1
|
Chen J, Liu L, Wang G, Chen G, Liu X, Li M, Han L, Song W, Wang S, Li C, Wang Z, Huang Y, Gu C, Yang Z, Zhou Z, Zhao J, Zhang X. The AGAMOUS-LIKE 16-GENERAL REGULATORY FACTOR 1 module regulates axillary bud outgrowth via catabolism of abscisic acid in cucumber. THE PLANT CELL 2024; 36:2689-2708. [PMID: 38581430 PMCID: PMC11218829 DOI: 10.1093/plcell/koae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/02/2024] [Accepted: 03/01/2024] [Indexed: 04/08/2024]
Abstract
Lateral branches are important components of shoot architecture and directly affect crop yield and production cost. Although sporadic studies have implicated abscisic acid (ABA) biosynthesis in axillary bud outgrowth, the function of ABA catabolism and its upstream regulators in shoot branching remain elusive. Here, we showed that the MADS-box transcription factor AGAMOUS-LIKE 16 (CsAGL16) is a positive regulator of axillary bud outgrowth in cucumber (Cucumis sativus). Functional disruption of CsAGL16 led to reduced bud outgrowth, whereas overexpression of CsAGL16 resulted in enhanced branching. CsAGL16 directly binds to the promoter of the ABA 8'-hydroxylase gene CsCYP707A4 and promotes its expression. Loss of CsCYP707A4 function inhibited axillary bud outgrowth and increased ABA levels. Elevated expression of CsCYP707A4 or treatment with an ABA biosynthesis inhibitor largely rescued the Csagl16 mutant phenotype. Moreover, cucumber General Regulatory Factor 1 (CsGRF1) interacts with CsAGL16 and antagonizes CsAGL16-mediated CsCYP707A4 activation. Disruption of CsGRF1 resulted in elongated branches and decreased ABA levels in the axillary buds. The Csagl16 Csgrf1 double mutant exhibited a branching phenotype resembling that of the Csagl16 single mutant. Therefore, our data suggest that the CsAGL16-CsGRF1 module regulates axillary bud outgrowth via CsCYP707A4-mediated ABA catabolism in cucumber. Our findings provide a strategy to manipulate ABA levels in axillary buds during crop breeding to produce desirable branching phenotypes.
Collapse
Affiliation(s)
- Jiacai Chen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Liu Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Guanghui Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Guangxin Chen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaofeng Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Min Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Lijie Han
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Weiyuan Song
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Shaoyun Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Chuang Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Zhongyi Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Yuxiang Huang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Chaoheng Gu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Zhengan Yang
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Zhaoyang Zhou
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Jianyu Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaolan Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Xu M, Hu Z, Lai W, Liu S, Wu H, Zhou Y. Comprehensive analysis of 14-3-3 family genes and their responses to cold and drought stress in cucumber. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:1264-1276. [PMID: 34635203 DOI: 10.1071/fp21022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
The 14-3-3 proteins play essential roles in regulating various biological processes and abiotic stress responses in plants. However, there have been few studies of 14-3-3 family members in cucumber. Here, we identified a total of ten 14-3-3 genes (named as CsGF14a-j) in the cucumber genome. These genes are unevenly distributed across six cucumber chromosomes, and six of them were found to be segmentally duplicated. A phylogenetic analysis of 14-3-3 proteins in cucumber and other plant species showed that they could be divided into two distinct groups (ε and non-ε). Members in the same group tend to have similar exon-intron structure and conserved motif patterns. Several hormone-, stress- and development-related cis-elements associated with transcriptional regulation were found in the promoters of CsGF14 genes. RNA-seq data showed that most CsGF14 genes have broad expression in different tissues, and some had preferential expression in specific tissues and variable expression at certain developmental stages during fruit development. Quantitative real-time PCR (qRT-PCR) results revealed that nearly all tested CsGF14 genes were significantly up-regulated under cold and drought stress at certain time points. These results provide important information about the functions of CsGF14 genes in cucumber.
Collapse
Affiliation(s)
- Mingyuan Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhaoyang Hu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wei Lai
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shiqiang Liu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hao Wu
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Yong Zhou
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
3
|
Zhang S, Ghatak A, Bazargani MM, Bajaj P, Varshney RK, Chaturvedi P, Jiang D, Weckwerth W. Spatial distribution of proteins and metabolites in developing wheat grain and their differential regulatory response during the grain filling process. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:669-687. [PMID: 34227164 PMCID: PMC9291999 DOI: 10.1111/tpj.15410] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/06/2021] [Accepted: 06/25/2021] [Indexed: 05/03/2023]
Abstract
Grain filling and grain development are essential biological processes in the plant's life cycle, eventually contributing to the final seed yield and quality in all cereal crops. Studies of how the different wheat (Triticum aestivum L.) grain components contribute to the overall development of the seed are very scarce. We performed a proteomics and metabolomics analysis in four different developing components of the wheat grain (seed coat, embryo, endosperm, and cavity fluid) to characterize molecular processes during early and late grain development. In-gel shotgun proteomics analysis at 12, 15, 20, and 26 days after anthesis (DAA) revealed 15 484 identified and quantified proteins, out of which 410 differentially expressed proteins were identified in the seed coat, 815 in the embryo, 372 in the endosperm, and 492 in the cavity fluid. The abundance of selected protein candidates revealed spatially and temporally resolved protein functions associated with development and grain filling. Multiple wheat protein isoforms involved in starch synthesis such as sucrose synthases, starch phosphorylase, granule-bound and soluble starch synthase, pyruvate phosphate dikinase, 14-3-3 proteins as well as sugar precursors undergo a major tissue-dependent change in abundance during wheat grain development suggesting an intimate interplay of starch biosynthesis control. Different isoforms of the protein disulfide isomerase family as well as glutamine levels, both involved in the glutenin macropolymer pattern, showed distinct spatial and temporal abundance, revealing their specific role as indicators of wheat gluten quality. Proteins binned into the functional category of cell growth/division and protein synthesis/degradation were more abundant in the early stages (12 and 15 DAA). At the metabolome level all tissues and especially the cavity fluid showed highly distinct metabolite profiles. The tissue-specific data are integrated with biochemical networks to generate a comprehensive map of molecular processes during grain filling and developmental processes.
Collapse
Affiliation(s)
- Shuang Zhang
- Department of Functional and Evolutionary EcologyMolecular Systems Biology Lab (MOSYS)University of ViennaAlthanstrasse 14ViennaA‐1090Austria
| | - Arindam Ghatak
- Department of Functional and Evolutionary EcologyMolecular Systems Biology Lab (MOSYS)University of ViennaAlthanstrasse 14ViennaA‐1090Austria
| | | | - Prasad Bajaj
- Centre of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)Hyderabad502324India
| | - Rajeev K. Varshney
- Centre of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)Hyderabad502324India
- State Agricultural Biotechnology CentreCentre for Crop and Food InnovationMurdoch UniversityMurdochWA6150Australia
| | - Palak Chaturvedi
- Department of Functional and Evolutionary EcologyMolecular Systems Biology Lab (MOSYS)University of ViennaAlthanstrasse 14ViennaA‐1090Austria
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop EcophysiologyMinistry of Agriculture/Nanjing Agricultural UniversityNanjing210095China
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary EcologyMolecular Systems Biology Lab (MOSYS)University of ViennaAlthanstrasse 14ViennaA‐1090Austria
- Vienna Metabolomics Center (VIME)University of ViennaAlthanstrasse 14ViennaA‐1090Austria
| |
Collapse
|
4
|
Genome-wide analysis of RING-type E3 ligase family identifies potential candidates regulating high amylose starch biosynthesis in wheat (Triticum aestivum L.). Sci Rep 2021; 11:11461. [PMID: 34075092 PMCID: PMC8169666 DOI: 10.1038/s41598-021-90685-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/10/2021] [Indexed: 12/02/2022] Open
Abstract
In ubiquitin-mediated post-translational modifications, RING finger families are emerged as important E3 ligases in regulating biological processes. Amylose and amylopectin are two major constituents of starch in wheat seed endosperm. Studies have been found the beneficial effects of high amylose or resistant starch on health. The ubiquitin-mediated post-translational regulation of key enzymes for amylose/amylopectin biosynthesis (GBSSI and SBEII) is still unknown. In this study, the genome-wide analysis identified 1272 RING domains in 1255 proteins in wheat, which is not reported earlier. The identified RING domains classified into four groups—RING-H2, RING-HC, RING-v, RING-G, based on the amino acid residues (Cys, His) at metal ligand positions and the number of residues between them with the predominance of RING-H2 type. A total of 1238 RING protein genes were found to be distributed across all 21 wheat chromosomes. Among them, 1080 RING protein genes were identified to show whole genome/segmental duplication within the hexaploid wheat genome. In silico expression analysis using transcriptome data revealed 698 RING protein genes, having a possible role in seed development. Based on differential gene expression and correlation analysis of 36 RING protein genes in diverse (high and low) amylose mutants and parent, 10 potential RING protein genes found to be involved in high amylose biosynthesis and significantly associated with two starch biosynthesis genes; GBSSI and SBEIIa. Characterization of mutant lines using next-generation sequencing method identified unique mutations in 698 RING protein genes. This study signifies the putative role of RING-type E3 ligases in amylose biosynthesis and this information will be helpful for further functional validation and its role in other biological processes in wheat.
Collapse
|
5
|
Tang J, Sun Z, Chen Q, Damaris RN, Lu B, Hu Z. Nitrogen Fertilizer Induced Alterations in The Root Proteome of Two Rice Cultivars. Int J Mol Sci 2019; 20:ijms20153674. [PMID: 31357526 PMCID: PMC6695714 DOI: 10.3390/ijms20153674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/20/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022] Open
Abstract
Nitrogen (N) is an essential nutrient for plants and a key limiting factor of crop production. However, excessive application of N fertilizers and the low nitrogen use efficiency (NUE) have brought in severe damage to the environment. Therefore, improving NUE is urgent and critical for the reductions of N fertilizer pollution and production cost. In the present study, we investigated the effects of N nutrition on the growth and yield of the two rice (Oryza sativa L.) cultivars, conventional rice Huanghuazhan and indica hybrid rice Quanliangyou 681, which were grown at three levels of N fertilizer (including 135, 180 and 225 kg/hm2, labeled as N9, N12, N15, respectively). Then, a proteomic approach was employed in the roots of the two rice cultivars treated with N fertilizer at the level of N15. A total of 6728 proteins were identified, among which 6093 proteins were quantified, and 511 differentially expressed proteins were found in the two rice cultivars after N fertilizer treatment. These differentially expressed proteins were mainly involved in ammonium assimilation, amino acid metabolism, carbohydrate metabolism, lipid metabolism, signal transduction, energy production/regulation, material transport, and stress/defense response. Together, this study provides new insights into the regulatory mechanism of nitrogen fertilization in cereal crops.
