductive development, vegetative growth and leaf senescence, and suggest that GME regulates plant growth and controls male gametophyte development in different manners.
Collapse
Affiliation(s)
- Tiancong Qi
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhipeng Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Meng Fan
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yan Chen
- College of Bioscience and Biotechnology, Crop Gene Engineering Key Laboratory of Hunan Province, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Haixia Tian
- College of Bioscience and Biotechnology, Crop Gene Engineering Key Laboratory of Hunan Province, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Dewei Wu
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hua Gao
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chunmei Ren
- College of Bioscience and Biotechnology, Crop Gene Engineering Key Laboratory of Hunan Province, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| | - Daoxin Xie
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
18
|
Zhang Q, Song X, Bartels D. Enzymes and Metabolites in Carbohydrate Metabolism of Desiccation Tolerant Plants. Proteomes 2016; 4:E40. [PMID: 28248249 PMCID: PMC5260972 DOI: 10.3390/proteomes4040040] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/01/2016] [Accepted: 12/07/2016] [Indexed: 01/31/2023] Open
Abstract
Resurrection plants can tolerate extreme water loss. Substantial sugar accumulation is a phenomenon in resurrection plants during dehydration. Sugars have been identified as one important factor contributing to desiccation tolerance. Phylogenetic diversity of resurrection plants reflects the diversity of sugar metabolism in response to dehydration. Sugars, which accumulate during dehydration, have been shown to protect macromolecules and membranes and to scavenge reactive oxygen species. This review focuses on the performance of enzymes participating in sugar metabolism during dehydration stress. The relation between sugar metabolism and other biochemical activities is discussed and open questions as well as potential experimental approaches are proposed.
Collapse
Affiliation(s)
- Qingwei Zhang
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115 Bonn, Germany.
| | - Xiaomin Song
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115 Bonn, Germany.
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115 Bonn, Germany.
| |
Collapse
|
19
|
Nguyen TP, Cueff G, Hegedus DD, Rajjou L, Bentsink L. A role for seed storage proteins in Arabidopsis seed longevity. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6399-413. [PMID: 26184996 PMCID: PMC4588887 DOI: 10.1093/jxb/erv348] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Proteomics approaches have been a useful tool for determining the biological roles and functions of individual proteins and identifying the molecular mechanisms that govern seed germination, vigour and viability in response to ageing. In this work the dry seed proteome of four Arabidopsis thaliana genotypes, that carry introgression fragments at the position of seed longevity quantitative trait loci and as a result display different levels of seed longevity, was investigated. Seeds at two physiological states, after-ripened seeds that had the full germination ability and aged (stored) seeds of which the germination ability was severely reduced, were compared. Aged dry seed proteomes were markedly different from the after-ripened and reflected the seed longevity level of the four genotypes, despite the fact that dry seeds are metabolically quiescent. Results confirmed the role of antioxidant systems, notably vitamin E, and indicated that protection and maintenance of the translation machinery and energy pathways are essential for seed longevity. Moreover, a new role for seed storage proteins (SSPs) was identified in dry seeds during ageing. Cruciferins (CRUs) are the most abundant SSPs in Arabidopsis and seeds of a triple mutant for three CRU isoforms (crua crub cruc) were more sensitive to artificial ageing and their seed proteins were highly oxidized compared with wild-type seeds. These results confirm that oxidation is involved in seed deterioration and that SSPs buffer the seed from oxidative stress, thus protecting important proteins required for seed germination and seedling formation.
Collapse
Affiliation(s)
- Thu-Phuong Nguyen
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Gwendal Cueff
- INRA, Institut Jean-Pierre Bourgin, UMR 1318 INRA-AgroParisTech, ERL CNRS 3559, Laboratory of Excellence 'Saclay Plant Sciences' (LabEx SPS), RD10, F-78026 Versailles Cedex, France AgroParisTech, Chair of Plant Physiology, 16 rue Claude Bernard, F-75231 Paris Cedex 05, France
| | - Dwayne D Hegedus
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon S7N5A9, Canada Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan S7N 0X2, Canada
| | - Loïc Rajjou
- INRA, Institut Jean-Pierre Bourgin, UMR 1318 INRA-AgroParisTech, ERL CNRS 3559, Laboratory of Excellence 'Saclay Plant Sciences' (LabEx SPS), RD10, F-78026 Versailles Cedex, France AgroParisTech, Chair of Plant Physiology, 16 rue Claude Bernard, F-75231 Paris Cedex 05, France
| | - Leónie Bentsink
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
20
|
Shigeoka S, Maruta T. Cellular redox regulation, signaling, and stress response in plants. Biosci Biotechnol Biochem 2015; 78:1457-70. [PMID: 25209493 DOI: 10.1080/09168451.2014.942254] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cellular and organellar redox states, which are characterized by the balance between oxidant and antioxidant pool sizes, play signaling roles in the regulation of gene expression and protein function in a wide variety of plant physiological processes including stress acclimation. Reactive oxygen species (ROS) and ascorbic acid (AsA) are the most abundant oxidants and antioxidants, respectively, in plant cells; therefore, the metabolism of these redox compounds must be strictly and spatiotemporally controlled. In this review, we provided an overview of our previous studies as well as recent advances in (1) the molecular mechanisms and regulation of AsA biosynthesis, (2) the molecular and genetic properties of ascorbate peroxidases, and (3) stress acclimation via ROS-derived oxidative/redox signaling pathways, and discussed future perspectives in this field.
Collapse
Affiliation(s)
- Shigeru Shigeoka
- a Faculty of Agriculture, Department of Advanced Bioscience , Kinki University , Nara , Japan
| | | |
Collapse
|
21
|
Ma L, Wang Y, Liu W, Liu Z. Overexpression of an alfalfa GDP-mannose 3, 5-epimerase gene enhances acid, drought and salt tolerance in transgenic Arabidopsis by increasing ascorbate accumulation. Biotechnol Lett 2014; 36:2331-41. [DOI: 10.1007/s10529-014-1598-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/19/2014] [Indexed: 01/02/2023]
|
22
|
Gallie DR. Increasing vitamin C content in plant foods to improve their nutritional value-successes and challenges. Nutrients 2013; 5:3424-46. [PMID: 23999762 PMCID: PMC3798912 DOI: 10.3390/nu5093424] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/16/2013] [Accepted: 08/21/2013] [Indexed: 01/02/2023] Open
Abstract
Vitamin C serves as a cofactor in the synthesis of collagen needed to support cardiovascular function, maintenance of cartilage, bones, and teeth, as well as being required in wound healing. Although vitamin C is essential, humans are one of the few mammalian species unable to synthesize the vitamin and must obtain it through dietary sources. Only low levels of the vitamin are required to prevent scurvy but subclinical vitamin C deficiency can cause less obvious symptoms such as cardiovascular impairment. Up to a third of the adult population in the U.S. obtains less than the recommended amount of vitamin C from dietary sources of which plant-based foods constitute the major source. Consequently, strategies to increase vitamin C content in plants have been developed over the last decade and include increasing its synthesis as well as its recycling, i.e., the reduction of the oxidized form of ascorbic acid that is produced in reactions back into its reduced form. Increasing vitamin C levels in plants, however, is not without consequences. This review provides an overview of the approaches used to increase vitamin C content in plants and the successes achieved. Also discussed are some of the potential limitations of increasing vitamin C and how these may be overcome.
