1
|
Zhou J, Que Y, Pan L, Li X, Zhu C, Jin L, Li S. Supervillin Contributes to LPS-induced Inflammatory Response in THP-1 Cell-derived Macrophages. Inflammation 2021; 45:356-371. [PMID: 34480249 DOI: 10.1007/s10753-021-01551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Supervillin (SVIL) is an actin-binding and membrane-associated protein, which belongs to villin/gelsolin family. It has been reported that SVIL was involved in the regulation of macrophages' movement and lipopolysaccharide (LPS) increased the SVIL mRNA expression in neutrophils, but the underlying mechanisms remain unknown. This work investigated the underlying molecular mechanisms of LPS regulating SVIL expression in macrophages and hence the possible role of SVIL in LPS-induced inflammation. We found that in THP-1-derived macrophages, LPS obviously increased SVIL mRNA and protein expression. Inhibition of TLR4 by Resatorvid (Res) remarkably reversed the LPS-induced SVIL expression. Additionally, inhibition of ERK1/2 signaling pathway (by U0126 or GDC-0994) and NF-κB (by BAY) significantly reduced the LPS-induced SVIL expression. Interestingly, down-regulation of SVIL by SVIL-specific shRNAs significantly attenuated the expression of IL-6, IL-1β & TNF-α induced by LPS at both mRNA and protein levels. Furthermore, we also observed that SVIL knockdown decreased the proportion of cells in G2/M phase and increased the proportion of cells in S & G0-1 phase of THP-1 derived macrophages, but did not influence the cell viability. Taken together, we demonstrated that LPS induced the expression of SVIL via activating TLR4/NF-κB and ERK1/2 MAPK pathways, and SVIL participated in the inflammatory response of LPS-induced IL-6, IL-1β and TNF-α upregulation in macrophages.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Pharmacology, Nanjing Medical University, Longmian Dadao 101, Nanjing, 211166, China
| | - Yuhui Que
- Department of Pharmacology, Nanjing Medical University, Longmian Dadao 101, Nanjing, 211166, China
| | - Lihua Pan
- Department of Pharmacology, Nanjing Medical University, Longmian Dadao 101, Nanjing, 211166, China
| | - Xu Li
- Department of Pharmacology, Nanjing Medical University, Longmian Dadao 101, Nanjing, 211166, China
| | - Chao Zhu
- Department of Pharmacology, Nanjing Medical University, Longmian Dadao 101, Nanjing, 211166, China
| | - Lai Jin
- Department of Pharmacology, Nanjing Medical University, Longmian Dadao 101, Nanjing, 211166, China.
| | - Shengnan Li
- Department of Pharmacology, Nanjing Medical University, Longmian Dadao 101, Nanjing, 211166, China.
| |
Collapse
|
2
|
Screening for androgen agonists using autonomously bioluminescent HEK293 reporter cells. Biotechniques 2021; 71:403-415. [PMID: 34350768 PMCID: PMC8371548 DOI: 10.2144/btn-2021-0017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Due to the public health concerns of endocrine-disrupting chemicals, there is an increasing demand to develop improved high-throughput detection assays for enhanced exposure control and risk assessment. A substrate-free, autobioluminescent HEK293ARE/Gal4-Lux assay was developed to screen compounds for their ability to induce androgen receptor (AR)-mediated transcriptional activation. The assay was validated against a group of 40 recommended chemicals and achieved an overall 87.5% accuracy in qualitatively classifying positive and negative AR agonists. The HEK293ARE/Gal4-Lux assay was demonstrated as a suitable tool for Tier 1 AR agonist screening. By eliminating exogenous substrate, this assay provided a significant advantage over traditional reporter assays by enabling higher-throughput screening with reduced testing costs while maintaining detection accuracy. A human optimized version of the bacterial luciferase gene cassette was developed such that bioluminescence is controlled by exposure to androgen-disruptor chemicals. This cassette, along with the androgen receptor gene, was co-transfected into an HEK293 human cell host that naturally lacks hormone receptors. The resulting reporter cell line was used to screen compounds for androgenic activity in a low cost, high throughput format.
Collapse
|
3
|
Hedberg-Oldfors C, Meyer R, Nolte K, Abdul Rahim Y, Lindberg C, Karason K, Thuestad IJ, Visuttijai K, Geijer M, Begemann M, Kraft F, Lausberg E, Hitpass L, Götzl R, Luna EJ, Lochmüller H, Koschmieder S, Gramlich M, Gess B, Elbracht M, Weis J, Kurth I, Oldfors A, Knopp C. Loss of supervillin causes myopathy with myofibrillar disorganization and autophagic vacuoles. Brain 2020; 143:2406-2420. [PMID: 32779703 PMCID: PMC7447519 DOI: 10.1093/brain/awaa206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/16/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023] Open
Abstract
The muscle specific isoform of the supervillin protein (SV2), encoded by the SVIL gene, is a large sarcolemmal myosin II- and F-actin-binding protein. Supervillin (SV2) binds and co-localizes with costameric dystrophin and binds nebulin, potentially attaching the sarcolemma to myofibrillar Z-lines. Despite its important role in muscle cell physiology suggested by various in vitro studies, there are so far no reports of any human disease caused by SVIL mutations. We here report four patients from two unrelated, consanguineous families with a childhood/adolescence onset of a myopathy associated with homozygous loss-of-function mutations in SVIL. Wide neck, anteverted shoulders and prominent trapezius muscles together with variable contractures were characteristic features. All patients showed increased levels of serum creatine kinase but no or minor muscle weakness. Mild cardiac manifestations were observed. Muscle biopsies showed complete loss of large supervillin isoforms in muscle fibres by western blot and immunohistochemical analyses. Light and electron microscopic investigations revealed a structural myopathy with numerous lobulated muscle fibres and considerable myofibrillar alterations with a coarse and irregular intermyofibrillar network. Autophagic vacuoles, as well as frequent and extensive deposits of lipoproteins, including immature lipofuscin, were observed. Several sarcolemma-associated proteins, including dystrophin and sarcoglycans, were partially mis-localized. The results demonstrate the importance of the supervillin (SV2) protein for the structural integrity of muscle fibres in humans and show that recessive loss-of-function mutations in SVIL cause a distinctive and novel myopathy.
Collapse
Affiliation(s)
- Carola Hedberg-Oldfors
- Department of Pathology and Genetics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Robert Meyer
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Kay Nolte
- Institute of Neuropathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Yassir Abdul Rahim
- Department of Pathology and Genetics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christopher Lindberg
- Department of Neurology, Neuromuscular Centre, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kristjan Karason
- Department of Cardiology and Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Kittichate Visuttijai
- Department of Pathology and Genetics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mats Geijer
- Department of Radiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Matthias Begemann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Florian Kraft
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Eva Lausberg
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Lea Hitpass
- Department of Diagnostic and Interventional Radiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Rebekka Götzl
- Department of Plastic Surgery, Hand and Burn Surgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Elizabeth J Luna
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, USA
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael Gramlich
- Department of Invasive Electrophysiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Burkhard Gess
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Joachim Weis
- Institute of Neuropathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Anders Oldfors
- Department of Pathology and Genetics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cordula Knopp
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Smith TC, Saul RG, Barton ER, Luna EJ. Generation and characterization of monoclonal antibodies that recognize human and murine supervillin protein isoforms. PLoS One 2018; 13:e0205910. [PMID: 30332471 PMCID: PMC6192639 DOI: 10.1371/journal.pone.0205910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/02/2018] [Indexed: 01/06/2023] Open
Abstract
Supervillin isoforms have been implicated in cell proliferation, actin filament-based motile processes, vesicle trafficking, and signal transduction. However, an understanding of the roles of these proteins in cancer metastasis and physiological processes has been limited by the difficulty of obtaining specific antibodies against these highly conserved membrane-associated proteins. To facilitate research into the biological functions of supervillin, monoclonal antibodies were generated against the bacterially expressed human supervillin N-terminus. Two chimeric monoclonal antibodies with rabbit Fc domains (clones 1E2/CPTC-SVIL-1; 4A8/CPTC-SVIL-2) and two mouse monoclonal antibodies (clones 5A8/CPTC-SVIL-3; 5G3/CPTC-SVIL-4) were characterized with respect to their binding sites, affinities, and for efficacy in immunoblotting, immunoprecipitation, immunofluorescence microscopy and immunohistochemical staining. Two antibodies (1E2, 5G3) recognize a sequence found only in primate supervillins, whereas the other two antibodies (4A8, 5A8) are specific for a more broadly conserved conformational epitope(s). All antibodies function in immunoblotting, immunoprecipitation and in immunofluorescence microscopy under the fixation conditions identified here. We also show that the 5A8 antibody works on immunohistological sections. These antibodies should provide useful tools for the study of mammalian supervillins.
Collapse
Affiliation(s)
- Tara C. Smith
- Department of Radiology, Division of Cell Biology & Imaging, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Richard G. Saul
- Antibody Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research ATRF, Frederick, MD, United States of America
| | - Elisabeth R. Barton
- Applied Physiology & Kinesiology, College of Health & Human Performance, University of Florida, Gainesville, FL, United States of America
| | - Elizabeth J. Luna
- Department of Radiology, Division of Cell Biology & Imaging, University of Massachusetts Medical School, Worcester, MA, United States of America
- * E-mail:
| |
Collapse
|
5
|
Sala S, Ampe C. An emerging link between LIM domain proteins and nuclear receptors. Cell Mol Life Sci 2018; 75:1959-1971. [PMID: 29428964 PMCID: PMC11105726 DOI: 10.1007/s00018-018-2774-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 12/13/2022]
Abstract
Nuclear receptors are ligand-activated transcription factors that partake in several biological processes including development, reproduction and metabolism. Over the last decade, evidence has accumulated that group 2, 3 and 4 LIM domain proteins, primarily known for their roles in actin cytoskeleton organization, also partake in gene transcription regulation. They shuttle between the cytoplasm and the nucleus, amongst other as a consequence of triggering cells with ligands of nuclear receptors. LIM domain proteins act as important coregulators of nuclear receptor-mediated gene transcription, in which they can either function as coactivators or corepressors. In establishing interactions with nuclear receptors, the LIM domains are important, yet pleiotropy of LIM domain proteins and nuclear receptors frequently occurs. LIM domain protein-nuclear receptor complexes function in diverse physiological processes. Their association is, however, often linked to diseases including cancer.