Collapse
Affiliation(s)
- Jichao Tang
- Hubei Collaborative Innovation Center for Grain Industry, Agricultural college, Yangtze University, Jingzhou 434025, China
| | - Zhigui Sun
- Hubei Collaborative Innovation Center for Grain Industry, Agricultural college, Yangtze University, Jingzhou 434025, China
| | - Qinghua Chen
- Hubei Collaborative Innovation Center for Grain Industry, Agricultural college, Yangtze University, Jingzhou 434025, China
| | - Rebecca Njeri Damaris
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Bilin Lu
- Hubei Collaborative Innovation Center for Grain Industry, Agricultural college, Yangtze University, Jingzhou 434025, China.
| | - Zhengrong Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
6
|
Lloyd JR, Kossmann J. Starch Trek: The Search for Yield. FRONTIERS IN PLANT SCIENCE 2019; 9:1930. [PMID: 30719029 PMCID: PMC6348371 DOI: 10.3389/fpls.2018.01930] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/12/2018] [Indexed: 05/27/2023]
Abstract
Starch is a plant storage polyglucan that accumulates in plastids. It is composed of two polymers, amylose and amylopectin, with different structures and plays several roles in helping to determine plant yield. In leaves, it acts as a buffer for night time carbon starvation. Genetically altered plants that cannot synthesize or degrade starch efficiently often grow poorly. There have been a number of successful approaches to manipulate leaf starch metabolism that has resulted in increased growth and yield. Its degradation is also a source of sugars that can help alleviate abiotic stress. In edible parts of plants, starch often makes up the majority of the dry weight constituting much of the calorific value of food and feed. Increasing starch in these organs can increase this as well as increasing yield. Enzymes involved in starch metabolism are well known, and there has been much research analyzing their functions in starch synthesis and degradation, as well as genetic and posttranslational regulatory mechanisms affecting them. In this mini review, we examine work on this topic and discuss future directions that could be used to manipulate this metabolite for improved yield.
Collapse
Affiliation(s)
| | - Jens Kossmann
- Department of Genetics, Institute for Plant Biotechnology, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
7
|
Faddetta T, Abbate L, Renzone G, Palumbo Piccionello A, Maggio A, Oddo E, Scaloni A, Puglia AM, Gallo G, Carimi F, Fatta Del Bosco S, Mercati F. An integrated proteomic and metabolomic study to evaluate the effect of nucleus-cytoplasm interaction in a diploid citrus cybrid between sweet orange and lemon. PLANT MOLECULAR BIOLOGY 2018; 98:407-425. [PMID: 30341661 DOI: 10.1007/s11103-018-0787-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
Our results provide a comprehensive overview how the alloplasmic condition might lead to a significant improvement in citrus plant breeding, developing varieties more adaptable to a wide range of conditions. Citrus cybrids resulting from somatic hybridization hold great potential in plant improvement. They represent effective products resulting from the transfer of organelle-encoded traits into cultivated varieties. In these cases, the plant coordinated array of physiological, biochemical, and molecular functions remains the result of integration among different signals, which derive from the compartmentalized genomes of nucleus, plastids and mitochondria. To dissect the effects of genome rearrangement into cybrids, a multidisciplinary study was conducted on a diploid cybrid (C2N), resulting from a breeding program aimed to improve interesting agronomical traits for lemon, the parental cultivars 'Valencia' sweet orange (V) and 'femminello' lemon (F), and the corresponding somatic allotetraploid hybrid (V + F). In particular, a differential proteomic analysis, based on 2D-DIGE and MS procedures, was carried out on leaf proteomes of C2N, V, F and V + F, using the C2N proteome as pivotal condition. This investigation revealed differentially represented protein patterns that can be associated with genome rearrangement and cell compartment interplay. Interestingly, most of the up-regulated proteins in the cybrid are involved in crucial biological processes such as photosynthesis, energy production and stress tolerance response. The cybrid differential proteome pattern was concomitant with a general increase of leaf gas exchange and content of volatile organic compounds, highlighting a stimulation of specific pathways that can be related to observed plant performances. Our results contribute to a better understanding how the alloplasmic condition might lead to a substantial improvement in plant breeding, opening new opportunities to develop varieties more adaptable to a wide range of conditions.
Collapse
Affiliation(s)
- Teresa Faddetta
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
- Advanced Technologies Network (ATeN) Center, University of Palermo, Palermo, Italy
| | - Loredana Abbate
- Institute of Biosciences and Bioresources (IBBR), National Research Council, Palermo, Italy
| | - Giovanni Renzone
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Antonio Palumbo Piccionello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Antonella Maggio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Elisabetta Oddo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Anna Maria Puglia
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Giuseppe Gallo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
- Advanced Technologies Network (ATeN) Center, University of Palermo, Palermo, Italy
| | - Francesco Carimi
- Institute of Biosciences and Bioresources (IBBR), National Research Council, Palermo, Italy
| | - Sergio Fatta Del Bosco
- Institute of Biosciences and Bioresources (IBBR), National Research Council, Palermo, Italy
| | - Francesco Mercati
- Institute of Biosciences and Bioresources (IBBR), National Research Council, Palermo, Italy.
| |
Collapse
|
8
|
Ma D, Huang X, Hou J, Ma Y, Han Q, Hou G, Wang C, Guo T. Quantitative analysis of the grain amyloplast proteome reveals differences in metabolism between two wheat cultivars at two stages of grain development. BMC Genomics 2018; 19:768. [PMID: 30355308 PMCID: PMC6201562 DOI: 10.1186/s12864-018-5174-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/16/2018] [Indexed: 01/15/2023] Open
Abstract
Background Wheat (Triticum aestivum L.) is one of the world’s most important grain crops. The amyloplast, a specialized organelle, is the major site for starch synthesis and storage in wheat grain. Understanding the metabolism in amyloplast during grain development in wheat cultivars with different quality traits will provide useful information for potential yield and quality improvement. Results Two wheat cultivars, ZM366 and YM49–198 that differ in kernel hardness and starch characteristics, were used to examine the metabolic changes in amyloplasts at 10 and 15 days after anthesis (DAA) using label-free-based proteome analysis. We identified 523 differentially expressed proteins (DEPs) between 10 DAA and 15 DAA, and 229 DEPs between ZM366 and YM49–198. These DEPs mainly participate in eight biochemical processes: carbohydrate metabolism, nitrogen metabolism, stress/defense, transport, energetics-related, signal transduction, protein synthesis/assembly/degradation, and nucleic acid-related processes. Among these proteins, the DEPs showing higher expression levels at 10 DAA are mainly involved in carbohydrate metabolism, stress/defense, and nucleic acid related processes, whereas DEPs with higher expression levels at 15 DAA are mainly carbohydrate metabolism, energetics-related, and transport-related proteins. Among the DEPs between the two cultivars, ZM366 had more up-regulated proteins than YM49–198, and these are mainly involved in carbohydrate metabolism, nucleic acid-related processes, and transport. Conclusions The results of our study indicate that wheat grain amyloplast has the broad metabolic capability. The DEPs involved in carbohydrate metabolism, nucleic acids, stress/defense, and transport processes, with grain development and cultivar differences, are possibly responsible for different grain characteristics, especially with respect to yield and quality-related traits. Electronic supplementary material The online version of this article (10.1186/s12864-018-5174-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dongyun Ma
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450002, China. .,The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xin Huang
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450002, China
| | - Junfeng Hou
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ying Ma
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qiaoxia Han
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450002, China
| | - Gege Hou
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chenyang Wang
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450002, China.,The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Tiancai Guo
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
9
|
Inomata T, Baslam M, Masui T, Koshu T, Takamatsu T, Kaneko K, Pozueta-Romero J, Mitsui T. Proteomics Analysis Reveals Non-Controlled Activation of Photosynthesis and Protein Synthesis in a Rice npp1 Mutant under High Temperature and Elevated CO₂ Conditions. Int J Mol Sci 2018; 19:ijms19092655. [PMID: 30205448 PMCID: PMC6165220 DOI: 10.3390/ijms19092655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 11/26/2022] Open
Abstract
Rice nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) catalyzes the hydrolytic breakdown of the pyrophosphate and phosphodiester bonds of a number of nucleotides including ADP-glucose and ATP. Under high temperature and elevated CO2 conditions (HT + ECO2), the npp1 knockout rice mutant displayed rapid growth and high starch content phenotypes, indicating that NPP1 exerts a negative effect on starch accumulation and growth. To gain further insight into the mechanisms involved in the NPP1 downregulation induced starch overaccumulation, in this study we conducted photosynthesis, leaf proteomic, and chloroplast phosphoproteomic analyses of wild-type (WT) and npp1 plants cultured under HT + ECO2. Photosynthesis in npp1 leaves was significantly higher than in WT. Additionally, npp1 leaves accumulated higher levels of sucrose than WT. The proteomic analyses revealed upregulation of proteins related to carbohydrate metabolism and the protein synthesis system in npp1 plants. Further, our data indicate the induction of 14-3-3 proteins in npp1 plants. Our finding demonstrates a higher level of protein phosphorylation in npp1 chloroplasts, which may play an important role in carbohydrate accumulation. Together, these results offer novel targets and provide additional insights into carbohydrate metabolism regulation under ambient and adverse conditions.
Collapse
Affiliation(s)
- Takuya Inomata
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan.
| | - Marouane Baslam
- Department of Biochemistry, Niigata University, Niigata 950-218, Japan.
| | - Takahiro Masui
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan.
| | - Tsutomu Koshu
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan.
| | - Takeshi Takamatsu
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan.
- Department of Biochemistry, Niigata University, Niigata 950-218, Japan.
| | - Kentaro Kaneko
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan.
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología (CSIC, UPNA, Gobierno de Navarra), Mutiloako Etorbidea Zenbaki Gabe, 31192 Mutiloabeti, Nafarroa, Spain.
| | - Toshiaki Mitsui
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan.