Collapse
Affiliation(s)
- Daniel R Gallie
- Department of Biochemistry, University of California, Riverside, CA 92521-0129, USA.
| |
Collapse
|
23
|
Conklin PL, DePaolo D, Wintle B, Schatz C, Buckenmeyer G. Identification of Arabidopsis VTC3 as a putative and unique dual function protein kinase::protein phosphatase involved in the regulation of the ascorbic acid pool in plants. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2793-804. [PMID: 23749562 DOI: 10.1093/jxb/ert140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ascorbic acid (AsA) is present at high levels in plants and is a potent antioxidant and cellular reductant. The major plant AsA biosynthetic pathway is through the intermediates D-mannose and L-galactose. Although there is ample evidence that plants respond to fluctuating environmental conditions with changes in the pool size of AsA, it is unclear how this regulation occurs. The AsA-deficient Arabidopsis thaliana mutants vtc3-1 and vtc3-2 define a locus that has been identified by positional cloning as At2g40860. Confirmation of this identification was through the study of AsA-deficient At2g40860 insertion mutants and by transgenic complementation of the AsA deficiency in vtc3-1 and vtc3-2 with wild-type At2g40860 cDNA. The very unusual VTC3 gene is predicted to encode a novel polypeptide with an N-terminal protein kinase domain tethered covalently to a C-terminal protein phosphatase type 2C domain. Homologues of this gene exist only within the Viridiplantae/Chloroplastida and the gene may therefore have arisen along with the D-mannose/L-galactose AsA biosynthetic pathway. The vtc3 mutant plants are defective in the ability to elevate the AsA pool in response to light and heat, suggestive of an important role for VTC3 in the regulation of the AsA pool size.
Collapse
Affiliation(s)
- Patricia L Conklin
- Biological Sciences Department, State University of New York at Cortland, Bowers Hall, Cortland, NY 13045, USA.
| | | | | | | | | |
Collapse
|
24
|
Tóth SZ, Schansker G, Garab G. The physiological roles and metabolism of ascorbate in chloroplasts. PHYSIOLOGIA PLANTARUM 2013; 148:161-75. [PMID: 23163968 DOI: 10.1111/ppl.12006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 05/03/2023]
Abstract
Ascorbate is a multifunctional metabolite in plants. It is essential for growth control, involving cell division and cell wall synthesis and also involved in redox signaling, in the modulation of gene expression and regulation of enzymatic activities. Ascorbate also fulfills crucial roles in scavenging reactive oxygen species, both enzymatically and nonenzymatically, a well-established phenomenon in the chloroplasts stroma. We give an overview on these important physiological functions and would like to give emphasis to less well-known roles of ascorbate, in the thylakoid lumen, where it also plays multiple roles. It is essential for photoprotection as a cofactor for violaxanthin de-epoxidase, a key enzyme in the formation of nonphotochemical quenching. Lumenal ascorbate has recently also been shown to act as an alternative electron donor of photosystem II once the oxygen-evolving complex is inactivated and to protect the photosynthetic machinery by slowing down donor-side induced photoinactivation; it is yet to be established if ascorbate has a similar role in the case of other stress effects, such as high light and UV-B stress. In bundle sheath cells, deficient in oxygen evolution, ascorbate provides electrons to photosystem II, thereby poising cyclic electron transport around photosystem I. It has also been shown that, by supporting linear electron transport through photosystem II in sulfur-deprived Chlamydomonas reinhardtii cells, in which oxygen evolution is largely inhibited, externally added ascorbate enhances hydrogen production. For fulfilling its multiple roles, Asc has to be transported into the thylakoid lumen and efficiently regenerated; however, very little is known yet about these processes.
Collapse
Affiliation(s)
- Szilvia Z Tóth
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, P.O. Box 521, H-6701, Hungary.
| | | | | |
Collapse
|
25
|
Gallie DR. L-ascorbic Acid: a multifunctional molecule supporting plant growth and development. SCIENTIFICA 2013; 2013:795964. [PMID: 24278786 PMCID: PMC3820358 DOI: 10.1155/2013/795964] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/02/2012] [Indexed: 05/19/2023]
Abstract
L-Ascorbic acid (vitamin C) is as essential to plants as it is to animals. Ascorbic acid functions as a major redox buffer and as a cofactor for enzymes involved in regulating photosynthesis, hormone biosynthesis, and regenerating other antioxidants. Ascorbic acid regulates cell division and growth and is involved in signal transduction. In contrast to the single pathway responsible for ascorbic acid biosynthesis in animals, plants use multiple pathways to synthesize ascorbic acid, perhaps reflecting the importance of this molecule to plant health. Given the importance of ascorbic acid to human nutrition, several technologies have been developed to increase the ascorbic acid content of plants through the manipulation of biosynthetic or recycling pathways. This paper provides an overview of these approaches as well as the consequences that changes in ascorbic acid content have on plant growth and function. Discussed is the capacity of plants to tolerate changes in ascorbic acid content. The many functions that ascorbic acid serves in plants, however, will require highly targeted approaches to improve their nutritional quality without compromising their health.