Collapse
Affiliation(s)
- Stefano Sala
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Christophe Ampe
- Department of Biochemistry, Ghent University, Ghent, Belgium.
| |
Collapse
|
6
|
Yang X, Lin Y. Functions of nuclear actin-binding proteins in human cancer. Oncol Lett 2017; 15:2743-2748. [PMID: 29434999 DOI: 10.3892/ol.2017.7658] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 11/10/2017] [Indexed: 12/19/2022] Open
Abstract
Nuclear actin-binding proteins (ABPs) perform distinguishable functions compared with their cytoplasmic counterparts in extensive activities of living cells. In addition to the ability to regulate actin cytoskeleton dynamics, nuclear ABPs are associated with multiple nuclear biological processes, including chromatin remodeling, gene transcriptional regulation, DNA damage response, nucleocytoplasmic trafficking and nuclear structure maintenance. The nuclear translocation of ABPs is affected by numerous intracellular or extracellular stimuli, which may lead to developmental malformation, tumor initiation, tumor progression and metastasis. Abnormal expression of certain ABPs have been reported in different types of cancer. This review focuses on the newly identified roles of nuclear ABPs in the pathological processes associated with cancer.
Collapse
Affiliation(s)
- Xinyi Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Ying Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
7
|
Chen X, Yang H, Zhang S, Wang Z, Ye F, Liang C, Wang H, Fang Z. A novel splice variant of supervillin, SV5, promotes carcinoma cell proliferation and cell migration. Biochem Biophys Res Commun 2016; 482:43-49. [PMID: 27825967 DOI: 10.1016/j.bbrc.2016.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 10/20/2022]
Abstract
Supervillin is an actin-associated protein that regulates actin dynamics by interacting with Myosin II, F-actin, and Cortactin to promote cell contractility and cell motility. Two splicing variants of human Supervillin (SV1 and SV4) have been reported in non-muscle cells; SV1 lacks 3 exons present in the larger isoform SV4. SV2, also called archvillin, is present in striated muscle; SV3, also called smooth muscle archvillin or SmAV, was cloned from smooth muscle. In the present study, we identify a novel splicing variant of Supervillin (SV5). SV5 contains a new splicing pattern. In the mouse tissues and cell lines examined, SV5 was predominantly expressed in skeletal and cardiac muscles and in proliferating cells, but was virtually undetectable in most normal tissues. Using RNAi and rescue experiments, we show here that SV5 displays altered functional properties in cancer cells, and regulates cell proliferation and cell migration.
Collapse
Affiliation(s)
- Xueran Chen
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, PR China; Cancer Hospital, Chinese Academy of Sciences, Hefei, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, PR China
| | - Haoran Yang
- Cancer Hospital, Chinese Academy of Sciences, Hefei, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, PR China
| | - Shangrong Zhang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, PR China
| | - Zhen Wang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, PR China
| | - Fang Ye
- Cancer Hospital, Chinese Academy of Sciences, Hefei, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, PR China
| | - Chaozhao Liang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, PR China
| | - Hongzhi Wang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, PR China; Cancer Hospital, Chinese Academy of Sciences, Hefei, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, PR China
| | - Zhiyou Fang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, PR China; Cancer Hospital, Chinese Academy of Sciences, Hefei, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, PR China.
| |
Collapse
|
8
|
He PH, Dong WX, Chu XL, Feng MG, Ying SH. The cellular proteome is affected by a gelsolin (BbGEL1
) during morphological transitions in aerobic surface versus liquid growth in the entomopathogenic fungus Beauveria bassiana. Environ Microbiol 2016; 18:4153-4169. [DOI: 10.1111/1462-2920.13500] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/23/2016] [Accepted: 08/13/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Pu-Hong He
- College of Life Sciences; Institute of Microbiology, Zhejiang University; Hangzhou 310058 China
| | - Wei-Xia Dong
- College of Life Sciences; Institute of Microbiology, Zhejiang University; Hangzhou 310058 China
| | - Xin-Ling Chu
- College of Life Sciences; Institute of Microbiology, Zhejiang University; Hangzhou 310058 China
| | - Ming-Guang Feng
- College of Life Sciences; Institute of Microbiology, Zhejiang University; Hangzhou 310058 China
| | - Sheng-Hua Ying
- College of Life Sciences; Institute of Microbiology, Zhejiang University; Hangzhou 310058 China
| |
Collapse
|
9
|
Serebryannyy LA, Parilla M, Annibale P, Cruz CM, Laster K, Gratton E, Kudryashov D, Kosak ST, Gottardi CJ, de Lanerolle P. Persistent nuclear actin filaments inhibit transcription by RNA polymerase II. J Cell Sci 2016; 129:3412-25. [PMID: 27505898 DOI: 10.1242/jcs.195867] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 12/26/2022] Open
Abstract
Actin is abundant in the nucleus and it is clear that nuclear actin has important functions. However, mystery surrounds the absence of classical actin filaments in the nucleus. To address this question, we investigated how polymerizing nuclear actin into persistent nuclear actin filaments affected transcription by RNA polymerase II. Nuclear filaments impaired nuclear actin dynamics by polymerizing and sequestering nuclear actin. Polymerizing actin into stable nuclear filaments disrupted the interaction of actin with RNA polymerase II and correlated with impaired RNA polymerase II localization, dynamics, gene recruitment, and reduced global transcription and cell proliferation. Polymerizing and crosslinking nuclear actin in vitro similarly disrupted the actin-RNA-polymerase-II interaction and inhibited transcription. These data rationalize the general absence of stable actin filaments in mammalian somatic nuclei. They also suggest a dynamic pool of nuclear actin is required for the proper localization and activity of RNA polymerase II.
Collapse
Affiliation(s)
- Leonid A Serebryannyy
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Megan Parilla
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Paolo Annibale
- Laboratory of Fluorescence Dynamics, University of California Irvine, Irvine, CA 92697, USA
| | - Christina M Cruz
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Kyle Laster
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | - Enrico Gratton
- Laboratory of Fluorescence Dynamics, University of California Irvine, Irvine, CA 92697, USA
| | - Dmitri Kudryashov
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Steven T Kosak
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | - Cara J Gottardi
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Primal de Lanerolle
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
10
|
Preparation and Affinity-Purification of Supervillin Isoform 4 (SV4) Specific Polyclonal Antibodies. Protein J 2016; 35:107-14. [DOI: 10.1007/s10930-016-9658-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Shukla GC, Plaga AR, Shankar E, Gupta S. Androgen receptor-related diseases: what do we know? Andrology 2016; 4:366-81. [PMID: 26991422 DOI: 10.1111/andr.12167] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/28/2015] [Accepted: 01/06/2016] [Indexed: 01/09/2023]
Abstract
The androgen receptor (AR) and the androgen-AR signaling pathway play a significant role in male sexual differentiation and the development and function of male reproductive and non-reproductive organs. Because of AR's widely varied and important roles, its abnormalities have been identified in various diseases such as androgen insensitivity syndrome, spinal bulbar muscular atrophy, benign prostatic hyperplasia, and prostate cancer. This review provides an overview of the function of androgens and androgen-AR mediated diseases. In addition, the diseases delineated above are discussed with respect to their association with mutations and other post-transcriptional modifications in the AR. Finally, we present an introduction to the potential therapeutic application of most recent pharmaceuticals including miRNAs in prostate cancer that specifically target the transactivation function of the AR at post-transcriptional stages.
Collapse
Affiliation(s)
- G C Shukla
- Center of Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA.,Department of Biological Sciences, Cleveland State University, Cleveland, OH, USA
| | - A R Plaga
- Center of Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA.,Department of Biological Sciences, Cleveland State University, Cleveland, OH, USA
| | - E Shankar
- Department of Urology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, OH, USA
| | - S Gupta
- Department of Urology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, OH, USA.,Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA.,Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH, USA.,Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| |
Collapse
|
12
|
Adseverin mediates RANKL-induced osteoclastogenesis by regulating NFATc1. Exp Mol Med 2015; 47:e199. [PMID: 26642432 PMCID: PMC4686697 DOI: 10.1038/emm.2015.94] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/07/2015] [Accepted: 09/17/2015] [Indexed: 11/08/2022] Open
Abstract
Adseverin is a Ca2+-dependent actin filament-severing protein that has been reported to regulate exocytosis via rearrangements of the actin cytoskeleton in secretory cells. However, the role of adseverin in bone cells has not yet been well characterized. Here, we investigated the role of adseverin in osteoclastogenesis using primary osteoclast precursor cells. Adseverin expression was upregulated during RANKL (receptor activator of nuclear factor-κB ligand)-induced osteoclast differentiation. Moreover, genetic silencing of adseverin decreased the number of osteoclasts generated by RANKL. Adseverin knockdown also suppressed the RANKL-mediated induction of nuclear factor of activated T-cell c1 (NFATc1), which is a key transcription factor in osteoclastogenesis. In addition, adseverin knockdown impaired bone resorption and the secretion of bone-degrading enzymes from osteoclasts. These effects were accompanied by decreased NFATc1 expression and the activation of nuclear factor-κB. Collectively, our results indicate that adseverin has a crucial role in osteoclastogenesis by regulating NFATc1.