- Department of Biochemistry, Niigata University, Niigata 950-218, Japan.
| |
Collapse
|
10
|
Cheng C, Wang Y, Chai F, Li S, Xin H, Liang Z. Genome-wide identification and characterization of the 14-3-3 family in Vitis vinifera L. during berry development and cold- and heat-stress response. BMC Genomics 2018; 19:579. [PMID: 30068289 PMCID: PMC6090852 DOI: 10.1186/s12864-018-4955-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 07/23/2018] [Indexed: 11/11/2022] Open
Abstract
Background The 14–3-3 family of ubiquitous proteins in eukaryotes plays important roles in the regulation of various plant biological processes. However, less information is known about this family in grape fruit. Results To investigate the characteristics and functions of 14–3-3 in grape, a total of 11 14–3-3 proteins were identified. Phylogenetic analysis of 14–3-3 proteins in grape (VviGRFs) with homologous proteins in Arabidopsis showed that these proteins were classified into two groups, namely, epsilon and non-epsilon groups. Epsilon group members commonly contained more introns and motifs than non-epsilon group, and some intron positions were found to be conserved between Vitis and Arabidopsis 14–3-3 genes. RNA-seq and qRT-PCR results indicated that VviGRF genes may be involved in the regulation of grape development and berry ripening. Moreover, six VviGRFs exhibited significantly up- or down-regulated expression in response to cold and heat stresses, thereby revealing their potential roles in the regulation of abiotic stress responses. Conclusions This work provides fundamental knowledge for further studies about the biological roles of VviGRFs in grape development and abiotic stress response. The present result will also be beneficial for understanding their molecular mechanisms and improving grape agricultural traits in the future. Electronic supplementary material The online version of this article (10.1186/s12864-018-4955-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cheng Cheng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, People's Republic of China.,Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yi Wang
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Fengmei Chai
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, People's Republic of China.
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, People's Republic of China. .,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, People's Republic of China.
| |
Collapse
|
11
|
Chromium(VI) Toxicity in Legume Plants: Modulation Effects of Rhizobial Symbiosis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8031213. [PMID: 29662899 PMCID: PMC5832134 DOI: 10.1155/2018/8031213] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/31/2017] [Indexed: 11/18/2022]
Abstract
Most legume species have the ability to establish a symbiotic relationship with soil nitrogen-fixing rhizobacteria that promote plant growth and productivity. There is an increasing evidence of reactive oxygen species (ROS) important role in formation of legume-rhizobium symbiosis and nodule functioning. Environmental pollutants such as chromium compounds can cause damage to rhizobia, legumes, and their symbiosis. In plants, toxic effects of chromium(VI) compounds are associated with the increased production of ROS and oxidative stress development as well as with inhibition of pigment synthesis and modification of virtually all cellular components. These metabolic changes result in inhibition of seed germination and seedling development as well as reduction of plant biomass and crop yield. However, if plants establish symbiosis with rhizobia, heavy metals are accumulated preferentially in nodules decreasing the toxicity of metals to the host plant. This review summarizes data on toxic effects of chromium on legume plants and legume-rhizobium symbiosis. In addition, we discussed the role of oxidative stress in both chromium toxicity and formation of rhizobial symbiosis and use of nodule bacteria for minimizing toxic effects of chromium on plants.
Collapse
|
12
|
Karthik C, Oves M, Thangabalu R, Sharma R, Santhosh S, Indra Arulselvi P. Cellulosimicrobium funkei-like enhances the growth of Phaseolus vulgaris by modulating oxidative damage under Chromium(VI) toxicity. J Adv Res 2016; 7:839-50. [PMID: 27668092 PMCID: PMC5026708 DOI: 10.1016/j.jare.2016.08.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 08/20/2016] [Accepted: 08/27/2016] [Indexed: 01/24/2023] Open
Abstract
Contamination of agriculture land by heavy metals is a worldwide risk that has sped up noticeably since the beginning of the industrial revolution. Hence, there arise the demands of heavy metal tolerant plant growth promoting bacterial strains for specific metal contaminated agricultural sites restoration. In this study, 36 bacterial isolates were screened out from the rhizospheric soil of Phaseolus vulgaris. Among these, two bacterial strains AR6 and AR8 were selected based on their higher Cr(VI) tolerance (1200 and 1100 μg/mL, respectively) and the maximum production of plant growth promoting substances. In the molecular characterization study, both the bacterial strains showed 99% homology with Cellulosimicrobium funkei KM032184. In greenhouse experiments, the exposure of Cr(VI) to P.vulgaris inhibited the growth and photosynthetic pigments and increased the enzymatic and non-enzymatic antioxidant expressions. However, rhizosphere bacterial inoculations alleviated the negative effect of Cr(VI) and enhanced the seed germination rate (89.54%), shoot (74.50%),root length (60%), total biomass (52.53%), chlorophyll a (15.91%), chlorophyll b (17.97%), total chlorophyll (16.58%) and carotenoid content (3.59%). Moreover, bacterial inoculations stabilized and modulated the antioxidant system of P. vulgaris by reducing the accumulation of Cr in plant tissues. The present finding shows the Cr(VI) tolerance and plant growth promoting properties of the rhizosphere bacterial strains which might make them eligible as biofertilizer of metal-contaminated soils.
Collapse
Affiliation(s)
- Chinnannan Karthik
- Department of Biotechnology, School of Biosciences, Periyar University, Periyar Palkalai Nagar, Salem 636 011, Tamil Nadu, India
| | - Mohammad Oves
- Center of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - R. Thangabalu
- Department of Biotechnology, School of Biosciences, Periyar University, Periyar Palkalai Nagar, Salem 636 011, Tamil Nadu, India
| | - Ranandkumar Sharma
- Department of Biotechnology, School of Biosciences, Periyar University, Periyar Palkalai Nagar, Salem 636 011, Tamil Nadu, India
| | - S.B. Santhosh
- Department of Biotechnology, School of Biosciences, Periyar University, Periyar Palkalai Nagar, Salem 636 011, Tamil Nadu, India
| | - P. Indra Arulselvi
- Department of Biotechnology, School of Biosciences, Periyar University, Periyar Palkalai Nagar, Salem 636 011, Tamil Nadu, India
| |
Collapse
|
13
|
Wang X, Chang L, Tong Z, Wang D, Yin Q, Wang D, Jin X, Yang Q, Wang L, Sun Y, Huang Q, Guo A, Peng M. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization. Sci Rep 2016; 6:19643. [PMID: 26791570 PMCID: PMC4726164 DOI: 10.1038/srep19643] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/14/2015] [Indexed: 02/07/2023] Open
Abstract
Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement.
Collapse
Affiliation(s)
- Xuchu Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.,College of Agriculture, Hainan University, Haikou, Hainan 570228, China
| | - Lili Chang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.,College of Agriculture, Hainan University, Haikou, Hainan 570228, China
| | - Zheng Tong
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Dongyang Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.,College of Agriculture, Hainan University, Haikou, Hainan 570228, China
| | - Qi Yin
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.,College of Agriculture, Hainan University, Haikou, Hainan 570228, China
| | - Dan Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Xiang Jin
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Qian Yang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Liming Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Yong Sun
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Qixing Huang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Anping Guo
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Ming Peng
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.,College of Agriculture, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
14
|
Fang W, Zhao F, Sun Y, Xie D, Sun L, Xu Z, Zhu W, Yang L, Zhao Y, Lv S, Tang Z, Nie L, Li W, Hou J, Duan Z, Yu Y, Yang X. Transcriptomic Profiling Reveals Complex Molecular Regulation in Cotton Genic Male Sterile Mutant Yu98-8A. PLoS One 2015; 10:e0133425. [PMID: 26382878 PMCID: PMC4575049 DOI: 10.1371/journal.pone.0133425] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/26/2015] [Indexed: 01/13/2023] Open
Abstract
Although cotton genic male sterility (GMS) plays an important role in the utilization of hybrid vigor, its precise molecular mechanism remains unclear. To characterize the molecular events of pollen abortion, transcriptome analysis, combined with histological observations, was conducted in the cotton GMS line, Yu98-8A. A total of 2,412 genes were identified as significant differentially expressed genes (DEGs) before and during the critical pollen abortion stages. Bioinformatics and biochemical analysis showed that the DEGs mainly associated with sugars and starch metabolism, oxidative phosphorylation, and plant endogenous hormones play a critical and complicated role in pollen abortion. These findings extend a better understanding of the molecular events involved in the regulation of pollen abortion in genic male sterile cotton, which may provide a foundation for further research studies on cotton heterosis breeding.
Collapse
Affiliation(s)
- Weiping Fang
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
- * E-mail: (WPF); (XJY)
| | - Fu'an Zhao
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Yao Sun
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Deyi Xie
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Li Sun
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Zhenzhen Xu
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agriculture Sciences, Anyang, Henan province, 455000, R.P. China
| | - Wei Zhu
- Agronomy College, Henan Agricultural University, Zhengzhou, Henan province, 450002, R.P. China
| | - Lirong Yang
- Plant Protection Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Yuanming Zhao
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Shuping Lv
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Zhongjie Tang
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Lihong Nie
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Wu Li
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Jianan Hou
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Zhengzheng Duan
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Yuebo Yu
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Xiaojie Yang
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
- * E-mail: (WPF); (XJY)
| |
Collapse
|
15
|
Kumar K, Muthamilarasan M, Bonthala VS, Roy R, Prasad M. Unraveling 14-3-3 proteins in C4 panicoids with emphasis on model plant Setaria italica reveals phosphorylation-dependent subcellular localization of RS splicing factor. PLoS One 2015; 10:e0123236. [PMID: 25849294 PMCID: PMC4388342 DOI: 10.1371/journal.pone.0123236] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/01/2015] [Indexed: 11/18/2022] Open
Abstract
14-3-3 proteins are a large multigenic family of regulatory proteins ubiquitously found in eukaryotes. In plants, 14-3-3 proteins are reported to play significant role in both development and response to stress stimuli. Therefore, considering their importance, genome-wide analyses have been performed in many plants including Arabidopsis, rice and soybean. But, till date, no comprehensive investigation has been conducted in any C4 panicoid crops. In view of this, the present study was performed to identify 8, 5 and 26 potential 14-3-3 gene family members in foxtail millet (Si14-3-3), sorghum (Sb14-3-3) and maize (Zm14-3-3), respectively. In silico characterization revealed large variations in their gene structures; segmental and tandem duplications have played a major role in expansion of these genes in foxtail millet and maize. Gene ontology annotation showed the participation of 14-3-3 proteins in diverse biological processes and molecular functions, and in silico expression profiling indicated their higher expression in all the investigated tissues. Comparative mapping was performed to derive the orthologous relationships between 14-3-3 genes of foxtail millet and other Poaceae members, which showed a higher, as well as similar percentage of orthology among these crops. Expression profiling of Si14-3-3 genes during different time-points of abiotic stress and hormonal treatments showed a differential expression pattern of these genes, and sub-cellular localization studies revealed the site of action of Si14-3-3 proteins within the cells. Further downstream characterization indicated the interaction of Si14-3-3 with a nucleocytoplasmic shuttling phosphoprotein (SiRSZ21A) in a phosphorylation-dependent manner, and this demonstrates that Si14-3-3 might regulate the splicing events by binding with phosphorylated SiRSZ21A. Taken together, the present study is a comprehensive analysis of 14-3-3 gene family members in foxtail millet, sorghum and maize, which provides interesting information on their gene structure, protein domains, phylogenetic and evolutionary relationships, and expression patterns during abiotic stresses and hormonal treatments, which could be useful in choosing candidate members for further functional characterization. In addition, demonstration of interaction between Si14-3-3 and SiRSZ21A provides novel clues on the involvement of 14-3-3 proteins in the splicing events.