Collapse
Affiliation(s)
- Daniel R. Gallie
- Department of Biochemistry, University of California, Riverside, CA 92521-0129, USA
| |
Collapse
|
26
|
Gallie DR. The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:433-43. [PMID: 23162122 DOI: 10.1093/jxb/ers330] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
L-Ascorbic acid (Asc) is the most abundant water-soluble antioxidant in plants. It serves as a cofactor for enzymes involved in photosynthesis, hormone biosynthesis, and the regeneration of antioxidants such as α-tocopherol. Once used, Asc can be recycled by several different mechanisms. The short-lived monodehydroascorbate (MDHA) radical, produced following Asc oxidation, can be recycled following reduction by ferredoxin or monodehydroascorbate reductase (MDAR). MDHA can also undergo disproportionation into dehydroascorbate (DHA) and Asc. DHA can be recycled into Asc by dehydroascorbate reductase (DHAR) before it undergoes irrevocable hydrolysis. Through its recycling, Asc content and its redox state are maintained, which is critical under conditions of high demand, for example during high light or other stress conditions that increase reactive oxygen species (ROS) production. This review provides an overview of research in the last decade revealing the role that Asc recycling plays during germination, growth, and reproduction, as well as in response to environmental stress. These findings highlight the importance of DHAR- and MDAR-mediated mechanisms of Asc recycling in maintaining ROS at non-damaging levels while modulating ROS signalling function.
Collapse
Affiliation(s)
- Daniel R Gallie
- Department of Biochemistry, University of California, Riverside, CA 92521-0129, USA.
| |
Collapse
|
27
|
Gallie DR. L-ascorbic Acid: a multifunctional molecule supporting plant growth and development. SCIENTIFICA 2013; 2013:795964. [PMID: 24278786 DOI: 10.1155/scientifica/2013/795964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/02/2012] [Indexed: 05/21/2023]
Abstract
L-Ascorbic acid (vitamin C) is as essential to plants as it is to animals. Ascorbic acid functions as a major redox buffer and as a cofactor for enzymes involved in regulating photosynthesis, hormone biosynthesis, and regenerating other antioxidants. Ascorbic acid regulates cell division and growth and is involved in signal transduction. In contrast to the single pathway responsible for ascorbic acid biosynthesis in animals, plants use multiple pathways to synthesize ascorbic acid, perhaps reflecting the importance of this molecule to plant health. Given the importance of ascorbic acid to human nutrition, several technologies have been developed to increase the ascorbic acid content of plants through the manipulation of biosynthetic or recycling pathways. This paper provides an overview of these approaches as well as the consequences that changes in ascorbic acid content have on plant growth and function. Discussed is the capacity of plants to tolerate changes in ascorbic acid content. The many functions that ascorbic acid serves in plants, however, will require highly targeted approaches to improve their nutritional quality without compromising their health.
Collapse
Affiliation(s)
- Daniel R Gallie
- Department of Biochemistry, University of California, Riverside, CA 92521-0129, USA
| |
Collapse
|
28
|
Zhang Y. Enzymes Involved in Ascorbate Biosynthesis and Metabolism in Plants. ASCORBIC ACID IN PLANTS 2013. [DOI: 10.1007/978-1-4614-4127-4_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Abdalla KO, Rafudeen MS. Analysis of the nuclear proteome of the resurrection plant Xerophyta viscosa in response to dehydration stress using iTRAQ with 2DLC and tandem mass spectrometry. J Proteomics 2012; 75:2361-74. [DOI: 10.1016/j.jprot.2012.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 01/31/2012] [Accepted: 02/04/2012] [Indexed: 10/28/2022]
|
30
|
Melino VJ, Hayes MA, Soole KL, Ford CM. The role of light in the regulation of ascorbate metabolism during berry development in the cultivated grapevine Vitis vinifera L. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2011; 91:1712-21. [PMID: 21656772 DOI: 10.1002/jsfa.4376] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 02/09/2011] [Accepted: 02/10/2011] [Indexed: 05/08/2023]
Abstract
BACKGROUND The accumulation of L-ascorbate (Asc) in fruits is influenced by environmental factors including light quantity. Fruit exposure to ambient light is often reduced by the surrounding leaf canopy, and can be altered by cultivation practices. The influence of reduced sunlight exposure on the accumulation of Asc and its catabolites was investigated in field-grown berries of the cultivated grapevine Vitis vinifera L. cv. Shiraz. RESULTS Growth under sunlight-eliminated conditions resulted in reduced berry fresh weight, chlorosis and a reduced total L-ascorbate pool size. The concentration of the Asc catabolite L-tartaric acid (TA) was reduced in berries grown without light. Conversely, concentrations of oxalic acid (OA), an alternative catabolite of Asc, and malic acid (MA), were unaffected by shading the berries during development. Brief and significant reductions in transcription of the Asc metabolic genes were observed in shade-grown berries after 4 weeks of dark acclimatisation whilst a key TA biosynthetic gene was not regulated by light. CONCLUSIONS The results demonstrate that light-regulation of Asc and TA occurs only at brief stages of development and that OA and MA accumulation is light independent. Additionally, the comparable ratios of TA product to Asc precursor under both light regimes suggest that the diversion of Asc to TA is driven by factors that are not responsive to light. These findings suggest that an altered light regime is not the key to manipulating TA or MA levels in the harvested berry.