Collapse
|
13
|
Dimitrova E, Turberfield AH, Klose RJ. Histone demethylases in chromatin biology and beyond. EMBO Rep 2015; 16:1620-39. [PMID: 26564907 PMCID: PMC4687429 DOI: 10.15252/embr.201541113] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/06/2015] [Indexed: 01/05/2023] Open
Abstract
Histone methylation plays fundamental roles in regulating chromatin‐based processes. With the discovery of histone demethylases over a decade ago, it is now clear that histone methylation is dynamically regulated to shape the epigenome and regulate important nuclear processes including transcription, cell cycle control and DNA repair. In addition, recent observations suggest that these enzymes could also have functions beyond their originally proposed role as histone demethylases. In this review, we focus on recent advances in our understanding of the molecular mechanisms that underpin the role of histone demethylases in a wide variety of normal cellular processes.
Collapse
Affiliation(s)
| | | | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Ferreira AM, Tuominen I, Sousa S, Gerbens F, van Dijk-Bos K, Osinga J, Kooi KA, Sanjabi B, Esendam C, Oliveira C, Terpstra P, Hardonk M, van der Sluis T, Zazula M, Stachura J, van der Zee AG, Hollema H, Sijmons RH, Aaltonen LA, Seruca R, Hofstra RMW, Westers H. New target genes in endometrial tumors show a role for the estrogen-receptor pathway in microsatellite-unstable cancers. Hum Mutat 2015; 35:1514-23. [PMID: 25231886 DOI: 10.1002/humu.22700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 09/08/2014] [Indexed: 12/31/2022]
Abstract
Microsatellite instability (MSI) in tumors results in an accumulation of mutations in (target) genes. Previous studies suggest that the profile of target genes differs according to tumor type. This paper describes the first genome-wide search for target genes for mismatch repair-deficient endometrial cancers. Genes expressed in normal endometrium containing coding repeats were analyzed for mutations in tumors. We identified 44 possible genes of which seven are highly mutated (>15%). Some candidates were also found mutated in colorectal and gastric tumors. The most frequently mutated gene, NRIP1 encoding nuclear receptor-interacting protein 1, was silenced in an endometrial tumor cell line and expression microarray experiments were performed. Silencing of NRIP1 was associated with differences in the expression of several genes in the estrogen-receptor network. Furthermore, an enrichment of genes related to cell cycle (regulation) and replication was observed. We present a new profile of target genes, some of them tissue specific, whereas others seem to play a more general role in MSI tumors. The high-mutation frequency combined with the expression data suggest, for the first time, an involvement of NRIP1 in endometrial cancer development.
Collapse
Affiliation(s)
- Ana M Ferreira
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pathomorphology, Medical College, Jagiellonian University, Krakow, Poland; Institute of Molecular Pathology and Immunology and Medical Faculty, University of Porto, Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Son K, Smith TC, Luna EJ. Supervillin binds the Rac/Rho-GEF Trio and increases Trio-mediated Rac1 activation. Cytoskeleton (Hoboken) 2015; 72:47-64. [PMID: 25655724 DOI: 10.1002/cm.21210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/21/2015] [Indexed: 01/06/2023]
Abstract
We investigated cross-talk between the membrane-associated, myosin II-regulatory protein supervillin and the actin-regulatory small GTPases Rac1, RhoA, and Cdc42. Supervillin knockdown reduced Rac1-GTP loading, but not the GTP loading of RhoA or Cdc42, in HeLa cells with normal levels of the Rac1-activating protein Trio. No reduction in Rac1-GTP loading was observed when supervillin levels were reduced in Trio-depleted cells. Conversely, overexpression of supervillin isoform 1 (SV1) or, especially, isoform 4 (SV4) increased Rac1 activation. Inhibition of the Trio-mediated Rac1 guanine nucleotide exchange activity with ITX3 partially blocked the SV4-mediated increase in Rac1-GTP. Both SV4 and SV1 co-localized with Trio at or near the plasma membrane in ruffles and cell surface projections. Two sequences within supervillin bound directly to Trio spectrin repeats 4-7: SV1-171, which contains N-terminal residues found in both SV1 and SV4 and the SV4-specific differentially spliced coding exons 3, 4, and 5 within SV4 (SV4-E345; SV4 amino acids 276-669). In addition, SV4-E345 interacted with the homologous sequence in rat kalirin (repeats 4-7, amino acids 531-1101). Overexpressed SV1-174 and SV4-E345 affected Rac1-GTP loading, but only in cells with endogenous levels of Trio. Trio residues 771-1057, which contain both supervillin-interaction sites, exerted a dominant-negative effect on cell spreading. Supervillin and Trio knockdowns, separately or together, inhibited cell spreading, suggesting that supervillin regulates the Rac1 guanine nucleotide exchange activity of Trio, and potentially also kalirin, during cell spreading and lamellipodia extension.
Collapse
Affiliation(s)
- Kyonghee Son
- Department of Cell and Developmental Biology, Program in Cell & Developmental Dynamics, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | | |
Collapse
|
16
|
Laurent B, Ruitu L, Murn J, Hempel K, Ferrao R, Xiang Y, Liu S, Garcia BA, Wu H, Wu F, Steen H, Shi Y. A specific LSD1/KDM1A isoform regulates neuronal differentiation through H3K9 demethylation. Mol Cell 2015; 57:957-970. [PMID: 25684206 DOI: 10.1016/j.molcel.2015.01.010] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/10/2014] [Accepted: 01/06/2015] [Indexed: 10/24/2022]
Abstract
Lysine-specific demethylase 1 (LSD1) has been reported to repress and activate transcription by mediating histone H3K4me1/2 and H3K9me1/2 demethylation, respectively. The molecular mechanism that underlies this dual substrate specificity has remained unknown. Here we report that an isoform of LSD1, LSD1+8a, does not have the intrinsic capability to demethylate H3K4me2. Instead, LSD1+8a mediates H3K9me2 demethylation in collaboration with supervillin (SVIL), a new LSD1+8a interacting protein. LSD1+8a knockdown increases H3K9me2, but not H3K4me2, levels at its target promoters and compromises neuronal differentiation. Importantly, SVIL co-localizes to LSD1+8a-bound promoters, and its knockdown mimics the impact of LSD1+8a loss, supporting SVIL as a cofactor for LSD1+8a in neuronal cells. These findings provide insight into mechanisms by which LSD1 mediates H3K9me demethylation and highlight alternative splicing as a means by which LSD1 acquires selective substrate specificities (H3K9 versus H3K4) to differentially control specific gene expression programs in neurons.
Collapse
Affiliation(s)
- Benoit Laurent
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston MA, 02115, USA; Department of Cell Biology, Harvard Medical School, Boston MA, 02115, USA
| | - Lv Ruitu
- Department of Biochemistry and Epigenetics Laboratory, Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jernej Murn
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston MA, 02115, USA; Department of Cell Biology, Harvard Medical School, Boston MA, 02115, USA
| | - Kristina Hempel
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Proteomics Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Ryan Ferrao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Yang Xiang
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston MA, 02115, USA; Department of Cell Biology, Harvard Medical School, Boston MA, 02115, USA
| | - Shichong Liu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Feizhen Wu
- Department of Biochemistry and Epigenetics Laboratory, Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hanno Steen
- Proteomics Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yang Shi
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston MA, 02115, USA; Department of Cell Biology, Harvard Medical School, Boston MA, 02115, USA.
| |
Collapse
|
17
|
Saeed K, Östling P, Björkman M, Mirtti T, Alanen K, Vesterinen T, Sankila A, Lundin J, Lundin M, Rannikko A, Nordling S, Mpindi JP, Kohonen P, Iljin K, Kallioniemi O, Rantala JK. Androgen receptor-interacting protein HSPBAP1 facilitates growth of prostate cancer cells in androgen-deficient conditions. Int J Cancer 2014; 136:2535-45. [PMID: 25359680 DOI: 10.1002/ijc.29303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 10/16/2014] [Indexed: 12/31/2022]
Abstract
Hormonal therapies targeting androgen receptor (AR) are effective in prostate cancer (PCa), but often the cancers progress to fatal castrate-resistant disease. Improved understanding of the cellular events during androgen deprivation would help to identify survival and stress pathways whose inhibition could synergize with androgen deprivation. Toward this aim, we performed an RNAi screen on 2,068 genes, including kinases, phosphatases, epigenetic enzymes and other druggable gene targets. High-content cell spot microarray (CSMA) screen was performed in VCaP cells in the presence and absence of androgens with detection of Ki67 and cleaved ADP-ribose polymerase (cPARP) as assays for cell proliferation and apoptosis. Thirty-nine candidate genes were identified, whose silencing inhibited proliferation or induced apoptosis of VCaP cells exclusively under androgen-deprived conditions. One of the candidates, HSPB (heat shock 27 kDa)-associated protein 1 (HSPBAP1), was confirmed to be highly expressed in tumor samples and its mRNA expression levels increased with the Gleason grade. We found that strong HSPBAP1 immunohistochemical staining (IHC) was associated with shorter disease-specific survival of PCa patients compared with negative to moderate staining. Furthermore, we demonstrate that HSPBAP1 interacts with AR in the nucleus of PCa cells specifically during androgen-deprived conditions, occupies chromatin at PSA/klk3 and TMPRSS2/tmprss2 enhancers and regulates their expression. In conclusion, we suggest that HSPBAP1 aids in sustaining cell viability by maintaining AR signaling during androgen-deprived conditions.