Collapse
Affiliation(s)
- Karunesh Kumar
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | | | | | - Riti Roy
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
- * E-mail:
| |
Collapse
|
16
|
He Y, Wu J, Lv B, Li J, Gao Z, Xu W, Baluška F, Shi W, Shaw PC, Zhang J. Involvement of 14-3-3 protein GRF9 in root growth and response under polyethylene glycol-induced water stress. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2271-81. [PMID: 25873671 PMCID: PMC4986726 DOI: 10.1093/jxb/erv149] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 05/19/2023]
Abstract
Plant 14-3-3 proteins are phosphoserine-binding proteins that regulate a wide array of targets via direct protein-protein interactions. In this study, the role of a 14-3-3 protein, GRF9, in plant response to water stress was investigated. Arabidopsis wild-type, GRF9-deficient mutant (grf9), and GRF9-overexpressing (OE) plants were treated with polyethylene glycol (PEG) to induce mild water stress. OE plant showed better whole-plant growth and root growth than the wild type under normal or water stress conditions while the grf9 mutant showed worse growth. In OE plants, GRF9 favours the allocation of shoot carbon to roots. In addition, GRF9 enhanced proton extrusion, mainly in the root elongation zone and root hair zone, and maintained root growth under mild water stress. Grafting among the wild type, OE, and grf9 plants showed that when OE plants were used as the scion and GRF9 was overexpressed in the shoot, it enhanced sucrose transport into the root, and when OE plants were used as rootstock and GRF9 was overexpressed in the root, it caused more release of protons into the root surface under water stress. Taken together, the results suggest that under PEG-induced water stress, GRF9 is involved in allocating more carbon from the shoot to the root and enhancing proton secretion in the root growing zone, and this process is important for root response to mild water stress.
Collapse
Affiliation(s)
- Yuchi He
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China School of Life Sciences and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Hong Kong Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan 430062, China
| | - Jingjing Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Bing Lv
- Yangzhou University, Yangzhou 225009, China
| | - Jia Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China Yangzhou University, Yangzhou 225009, China
| | - Zhiping Gao
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Hong Kong College of Life Sciences, Nanjing Normal University, Wenyuan Road, Nanjing, China
| | - Weifeng Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China School of Life Sciences and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Hong Kong
| | - František Baluška
- Institute of Cellular and Molecular Botany, Universtiy of Bonn, Germany
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Pang Chui Shaw
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Hong Kong
| | - Jianhua Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
17
|
Valluru R, Reynolds MP, Salse J. Genetic and molecular bases of yield-associated traits: a translational biology approach between rice and wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1463-89. [PMID: 24913362 DOI: 10.1007/s00122-014-2332-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 05/15/2014] [Indexed: 05/21/2023]
Abstract
Transferring the knowledge bases between related species may assist in enlarging the yield potential of crop plants. Being cereals, rice and wheat share a high level of gene conservation; however, they differ at metabolic levels as a part of the environmental adaptation resulting in different yield capacities. This review focuses on the current understanding of genetic and molecular regulation of yield-associated traits in both crop species, highlights the similarities and differences and presents the putative knowledge gaps. We focus on the traits associated with phenology, photosynthesis, and assimilate partitioning and lodging resistance; the most important drivers of yield potential. Currently, there are large knowledge gaps in the genetic and molecular control of such major biological processes that can be filled in a translational biology approach in transferring genomics and genetics informations between rice and wheat.
Collapse
Affiliation(s)
- Ravi Valluru
- Wheat Physiology, Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), 56130, Mexico DF, Mexico,
| | | | | |
Collapse
|
18
|
Pallucca R, Visconti S, Camoni L, Cesareni G, Melino S, Panni S, Torreri P, Aducci P. Specificity of ε and non-ε isoforms of arabidopsis 14-3-3 proteins towards the H+-ATPase and other targets. PLoS One 2014; 9:e90764. [PMID: 24603559 PMCID: PMC3946203 DOI: 10.1371/journal.pone.0090764] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 02/04/2014] [Indexed: 11/17/2022] Open
Abstract
14-3-3 proteins are a family of ubiquitous dimeric proteins that modulate many cellular functions in all eukaryotes by interacting with target proteins. 14-3-3s exist as a number of isoforms that in Arabidopsis identifies two major groups named ε and non-ε. Although isoform specificity has been demonstrated in many systems, the molecular basis for the selection of specific sequence contexts has not been fully clarified. In this study we have investigated isoform specificity by measuring the ability of different Arabidopsis 14-3-3 isoforms to activate the H+-ATPase. We observed that GF14 isoforms of the non-ε group were more effective than ε group isoforms in the interaction with the H+-ATPase and in the stimulation of its activity. Kinetic and thermodynamic parameters of the binding of GF14ε and GF14ω isoforms, representative of ε and non-ε groups respectively, with the H+-ATPase, have been determined by Surface Plasmon Resonance analysis demonstrating that the higher affinity of GF14ω is mainly due to slower dissociation. The role of the C-terminal region and of a Gly residue located in the loop 8 and conserved in all non-ε isoforms has also been studied by deletion and site-specific mutagenesis. The C-terminal domains, despite their high divergence, play an auto-inhibitory role in both isoforms and they, in addition to a specific residue located in the loop 8, contribute to isoform specificity. To investigate the generality of these findings, we have used the SPOT-synthesis technology to array a number of phosphopeptides matching known or predicted 14-3-3 binding sites present in a number of clients. The results of this approach confirmed isoform specificity in the recognition of several target peptides, suggesting that the isoform specificity may have an impact on the modulation of a variety of additional protein activities, as suggested by probing of a phosphopeptide array with members of the two 14-3-3 groups.
Collapse
Affiliation(s)
- Roberta Pallucca
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Sabina Visconti
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Lorenzo Camoni
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Giovanni Cesareni
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy; IRCSS, Research Institute "Fondazione Santa Lucia", Rome, Italy
| | - Sonia Melino
- Department of Sciences and Chemical Technologies, University of Rome "Tor Vergata", Rome, Italy
| | - Simona Panni
- Department DiBEST, University of Calabria, Rende, Italy
| | - Paola Torreri
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Patrizia Aducci
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
19
|
Zhang Z, Zhao H, Tang J, Li Z, Li Z, Chen D, Lin W. A proteomic study on molecular mechanism of poor grain-filling of rice (Oryza sativa L.) inferior spikelets. PLoS One 2014; 9:e89140. [PMID: 24586550 PMCID: PMC3931721 DOI: 10.1371/journal.pone.0089140] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 01/15/2014] [Indexed: 12/19/2022] Open
Abstract
Cultivars of rice (Oryza sativa L.), especially of the type with large spikelets, often fail to reach the yield potential as expected due to the poor grain-filling on the later flowering inferior spikelets (in contrast to the earlier-flowering superior spikelets). The present study showed that the size and grain weight of superior spikelets (SS) was greater than those of inferior spikelets (IS), and the carbohydrate supply should not be the major problem for the poor grain-filling because there was adequate amount of sucrose in IS at the initial grain-filling stage. High resolution two-dimensional gel electrophoresis (2-DE) in combination with Coomassie-brilliant blue (CBB) and Pro-Q Diamond phosphoprotein fluorescence stain revealed that 123 proteins in abundance and 43 phosphoproteins generated from phosphorylation were significantly different between SS and IS. These proteins and phosphoproteins were involved in different cellular and metabolic processes with a prominently functional skew toward metabolism and protein synthesis/destination. Expression analyses of the proteins and phosphoproteins associated with different functional categories/subcategories indicated that the starch synthesis, central carbon metabolism, N metabolism and cell growth/division were closely related to the poor grain-filling of IS. Functional and expression pattern studies also suggested that 14-3-3 proteins played important roles in IS poor grain-filling by regulating the activity of starch synthesis enzymes. The proteome and phosphoproteome obtained from this study provided a better understanding of the molecular mechanism of the IS poor grain-filling. They were also expected to be highly useful for improving the grain filling of rice.
Collapse
Affiliation(s)
- Zhixing Zhang
- College of Life Science, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hong Zhao
- College of Life Science, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jun Tang
- College of Life Science, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhong Li
- College of Life Science, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhou Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Dongmei Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wenxiong Lin
- College of Life Science, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
20
|
Abstract
Starch is the major non-structural carbohydrate in plants. It serves as an important store of carbon that fuels plant metabolism and growth when they are unable to photosynthesise. This storage can be in leaves and other green tissues, where it is degraded during the night, or in heterotrophic tissues such as roots, seeds and tubers, where it is stored over longer time periods. Arabidopsis accumulates starch in many of its tissues, but mostly in its leaves during the day. It has proven to be a powerful genetic system for discovering how starch is synthesised and degraded, and new proteins and processes have been discovered. Such work has major significance for our starch crops, whose yield and quality could be improved by the application of this knowledge. Research into Arabidopsis starch metabolism has begun to reveal how its daily turnover is integrated into the rest of metabolism and adapted to the environmental conditions. Furthermore, Arabidopsis mutant lines deficient in starch metabolism have been employed as tools to study other biological processes ranging from sugar sensing to gravitropism and flowering time control. This review gives a detailed account of the use of Arabidopsis to study starch metabolism. It describes the major discoveries made and presents an overview of our understanding today, together with some as-yet unresolved questions.
Collapse
Affiliation(s)
- Sebastian Streb
- Institute of Agricultural Sciences, Department of Biology, ETH
Zurich, Universitätstrasse 2, Zurich, Switzerland
| | - Samuel C. Zeeman
- Institute of Agricultural Sciences, Department of Biology, ETH
Zurich, Universitätstrasse 2, Zurich, Switzerland
| |
Collapse
|
21
|
Streb S, Zeeman SC. Starch metabolism in Arabidopsis. THE ARABIDOPSIS BOOK 2012; 10:e0160. [PMID: 23393426 DOI: 10.199/tab.e0160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Starch is the major non-structural carbohydrate in plants. It serves as an important store of carbon that fuels plant metabolism and growth when they are unable to photosynthesise. This storage can be in leaves and other green tissues, where it is degraded during the night, or in heterotrophic tissues such as roots, seeds and tubers, where it is stored over longer time periods. Arabidopsis accumulates starch in many of its tissues, but mostly in its leaves during the day. It has proven to be a powerful genetic system for discovering how starch is synthesised and degraded, and new proteins and processes have been discovered. Such work has major significance for our starch crops, whose yield and quality could be improved by the application of this knowledge. Research into Arabidopsis starch metabolism has begun to reveal how its daily turnover is integrated into the rest of metabolism and adapted to the environmental conditions. Furthermore, Arabidopsis mutant lines deficient in starch metabolism have been employed as tools to study other biological processes ranging from sugar sensing to gravitropism and flowering time control. This review gives a detailed account of the use of Arabidopsis to study starch metabolism. It describes the major discoveries made and presents an overview of our understanding today, together with some as-yet unresolved questions.