Collapse
Affiliation(s)
- Vanessa J Melino
- The University of Adelaide, School of Agriculture, Food and Wine, Private Mail Bag 1, Glen Osmond, SA 5064, Australia
| | | | | | | |
Collapse
|
31
|
Zhang C, Liu J, Zhang Y, Cai X, Gong P, Zhang J, Wang T, Li H, Ye Z. Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. PLANT CELL REPORTS 2011. [PMID: 20981454 DOI: 10.1007/s00299-010-0939-0930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
GDP-Mannose 3',5'-epimerase (GME; EC 5.1.3.18) catalyses the conversion of GDP-D-mannose to GDP-L-galactose, an important step in the ascorbic acid (AsA) biosynthesis pathway in higher plants. In this study, two members of the GME gene family were isolated from tomato (Solanum lycopersicum). Both SlGME genes encode 376 amino acids and share a 92% similarity with each other. Semi-quantitative RT-PCR indicated that SlGME1 was constantly expressed in various tissues, whereas SlGME2 was differentially expressed in different tissues. Transient expression of fused SlGME1-GFP (green fluorescent protein) and SlGME2-GFP in onion cells revealed the cytoplasmic localisation of the two proteins. Transgenic plants over-expressing SlGME1 and SlGME2 exhibited a significant increase in total ascorbic acid in leaves and red fruits compared with wild-type plants. They also showed enhanced stress tolerance based on less chlorophyll content loss and membrane-lipid peroxidation under methyl viologen (paraquat) stress, higher survival rate under cold stress, and significantly higher seed germination rate, fresh weight, and root length under salt stress. The present study demonstrates that the overexpression of two members of the GME gene family resulted in increased ascorbate accumulation in tomato and improved tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Chanjuan Zhang
- The National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhang C, Liu J, Zhang Y, Cai X, Gong P, Zhang J, Wang T, Li H, Ye Z. Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. PLANT CELL REPORTS 2011; 30:389-98. [PMID: 20981454 DOI: 10.1007/s00299-010-0939-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 10/08/2010] [Accepted: 10/12/2010] [Indexed: 05/20/2023]
Abstract
GDP-Mannose 3',5'-epimerase (GME; EC 5.1.3.18) catalyses the conversion of GDP-D-mannose to GDP-L-galactose, an important step in the ascorbic acid (AsA) biosynthesis pathway in higher plants. In this study, two members of the GME gene family were isolated from tomato (Solanum lycopersicum). Both SlGME genes encode 376 amino acids and share a 92% similarity with each other. Semi-quantitative RT-PCR indicated that SlGME1 was constantly expressed in various tissues, whereas SlGME2 was differentially expressed in different tissues. Transient expression of fused SlGME1-GFP (green fluorescent protein) and SlGME2-GFP in onion cells revealed the cytoplasmic localisation of the two proteins. Transgenic plants over-expressing SlGME1 and SlGME2 exhibited a significant increase in total ascorbic acid in leaves and red fruits compared with wild-type plants. They also showed enhanced stress tolerance based on less chlorophyll content loss and membrane-lipid peroxidation under methyl viologen (paraquat) stress, higher survival rate under cold stress, and significantly higher seed germination rate, fresh weight, and root length under salt stress. The present study demonstrates that the overexpression of two members of the GME gene family resulted in increased ascorbate accumulation in tomato and improved tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Chanjuan Zhang
- The National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Negri AS, Robotti E, Prinsi B, Espen L, Marengo E. Proteins involved in biotic and abiotic stress responses as the most significant biomarkers in the ripening of Pinot Noir skins. Funct Integr Genomics 2011; 11:341-55. [PMID: 21234783 DOI: 10.1007/s10142-010-0205-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 11/14/2010] [Accepted: 12/18/2010] [Indexed: 12/30/2022]
Abstract
We propose an integrated approach, obtained by the combination of multivariate statistics and proteomics, useful to isolate candidate biomarkers for the evaluation of grape ripening. We carried out a comparative 2-DE analysis of grape skins collected in three moments of ripening and analyzed the spot volume dataset through the application of principal component analysis followed by forward stepwise-linear discriminant analysis. This technique allowed to discriminate véraison, quite mature and mature samples, and to sort the matched spots according to their significance. We identified 36 spots showing high discriminating coefficients through liquid chromatography - electrospray ionization - tandem mass spectrometry (LC-ESI-MS/MS). Most of them were involved in biotic and abiotic stress responses indicating these enzymes as good candidate markers of berry ripening. These evidences hint at a likely developmental role of these proteins, in addition to their reported activity in stress events. Restricting the same statistical analysis to the samples belonging to the two last stages, it was indicated that this approach can clearly distinguish these close and similar phases of berry development. Taken all together, these results bear out that the employment of the combination of 2-DE and multivariate statistics is a reliable tool in the identification of new protein markers for describing the ripening phases and to assess the overall quality of the fruit.
Collapse
Affiliation(s)
- Alfredo Simone Negri
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, via Celoria 2, Facoltà di Agraria, Milan, Italy
| | | | | | | | | |
Collapse
|
34
|
Cruz-Rus E, Botella MA, Valpuesta V, Gomez-Jimenez MC. Analysis of genes involved in L-ascorbic acid biosynthesis during growth and ripening of grape berries. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:739-48. [PMID: 20189680 DOI: 10.1016/j.jplph.2009.12.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/07/2009] [Accepted: 12/07/2009] [Indexed: 05/06/2023]
Abstract
Recent data indicate the existence of at least three L-ascorbic acid (AsA) biosynthetic pathways in plant cells. Studying their occurrence in different plant organs and species may help to decipher the precise role(s) of AsA in plant cell physiology. In grape berries, AsA is of particular importance since it is known to be the precursor of tartaric acid, an essential component of the grape fruit. The concentration of AsA increases during development of the fruit to reach a maximum at the full ripe stage. We followed the expression of genes related to the various AsA biosynthetic pathways in this plant organ during fruit ontogeny by real time RT-PCR. Among them, a gene (VvGalUR), showing high homology to one from strawberry encoding a D-galacturonate reductase, was up-regulated during fruit ripening in parallel to the AsA content increase. Cloning of the corresponding full length cDNA showed highest similarity to the strawberry gene (FaGalUR). Moreover, VvGalUR gene expression in grape was also up-regulated by high light, a condition that increased AsA content in grape fruits, while none of the genes involved in the other possible biosynthetic pathways analyzed increased their transcript levels. The results are discussed in relation to the presence of several AsA biosynthetic pathways in grape fruits.
Collapse
Affiliation(s)
- Eduardo Cruz-Rus
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | | | | | | |
Collapse
|
35
|
Caffall KH, Mohnen D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 2009; 344:1879-900. [PMID: 19616198 DOI: 10.1016/j.carres.2009.05.021] [Citation(s) in RCA: 948] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 05/04/2009] [Accepted: 05/06/2009] [Indexed: 11/15/2022]
Abstract
Plant cell walls consist of carbohydrate, protein, and aromatic compounds and are essential to the proper growth and development of plants. The carbohydrate components make up approximately 90% of the primary wall, and are critical to wall function. There is a diversity of polysaccharides that make up the wall and that are classified as one of three types: cellulose, hemicellulose, or pectin. The pectins, which are most abundant in the plant primary cell walls and the middle lamellae, are a class of molecules defined by the presence of galacturonic acid. The pectic polysaccharides include the galacturonans (homogalacturonan, substituted galacturonans, and RG-II) and rhamnogalacturonan-I. Galacturonans have a backbone that consists of alpha-1,4-linked galacturonic acid. The identification of glycosyltransferases involved in pectin synthesis is essential to the study of cell wall function in plant growth and development and for maximizing the value and use of plant polysaccharides in industry and human health. A detailed synopsis of the existing literature on pectin structure, function, and biosynthesis is presented.