Collapse
Affiliation(s)
- Khalid Saeed
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Li N, Chen M, Truong S, Yan C, Buttyan R. Determinants of Gli2 co-activation of wildtype and naturally truncated androgen receptors. Prostate 2014; 74:1400-10. [PMID: 25132524 DOI: 10.1002/pros.22855] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/17/2014] [Indexed: 11/08/2022]
Abstract
BACKGROUND Gli2, a transcription factor in the Hedgehog pathway, is overexpressed in castrate-resistant prostate cancer (PCa). Previously we showed that Gli2 overexpression increased transcriptional activity of androgen receptor (AR) and conferred androgen growth-independence to normally growth-dependent PCa cells. Here we localized the regions of AR-Gli2 protein interaction and determined the domains within Gli2 needed for AR co-activation. METHODS Co-immunoprecipitation and GST-pulldown assays were used to define AR-Gli binding domains. Co-activation assays using androgen-responsive promoter reporters were used to define Gli2 regions needed for AR co-activation. Chromatin immunoprecipitation (ChIP) assays were used to confirm nuclear interactions of Gli2 with AR in PCa cells. RESULTS The Gli2 C-terminal domain (CTD) is sufficient for AR co-activation. Two elements within the CTD were required: (1) an AR binding domain within aa628-897; and (2) at least part of the Gli2 transactivation domain within aa1252-1586. In turn, Gli2 binds the tau5/AF5 ligand-independent activation domain in the AR N-terminus. Mutations in the WxxLF motif in tau5/AF5 greatly diminished binding to Gli2-CTD. Gli2 interaction with AR tau5/AF5 was further substantiated by the ability of Gli2/Gli2-CTD to co-activate truncated AR splice variants (AR-V7/ARV567es). ChIP assays confirmed that Gli2 associates with chromatin at androgen response elements found near androgen-responsive genes in LNCaP cells. These assays also showed that AR associates with chromatin containing a Gli-response element near a Gli-responsive gene. CONCLUSION Our findings indicate that Gli2 overexpression in PCa cells might support development of castration resistant PCa through AR co-activation and suggests that AR might modulate transcription from Gli2.
Collapse
Affiliation(s)
- Na Li
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
19
|
Yagoub D, Wilkins MR, Lay AJ, Kaczorowski DC, Hatoum D, Bajan S, Hutvagner G, Lai JH, Wu W, Martiniello-Wilks R, Xia P, McGowan EM. Sphingosine kinase 1 isoform-specific interactions in breast cancer. Mol Endocrinol 2014; 28:1899-915. [PMID: 25216046 DOI: 10.1210/me.2013-1423] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sphingosine kinase 1 (SK1) is a signaling enzyme that catalyzes the formation of sphingosine-1-phosphate. Overexpression of SK1 is causally associated with breast cancer progression and resistance to therapy. SK1 inhibitors are currently being investigated as promising breast cancer therapies. Two major transcriptional isoforms, SK143 kDa and SK151 kDa, have been identified; however, the 51 kDa variant is predominant in breast cancer cells. No studies have investigated the protein-protein interactions of the 51 kDa isoform and whether the two SK1 isoforms differ significantly in their interactions. Seeking an understanding of the regulation and role of SK1, we used a triple-labeling stable isotope labeling by amino acids in cell culture-based approach to identify SK1-interacting proteins common and unique to both isoforms. Of approximately 850 quantified proteins in SK1 immunoprecipitates, a high-confidence list of 30 protein interactions with each SK1 isoform was generated via a meta-analysis of multiple experimental replicates. Many of the novel identified SK1 interaction partners such as supervillin, drebrin, and the myristoylated alanine-rich C-kinase substrate-related protein supported and highlighted previously implicated roles of SK1 in breast cancer cell migration, adhesion, and cytoskeletal remodeling. Of these interactions, several were found to be exclusive to the 43 kDa isoform of SK1, including the protein phosphatase 2A, a previously identified SK1-interacting protein. Other proteins such as allograft inflammatory factor 1-like protein, the latent-transforming growth factor β-binding protein, and dipeptidyl peptidase 2 were found to associate exclusively with the 51 kDa isoform of SK1. In this report, we have identified common and isoform-specific SK1-interacting partners that provide insight into the molecular mechanisms that drive SK1-mediated oncogenicity.
Collapse
Affiliation(s)
- Daniel Yagoub
- School of Biotechnology and Biomolecular Sciences (D.Y., M.R.W.), University of New South Wales, Sydney 2052, Australia; Centenary Institute (D.Y., A.L., D.G.K., P.X., E.M.M.), Sydney 2042, Australia; Translational Cancer Research Group (D.H., R.M.-W., E.M.M.), Faculty of Science, School of Medical and Molecular Biosciences, and Faculty of Engineering and Information Technology (S.B., G.H.), University of Technology Sydney, Sydney, New South Wales 2007, Australia; Department of Biochemistry (J.H.L., W.W.), Tufts University School of Medicine, Boston, Massachusetts 02111; Shanghai Medical School (P.X.), Fudan University, 200433 Shanghai, People's Republic of China; and Sydney Medical School (E.M.M.), The University of Sydney, Sydney 2006, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rajakylä EK, Vartiainen MK. Rho, nuclear actin, and actin-binding proteins in the regulation of transcription and gene expression. Small GTPases 2014; 5:e27539. [PMID: 24603113 DOI: 10.4161/sgtp.27539] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Actin cytoskeleton is one of the main targets of Rho GTPases, which act as molecular switches on many signaling pathways. During the past decade, actin has emerged as an important regulator of gene expression. Nuclear actin plays a key role in transcription, chromatin remodeling, and pre-mRNA processing. In addition, the "status" of the actin cytoskeleton is used as a signaling intermediate by at least the MKL1-SRF and Hippo-pathways, which culminate in the transcriptional regulation of cytoskeletal and growth-promoting genes, respectively. Rho GTPases may therefore regulate gene expression by controlling either cytoplasmic or nuclear actin dynamics. Although the regulation of nuclear actin polymerization is still poorly understood, many actin-binding proteins, which are downstream effectors of Rho, are found in the nuclear compartment. In this review, we discuss the possible mechanisms and key proteins that may mediate the transcriptional regulation by Rho GTPases through actin.
Collapse
Affiliation(s)
- Eeva Kaisa Rajakylä
- Program in Cell and Molecular Biology; Institute of Biotechnology; University of Helsinki; Helsinki, Finland
| | - Maria K Vartiainen
- Program in Cell and Molecular Biology; Institute of Biotechnology; University of Helsinki; Helsinki, Finland
| |
Collapse
|
21
|
Nag S, Larsson M, Robinson RC, Burtnick LD. Gelsolin: The tail of a molecular gymnast. Cytoskeleton (Hoboken) 2013; 70:360-84. [DOI: 10.1002/cm.21117] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/24/2013] [Indexed: 12/14/2022]
Affiliation(s)
| | - Mårten Larsson
- Institute of Molecular and Cell Biology, A*STAR; Singapore
| | | | - Leslie D. Burtnick
- Department of Chemistry and Centre for Blood Research; Life Sciences Institute, University of British Columbia; Vancouver; British Columbia; Canada
| |
Collapse
|
22
|
GLPG0492, a novel selective androgen receptor modulator, improves muscle performance in the exercised-mdx mouse model of muscular dystrophy. Pharmacol Res 2013; 72:9-24. [PMID: 23523664 DOI: 10.1016/j.phrs.2013.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 11/22/2022]
Abstract
Anabolic drugs may counteract muscle wasting and dysfunction in Duchenne muscular dystrophy (DMD); however, steroids have unwanted side effects. We focused on GLPG0492, a new non-steroidal selective androgen receptor modulator that is currently under development for musculo-skeletal diseases such as sarcopenia and cachexia. GLPG0492 was tested in the exercised mdx mouse model of DMD in a 4-week trial at a single high dose (30 mg/kg, 6 day/week s.c.), and the results were compared with those from the administration of α-methylprednisolone (PDN; 1 mg/kg, i.p.) and nandrolone (NAND, 5 mg/kg, s.c.). This assessment was followed by a 12-week dose-dependence study (0.3-30 mg/kg s.c.). The outcomes were evaluated in vivo and ex vivo on functional, histological and biochemical parameters. Similar to PDN and NAND, GLPG0492 significantly increased mouse strength. In acute exhaustion tests, a surrogate of the 6-min walking test used in DMD patients, GLPG0492 preserved running performance, whereas vehicle- or comparator-treated animals showed a significant increase in fatigue (30-50%). Ex vivo, all drugs resulted in a modest but significant increase of diaphragm force. In parallel, a decrease in the non-muscle area and markers of fibrosis was observed in GLPG0492- and NAND-treated mice. The drugs exerted minor effects on limb muscles; however, electrophysiological biomarkers were ameliorated in extensor digitorum longus muscle. The longer dose-dependence study confirmed the effect on mdx mouse strength and resistance to fatigue and demonstrated the efficacy of lower drug doses on in vivo and ex vivo functional parameters. These results support the interest of further studies of GLPG0492 as a potential treatment for DMD.
Collapse
|
23
|
Fang Z, Luna EJ. Supervillin-mediated suppression of p53 protein enhances cell survival. J Biol Chem 2013; 288:7918-7929. [PMID: 23382381 DOI: 10.1074/jbc.m112.416842] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Integrin-based adhesions promote cell survival as well as cell motility and invasion. We show here that the adhesion regulatory protein supervillin increases cell survival by decreasing levels of the tumor suppressor protein p53 and downstream target genes. RNAi-mediated knockdown of a new splice form of supervillin (isoform 4) or both isoforms 1 and 4 increases the amount of p53 and cell death, whereas p53 levels decrease after overexpression of either supervillin isoform. Cellular responses to DNA damage induced by etoposide or doxorubicin include down-regulation of endogenous supervillin coincident with increases in p53. In DNA-damaged supervillin knockdown cells, p53 knockdown or inhibition partially rescues the loss of cell metabolic activity, a measure of cell proliferation. Knockdown of the p53 deubiquitinating enzyme USP7/HAUSP also reverses the supervillin phenotype, blocking the increase in p53 levels seen after supervillin knockdown and accentuating the decrease in p53 levels triggered by supervillin overexpression. Conversely, supervillin overexpression decreases the association of USP7 and p53 and attenuates USP7-mediated p53 deubiquitination. USP7 binds directly to the supervillin N terminus and can deubiquitinate and stabilize supervillin. Supervillin also is stabilized by derivatization with the ubiquitin-like protein SUMO1. These results show that supervillin regulates cell survival through control of p53 levels and suggest that supervillin and its interaction partners at sites of cell-substrate adhesion constitute a locus for cross-talk between survival signaling and cell motility pathways.