Collapse
Affiliation(s)
- Sebastian Streb
- Institute of Agricultural Sciences, Department of Biology, ETH Zurich, Universitätstrasse 2, Zurich, Switzerland
| | | |
Collapse
|
22
|
Zheng R, Sijun Yue, Xu X, Liu J, Xu Q, Wang X, Han L, Yu D. Proteome analysis of the wild and YX-1 male sterile mutant anthers of wolfberry (Lycium barbarum L.). PLoS One 2012; 7:e41861. [PMID: 22860020 PMCID: PMC3408462 DOI: 10.1371/journal.pone.0041861] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/26/2012] [Indexed: 01/31/2023] Open
Abstract
Pollen development is disturbed in the early tetrad stage of the YX-1 male sterile mutant of wolfberry (Lycium barbarum L.). The present study aimed to identify differentially expressed anther proteins and to reveal their possible roles in pollen development and male sterility. To address this question, the proteomes of the wild-type (WT) and YX-1 mutant were compared. Approximately 1760 protein spots on two-dimensional differential gel electrophoresis (2D-DIGE) gels were detected. A number of proteins whose accumulation levels were altered in YX-1 compared with WT were identified by mass spectrometry and the NCBInr and Viridiplantae EST databases. Proteins down-regulated in YX-1 anthers include ascorbate peroxidase (APX), putative glutamine synthetase (GS), ATP synthase subunits, chalcone synthase (CHS), CHS-like, putative callose synthase catalytic subunit, cysteine protease, 5B protein, enoyl-ACP reductase, 14-3-3 protein and basic transcription factor 3 (BTF3). Meanwhile, activities of APX and GS, RNA expression levels of apx and atp synthase beta subunit were low in YX-1 anthers which correlated with the expression of male sterility. In addition, several carbohydrate metabolism-related and photosynthesis-related enzymes were also present at lower levels in the mutant anthers. In contrast, 26S proteasome regulatory subunits, cysteine protease inhibitor, putative S-phase Kinase association Protein 1(SKP1), and aspartic protease, were expressed at higher levels in YX-1 anthers relative to WT anthers. Regulation of wolfberry pollen development involves a complex network of differentially expressed genes. The present study lays the foundation for future investigations of gene function linked with wolfberry pollen development and male sterility.
Collapse
Affiliation(s)
- Rui Zheng
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
- College of Life Science, Ningxia University, Yinchuan, China
| | - Sijun Yue
- College of Life Science, Ningxia University, Yinchuan, China
| | - Xiaoyan Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
- Jiangsu Polytechnic College of Agriculture and Forestry, Jurong, China
| | - Jianyu Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Qing Xu
- College of Life Science, Ningxia University, Yinchuan, China
| | - Xiaolin Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Lu Han
- College of Life Science, Ningxia University, Yinchuan, China
| | - Deyue Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Owen JR, Morris CA, Nicolaus B, Harwood JL, Kille P. Induction of expression of a 14-3-3 gene in response to copper exposure in the marine alga, Fucus vesiculosus. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:124-38. [PMID: 21909961 DOI: 10.1007/s10646-011-0772-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/13/2011] [Indexed: 05/31/2023]
Abstract
The macro-alga Fucus vesiculosus has a broad global and estuarine distribution and exhibits exceptional resistance to toxic metals, the molecular basis of which is poorly understood. To address this issue a cDNA library was constructed from an environmental isolate of F. vesiculosus growing in an area with chronic copper pollution. Characterisation of this library led to the identification of a cDNA encoding a protein known to be synthesised in response to toxicity, a full length 14-3-3 exhibiting a 71% identity to human/mouse epsilon isoform, 70-71% identity to yeast BMH1/2 and 95 and 71% identity to the Ectocarpus siliculosus 14-3-3 isoforms 1 and 2 respectively. Preliminary characterisation of the expression profile of the 14-3-3 indicated concentration- and time-dependent inductions on acute exposure of F. vesiculosus of copper (3-30 μg/l). Higher concentrations of copper (≥150 μg/l) did not elicit significant induction of the 14-3-3 gene compared with the control even though levels of both intracellular copper and the expression of a cytosolic metal chaperone, metallothionein, continued to rise. Analysis of gene expression within environmental isolates demonstrated up-regulation of the 14-3-3 gene associated with the known copper pollution gradient. Here we report for the first time, identification of a gene encoding a putative 14-3-3 protein in a multicellular alga and provide preliminary evidence to link the induction of this 14-3-3 gene to copper exposure in this alga. Interestingly, the threshold exposure profile may be associated with a decrease in the organism's ability to control copper influx so that it perceives copper as a toxic response.
Collapse
Affiliation(s)
- Jennifer R Owen
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | | | | | | | | |
Collapse
|
24
|
Diaz C, Kusano M, Sulpice R, Araki M, Redestig H, Saito K, Stitt M, Shin R. Determining novel functions of Arabidopsis 14-3-3 proteins in central metabolic processes. BMC SYSTEMS BIOLOGY 2011; 5:192. [PMID: 22104211 PMCID: PMC3253775 DOI: 10.1186/1752-0509-5-192] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 11/21/2011] [Indexed: 11/10/2022]
Abstract
Background 14-3-3 proteins are considered master regulators of many signal transduction cascades in eukaryotes. In plants, 14-3-3 proteins have major roles as regulators of nitrogen and carbon metabolism, conclusions based on the studies of a few specific 14-3-3 targets. Results In this study, extensive novel roles of 14-3-3 proteins in plant metabolism were determined through combining the parallel analyses of metabolites and enzyme activities in 14-3-3 overexpression and knockout plants with studies of protein-protein interactions. Decreases in the levels of sugars and nitrogen-containing-compounds and in the activities of known 14-3-3-interacting-enzymes were observed in 14-3-3 overexpression plants. Plants overexpressing 14-3-3 proteins also contained decreased levels of malate and citrate, which are intermediate compounds of the tricarboxylic acid (TCA) cycle. These modifications were related to the reduced activities of isocitrate dehydrogenase and malate dehydrogenase, which are key enzymes of TCA cycle. In addition, we demonstrated that 14-3-3 proteins interacted with one isocitrate dehydrogenase and two malate dehydrogenases. There were also changes in the levels of aromatic compounds and the activities of shikimate dehydrogenase, which participates in the biosynthesis of aromatic compounds. Conclusion Taken together, our findings indicate that 14-3-3 proteins play roles as crucial tuners of multiple primary metabolic processes including TCA cycle and the shikimate pathway.
Collapse
Affiliation(s)
- Celine Diaz
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Li J, Ezquer I, Bahaji A, Montero M, Ovecka M, Baroja-Fernández E, Muñoz FJ, Mérida A, Almagro G, Hidalgo M, Sesma MT, Pozueta-Romero J. Microbial volatile-induced accumulation of exceptionally high levels of starch in Arabidopsis leaves is a process involving NTRC and starch synthase classes III and IV. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1165-78. [PMID: 21649509 DOI: 10.1094/mpmi-05-11-0112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Microbial volatiles promote the accumulation of exceptionally high levels of starch in leaves. Time-course analyses of starch accumulation in Arabidopsis leaves exposed to fungal volatiles (FV) emitted by Alternaria alternata revealed that a microbial volatile-induced starch accumulation process (MIVOISAP) is due to stimulation of starch biosynthesis during illumination. The increase of starch content in illuminated leaves of FV-treated hy1/cry1, hy1/cry2, and hy1/cry1/cry2 Arabidopsis mutants was many-fold lower than that of wild-type (WT) leaves, indicating that MIVOISAP is subjected to photoreceptor-mediated control. This phenomenon was inhibited by cordycepin and accompanied by drastic changes in the Arabidopsis transcriptome. MIVOISAP was also accompanied by enhancement of the total 3-phosphoglycerate/Pi ratio, and a two- to threefold increase of the levels of the reduced form of ADP-glucose pyrophosphorylase. Using different Arabidopsis knockout mutants, we investigated the impact in MIVOISAP of downregulation of genes directly or indirectly related to starch metabolism. These analyses revealed that the magnitude of the FV-induced starch accumulation was low in mutants impaired in starch synthase (SS) classes III and IV and plastidial NADP-thioredoxin reductase C (NTRC). Thus, the overall data showed that Arabidopsis MIVOISAP involves a photocontrolled, transcriptionally and post-translationally regulated network wherein photoreceptor-, SSIII-, SSIV-, and NTRC-mediated changes in redox status of plastidial enzymes play important roles.
Collapse
Affiliation(s)
- Jun Li
- Instituto de Agrobiotecnología, Nafarroa, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sato T, Maekawa S, Yasuda S, Yamaguchi J. Carbon and nitrogen metabolism regulated by the ubiquitin-proteasome system. PLANT SIGNALING & BEHAVIOR 2011; 6:1465-8. [PMID: 21897122 PMCID: PMC3256372 DOI: 10.4161/psb.6.10.17343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 05/20/2023]
Abstract
The ubiquitin-proteasome system (UPS) is a unique protein degradation mechanism conserved in the eukaryotic cell. In addition to the control of protein quality, UPS regulates diverse cellular signal transduction via the fine-tuning of target protein degradation. Protein ubiquitylation and subsequent degradation by the 26S proteasome are involved in almost all aspects of plant growth and development and response to biotic and abiotic stresses. Recent studies reveal that the UPS plays an essential role in adaptation to carbon and nitrogen availability in plants. Here we highlight ubiquitin ligase ATL31 and the homologue ATL6 target 14-3-3 proteins for ubiquitylation to be degraded, which control signaling for carbon and nitrogen metabolisms and C/N balance response. We also give an overview of the UPS function involved in carbon and nitrogen metabolisms.
Collapse
Affiliation(s)
- Takeo Sato
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Sapporo, Japan.
| | | | | | | |
Collapse
|
27
|
Abstract
Chromoplasts are nonphotosynthetic plastids that accumulate carotenoids. They derive from other plastid forms, mostly chloroplasts. The biochemical events responsible for the interconversion of one plastid form into another are poorly documented. However, thanks to transcriptomics and proteomics approaches, novel information is now available. Data of proteomic and biochemical analysis revealed the importance of lipid metabolism and carotenoids biosynthetic activities. The loss of photosynthetic activity was associated with the absence of the chlorophyll biosynthesis branch and the presence of proteins involved in chlorophyll degradation. Surprisingly, the entire set of Calvin cycle and of the oxidative pentose phosphate pathway persisted after the transition from chloroplast to chromoplast. The role of plastoglobules in the formation and organisation of carotenoid-containing structures and that of the Or gene in the control of chromoplastogenesis are reviewed. Finally, using transcriptomic data, an overview is given the expression pattern of a number of genes encoding plastid-located proteins during tomato fruit ripening.