Collapse
Affiliation(s)
- Kerry Hosmer Caffall
- University of Georgia, Department of Biochemistry and Molecular Biology and Complex Carbohydrate Research Center, Athens, 30602, United States
| | | |
Collapse
|
36
|
Bulley SM, Rassam M, Hoser D, Otto W, Schünemann N, Wright M, MacRae E, Gleave A, Laing W. Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-L-galactose guanyltransferase is a major control point of vitamin C biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:765-78. [PMID: 19129165 PMCID: PMC2652059 DOI: 10.1093/jxb/ern327] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 11/02/2008] [Accepted: 11/19/2008] [Indexed: 05/18/2023]
Abstract
Vitamin C (L-ascorbic acid, AsA) is an essential metabolite for plants and animals. Kiwifruit (Actinidia spp.) are a rich dietary source of AsA for humans. To understand AsA biosynthesis in kiwifruit, AsA levels and the relative expression of genes putatively involved in AsA biosynthesis, regeneration, and transport were correlated by quantitative polymerase chain reaction in leaves and during fruit development in four kiwifruit genotypes (three species; A. eriantha, A. chinensis, and A. deliciosa). During fruit development, fruit AsA concentration peaked between 4 and 6 weeks after anthesis with A. eriantha having 3-16-fold higher AsA than other genotypes. The rise in AsA concentration typically occurred close to the peak in expression of the L-galactose pathway biosynthetic genes, particularly the GDP-L-galactose guanyltransferase gene. The high concentration of AsA found in the fruit of A. eriantha is probably due to higher expression of the GDP-mannose-3',5'-epimerase and GDP-L-galactose guanyltransferase genes. Over-expression of the kiwifruit GDP-L-galactose guanyltransferase gene in Arabidopsis resulted in up to a 4-fold increase in AsA, while up to a 7-fold increase in AsA was observed in transient expression studies where both GDP-L-galactose guanyltransferase and GDP-mannose-3',5'-epimerase genes were co-expressed. These studies show the importance of GDP-L-galactose guanyltransferase as a rate-limiting step to AsA, and demonstrate how AsA can be significantly increased in plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - William Laing
- Plant and Food Research, PB 92169, Auckland, New Zealand
| |
Collapse
|
37
|
Zhang L, Wang Z, Xia Y, Kai G, Chen W, Tang K. Metabolic Engineering of Plant L-Ascorbic Acid Biosynthesis: Recent Trends and Applications. Crit Rev Biotechnol 2008; 27:173-82. [PMID: 17849260 DOI: 10.1080/07388550701503626] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vitamin C (L-ascorbic acid; AsA) is the major soluble antioxidant found in plants and is also an essential component of human nutrition. Although numerous biotechnological methods have been exploited to increase its yield, pressures such as commercial competition and environmental concerns make it urgent to find a new way for industrial production of plant-derived AsA. Engineering plant AsA has now become feasible because of our increased understanding of its biosynthetic pathway. Several possible strategies could be followed to increase AsA production, such as overcoming the rate limiting steps in the biosynthetic pathway, promoting recycling, and reducing catabolism. For these purposes, genes of plant, microbial and animal origins have been successfully used. Several examples will be given to illustrate these various approaches. The existing and potential achievements in increasing AsA production would provide the opportunity for enhancing nutritional quality and stress tolerance of crop plants.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan-SJTUNottingham Plant Biotechnology R&D Center, Fudan University, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
38
|
Conversion of L-galactono-1,4-lactone to L-ascorbate is regulated by the photosynthetic electron transport chain in Arabidopsis. Biosci Biotechnol Biochem 2008; 72:2598-607. [PMID: 18838812 DOI: 10.1271/bbb.80284] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study we focused on the effects of light irradiation and the addition of L-galactono-1,4-lactone (L-GalL) on the conversion of exogenous L-GalL to L-ascorbate (AsA) and the total AsA pool size in detached leaves of Arabidopsis plants and transgenic plants expressing the rat L-gulono-1,4-lactone oxidase gene. Increases in the total AsA level in L-GalL-treated leaves depended entirely on light irradiation. Treatment with an inhibitor of photosynthetic electron transport together with L-GalL reduced the increase in total AsA under light. Light, particularly the redox state of photosynthetic electron transport, appeared to play an important role in the regulation of the conversion of L-GalL to AsA in the mitochondria, reflecting the cellular level of AsA in plants.
Collapse
|
39
|
Linster CL, Adler LN, Webb K, Christensen KC, Brenner C, Clarke SG. A second GDP-L-galactose phosphorylase in arabidopsis en route to vitamin C. Covalent intermediate and substrate requirements for the conserved reaction. J Biol Chem 2008; 283:18483-92. [PMID: 18463094 PMCID: PMC2441562 DOI: 10.1074/jbc.m802594200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 05/01/2008] [Indexed: 11/06/2022] Open
Abstract
The Arabidopsis thaliana VTC2 gene encodes an enzyme that catalyzes the conversion of GDP-L-galactose to L-galactose 1-phosphate in the first committed step of the Smirnoff-Wheeler pathway to plant vitamin C synthesis. Mutations in VTC2 had previously been found to lead to only partial vitamin C deficiency. Here we show that the Arabidopsis gene At5g55120 encodes an enzyme with high sequence identity to VTC2. Designated VTC5, this enzyme displays substrate specificity and enzymatic properties that are remarkably similar to those of VTC2, suggesting that it may be responsible for residual vitamin C synthesis in vtc2 mutants. The exact nature of the reaction catalyzed by VTC2/VTC5 is controversial because of reports that kiwifruit and Arabidopsis VTC2 utilize hexose 1-phosphates as phosphorolytic acceptor substrates. Using liquid chromatography-mass spectroscopy and a VTC2-H238N mutant, we provide evidence that the reaction proceeds through a covalent guanylylated histidine residue within the histidine triad motif. Moreover, we show that both the Arabidopsis VTC2 and VTC5 enzymes catalyze simple phosphorolysis of the guanylylated enzyme, forming GDP and L-galactose 1-phosphate from GDP-L-galactose and phosphate, with poor reactivity of hexose 1-phosphates as phosphorolytic acceptors. Indeed, the endogenous activities from Japanese mustard spinach, lemon, and spinach have the same substrate requirements. These results show that Arabidopsis VTC2 and VTC5 proteins and their homologs in other plants are enzymes that guanylylate a conserved active site His residue with GDP-L-galactose, forming L-galactose 1-phosphate for vitamin C synthesis, and regenerate the enzyme with phosphate to form GDP.