Collapse
Affiliation(s)
- Zhiyou Fang
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605.
| | - Elizabeth J Luna
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605.
| |
Collapse
|
24
|
Palstra AP, Beltran S, Burgerhout E, Brittijn SA, Magnoni LJ, Henkel CV, Jansen HJ, van den Thillart GEEJM, Spaink HP, Planas JV. Deep RNA sequencing of the skeletal muscle transcriptome in swimming fish. PLoS One 2013; 8:e53171. [PMID: 23308156 PMCID: PMC3540090 DOI: 10.1371/journal.pone.0053171] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 11/26/2012] [Indexed: 11/20/2022] Open
Abstract
Deep RNA sequencing (RNA-seq) was performed to provide an in-depth view of the transcriptome of red and white skeletal muscle of exercised and non-exercised rainbow trout (Oncorhynchus mykiss) with the specific objective to identify expressed genes and quantify the transcriptomic effects of swimming-induced exercise. Pubertal autumn-spawning seawater-raised female rainbow trout were rested (n = 10) or swum (n = 10) for 1176 km at 0.75 body-lengths per second in a 6,000-L swim-flume under reproductive conditions for 40 days. Red and white muscle RNA of exercised and non-exercised fish (4 lanes) was sequenced and resulted in 15–17 million reads per lane that, after de novo assembly, yielded 149,159 red and 118,572 white muscle contigs. Most contigs were annotated using an iterative homology search strategy against salmonid ESTs, the zebrafish Danio rerio genome and general Metazoan genes. When selecting for large contigs (>500 nucleotides), a number of novel rainbow trout gene sequences were identified in this study: 1,085 and 1,228 novel gene sequences for red and white muscle, respectively, which included a number of important molecules for skeletal muscle function. Transcriptomic analysis revealed that sustained swimming increased transcriptional activity in skeletal muscle and specifically an up-regulation of genes involved in muscle growth and developmental processes in white muscle. The unique collection of transcripts will contribute to our understanding of red and white muscle physiology, specifically during the long-term reproductive migration of salmonids.
Collapse
Affiliation(s)
- Arjan P Palstra
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cao B, Liu X, Li J, Liu S, Qi Y, Xiong Z, Zhang A, Wiese T, Fu X, Gu J, Rennie PS, Sartor O, Lee BR, Ip C, Zhao L, Zhang H, Dong Y. 20(S)-protopanaxadiol-aglycone downregulation of the full-length and splice variants of androgen receptor. Int J Cancer 2012; 132:1277-87. [PMID: 22907191 DOI: 10.1002/ijc.27754] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 07/06/2012] [Indexed: 01/25/2023]
Abstract
As a public health problem, prostate cancer engenders huge economic and life-quality burden. Developing effective chemopreventive regimens to alleviate the burden remains a major challenge. Androgen signaling is vital to the development and progression of prostate cancer. Targeting androgen signaling via blocking the production of the potent ligand dihydrotestosterone has been shown to decrease prostate cancer incidence. However, the potential of increasing the incidence of high-grade prostate cancers has been a concern. Mechanisms of disease progression after the intervention may include increased expression of androgen receptor (AR) in prostate tissue and expression of the constitutively active AR splice variants (AR-Vs) lacking the ligand-binding domain. Thus, novel agents targeting the receptor, preferentially both the full-length and AR-Vs, are urgently needed. In the present study, we show that ginsenoside 20(S)-protopanaxadiol-aglycone (PPD) effectively downregulates the expression and activity of both the full-length AR and AR-Vs. The effects of PPD on AR and AR-Vs are manifested by an immediate drop in proteins followed by a reduction in transcripts, attributed to PPD induction of proteasome-mediated degradation and inhibition of the transcription of the AR gene. We further show that although PPD inhibits the growth as well as AR expression and activity in LNCaP xenograft tumors, the morphology and AR expression in normal prostates are not affected. This study is the first to show that PPD suppresses androgen signaling through downregulating both the full-length AR and AR-Vs, and provides strong rationale for further developing PPD as a promising agent for the prevention and/or treatment of prostate cancer.
Collapse
Affiliation(s)
- Bo Cao
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kollara A, Brown TJ. Expression and function of nuclear receptor co-activator 4: evidence of a potential role independent of co-activator activity. Cell Mol Life Sci 2012; 69:3895-909. [PMID: 22562579 PMCID: PMC3492700 DOI: 10.1007/s00018-012-1000-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 04/13/2012] [Accepted: 04/17/2012] [Indexed: 12/22/2022]
Abstract
Nuclear receptor coactivator 4 (NcoA4), also known as androgen receptor-associated protein 70 (ARA70), was initially discovered as a component of Ret-Fused Gene expressed in a subset of papillary thyroid carcinomas. Subsequent studies have established NcoA4 as a coactivator for a variety of nuclear receptors, including peroxisome proliferator activated receptors α and γ, and receptors for steroid hormones, vitamins D and A, thyroid hormone, and aryl hydrocarbons. While human NcoA4 has both LXXLL and FXXLF motifs that mediate p160 coactivator nuclear receptor interactions, this ubiquitously expressed protein lacks clearly defined functional domains. Several studies indicate that NcoA4 localizes predominantly to the cytoplasm and affects ligand-binding specificity of the androgen receptor, which has important implications for androgen-independent prostate cancer. Two NcoA4 variants, which may exert differential activities, have been identified in humans. Recent studies suggest that NcoA4 may play a role in development, carcinogenesis, inflammation, erythrogenesis, and cell cycle progression that may be independent of its role as a receptor coactivator. This review summarizes what is currently known of the structure, expression, regulation, and potential functions of this unique protein in cancerous and non-cancerous pathologies.
Collapse
Affiliation(s)
- Alexandra Kollara
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 25 Orde Street, 6-1001TB, Toronto, ON, M5T 3H7, Canada
| | | |
Collapse
|
27
|
Sayeed A, Alam N, Trerotola M, Languino LR. Insulin-like growth factor 1 stimulation of androgen receptor activity requires β(1A) integrins. J Cell Physiol 2012; 227:751-8. [PMID: 21465482 DOI: 10.1002/jcp.22784] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Despite the findings that β1 integrins play a vital role in the regulation of cell proliferation and survival, the mechanisms through which they operate and lead to cancer progression remain elusive. Previously, our laboratory has shown that β(1A) integrins support insulin-like growth factor 1 (IGFI)-mediated mitogenic and transforming activities. Here, we report that β(1A) integrins regulate basal levels of IGF-IR, although they are not critical for maintaining cancer cell morphology. Upon transfection of β(1A) siRNA and consequent downregulation of IGF-IR, we show inhibition of anchorage-independent growth of prostate cancer cells, a function which is dependent on IGF-IR expression. In addition, we demonstrate that IGFI-mediated activation of androgen receptor (AR), known to occur in prostate cancer cells, requires expression of β(1A) integrins as evaluated by luciferase reporter assays and immunoblotting analysis. Since β(1A) integrin levels are increased by R1881 or dihydrotestosterone (DHT), our results imply that β(1A) integrins support an androgen-enhanced feedback loop that regulates the expression of IGF-IR. β(1A) integrins also regulate inducible levels of IGF-IR in cells stimulated by androgen or by a combination of androgen and IGFI, as evaluated by flow cytometric analysis and immunoblotting. Furthermore, upon transfection of β(1A) siRNA and consequent downregulation of IGF-IR, neither activation of AKT, an effector of IGF-IR, nor AR levels are affected. We conclude that β(1A) integrin expression is critical for maintaining the regulatory crosstalk between IGF-IR and AR.
Collapse
Affiliation(s)
- Aejaz Sayeed
- Department of Cancer Biology, Prostate Cancer Discovery and Development Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
28
|
Kano T, Wada S, Morimoto K, Kato Y, Ogihara T. Effect of Knockdown of Ezrin, Radixin, and Moesin on P-Glycoprotein Function in HepG2 Cells. J Pharm Sci 2011; 100:5308-14. [DOI: 10.1002/jps.22718] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 06/07/2011] [Accepted: 07/12/2011] [Indexed: 11/05/2022]
|
29
|
Androgen receptor co-activators in the regulation of cellular events in prostate cancer. World J Urol 2011; 30:297-302. [PMID: 22105110 DOI: 10.1007/s00345-011-0797-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 11/07/2011] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES Androgen receptor (AR) action in benign and malignant tissue is potentiated by a number of co-regulatory proteins that may interact with one or more receptor domains. With improvement of research methodologies, it became possible to detect a number of co-activators whose expression is increased in prostate cancer tissue. METHODS Manuscripts describing prostate cancer-relevant regulation of cellular events by co-activators are selected and summarized. RESULTS AR co-activators may regulate histone modification, proteasomal degradation, chaperones, sumoylation, chromatin remodeling, and cytoskeleton. Some of them (TIF-2) are up-regulated by androgens, whereas the expression of others increases during androgen ablation (p300, CBP, and Tip60). Most co-factors are important for the stimulation of cellular proliferation, although in some cases (ART-27), they act as tumor suppressors and are deleted in prostate cancer tissue. In addition to stimulating AR, some co-activators suppress apoptosis in prostate cancer cells that do not express the AR (p300 and SRC-3). It was recently shown that the inhibition of p300 slows down proliferation, stimulates apoptosis, and inhibits migration and invasion. CONCLUSIONS Co-factors whose down-regulation results in the alterations of multiple cellular functions may be valid targets for novel therapies in advanced prostate cancer.