Collapse
|
28
|
Valdez HA, Peralta DA, Wayllace NZ, Grisolía MJ, Gomez-Casati DF, Busi MV. Preferential binding of SBD from Arabidopsis thaliana SSIII to polysaccharides: Study of amino acid residues involved. STARCH-STARKE 2011. [DOI: 10.1002/star.201000111] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Zeeman SC, Kossmann J, Smith AM. Starch: its metabolism, evolution, and biotechnological modification in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2010; 61:209-34. [PMID: 20192737 DOI: 10.1146/annurev-arplant-042809-112301] [Citation(s) in RCA: 577] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Starch is the most widespread and abundant storage carbohydrate in plants. We depend upon starch for our nutrition, exploit its unique properties in industry, and use it as a feedstock for bioethanol production. Here, we review recent advances in research in three key areas. First, we assess progress in identifying the enzymatic machinery required for the synthesis of amylopectin, the glucose polymer responsible for the insoluble nature of starch. Second, we discuss the pathways of starch degradation, focusing on the emerging role of transient glucan phosphorylation in plastids as a mechanism for solubilizing the surface of the starch granule. We contrast this pathway in leaves with the degradation of starch in the endosperm of germinated cereal seeds. Third, we consider the evolution of starch biosynthesis in plants from the ancestral ability to make glycogen. Finally, we discuss how this basic knowledge has been utilized to improve and diversify starch crops.
Collapse
|
30
|
Awang A, Karim R, Mitsui T. Proteomic Analysis of Theobroma cacao Pod Husk. J Appl Glycosci (1999) 2010. [DOI: 10.5458/jag.57.245] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
31
|
Liu L, Ma X, Liu S, Zhu C, Jiang L, Wang Y, Shen Y, Ren Y, Dong H, Chen L, Liu X, Zhao Z, Zhai H, Wan J. Identification and characterization of a novel Waxy allele from a Yunnan rice landrace. PLANT MOLECULAR BIOLOGY 2009; 71:609-26. [PMID: 19760367 DOI: 10.1007/s11103-009-9544-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 08/24/2009] [Indexed: 05/04/2023]
Abstract
Low amylose content (AC) is a desirable trait for rice (Oryza sativa L.) cooking quality and is selected in soft rice breeding. To gain a better understanding of the molecular mechanism controlling AC formation, we screened 83 Yunnan rice landraces in China and identified a rice variety, Haopi, with low AC. Genetic analyses and transgenic experiments revealed that low AC in Haopi was controlled by a novel allele of the Wx locus, Wx(hp), encoding a granule-bound starch synthase (GBSSI). Sequence comparisons of Wx(hp) and Wx(b) alleles (from Nipponbare) showed several nucleotide changes in the upstream regulatory regions (including the promoter, 5'-untranslated region, and first intron 5' splicing junction site). Interestingly, these changes had no obvious effect on the expression level and splicing efficiency of Wx transcripts. In addition, an examination of the coding region revealed that the Wx(hp) allele carries an A-to-G change at nucleotide position +497 from the start codon, resulting in an Asp(165)/Gly(165) substitution. The amino acid substitution had no detectable effects on GBSSI activity in vitro; however, it notably reduced the binding of GBSSI to starch granules, resulting in a reduction of AC in rice seeds. Moreover, three other Yunnan landraces with low AC also carry a nucleotide substitution identical to Haopi at the +497 position of the Wx gene, suggesting common ancestry. Based on the single-nucleotide polymorphism, we have developed a new derived cleaved amplified polymorphic sequence marker for use in breeding practice to manipulate AC in rice endosperm.
Collapse
Affiliation(s)
- Linglong Liu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang 1, 210095 Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
SONG JM, DAI S, LI HS, LIU AF, CHENG DG, CHU XS, Ian J TETLOW, Michael JEMES. Expression of a Wheat Endosperm 14-3-3 Protein and Its Interactions with Starch Biosynthetic Enzymes in Amyloplasts. ZUOWU XUEBAO 2009. [DOI: 10.3724/sp.j.1006.2009.01445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Shi H, Wang X, Li D, Tang W, Wang H, Xu W, Li X. Molecular characterization of cotton 14-3-3L gene preferentially expressed during fiber elongation. J Genet Genomics 2009; 34:151-9. [PMID: 17469787 DOI: 10.1016/s1673-8527(07)60016-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 03/10/2006] [Indexed: 11/15/2022]
Abstract
The 14-3-3 protein, highly conserved in all eukaryotic cells, is an important regulatory protein. It plays an important role in the growth, amplification, apoptosis, signal transduction, and other crucial life activities of cells. A cDNA encoding a putative 14-3-3 protein was isolated from cotton fiber cDNA library. The cDNA, designated as Gh14-3-3L (Gossypium hirsutum 14-3-3-like), is 1,029 bp in length (including a 762 bp long open reading frame and 5'-/3'-untranslated regions) and deduced a protein with 253 amino acids. The Gh14-3-3L shares higher homology with the known plant 14-3-3 proteins, and possesses the basic structure of 14-3-3 proteins: one dimeric domain, one phosphoralated-serine rich motif, four CC domains, and one EF Hand motif. Northern blotting analysis showed that Gh14-3-3L was predominantly expressed during early fiber development, and reached to the peak of expression in 10 days post anthers (DPA) fiber cells, suggesting that the gene may be involved in regulating fiber elongation. The gene is also expressed at higher level in both ovule and petal, but displays lower or undetectable level of activity in other tissues of cotton.
Collapse
Affiliation(s)
- Haiyan Shi
- College of Life Sciences, HuaZhong Normal University, Wuhan 430079, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Mutisya J, Sun C, Rosenquist S, Baguma Y, Jansson C. Diurnal oscillation of SBE expression in sorghum endosperm. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:428-434. [PMID: 18790548 DOI: 10.1016/j.jplph.2008.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 04/14/2008] [Accepted: 06/06/2008] [Indexed: 05/26/2023]
Abstract
Spatial and temporal expression patterns of the sorghum SBEI, SBEIIA and SBEIIB genes, encoding, respectively, starch branching enzyme (SBE) I, IIA and IIB, in the developing endosperm of sorghum (Sorghum bicolor) were studied. Full-length genomic and cDNA clones for sorghum were cloned, and the SBEIIA cDNA was used together with gene-specific probes for sorghum SBEIIB and SBEI. In contrast to sorghum SBEIIB, which was expressed primarily in endosperm and embryo, SBEIIA was also expressed in vegetative tissues. All three genes shared a similar temporal expression profile during endosperm development, with a maximum activity at 15-24 d after pollination. This differed from barley and maize, in which SBEI gene activity showed a significantly later onset compared to that of SBEIIA and SBEIIB. Expression of the three SBE genes in the sorghum endosperm exhibited a diurnal rhythm during a 24-h cycle.
Collapse
Affiliation(s)
- Joel Mutisya
- Department of Plant Biology & Forest Genetics, Uppsala BioCenter, The Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
35
|
Chevalier D, Morris ER, Walker JC. 14-3-3 and FHA domains mediate phosphoprotein interactions. ANNUAL REVIEW OF PLANT BIOLOGY 2009; 60:67-91. [PMID: 19575580 DOI: 10.1146/annurev.arplant.59.032607.092844] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Many aspects of plant growth and development require specific protein interactions to carry out biochemical and cellular functions. Several proteins mediate these interactions, two of which specifically recognize phosphoproteins: 14-3-3 proteins and proteins with FHA domains. These are the only phosphobinding domains identified in plants. Both domains are present in animals and plants, and are used by plant proteins to regulate metabolic, developmental, and signaling pathways. 14-3-3s regulate sugar metabolism, proton gradients, and control transcription factor localization. FHA domains are modular domains often found in multidomain proteins that are involved in signal transduction and plant development.
Collapse
Affiliation(s)
- David Chevalier
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
36
|
Stamova BS, Laudencia-Chingcuanco D, Beckles DM. Transcriptomic analysis of starch biosynthesis in the developing grain of hexaploid wheat. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2009; 2009:407426. [PMID: 20224818 PMCID: PMC2834961 DOI: 10.1155/2009/407426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 09/19/2009] [Accepted: 11/19/2009] [Indexed: 05/04/2023]
Abstract
The expression of genes involved in starch synthesis in wheat was analyzed together with the accumulation profiles of soluble sugars, starch, protein, and starch granule distribution in developing caryopses obtained from the same biological materials used for profiling of gene expression using DNA microarrays. Multiple expression patterns were detected for the different starch biosynthetic gene isoforms, suggesting their relative importance through caryopsis development. Members of the ADP-glucose pyrophosphorylase, starch synthase, starch branching enzyme, and sucrose synthase gene families showed different expression profiles; expression of some members of these gene families coincided with a period of high accumulation of starch while others did not. A biphasic pattern was observed in the rates of starch and protein accumulation which paralleled changes in global gene expression. Metabolic and regulatory genes that show a pattern of expression similar to starch accumulation and granule size distribution were identified, suggesting their coinvolvement in these biological processes.