Collapse
Affiliation(s)
- Carole L Linster
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
40
|
Maul P, McCollum GT, Popp M, Guy CL, Porat R. Transcriptome profiling of grapefruit flavedo following exposure to low temperature and conditioning treatments uncovers principal molecular components involved in chilling tolerance and susceptibility. PLANT, CELL & ENVIRONMENT 2008; 31:752-68. [PMID: 18266902 DOI: 10.1111/j.1365-3040.2008.01793.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A pre-storage conditioning (CD) treatment of 16 degrees C for 7 d enhanced chilling tolerance of grapefruit and reduced the development of chilling injuries during storage at 5 degrees C. To gain a better understanding of the molecular mechanisms involved in the responses of citrus fruit to low temperatures, we performed genome-wide transcriptional profiling analysis of RNA isolated from grapefruit flavedo using the newly developed Affymetrix Citrus GeneChip microarray. Utilizing very restrictive cut-off criteria, including pair-wise anova comparisons significantly different at P < or = 0.05 and induction or repression of transcript levels by at least fourfold, we found that out of 30 171 probe sets on the microarray, 1345 probe sets were significantly affected by chilling in both control and CD-treated fruits, 509 probe sets were affected by chilling specifically in the CD-treated fruits, and 417 probe sets were specifically expressed in chilling-sensitive control fruits. Overall, exposure to chilling led to expression arrest of general cellular metabolic activity, including concretive down-regulation of cell wall, pathogen defence, photosynthesis, respiration, and protein, nucleic acid and secondary metabolism. On the other hand, chilling enhanced adaptation processes that involve changes in the expression of transcripts related to membranes, lipid, sterol and carbohydrate metabolism, stress stimuli, hormone biosynthesis, and modifications in DNA binding and transcription factors.
Collapse
Affiliation(s)
- Pilar Maul
- United States Department of Agriculture, US Horticultural Research Laboratory, 2001 S. Rock Road, Fort Pierce, FL 34945, USA
| | | | | | | | | |
Collapse
|
41
|
Hancock RD, Chudek JA, Walker PG, Pont SDA, Viola R. Ascorbic acid conjugates isolated from the phloem of Cucurbitaceae. PHYTOCHEMISTRY 2008; 69:1850-1858. [PMID: 18472116 DOI: 10.1016/j.phytochem.2008.03.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Revised: 03/24/2008] [Accepted: 03/28/2008] [Indexed: 05/26/2023]
Abstract
Analysis of phloem exudates from the fruit of Cucurbitaceae revealed the presence of several compounds with UV-visible absorption spectra identical to that of l-ascorbic acid. In Cucurbita pepo L. (zucchini), the compounds could be isolated from phloem exudates collected from aerial parts of the plant but were not detected in whole tissue homogenates. The compounds isolated from the phloem exudates of C. pepo fruit were eluted from strong anion exchange resin in the same fraction as l-ascorbic acid and were oxidised by ascorbate oxidase (E.C. 1.10.3.3). The major compound purified from C. pepo fruit exudates demonstrated similar redox properties to l-ascorbic acid and synthetic 6-O-glucosyl-l-ascorbic acid (6-GlcAsA) but differed from those of 2-O-glucosyl-l-ascorbic acid (2-GlcAsA) isolated from the fruit of Lycium barbarum L. Parent and fragment ion masses of the compound were consistent with hexosyl-ascorbate in which the hexose moiety was attached to C5 or C6 of AsA. Acid hydrolysis of the major C. pepo compound resulted in the formation of l-ascorbic acid and glucose. The purified compound yielded a proton NMR spectrum that was almost identical to that of synthetic 6-GlcAsA. A series of l-ascorbic acid conjugates have, therefore, been identified in the phloem of Cucurbitaceae and the most abundant conjugate has been identified as 6-GlcAsA. The potential role of such conjugates in the long-distance transport of l-ascorbic acid is discussed.
Collapse
Affiliation(s)
- Robert D Hancock
- Scottish Crop Research Institute, Plant Products and Food Quality, Invergowrie, Dundee DD2 5DA, United Kingdom.
| | | | | | | | | |
Collapse
|
42
|
Hancock RD, Walker PG, Pont SDA, Marquis N, Vivera S, Gordon SL, Brennan RM, Viola R. L-Ascorbic acid accumulation in fruit of Ribes nigrum occurs by in situ biosynthesis via the L-galactose pathway. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 34:1080-1091. [PMID: 32689438 DOI: 10.1071/fp07221] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 10/22/2007] [Indexed: 06/11/2023]
Abstract
Blackcurrant (Ribes nigrum L.) is a widely grown commercial crop valued for its high vitamin C (l-ascorbic acid, AsA) content. In the present study, a systematic analysis of the mechanism of fruit AsA accumulation was undertaken. AsA accumulation occurred during fruit expansion and was associated with high in situ biosynthetic capacity via the l-galactose pathway and low rates of turnover. Cessation of AsA accumulation was associated with reduced biosynthesis and increased turnover. Translocation of AsA from photosynthetic or vegetative tissues contributed little to fruit AsA accumulation. Manipulation of substrate availability by defoliation had no effect on fruit AsA concentration but significantly reduced fruit yields. Supply of the AsA precursor l-galactono-1,4-lactone to intact, attached fruit transiently increased fruit AsA concentration which rapidly returned to control levels after removal of the compound. These data suggest strong developmental, metabolic and genetic control of AsA accumulation in blackcurrant fruit and indicate the potential for breeding high AsA cultivars.
Collapse
Affiliation(s)
- Robert D Hancock
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Paul G Walker
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Simon D A Pont
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Nicola Marquis
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Sebastian Vivera
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Sandra L Gordon
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Rex M Brennan
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Roberto Viola
- IASMA, Via E. Mach, S. Michele all'Adige, I-38010, Trento, Italy
| |
Collapse
|
43
|
Dowdle J, Ishikawa T, Gatzek S, Rolinski S, Smirnoff N. Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:673-89. [PMID: 17877701 DOI: 10.1111/j.1365-313x.2007.03266.x] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plants synthesize ascorbate from guanosine diphosphate (GDP)-mannose via L-galactose/L-gulose, although uronic acids have also been proposed as precursors. Genes encoding all the enzymes of the GDP-mannose pathway have previously been identified, with the exception of the step that converts GDP-L-galactose to L-galactose 1-P. We show that a GDP-L-galactose phosphorylase, encoded by the Arabidopsis thaliana VTC2 gene, catalyses this step in the ascorbate biosynthetic pathway. Furthermore, a homologue of VTC2, At5g55120, encodes a second GDP-L-galactose phosphorylase with similar properties to VTC2. Two At5g55120 T-DNA insertion mutants (vtc5-1 and vtc5-2) have 80% of the wild-type ascorbate level. Double mutants were produced by crossing the loss-of-function vtc2-1 mutant with each of the two vtc5 alleles. These show growth arrest immediately upon germination and the cotyledons subsequently bleach. Normal growth was restored by supplementation with ascorbate or L-galactose, indicating that both enzymes are necessary for ascorbate generation. vtc2-1 leaves contain more mannose 6-P than wild-type. We conclude that the GDP-mannose pathway is the only significant source of ascorbate in A. thaliana seedlings, and that ascorbate is essential for seedling growth. A. thaliana leaves accumulate more ascorbate after acclimatization to high light intensity. VTC2 expression and GDP-L-galactose phosphorylase activity rapidly increase on transfer to high light, but the activity of other enzymes in the GDP-mannose pathway is little affected. VTC2 and At5g55120 (VTC5) expression also peak in at the beginning of the light cycle and are controlled by the circadian clock. The GDP-L-galactose phosphorylase step may therefore play an important role in controlling ascorbate biosynthesis.