Collapse
|
30
|
An JH, Kim JW, Jang SM, Kim CH, Kang EJ, Choi KH. Gelsolin negatively regulates the activity of tumor suppressor p53 through their physical interaction in hepatocarcinoma HepG2 cells. Biochem Biophys Res Commun 2011; 412:44-9. [PMID: 21801713 DOI: 10.1016/j.bbrc.2011.07.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 07/08/2011] [Indexed: 10/18/2022]
Abstract
As a transcription factor, p53 modulates several cellular responses including cell-cycle control, apoptosis, and differentiation. In this study, we have shown that an actin regulatory protein, gelsolin (GSN), can physically interact with p53. The nuclear localization of p53 is inhibited by GSN overexpression in hepatocarcinoma HepG2 cells. Additionally, we demonstrate that GSN negatively regulates p53-dependent transcriptional activity of a reporter construct, driven by the p21-promoter. Furthermore, p53-mediated apoptosis was repressed in GSN-transfected HepG2 cells. Taken together, these results suggest that GSN binds to p53 and this interaction leads to the inhibition of p53-induced apoptosis by anchoring of p53 in the cytoplasm in HepG2 cells.
Collapse
Affiliation(s)
- Joo-Hee An
- Department of Life Science (BK21 Program), College of Natural Sciences, Chung-Ang University, Seoul 156-756, Republic of Korea
| | | | | | | | | | | |
Collapse
|
31
|
Yang S, Shi M, Cao J, Su J, Zhao L, Lei B, Chang C, Lu J, Ye J, Xie W. [Establishment of a novel chinese human lung adenocarcinoma cell line CPA-Yang3 and its real bone metastasis clone CPA-Yang3BM in immunodeficient mice]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2011; 14:79-85. [PMID: 21342638 PMCID: PMC5999774 DOI: 10.3779/j.issn.1009-3419.2011.02.01] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 11/15/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVE The recurrence and metastasis of lung cancer is a tough problem worldwide. The aim of this study is to establish a novel Chinese lung adenocarcinoma cell line and its real bone-seeking clone sub-line for exploring the molecular mechanism of lung cancer metastasis. METHODS The cells came from the pleural effusion of a sixty-five years old female patient with lung adenocarcinoma and supraclavicular lymph node metastases. The gene expression was detected by real-time quantitative PCR. Intracardiac injection of the cells into nude mice was performed and in vivo imaging was obtained by bone scintigraphy and conventional radiography. Bone metastases were determined on bone scintigraphy and then the lesions were resected under deep anesthesia for bone metastasis cancer cell culture. The process was repeated for four cycles to obtain a real bone-seeking clone. RESULTS The tumorigenesis rate started at 4th passage in immunodeficient mice via subcutaneously and as well as later passages. Approximately 1×10⁶ cancer cells were injected into left cardiac ventricle of immunodeficient mice resulted bone metastasis sites were successfully revealed by bone scintigraphy and pathological diagnosis, the mandible (100%), scapula (33%), humerus (50%), vertebral column (50%), femur (66.7%) and accompanied invasion with other organs, the adrenal gland (17%), pulmonary (33%), liver (50%), submaxillary gland (33%) in the mice after inoculation two-three weeks. The chromosome karyotype analysis of the cells was subdiploid. Quantitative real-time PCR was used to examined and compared with SPC-A-1 lung adenocarcinoma, ESM1, VEGF-C, IL-6, IL-8, AR, SVIL, FN1 genes were overexpress. The novel cell was named CPA-Yang3. The femur metastasis cell was repeated in vivo-in vitro-in vivo with three cycles and harvested a real bone metastasis clone. It was named CPA-Yang3BM. CONCLUSIONS Tne characteristics of novel strain CPAYang3 is a highly metastasis cell line of Chinese lung adenocarcinoma and CPA-Yang3BM is a real bone-seeking clone.
Collapse
Affiliation(s)
- Shunfang Yang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Liu HP, Yu MC, Jiang MH, Chen JX, Yan DP, Liu F, Ge BX. Association of supervillin with KIR2DL1 regulates the inhibitory signaling of natural killer cells. Cell Signal 2011; 23:487-96. [DOI: 10.1016/j.cellsig.2010.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 10/25/2010] [Accepted: 11/02/2010] [Indexed: 01/06/2023]
|
33
|
Li GH, Arora PD, Chen Y, McCulloch CA, Liu P. Multifunctional roles of gelsolin in health and diseases. Med Res Rev 2010; 32:999-1025. [PMID: 22886630 DOI: 10.1002/med.20231] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Gelsolin, a Ca(2+) -regulated actin filament severing, capping, and nucleating protein, is an ubiquitous, multifunctional regulator of cell structure and metabolism. More recent data show that gelsolin can act as a transcriptional cofactor in signal transduction and its own expression and function can be influenced by epigenetic changes. Here, we review the functions of the plasma and cytoplasmic forms of gelsolin, and their manifold impacts on cancer, apoptosis, infection and inflammation, cardiac injury, pulmonary diseases, and aging. An improved understanding of the functions and regulatory mechanisms of gelsolin may lead to new considerations of this protein as a potential biomarker and/or therapeutic target.
Collapse
Affiliation(s)
- Guo Hua Li
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
34
|
Smith TC, Fang Z, Luna EJ. Novel interactors and a role for supervillin in early cytokinesis. Cytoskeleton (Hoboken) 2010; 67:346-64. [PMID: 20309963 DOI: 10.1002/cm.20449] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Supervillin, the largest member of the villin/gelsolin/flightless family, is a peripheral membrane protein that regulates each step of cell motility, including cell spreading. Most known interactors bind within its amino (N)-terminus. We show here that the supervillin carboxy (C)-terminus can be modeled as supervillin-specific loops extending from gelsolin-like repeats plus a villin-like headpiece. We have identified 27 new candidate interactors from yeast two-hybrid screens. The interacting sequences from 12 of these proteins (BUB1, EPLIN/LIMA1, FLNA, HAX1, KIF14, KIFC3, MIF4GD/SLIP1, ODF2/Cenexin, RHAMM, STARD9/KIF16A, Tks5/SH3PXD2A, TNFAIP1) co-localize with and mis-localize EGFP-supervillin in mammalian cells, suggesting associations in vivo. Supervillin-interacting sequences within BUB1, FLNA, HAX1, and MIF4GD also mimic supervillin over-expression by inhibiting cell spreading. Most new interactors have known roles in supervillin-associated processes, e.g. cell motility, membrane trafficking, ERK signaling, and matrix invasion; three (KIF14, KIFC3, STARD9/KIF16A) have kinesin motor domains; and five (EPLIN, KIF14, BUB1, ODF2/cenexin, RHAMM) are important for cell division. GST fusions of the supervillin G2-G3 or G4-G6 repeats co-sediment KIF14 and EPLIN, respectively, consistent with a direct association. Supervillin depletion leads to increased numbers of bi- and multi-nucleated cells. Cytokinesis failure occurs predominately during early cytokinesis. Supervillin localizes with endogenous myosin II and EPLIN in the cleavage furrow, and overlaps with the oncogenic kinesin, KIF14, at the midbody. We conclude that supervillin, like its interactors, is important for efficient cytokinesis. Our results also suggest that supervillin and its interaction partners coordinate actin and microtubule motor functions throughout the cell cycle.
Collapse
Affiliation(s)
- Tara C Smith
- Department of Cell Biology and Cell Dynamics Program, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | |
Collapse
|
35
|
Estep M, Armistead D, Hossain N, Elarainy H, Goodman Z, Baranova A, Chandhoke V, Younossi ZM. Differential expression of miRNAs in the visceral adipose tissue of patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther 2010; 32:487-97. [PMID: 20497147 DOI: 10.1111/j.1365-2036.2010.04366.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Progression of non-alcoholic fatty liver disease (NAFLD) can be facilitated by soluble molecules secreted by visceral adipose tissue (VAT). MicroRNAs (miRNAs) are likely to regulate some of these molecular pathways involved in pathogenesis of NAFLD. AIM To profile miRNA expression in the visceral adipose tissue of patients with NAFLD. METHODS Visceral adipose tissue samples were collected from NAFLD patients and frozen. Patients with biopsy-proven NAFLD were divided into non-alcoholic steatohepatitis (NASH) (n = 12) and non-NASH (n = 12) cohorts controlled for clinical and demographic characteristics. Extracted total RNA was profiled using TaqMan Human MicroRNA arrays. Univariate Mann-Whitney comparisons and multivariate regression analysis were performed to compare miRNA profiles. RESULTS A total of 113 miRNA differentially expressed between NASH patients and non-NASH patients (P < 0.05). Of these, seven remained significant after multiple test correction (hsa-miR-132, hsa-miR-150, hsa-miR-433, hsa-miR-28-3p, hsa-miR-511, hsa-miR-517a, hsa-miR-671). Predicted target genes for these miRNAs include insulin receptor pathway components (IGF1, IGFR13), cytokines (CCL3, IL6), ghrelin/obestatin gene, and inflammation-related genes (NFKB1, RELB, FAS). In addition, two miRNA species, hsa-miR-197 and hsa-miR-99, were significantly associated with pericellular fibrosis in NASH patients (P < 0.05). Levels of IL-6 in the serum negatively correlated with the expression levels of all seven miRNAs capable of down regulating IL-6 encoding gene. CONCLUSIONS miRNA expression from VAT may contribute to the pathogenesis of NAFLD - a finding which may distinguish relatively simple steatosis from NASH. This could help identify potential targets for pharmacological treatment regimens and candidate biomarkers for NASH.
Collapse
Affiliation(s)
- M Estep
- Betty and Guy Beatty Center for Integrated Research, Falls Church, VA 22042, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Castano E, Philimonenko VV, Kahle M, Fukalová J, Kalendová A, Yildirim S, Dzijak R, Dingová-Krásna H, Hozák P. Actin complexes in the cell nucleus: new stones in an old field. Histochem Cell Biol 2010; 133:607-26. [PMID: 20443021 DOI: 10.1007/s00418-010-0701-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2010] [Indexed: 01/13/2023]
Abstract
Actin is a well-known protein that has shown a myriad of activities in the cytoplasm. However, recent findings of actin involvement in nuclear processes are overwhelming. Actin complexes in the nucleus range from very dynamic chromatin-remodeling complexes to structural elements of the matrix with single partners known as actin-binding proteins (ABPs). This review summarizes the recent findings of actin-containing complexes in the nucleus. Particular attention is given to key processes like chromatin remodeling, transcription, DNA replication, nucleocytoplasmic transport and to actin roles in nuclear architecture. Understanding the mechanisms involving ABPs will definitely lead us to the principles of the regulation of gene expression performed via concerting nuclear and cytoplasmic processes.