Collapse
Affiliation(s)
- Boryana S. Stamova
- Genomics and Gene Discovery Unit, USDA-ARS WRRC, 800 Buchanan Street, Albany, CA 94710, USA
- Department of Plant Sciences MS3, University of California-Davis, 1 Shields Avenue, Davis, CA 95618, USA
- Department of Neurology, School of Medicine, M.I.N.D Institute, University of California Medical Center, 2805 50th Street, Sacramento, CA 95817, USA
| | - Debbie Laudencia-Chingcuanco
- Genomics and Gene Discovery Unit, USDA-ARS WRRC, 800 Buchanan Street, Albany, CA 94710, USA
- *Debbie Laudencia-Chingcuanco:
| | - Diane M. Beckles
- Department of Plant Sciences MS3, University of California-Davis, 1 Shields Avenue, Davis, CA 95618, USA
| |
Collapse
|
37
|
Tetlow IJ, Beisel KG, Cameron S, Makhmoudova A, Liu F, Bresolin NS, Wait R, Morell MK, Emes MJ. Analysis of protein complexes in wheat amyloplasts reveals functional interactions among starch biosynthetic enzymes. PLANT PHYSIOLOGY 2008; 146:1878-91. [PMID: 18263778 PMCID: PMC2287356 DOI: 10.1104/pp.108.116244] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 02/07/2008] [Indexed: 05/20/2023]
Abstract
Protein-protein interactions among enzymes of amylopectin biosynthesis were investigated in developing wheat (Triticum aestivum) endosperm. Physical interactions between starch branching enzymes (SBEs) and starch synthases (SSs) were identified from endosperm amyloplasts during the active phase of starch deposition in the developing grain using immunoprecipitation and cross-linking strategies. Coimmunoprecipitation experiments using peptide-specific antibodies indicate that at least two distinct complexes exist containing SSI, SSIIa, and either of SBEIIa or SBEIIb. Chemical cross linking was used to identify protein complexes containing SBEs and SSs from amyloplast extracts. Separation of extracts by gel filtration chromatography demonstrated the presence of SBE and SS forms in protein complexes of around 260 kD and that SBEII forms may also exist as homodimers. Analysis of cross-linked 260-kD aggregation products from amyloplast lysates by mass spectrometry confirmed SSI, SSIIa, and SBEII forms as components of one or more protein complexes in amyloplasts. In vitro phosphorylation experiments with gamma-(32)P-ATP indicated that SSII and both forms of SBEII are phosphorylated. Treatment of the partially purified 260-kD SS-SBE complexes with alkaline phosphatase caused dissociation of the assembly into the respective monomeric proteins, indicating that formation of SS-SBE complexes is phosphorylation dependent. The 260-kD SS-SBEII protein complexes are formed around 10 to 15 d after pollination and were shown to be catalytically active with respect to both SS and SBE activities. Prior to this developmental stage, SSI, SSII, and SBEII forms were detectable only in monomeric form. High molecular weight forms of SBEII demonstrated a higher affinity for in vitro glucan substrates than monomers. These results provide direct evidence for the existence of protein complexes involved in amylopectin biosynthesis.
Collapse
Affiliation(s)
- Ian J Tetlow
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cao A, Jain A, Baldwin JC, Raghothama KG. Phosphate differentially regulates 14-3-3 family members and GRF9 plays a role in Pi-starvation induced responses. PLANTA 2007; 226:1219-30. [PMID: 17598127 DOI: 10.1007/s00425-007-0569-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 05/31/2007] [Indexed: 05/08/2023]
Abstract
The 14-3-3s are phosphoserine-binding proteins that act as key regulators of many metabolic pathways. Several biotic and abiotic stresses have been shown to modulate the expression of 14-3-3 genes. In Arabidopsis thaliana, 15 genes are known to code for 14-3-3 isoforms belonging to epsilon and non-epsilon groups. Since phosphorus is one of the essential macronutrients for plants, we examined its role in the regulation of the expression of 14-3-3 isoforms belonging to epsilon (GRF9, GRF10, GRF11, GRF13) and non-epsilon (GRF1, GRF3, GRF6, GRF8) groups. The effect of Pi deprivation was differential on the members of non-epsilon group ranging from a significant reduction in the transcripts of GRF3 to non-perceptible changes in the transcripts of other members. Suppressive effect of Pi-deficiency was more pronounced on some of the members of epsilon group with transcripts levels of GRF9 and GRF13 barely detectable. A concurrent increase in the transcript levels of GRF9 with an increase in the Pi concentration suggested a correlation between gene expression and Pi availability. However, neither Pi deficiency at low temperature nor Fe and K deficiency failed to suppress GRF9 expression. In planta role of GRF9 was elucidated by the analysis of the loss-of-function mutant under Pi-replete condition. The analyses revealed exaggerated Pi-starvation responses in the form of starch accumulation in the leaves and modulated root system architecture (RSA). An inverse relationship between the abundance of GRF9 transcripts and accumulation of starch in transgenic lines over-expressing this gene provided further evidence towards the role of GRF9 in modulation of metabolic pathways during Pi-starvation responses.
Collapse
Affiliation(s)
- Aiqin Cao
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907-1165, USA
| | | | | | | |
Collapse
|
39
|
Hirano T, Ito A, Berberich T, Terauchi R, Saitoh H. Virus-induced gene silencing of 14-3-3 genes abrogates dark repression of nitrate reductase activity in Nicotiana benthamiana. Mol Genet Genomics 2007; 278:125-33. [PMID: 17443349 DOI: 10.1007/s00438-007-0234-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 03/21/2007] [Accepted: 03/24/2007] [Indexed: 11/25/2022]
Abstract
In order to study the effect of repression of 14-3-3 genes on actual activity of the nitrate reductase (NR) in Nicotiana benthamiana leaves, Nb14-3-3a gene was silenced by virus-induced gene silencing (VIGS) method using potato virus X (PVX). Expression of Nb14-3-3a as well as Nb14-3-3b genes was altogether repressed in the leaves of PVX-14-3a-infected plants. Furthermore, two-dimensional gel electrophoresis and immunoblot analysis with anti-14-3-3 antiserum suggested that the expressions of Nb14-3-3a and Nb14-3-3b proteins are accordingly repressed in PVX-14-3a-infected plants. It is well known that binding of 14-3-3 proteins to phosphorylated NR leads to substantial decrease in NR activity of leaves under darkness. Therefore, we studied the changes in NR activity in response to light/dark transitions in the leaves of PVX-14-3a-infected plants. NR activation state was kept at a high level under darkness in PVX-14-3a-infected plants, but not in PVX-green fluorescent protein (GFP)-infected and control plants. This result suggests that Nb14-3-3a and/or Nb14-3-3b proteins are indeed involved in the inactivation of NR activity under darkness in N. benthamiana.
Collapse
Affiliation(s)
- Tatsuya Hirano
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku, Nagoya, Japan.
| | | | | | | | | |
Collapse
|
40
|
Elmayan T, Fromentin J, Riondet C, Alcaraz G, Blein JP, Simon-Plas F. Regulation of reactive oxygen species production by a 14-3-3 protein in elicited tobacco cells. PLANT, CELL & ENVIRONMENT 2007; 30:722-32. [PMID: 17470148 DOI: 10.1111/j.1365-3040.2007.01660.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The regulation of the system responsible for the production of reactive oxygen species (ROS) during plant-micro-organism interaction is still largely unknown. The protein NtrbohD has been recently demonstrated as the plasma membrane oxidase responsible for ROS production in elicited tobacco cells. Here, its C-terminus part was used as a bait in a two-hybrid screen in order to identify putative regulators of this system. This led to the isolation of a cDNA coding for a member of the 14-3-3 protein family. The corresponding transcript was induced after infiltration of tobacco leaves with the fungal elicitor cryptogein. Tobacco cells transformed with an antisense construct of this 14-3-3 no longer accumulated ROS, which constitutes a functional validation of the two-hybrid screen. This work provides new insights to the understanding of the regulation of ROS production in a signalling context and gives a new light to the possible role of 14-3-3 proteins in plant-micro-organisms interactions.
Collapse
Affiliation(s)
- Taline Elmayan
- Unité Mixte de Recherche Plante-Microbe-Environnement INRA 1088/CNRS 5184/Université de Bourgogne, BP 86510, Dijon Cedex, France
| | | | | | | | | | | |
Collapse
|
41
|
Laudencia-Chingcuanco DL, Stamova BS, You FM, Lazo GR, Beckles DM, Anderson OD. Transcriptional profiling of wheat caryopsis development using cDNA microarrays. PLANT MOLECULAR BIOLOGY 2007; 63:651-68. [PMID: 17211515 DOI: 10.1007/s11103-006-9114-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 11/06/2006] [Indexed: 05/13/2023]
Abstract
The expression of 7,835 genes in developing wheat caryopses was analyzed using cDNA arrays. Using a mixed model analysis of variance (ANOVA) method, 29% (2,237) of the genes on the array were identified to be differentially expressed at the 6 different time-points examined, which covers the developmental stages from coenocytic endosperm to physiological maturity. Comparison of genes differentially expressed between two time-points revealed a dynamic transcript accumulation profile with major re-programming events that occur at 3-7, 7-14 and 21-28 DPA. A k-means clustering algorithm grouped the differentially expressed genes into 10 clusters, revealing co-expression of genes involved in the same pathway such as carbohydrate and protein synthesis or preparation for desiccation. Functional annotation of genes that show peak expression at specific time-points correlated with the developmental events associated with the respective stages. Results provide information on the temporal expression during caryopsis development for a significant number of differentially expressed genes with unknown function.
Collapse
|
42
|
Tetlow IJ. Understanding storage starch biosynthesis in plants: a means to quality improvement. ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b06-089] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The many varied uses of starch in food and industrial applications often requires an understanding of its physicochemical properties and the detailed variations in granule structure that underpin these properties. The ability to manipulate storage starch structures depends on understanding the biosynthetic pathway, and in particular, how the many components of the pathway are coordinated and regulated. This article presents a current overview of starch structure and the known enzymes involved in the synthesis of the granule, with an emphasis on how current knowledge on the regulation of the pathway in cereals and other crops may be applied to the production of different functional starches.
Collapse
Affiliation(s)
- Ian J. Tetlow
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada (e-mail: )
| |
Collapse
|
43
|
Zhang X, Myers AM, James MG. Mutations affecting starch synthase III in Arabidopsis alter leaf starch structure and increase the rate of starch synthesis. PLANT PHYSIOLOGY 2005; 138:663-74. [PMID: 15908598 PMCID: PMC1150387 DOI: 10.1104/pp.105.060319] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 04/01/2005] [Accepted: 04/05/2005] [Indexed: 05/02/2023]
Abstract
The role of starch synthase (SS) III (SSIII) in the synthesis of transient starch in Arabidopsis (Arabidopsis thaliana) was investigated by characterizing the effects of two insertion mutations at the AtSS3 gene locus. Both mutations, termed Atss3-1 and Atss3-2, condition complete loss of SSIII activity and prevent normal gene expression at both the mRNA and protein levels. The mutations cause a starch excess phenotype in leaves during the light period of the growth cycle due to an apparent increase in the rate of starch synthesis. In addition, both mutations alter the physical structure of leaf starch. Significant increases were noted in the mutants in the frequency of linear chains in amylopectin with a degree of polymerization greater than approximately 60, and relatively small changes were observed in chains of degree of polymerization 4 to 50. Furthermore, starch in the Atss3-1 and Atss3-2 mutants has a higher phosphate content, approximately two times that of wild-type leaf starch. Total SS activity is increased in both Atss3 mutants and a specific SS activity appears to be up-regulated. The data indicate that, in addition to its expected direct role in starch assembly, SSIII also has a negative regulatory function in the biosynthesis of transient starch in Arabidopsis.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | |
Collapse
|
44
|
Kulwal P, Kumar N, Kumar A, Gupta RK, Balyan HS, Gupta PK. Gene networks in hexaploid wheat: interacting quantitative trait loci for grain protein content. Funct Integr Genomics 2005; 5:254-9. [PMID: 15711959 DOI: 10.1007/s10142-005-0136-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 12/23/2004] [Accepted: 01/01/2005] [Indexed: 11/26/2022]
Abstract
In hexaploid wheat, single-locus and two-locus quantitative trait loci (QTL) analyses for grain protein content (GPC) were conducted using two different mapping populations (PI and PII). Main effect QTLs (M-QTLs), epistatic QTLs (E-QTLs) and QTL x environment interactions (QE, QQE) were detected using two-locus analyses in both the populations. Only a few QTLs were common in both the analyses, and the QTLs and the interactions detected in the two populations differed, suggesting the superiority of two-locus analysis and the need for using several mapping populations for QTL analysis. A sizable proportion of genetic variation for GPC was due to interactions (28.59% and 54.03%), rather than to M-QTL effects (7.24% and 7.22%), which are the only genetic effects often detected in the majority of QTL studies. Even E-QTLs made a marginal contribution to genetic variation (2.68% and 6.04%), thus suggesting that the major part of genetic variation is due to changes in gene networks rather than the presence or absence of specific genes. This is in sharp contrast to the genetic dissection of pre-harvest sprouting tolerance conducted by us earlier, where interaction effects were not substantial, suggesting that the nature of genetic variation also depends on the nature of the trait.