Collapse
Affiliation(s)
- John Dowdle
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | | | | | | | | |
Collapse
|
44
|
Wolucka BA, Van Montagu M. The VTC2 cycle and the de novo biosynthesis pathways for vitamin C in plants: an opinion. PHYTOCHEMISTRY 2007; 68:2602-13. [PMID: 17950389 DOI: 10.1016/j.phytochem.2007.08.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 08/22/2007] [Indexed: 05/18/2023]
Abstract
The recent identification of the VTC2 enzyme (GDP-l-galactose: hexose 1-phosphate guanylyltransferase) that forms with the GDP-mannose 3'',5'' epimerase an energy-conserving hub for the production of GDP-hexoses and l-galactose 1-phosphate [Laing et al., Proc. Natl. Acad. Sci. USA 104, 2007, 9534-9539], is a major breakthrough in our understanding of the biosynthesis of l-ascorbic acid (vitamin C) in plants. The observation that the VTC2 enzyme can use glucose 1-phosphate and GDP-d-glucose as substrates, and the long-known existence of an enigmatic GDP-d-mannose 2''-epimerase activity, have led us to the proposal of an extended VTC2 cycle that links photosynthesis with the biosynthesis of vitamin C and the cell-wall metabolism in plants. An evolutionary scenario is discussed for the acquisition of genes of eubacterial origin for the de novo synthesis of l-ascorbic acid in green algae and plants.
Collapse
Affiliation(s)
- Beata A Wolucka
- Laboratory of Mycobacterial Biochemistry, Institute of Public Health, 642 Engeland Street, B-1180 Brussels, Belgium.
| | | |
Collapse
|
45
|
Badejo AA, Jeong ST, Goto-Yamamoto N, Esaka M. Cloning and expression of GDP-D-mannose pyrophosphorylase gene and ascorbic acid content of acerola (Malpighia glabra L.) fruit at ripening stages. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2007; 45:665-72. [PMID: 17764967 DOI: 10.1016/j.plaphy.2007.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 07/17/2007] [Indexed: 05/09/2023]
Abstract
Acerola (Malpighia glabra L.) is one of the richest natural sources of L-ascorbic acid (AsA; vitamin C). GDP-D-mannose pyrophosphorylase (GMP; EC 2.7.7.13) was found to play a major role in the proposed AsA biosynthetic pathway in plants, considering that Arabidopsis vtc1-1 mutant with point mutation in this gene has a highly reduced AsA content. GMP cDNA was isolated from acerola fruits, designated MgGMP, using rapid amplification of cDNA ends (RACE), and its expression was monitored during fruit ripening. The full-length cDNA was found to have an ORF of 1083bp encoding a polypeptide of 361 amino acids. In silico analysis of the predicted amino acid sequence showed a pI of 6.45 and molecular mass of 39.7kD. MgGMP showed over 80% amino acid sequence identity with other plant GMP homologues. The phylogenetic tree shows the close relation of MgGMP to the GMP of other plants as against those from parasite, yeasts and mammals. Southern analysis indicated that M. glabra contains not less than two copies of GMP genes. Northern blot analysis showed the transcript abundance of MgGMP in all the organs of acerola examined, with the fruit having the highest expression. The relative transcript abundance of MgGMP mRNA levels in the fruits changes as the ripening process progresses, with the unripe green fruits having the highest relative mRNA level, and the lowest was found in the fruits at advanced ripening stage. A strong correlation was also observed between the relative MgGMP mRNA levels and the AsA contents of acerola during fruit ripening.
Collapse
Affiliation(s)
- Adebanjo A Badejo
- Graduate School of Biosphere Sciences, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | | | | | | |
Collapse
|
46
|
Laing WA, Wright MA, Cooney J, Bulley SM. The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, an L-galactose guanyltransferase, increases leaf ascorbate content. Proc Natl Acad Sci U S A 2007; 104:9534-9. [PMID: 17485667 PMCID: PMC1866185 DOI: 10.1073/pnas.0701625104] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Indexed: 11/18/2022] Open
Abstract
The gene for one postulated enzyme that converts GDP-L-galactose to L-galactose-1-phosphate is unknown in the L-galactose pathway of ascorbic acid biosynthesis and a possible candidate identified through map-based cloning is the uncharacterized gene At4g26850. We identified a putative function for At4g26850 using PSI-Blast and motif searching to show it was a member of the histidine triad superfamily, which includes D-galactose uridyltransferase. We cloned and expressed this Arabidopsis gene and the homologous gene from Actinidia chinensis in Escherichia coli and assayed the expressed protein for activities related to converting GDP-L-galactose to L-galactose-1-P. The expressed protein is best described as a GDP-L-galactose-hexose-1-phosphate guanyltransferase (EC 2.7.7.), catalyzing the transfer of GMP from GDP-l-galactose to a hexose-1-P, most likely D-mannose-1-phosphate in vivo. Transient expression of this A. chinensis gene in tobacco leaves resulted in a >3-fold increase in leaf ascorbate as well as a 50-fold increase in GDP-L-galactose-D-mannose-1-phosphate guanyltransferase activity.
Collapse
Affiliation(s)
- William A Laing
- Horticultural and Food Research Institute of New Zealand, PB 92160, Auckland 1142, New Zealand.
| | | | | | | |
Collapse
|
47
|
Linster CL, Gomez TA, Christensen KC, Adler LN, Young BD, Brenner C, Clarke SG. Arabidopsis VTC2 encodes a GDP-L-galactose phosphorylase, the last unknown enzyme in the Smirnoff-Wheeler pathway to ascorbic acid in plants. J Biol Chem 2007; 282:18879-85. [PMID: 17462988 PMCID: PMC2556065 DOI: 10.1074/jbc.m702094200] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The first committed step in the biosynthesis of L-ascorbate from D-glucose in plants requires conversion of GDP-L-galactose to L-galactose 1-phosphate by a previously unidentified enzyme. Here we show that the protein encoded by VTC2, a gene mutated in vitamin C-deficient Arabidopsis thaliana strains, is a member of the GalT/Apa1 branch of the histidine triad protein superfamily that catalyzes the conversion of GDP-L-galactose to L-galactose 1-phosphate in a reaction that consumes inorganic phosphate and produces GDP. In characterizing recombinant VTC2 from A. thaliana as a specific GDP-L-galactose/GDP-D-glucose phosphorylase, we conclude that enzymes catalyzing each of the ten steps of the Smirnoff-Wheeler pathway from glucose to ascorbate have been identified. Finally, we identify VTC2 homologs in plants, invertebrates, and vertebrates, suggesting that a similar reaction is used widely in nature.