Collapse
Affiliation(s)
- E Castano
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Asano Y, Kishida S, Mu P, Sakamoto K, Murohara T, Kadomatsu K. DRR1 is expressed in the developing nervous system and downregulated during neuroblastoma carcinogenesis. Biochem Biophys Res Commun 2010; 394:829-35. [DOI: 10.1016/j.bbrc.2010.03.085] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 03/12/2010] [Indexed: 12/12/2022]
|
38
|
Beqqali A, Monshouwer-Kloots J, Monteiro R, Welling M, Bakkers J, Ehler E, Verkleij A, Mummery C, Passier R. CHAP is a newly identified Z-disc protein essential for heart and skeletal muscle function. J Cell Sci 2010; 123:1141-50. [PMID: 20215401 DOI: 10.1242/jcs.063859] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In recent years, the perception of Z-disc function has changed from a passive anchor for myofilaments that allows transmission of force, to a dynamic multicomplex structure, capable of sensing and transducing extracellular signals. Here, we describe a new Z-disc protein, which we named CHAP (cytoskeletal heart-enriched actin-associated protein), expressed in differentiating heart and skeletal muscle in vitro and in vivo. Interestingly, in addition to its sarcomeric localization, CHAP was also able to translocate to the nucleus. CHAP was associated with filamentous actin in the cytoplasm and the nucleus when expressed ectopically in vitro, but in rat neonatal cardiomyocytes, CHAP disrupted the subcellular localization of alpha-actinin, another Z-disc protein. More importantly, knockdown of CHAP in zebrafish resulted in aberrant cardiac and skeletal muscle development and function. These findings suggest that CHAP is a critical component of the sarcomere with an important role in muscle development.
Collapse
Affiliation(s)
- Abdelaziz Beqqali
- Hubrecht Institute, Developmental Biology and Stem Cell Research, 3584 CT, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Norris JD, Joseph JD, Sherk AB, Juzumiene D, Turnbull PS, Rafferty SW, Cui H, Anderson E, Fan D, Dye DA, Deng X, Kazmin D, Chang CY, Willson TM, McDonnell DP. Differential presentation of protein interaction surfaces on the androgen receptor defines the pharmacological actions of bound ligands. ACTA ACUST UNITED AC 2009; 16:452-60. [PMID: 19389631 DOI: 10.1016/j.chembiol.2009.01.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 01/27/2009] [Accepted: 01/30/2009] [Indexed: 10/20/2022]
Abstract
The pharmacological activity of different nuclear receptor ligands is reflected by their impact on receptor structure. Thus, we asked whether differential presentation of protein-protein interaction surfaces on the androgen receptor (AR), a surrogate assay of receptor conformation, could be used in a prospective manner to define the pharmacological activity of bound ligands. To this end, we identified over 150 proteins/polypeptides whose ability to interact with AR is influenced in a differential manner by ligand binding. The most discriminatory of these protein-AR interactions were used to develop a robust compound-profiling tool that enabled the separation of ligands into functionally distinguishable classes. Importantly, the ligands within each class exhibited similar pharmacological activities, a result that highlights the relationship between receptor structure and activity and provides direction for the discovery of novel AR modulators.
Collapse
Affiliation(s)
- John David Norris
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zheng B, Han M, Bernier M, Wen JK. Nuclear actin and actin-binding proteins in the regulation of transcription and gene expression. FEBS J 2009; 276:2669-85. [PMID: 19459931 PMCID: PMC2978034 DOI: 10.1111/j.1742-4658.2009.06986.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nuclear actin is involved in the transcription of all three RNA polymerases, in chromatin remodeling and in the formation of heterogeneous nuclear ribonucleoprotein complexes, as well as in recruitment of the histone modifier to the active gene. In addition, actin-binding proteins (ABPs) control actin nucleation, bundling, filament capping, fragmentation and monomer availability in the cytoplasm. In recent years, more and more attention has focused on the role of actin and ABPs in the modulation of the subcellular localization of transcriptional regulators. This review focuses on recent developments in the study of transcription and transcriptional regulation by nuclear actin, and the regulation of muscle-specific gene expression, nuclear receptor and transcription complexes by ABPs. Among the ABPs, striated muscle activator of Rho signaling and actin-binding LIM protein regulate actin dynamics and serum response factor-dependent muscle-specific gene expression. Functionally and structurally unrelated cytoplasmic ABPs interact cooperatively with nuclear receptor and regulate its transactivation. Furthermore, ABPs also participate in the formation of transcription complexes.
Collapse
Affiliation(s)
- Bin Zheng
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Michel Bernier
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Jin-kun Wen
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
41
|
Hofmann WA. Cell and molecular biology of nuclear actin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 273:219-63. [PMID: 19215906 DOI: 10.1016/s1937-6448(08)01806-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Actin is a highly conserved protein and one of the major components of the cytoplasm and the nucleus in eukaryotic cells. In the nucleus, actin is involved in a variety of nuclear processes that include transcription and transcription regulation, RNA processing and export, intranuclear movement, and structure maintenance. Recent advances in the field of nuclear actin have established that functions of actin in the nucleus are versatile, complex, and interconnected. It also has become increasingly evident that the cytoplasmic and nuclear pools of actin are functionally linked. However, while the biological significance of nuclear actin has become clear, we are only beginning to understand the mechanisms that lie behind the regulation of nuclear actin. This review provides an overview of our current understanding of the functions of actin in the nucleus.
Collapse
Affiliation(s)
- Wilma A Hofmann
- Department of Physiology and Biophysics, State University of New York, Buffalo, NY, USA
| |
Collapse
|
42
|
Ting HJ, Chang C. Actin associated proteins function as androgen receptor coregulators: an implication of androgen receptor's roles in skeletal muscle. J Steroid Biochem Mol Biol 2008; 111:157-63. [PMID: 18590822 DOI: 10.1016/j.jsbmb.2008.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 06/05/2008] [Indexed: 11/28/2022]
Abstract
This review of androgen receptor (AR) coregulators, which also function as actin-binding proteins, intends to establish the connection between actin cytoskeletal components and androgen signaling, especially in skeletal muscle. In cellular and animal models, androgen activated AR modulates myoblasts proliferation, promotes sexual dimorphic muscle development, and alters muscle fiber type. In the clinical setting, administration of anabolic androgens can decrease cachexia and speed wound healing. During myogenesis and regeneration of skeletal muscle in embryo and adult, the membrane of myoblasts fuse and the actin cytoskeleton is rearranged to form an alignment with myosin to form myotubes then ultimately the myofibrils. Contraction of skeletal muscle promotes the growth of myocytes by coordinating signals from the neuromuscular junction to intra-myofibrils through costameres, the functional structure comprised of signal proteins closely associated with actin filaments and involved in muscular dystrophy. Therefore, the discovery of actin-binding proteins functioning as AR coregulators implies that androgen signaling is tightly regulated during the process of the development and regeneration of skeletal muscle. The search for selective androgen receptor modulators (SARM) that act precisely in skeletal muscle instead of other tissues could target the engineering of a SARM-AR complex that selectively recruits these coregulators.
Collapse
Affiliation(s)
- Huei-Ju Ting
- Department of Pathology and Urology, The Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
43
|
Heemers HV, Tindall DJ. Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev 2007; 28:778-808. [PMID: 17940184 DOI: 10.1210/er.2007-0019] [Citation(s) in RCA: 508] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Androgens, acting through the androgen receptor (AR), are responsible for the development of the male phenotype during embryogenesis, the achievement of sexual maturation at puberty, and the maintenance of male reproductive function and behavior in adulthood. In addition, androgens affect a wide variety of nonreproductive tissues. Moreover, aberrant androgen action plays a critical role in multiple pathologies, including prostate cancer and androgen insensitivity syndromes. The formation of a productive AR transcriptional complex requires the functional and structural interaction of the AR with its coregulators. In the last decade, an overwhelming and ever increasing number of proteins have been proposed to possess AR coactivating or corepressing characteristics. Intriguingly, a vast diversity of functions has been ascribed to these proteins, indicating that a multitude of cellular functions and signals converge on the AR to regulate its function. The current review aims to provide an overview of the AR coregulator proteins identified to date and to propose a classification of these AR coregulator proteins according to the function(s) ascribed to them. Taken together, this approach will increase our understanding of the cellular pathways that converge on the AR to ensure an appropriate transcriptional response to androgens.
Collapse
Affiliation(s)
- Hannelore V Heemers
- Department of Urology Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
44
|
Liang J, Ke G, You W, Peng Z, Lan J, Kalesse M, Tartakoff AM, Kaplan F, Tao T. Interaction between importin 13 and myopodin suggests a nuclear import pathway for myopodin. Mol Cell Biochem 2007; 307:93-100. [PMID: 17828378 DOI: 10.1007/s11010-007-9588-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 08/23/2007] [Indexed: 10/22/2022]
Abstract
Importin 13 is a member of the importin beta superfamily of nuclear transport proteins and is expressed in multiple tissues at high levels both in humans and rodents, including fetal lung, brain, and heart. In order to elucidate potential functions of imp13 in the heart, we have used rat imp13 as bait to screen a human heart cDNA library and identified an interaction with the C-terminal peptide of myopodin (a.a. 360-698), an actin-bundling protein, associated with tumor-suppressor activity that localizes to both the cytoplasm and the nucleus. We have used GST-pull down assays and co-immunoprecipitation experiments to demonstrate an interaction between imp13 and full-length myopodin and observed that RanGTP dissociates the myopodin-imp13 complex. In studies of cultured cells, we show that both imp13 siRNA and a C-terminal fragment of imp13 protein prevent nuclear localization of myopodin. We, therefore, conclude that imp13 functions in myopodin import and we suggest that the regulation of these events is critical for normal and abnormal cellular differentiation.