Collapse
Affiliation(s)
- Pawan Kulwal
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, Uttar Pradesh, 250 004, India
| | | | | | | | | | | |
Collapse
|
45
|
Paul AL, Sehnke PC, Ferl RJ. Isoform-specific subcellular localization among 14-3-3 proteins in Arabidopsis seems to be driven by client interactions. Mol Biol Cell 2005; 16:1735-43. [PMID: 15659648 PMCID: PMC1073656 DOI: 10.1091/mbc.e04-09-0839] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In most higher eukaryotes, the predominantly phosphoprotein-binding 14-3-3 proteins are the products of a multigene family, with many organisms having 10 or more family members. However, current models for 14-3-3/phosphopeptide interactions suggest that there is little specificity among 14-3-3s for diverse phosphopeptide clients. Therefore, the existence of sequence diversity among 14-3-3s within a single organism begs questions regarding the in vivo specificities of the interactions between the various 14-3-3s and their clients. Chief among those questions is, Do the different 14-3-3 isoforms interact with different clients within the same cell? Although the members of the Arabidopsis 14-3-3 family of proteins typically contain highly conserved regions of sequence, they also display distinctive variability with deep evolutionary roots. In the current study, a survey of several Arabidopsis 14-3-3/GFP fusions revealed that 14-3-3s demonstrate distinct and differential patterns of subcellular distribution, by using trichomes and stomate guard cells as in vivo experimental cellular contexts. The effects of client interaction on 14-3-3 localization were further analyzed by disrupting the partnering with peptide and chemical agents. Results indicate that 14-3-3 localization is both isoform specific and highly dependent upon interaction with cellular clients.
Collapse
Affiliation(s)
- Anna-Lisa Paul
- Department of Horticultural Sciences, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, 32611, USA
| | | | | |
Collapse
|
46
|
Mackintosh C. Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes. Biochem J 2004; 381:329-42. [PMID: 15167810 PMCID: PMC1133837 DOI: 10.1042/bj20031332] [Citation(s) in RCA: 417] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Revised: 04/14/2004] [Accepted: 05/28/2004] [Indexed: 12/17/2022]
Abstract
14-3-3 proteins exert an extraordinarily widespread influence on cellular processes in all eukaryotes. They operate by binding to specific phosphorylated sites on diverse target proteins, thereby forcing conformational changes or influencing interactions between their targets and other molecules. In these ways, 14-3-3s 'finish the job' when phosphorylation alone lacks the power to drive changes in the activities of intracellular proteins. By interacting dynamically with phosphorylated proteins, 14-3-3s often trigger events that promote cell survival--in situations from preventing metabolic imbalances caused by sudden darkness in leaves to mammalian cell-survival responses to growth factors. Recent work linking specific 14-3-3 isoforms to genetic disorders and cancers, and the cellular effects of 14-3-3 agonists and antagonists, indicate that the cellular complement of 14-3-3 proteins may integrate the specificity and strength of signalling through to different cellular responses.
Collapse
Affiliation(s)
- Carol Mackintosh
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| |
Collapse
|
47
|
Smith SM, Fulton DC, Chia T, Thorneycroft D, Chapple A, Dunstan H, Hylton C, Zeeman SC, Smith AM. Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves. PLANT PHYSIOLOGY 2004; 136:2687-99. [PMID: 15347792 PMCID: PMC523333 DOI: 10.1104/pp.104.044347] [Citation(s) in RCA: 292] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 06/09/2004] [Accepted: 06/23/2004] [Indexed: 05/17/2023]
Abstract
To gain insight into the synthesis and functions of enzymes of starch metabolism in leaves of Arabidopsis L. Heynth, Affymetrix microarrays were used to analyze the transcriptome throughout the diurnal cycle. Under the conditions employed, transitory leaf starch is degraded progressively during a 12-h dark period, and then accumulates during the following 12-h light period. Transcripts encoding enzymes of starch synthesis changed relatively little in amount over 24 h except for two starch synthases, granule bound starch synthase and starch synthase II, which increased appreciably during the transition from dark to light. The increase in RNA encoding granule-bound starch synthase may reflect the extensive destruction of starch granules in the dark. Transcripts encoding several enzymes putatively involved in starch breakdown showed a coordinated decline in the dark followed by rapid accumulation in the light. Despite marked changes in their transcript levels, the amounts of some enzymes of starch metabolism do not change appreciably through the diurnal cycle. Posttranscriptional regulation is essential in the maintenance of amounts of enzymes and the control of their activities in vivo. Even though the relationships between transcript levels, enzyme activity, and diurnal metabolism of starch metabolism are complex, the presence of some distinctive diurnal patterns of transcripts for enzymes known to be involved in starch metabolism facilitates the identification of other proteins that may participate in this process.
Collapse
Affiliation(s)
- Steven M Smith
- Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JH, Scotland, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Progress in understanding starch biosynthesis, and the isolation of many of the genes involved in this process, has enabled the genetic modification of crops in a rational manner to produce novel starches with improved functionality. For example, potato starches have been created that contain unprecedented levels of amylose and phosphate. Amylose-free short-chain amylopectin starches have also been developed; these starches have excellent freeze-thaw stability without the need for chemical modification. These developments highlight the potential to create even more modified starches in the future.
Collapse
|
49
|
Tetlow IJ, Wait R, Lu Z, Akkasaeng R, Bowsher CG, Esposito S, Kosar-Hashemi B, Morell MK, Emes MJ. Protein phosphorylation in amyloplasts regulates starch branching enzyme activity and protein-protein interactions. THE PLANT CELL 2004; 16:694-708. [PMID: 14973170 PMCID: PMC385281 DOI: 10.1105/tpc.017400] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Accepted: 01/19/2004] [Indexed: 05/20/2023]
Abstract
Protein phosphorylation in amyloplasts and chloroplasts of Triticum aestivum (wheat) was investigated after the incubation of intact plastids with gamma-(32)P-ATP. Among the soluble phosphoproteins detected in plastids, three forms of starch branching enzyme (SBE) were phosphorylated in amyloplasts (SBEI, SBEIIa, and SBEIIb), and both forms of SBE in chloroplasts (SBEI and SBEIIa) were shown to be phosphorylated after sequencing of the immunoprecipitated (32)P-labeled phosphoproteins using quadrupole-orthogonal acceleration time of flight mass spectrometry. Phosphoamino acid analysis of the phosphorylated SBE forms indicated that the proteins are all phosphorylated on Ser residues. Analysis of starch granule-associated phosphoproteins after incubation of intact amyloplasts with gamma-(32)P-ATP indicated that the granule-associated forms of SBEII and two granule-associated forms of starch synthase (SS) are phosphorylated, including SSIIa. Measurement of SBE activity in amyloplasts and chloroplasts showed that phosphorylation activated SBEIIa (and SBEIIb in amyloplasts), whereas dephosphorylation using alkaline phosphatase reduced the catalytic activity of both enzymes. Phosphorylation and dephosphorylation had no effect on the measurable activity of SBEI in amyloplasts and chloroplasts, and the activities of both granule-bound forms of SBEII in amyloplasts were unaffected by dephosphorylation. Immunoprecipitation experiments using peptide-specific anti-SBE antibodies showed that SBEIIb and starch phosphorylase each coimmunoprecipitated with SBEI in a phosphorylation-dependent manner, suggesting that these enzymes may form protein complexes within the amyloplast in vivo. Conversely, dephosphorylation of immunoprecipitated protein complex led to its disassembly. This article reports direct evidence that enzymes of starch metabolism (amylopectin synthesis) are regulated by protein phosphorylation and indicate a wider role for protein phosphorylation and protein-protein interactions in the control of starch anabolism and catabolism.
Collapse
Affiliation(s)
- Ian J Tetlow
- Department of Botany, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The field of signal transduction has experienced a significant paradigm shift as a result of an increased understanding of the roles of 14-3-3 proteins. There are many cases where signal-induced phosphorylation itself may cause a change in protein function. This simple modification is, in fact, the primary basis of signal transduction events in many systems. There are a large and growing number of cases, however, where simple phosphorylation is not enough to effect a change in protein function. In these cases, the 14-3-3 proteins can be required to complete the change in function. Therefore signal transduction can be either the relatively simple process where phosphorylation alters target activity, or it can be a more complex, multistep process with the 14-3-3 proteins playing the major role of bringing the signal transduction event to completion. This makes 14-3-3-modulated signal transduction a more complicated process with additional avenues for regulation and variety. Adding further complexity to the process is the fact that 14-3-3 proteins are present as multigene families in most organisms (Aitken et al. Trends Biochem Sci 17: 498-501, 1992; Ferl Annu Rev Plant Physiol Plant Molecular Biology 47: 49-73, 1996), with each member of the family being differentially expressed in various tissues and with potentially differential affinity for various target proteins. This review focuses on the 14-3-3 family of Arabidopsis as a model for further developing understanding of the roles of the 14-3-3 proteins as modulators of signal transduction events in plants. The primary approaches to these questions are not unlike the approaches that would be used in the functional dissection of any multigene family, but the interpretation of these data will have wide implications since the 14-3-3 s physically interact with other protein families.
Collapse
Affiliation(s)
- Robert J. Ferl
- Program in Plant Molecular and Cellular Biology, Horticultural Sciences Department, University of Florida, Gainesville, FL 32601-0690, USA
| |
Collapse
|