Collapse
Affiliation(s)
- Carole L Linster
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Ingle RA, Schmidt UG, Farrant JM, Thomson JA, Mundree SG. Proteomic analysis of leaf proteins during dehydration of the resurrection plant Xerophyta viscosa. PLANT, CELL & ENVIRONMENT 2007; 30:435-46. [PMID: 17324230 DOI: 10.1111/j.1365-3040.2006.01631.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The desiccation-tolerant phenotype of angiosperm resurrection plants is thought to rely on the induction of protective mechanisms that maintain cellular integrity during water loss. Two-dimensional (2D) sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the Xerophyta viscosa Baker proteome was carried out during dehydration to identify proteins that may play a role in such mechanisms. Quantitative analysis revealed a greater number of changes in protein expression levels at 35% than at 65% relative water content (RWC) compared to fully hydrated plants, and 17 dehydration-responsive proteins were identified by tandem mass spectrometry (MS). Proteins showing increased abundance during drying included an RNA-binding protein, chloroplast FtsH protease, glycolytic enzymes and antioxidants. A number of photosynthetic proteins declined sharply in abundance in X. viscosa at RWC below 65%, including four components of photosystem II (PSII), and Western blot analysis confirmed that two of these (psbP and Lhcb2) were not detectable at 30% RWC. These data confirm that poikilochlorophylly in X. viscosa involves the breakdown of photosynthetic proteins during dismantling of the thylakoid membranes. In contrast, levels of these photosynthetic proteins were largely maintained during dehydration in the homoiochlorophyllous species Craterostigma plantagineum Hochst, which does not dismantle thylakoid membranes on drying.
Collapse
Affiliation(s)
- Robert A Ingle
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
| | | | | | | | | |
Collapse
|
49
|
Qian W, Yu C, Qin H, Liu X, Zhang A, Johansen IE, Wang D. Molecular and functional analysis of phosphomannomutase (PMM) from higher plants and genetic evidence for the involvement of PMM in ascorbic acid biosynthesis in Arabidopsis and Nicotiana benthamiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:399-413. [PMID: 17217471 DOI: 10.1111/j.1365-313x.2006.02967.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Phosphomannomutase (PMM) catalyzes the interconversion of mannose-6-phosphate and mannose-1-phosphate. However, systematic molecular and functional investigations on PMM from higher plants have hitherto not been reported. In this work, PMM cDNAs were isolated from Arabidopsis, Nicotiana benthamiana, soybean, tomato, rice and wheat. Amino acid sequence comparisons indicated that plant PMM proteins exhibited significant identity to their fungal and mammalian orthologs. In line with the similarity in primary structure, plant PMM complemented the sec53-6 temperature sensitive mutant of Saccharomyces cerevisiae. Histidine-tagged Arabidopsis PMM (AtPMM) purified from Escherichia coli converted mannose-1-phosphate into mannose-6-phosphate and glucose-1-phosphate into glucose-6-phosphate, with the former reaction being more efficient than the latter one. In Arabidopsis and N. benthamiana, PMM was constitutively expressed in both vegetative and reproductive organs. Reducing the PMM expression level through virus-induced gene silencing caused a substantial decrease in ascorbic acid (AsA) content in N. benthamiana leaves. Conversely, raising the PMM expression level in N. benthamiana using viral-vector-mediated ectopic expression led to a 20-50% increase in AsA content. Consistent with this finding, transgenic expression of an AtPMM-GFP fusion protein in Arabidopsis also increased AsA content by 25-33%. Collectively, this study improves our understanding on the molecular and functional properties of plant PMM and provides genetic evidence on the involvement of PMM in the biosynthesis of AsA in Arabidopsis and N. benthamiana plants.
Collapse
Affiliation(s)
- Weiqiang Qian
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Wolucka BA, Communi D. Mycobacterium tuberculosispossesses a functional enzyme for the synthesis of vitamin C,L-gulono-1,4-lactone dehydrogenase. FEBS J 2006; 273:4435-45. [PMID: 16956367 DOI: 10.1111/j.1742-4658.2006.05443.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The last step of the biosynthesis of L-ascorbic acid (vitamin C) in plants and animals is catalyzed by L-gulono-1,4-lactone oxidoreductases, which use both L-gulono-1,4-lactone and L-galactono-1,4-lactone as substrates. L-gulono-1,4-lactone oxidase is missing in scurvy-prone, vitamin C-deficient animals, such as humans and guinea pigs, which are also highly susceptible to tuberculosis. A blast search using the rat L-gulono-1,4-lactone oxidase sequence revealed the presence of closely related orthologs in a limited number of bacterial species, including several pathogens of human lungs, such as Mycobacterium tuberculosis, Pseudomonas aeruginosa, Burkholderia cepacia and Bacillus anthracis. The genome of M. tuberculosis, the etiologic agent of tuberculosis, encodes a protein (Rv1771) that shows 32% identity with the rat L-gulono-1,4-lactone oxidase protein. The Rv1771 gene was cloned and expressed in Escherichia coli, and the corresponding protein was affinity-purified and characterized. The FAD-binding motif-containing Rv1771 protein is a metalloenzyme that oxidizes L-gulono-1,4-lactone (Km 5.5 mm) but not L-galactono-1,4-lactone. The enzyme has a dehydrogenase activity and can use both cytochrome c (Km 4.7 microm) and phenazine methosulfate as exogenous electron acceptors. Molecular oxygen does not serve as a substrate for the Rv1771 protein. Dehydrogenase activity was measured in cellular extracts of a Mycobacterium bovis BCG strain. In conclusion, M. tuberculosis produces a novel, highly specific L-gulono-1,4-lactone dehydrogenase (Rv1771) and has the capacity to synthesize vitamin C.
Collapse
Affiliation(s)
- Beata A Wolucka
- Laboratory of Mycobacterial Biochemistry, Pasteur Institute of Brussels, Institute of Public Health, Belgium.
| | | |
Collapse
|