Collapse
Affiliation(s)
- Jie Liang
- School of Life Sciences and Key Laboratory for Cell Biology and Tumor Cell Engineering, The Ministry of Education of China, Xiamen University, Xiamen, Fujian, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yang Z, Chang YJ, Miyamoto H, Yeh S, Yao JL, di Sant'Agnese PA, Tsai MY, Chang C. Suppression of androgen receptor transactivation and prostate cancer cell growth by heterogeneous nuclear ribonucleoprotein A1 via interaction with androgen receptor coregulator ARA54. Endocrinology 2007; 148:1340-9. [PMID: 17110431 DOI: 10.1210/en.2006-0716] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The androgen receptor (AR) requires coregulators for its optimal transactivation. Whether AR coregulators also need interacting proteins to modulate their function remains unclear. Here we describe heterogeneous nuclear ribonucleoprotein (hnRNP) A1 as an associated negative modulator for the AR coregulator ARA54. hnRNP A1 selectively suppressed ARA54-enhanced wild-type and mutant AR transactivation via interruption of AR-ARA54 interaction and ARA54 homodimerization. Stable transfection of hnRNP A1 in the LNCaP cells suppressed AR-mediated cell growth and the expression of prostate-specific antigen, and this suppressive effect was abolished by the addition of ARA54-small interfering RNA. Small interfering RNA knockdown of endogenous hnRNP A1 enhanced cell growth and prostate-specific antigen expression in LNCaP cells. These results not only suggest that the loss of hnRNP A1 expression might activate the ARA54-enhanced cell growth and contribute to the prostate cancer progression, but also demonstrate the dual functional roles for ARA54 as an AR coregulator directly and as a mediator for the suppressive effect of hnRNP A1 indirectly. The novel finding that a protein can modulate AR function without direct interaction with AR might provide a new therapeutic approach to battle prostate cancer by targeting AR indirectly with fewer side effects.
Collapse
Affiliation(s)
- Zhiming Yang
- George Whipple Lab for Cancer Research, and University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Germain P, Staels B, Dacquet C, Spedding M, Laudet V. Overview of nomenclature of nuclear receptors. Pharmacol Rev 2007; 58:685-704. [PMID: 17132848 DOI: 10.1124/pr.58.4.2] [Citation(s) in RCA: 453] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nuclear receptor pharmacology has, to a certain extent, led the way, compared with other receptor systems, in the appreciation that ligands may exert very diverse pharmacology, based on their individual chemical structure and the allosteric changes induced in the receptor/accessory protein complex. This can lead to very selective pharmacological effects, which may not necessarily be predicted from the experience with other agonists/partial agonists/antagonists. If this is the case, then drug discovery may be back to drug-specific pharmacology (where each drug may have an original profile), rather than specific-drug pharmacology (where agents specific for a receptor have a distinct profile). As functional selectivity is indeed a crucial mechanism to be considered when going through the drug discovery development process, then initial screens using reconstituted systems may not show the appropriate pharmacology, simply because the required stoichiometry of corepressors and coactivators may not be present to select the best compounds; therefore, multiple effector systems are necessary to screen for differential activation, and, even then, screening with in vivo pathophysiological models may ultimately be required for the selection process-a massive but necessary task for pharmacologists. Thus, the characterization of nuclear receptors and their associated proteins and the ligands that interact with them will remain a challenge to pharmacologists.
Collapse
Affiliation(s)
- Pierre Germain
- Department of Cell Biology and Signal Transduction, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France.
| | | | | | | | | |
Collapse
|
47
|
Cooper SJ, Trinklein ND, Nguyen L, Myers RM. Serum response factor binding sites differ in three human cell types. Genome Res 2007; 17:136-44. [PMID: 17200232 PMCID: PMC1781345 DOI: 10.1101/gr.5875007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The serum response factor (SRF) is essential for embryonic development and maintenance of muscle cells and neurons. The mechanism by which this factor controls these divergent pathways is unclear. Here we present a genome-wide view of occupancy of SRF at its binding sites with a focus on those that vary with cell type. We used chromatin immunoprecipitation (ChIP) in combination with human promoter microarrays to identify 216 putative SRF binding sites in the human genome. We performed independent quantitative PCR validation at over half of these sites that resulted in 146 sites we assert to be true binding sites at over 90% confidence. Nearly half of the sites are bound by SRF in only one of the three cell types we tested, providing strong evidence for the diverse roles for SRF in different cell types. We also explore possible mechanisms controlling differential binding of SRF in these cell types by assaying cofactor binding, DNA methylation, histone methylation, and histone acetylation at a subset of sites bound preferentially in smooth muscle cells. Although we did not see a strong correlation between SRF binding and epigenetics modifications, at these sites, we propose that SRF cofactors may play an important role in determining cell-dependent SRF binding sites. ELK4 (previously known as SAP-1 [SRF-associated protein-1]) is ubiquitously expressed. Therefore, we expected it to occupy sites where SRF binding is common in all cell types. Indeed, 90% of SRF sites also bound by ELK4 were common to all three cell types. Together, our data provide a more complete understanding of the regulatory network controlled by SRF.
Collapse
Affiliation(s)
- Sara J. Cooper
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | - Nathan D. Trinklein
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | - Loan Nguyen
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | - Richard M. Myers
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
- Corresponding author.E-mail ; fax (650) 725-9689
| |
Collapse
|
48
|
Ono S. Mechanism of depolymerization and severing of actin filaments and its significance in cytoskeletal dynamics. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 258:1-82. [PMID: 17338919 DOI: 10.1016/s0074-7696(07)58001-0] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The actin cytoskeleton is one of the major structural components of the cell. It often undergoes rapid reorganization and plays crucial roles in a number of dynamic cellular processes, including cell migration, cytokinesis, membrane trafficking, and morphogenesis. Actin monomers are polymerized into filaments under physiological conditions, but spontaneous depolymerization is too slow to maintain the fast actin filament dynamics observed in vivo. Gelsolin, actin-depolymerizing factor (ADF)/cofilin, and several other actin-severing/depolymerizing proteins can enhance disassembly of actin filaments and promote reorganization of the actin cytoskeleton. This review presents advances as well as a historical overview of studies on the biochemical activities and cellular functions of actin-severing/depolymerizing proteins.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
49
|
Barrientos T, Frank D, Kuwahara K, Bezprozvannaya S, Pipes GCT, Bassel-Duby R, Richardson JA, Katus HA, Olson EN, Frey N. Two novel members of the ABLIM protein family, ABLIM-2 and -3, associate with STARS and directly bind F-actin. J Biol Chem 2006; 282:8393-403. [PMID: 17194709 DOI: 10.1074/jbc.m607549200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In addition to regulating cell motility, contractility, and cytokinesis, the actin cytoskeleton plays a critical role in the regulation of transcription and gene expression. We have previously identified a novel muscle-specific actin-binding protein, STARS (striated muscle activator of Rho signaling), which directly binds actin and stimulates serum-response factor (SRF)-dependent transcription. To further dissect the STARS/SRF pathway, we performed a yeast two-hybrid screen of a skeletal muscle cDNA library using STARS as bait, and we identified two novel members of the ABLIM protein family, ABLIM-2 and -3, as STARS-interacting proteins. ABLIM-1, which is expressed in retina, brain, and muscle tissue, has been postulated to function as a tumor suppressor. ABLIM-2 and -3 display distinct tissue-specific expression patterns with the highest expression levels in muscle and neuronal tissue. Moreover, these novel ABLIM proteins strongly bind F-actin, are localized to actin stress fibers, and synergistically enhance STARS-dependent activation of SRF. Conversely, knockdown of endogenous ABLIM expression utilizing small interfering RNA significantly blunted SRF-dependent transcription in C2C12 skeletal muscle cells. These findings suggest that the members of the novel ABLIM protein family may serve as a scaffold for signaling modules of the actin cytoskeleton and thereby modulate transcription.
Collapse
Affiliation(s)
- Tomasa Barrientos
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yang Z, Chang YJ, Miyamoto H, Ni J, Niu Y, Chen Z, Chen YL, Yao JL, di Sant'Agnese PA, Chang C. Transgelin functions as a suppressor via inhibition of ARA54-enhanced androgen receptor transactivation and prostate cancer cell growth. Mol Endocrinol 2006; 21:343-58. [PMID: 17082327 DOI: 10.1210/me.2006-0104] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The androgen receptor (AR) requires coregulators for its optimal function. However, whether AR coregulators further need interacting protein(s) for their proper function remains unclear. Here we describe transgelin as the first ARA54-associated negative modulator for AR. Transgelin suppressed ARA54-enhanced AR function in ARA54-positive, but not in ARA54-negative, cells. Transgelin suppressed AR transactivation via interruption of ARA54 homodimerization and AR-ARA54 heterodimerization, resulting in the cytoplasmic retention of AR and ARA54. Stable transfection of transgelin in LNCaP cells suppressed AR-mediated cell growth and prostate-specific antigen expression, whereas this suppressive effect was abolished by the addition of ARA54-small interfering RNA. Results from tissue surveys showing decreased expression of transgelin in prostate cancer specimens further strengthened the suppressor role of transgelin. Our findings reveal the novel mechanisms of how transgelin functions as a suppressor to inhibit prostate cancer cell growth. They also demonstrate that AR coregulators, like ARA54, might have dual in vivo roles functioning as both a direct coactivator and as an indirect mediator in AR function. The finding that a protein can modulate AR function without direct interaction with AR might provide a new therapeutic approach, with fewer side effects, to battle prostate cancer by targeting AR indirectly.
Collapse
Affiliation(s)
- Zhiming Yang
- George Whipple Laboratory for Cancer Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 626, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|