1
|
Xu Y, Qian L, Fang M, Liu Y, Xu ZJ, Ge X, Zhang Z, Liu ZP, Lou H. Tumor selective self-assembled nanomicelles of carbohydrate-epothilone B conjugate for targeted chemotherapy. Eur J Med Chem 2023; 259:115693. [PMID: 37531745 DOI: 10.1016/j.ejmech.2023.115693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
Epothilone B (Epo B) is a potent antitumor natural product with sub-nanomolar anti-proliferation action against several human cancer cells. However, poor selectivity to tumor cells and unacceptable therapeutic windows of Epo B and its analogs are the major obstacles to their development into clinical drugs. Herein, we present self-assembled nanomicelles based on an amphiphilic carbohydrate-Epo B conjugate that is inactive until converted to active Epo B within the tumor. Four Epo B-Rhamnose conjugates linked via two linkers containing a disulfide bond that is sensitive to GSH were synthesized. Conjugate 34 can self-assemble into nanomicelles with a high concentration of Rha on the surface, allowing for better tumor targeting. After internalization by cancer cells, the disulfide bond can be cleaved in the presence of high levels of GSH to release active Epo B, thereby exhibiting significant anticancer efficiency and selectivity in vitro and in vivo.
Collapse
Affiliation(s)
- Yuliang Xu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China; Department of Clinical Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, China
| | - Lilin Qian
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Min Fang
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yue Liu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Ze-Jun Xu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xiaoyan Ge
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Zhiyue Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Zhao-Peng Liu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Hongxiang Lou
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
2
|
Czubatka-Bieńkowska A, Sarnik J, Poplawski T. Biological properties of (1-4)-thio disaccharides. Carbohydr Res 2023; 533:108934. [PMID: 37708795 DOI: 10.1016/j.carres.2023.108934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/04/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
Thio sugars are carbohydrate derivatives in which one or more oxygen atoms have been replaced with sulfur. Thio sugars are effective inhibitors of glycosylases, have considerable therapeutic potential, and are used as drugs in the treatment of diabetes and infectious diseases. The development of this branch of carbohydrate chemistry would not be possible without the development of novel methods for its synthesis and the analysis of their biochemical properties. In this Review Article, we summarize our findings on the biological properties of a collection of thio sugars and their derivatives synthesized by the Witczak and Bielski team using their original methods based on the Michael addition of sugar thiols to levoglucosenone.
Collapse
Affiliation(s)
- Anna Czubatka-Bieńkowska
- Department of Pharmaceutical Microbiology and Biochemistry, Medical University, 90-136, Lodz, Poland
| | - Joanna Sarnik
- Department of Rheumatology, Medical University, 90-050, Lodz, Poland
| | - Tomasz Poplawski
- Department of Pharmaceutical Microbiology and Biochemistry, Medical University, 90-136, Lodz, Poland.
| |
Collapse
|
3
|
Nabawy A, Gupta A, Jiang M, Hirschbiegel CM, Fedeli S, Chattopadhyay AN, Park J, Zhang X, Liu L, Rotello VM. Biodegradable nanoemulsion-based bioorthogonal nanocatalysts for intracellular generation of anticancer therapeutics. NANOSCALE 2023; 15:13595-13602. [PMID: 37554065 PMCID: PMC10528015 DOI: 10.1039/d3nr01801f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Bioorthogonal catalysis mediated by transition metal catalysts (TMCs) provides controlled in situ activation of prodrugs through chemical reactions that do not interfere with cellular bioprocesses. The direct use of 'naked' TMCs in biological environments can have issues of solubility, deactivation, and toxicity. Here, we demonstrate the design and application of a biodegradable nanoemulsion-based scaffold stabilized by a cationic polymer that encapsulates a palladium-based TMC, generating bioorthogonal nanocatalyst "polyzymes". These nanocatalysts enhance the stability and catalytic activity of the TMCs while maintaining excellent mammalian cell biocompatibility. The therapeutic potential of these nanocatalysts was demonstrated through efficient activation of a non-toxic prodrug into an active chemotherapeutic drug, leading to efficient killing of cancer cells.
Collapse
Affiliation(s)
- Ahmed Nabawy
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA.
| | - Aarohi Gupta
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA.
| | - Mingdi Jiang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA.
| | - Cristina-Maria Hirschbiegel
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA.
| | - Stefano Fedeli
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA.
| | - Aritra Nath Chattopadhyay
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA.
| | - Jungmi Park
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA.
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA.
| | - Liang Liu
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA.
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
4
|
Teng S, Ng EWH, Zhang Z, Soon CN, Xu H, Li R, Hirao H, Loh TP. Alkynone β-trifluoroborates: A new class of amine-specific biocompatible click reagents. SCIENCE ADVANCES 2023; 9:eadg4924. [PMID: 37126553 PMCID: PMC10132755 DOI: 10.1126/sciadv.adg4924] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Amine-targeting reactions that work under biocompatible conditions or in water are green processes that are extremely useful for the synthesis of functional materials and biotherapeutics. Unfortunately, despite the usefulness of this reaction, there are very few good amine-specific click methods reported thus far. Here, we report an amine-specific click reagent using alkynone β-trifluoroborates as the electrophiles. These boron-containing alkynyl reagents exhibit extremely high chemoselectivity toward amines even in the presence of thiols. The resulting oxaboracycle products are bench-stable, displaying the reactivities of both organoborates and enaminones. Intrinsic advantages of this methodology include benign reaction conditions, operational simplicity, remarkable product stability, and excellent chemoselectivity, which satisfy the criteria of click chemistry and demonstrate the high potential in bioconjugation. Hence, this water-based chemical approach is also applicable to the modification of native amino acids, peptides, and proteins. Ultimately, the essential role of water during the reaction was elucidated.
Collapse
Affiliation(s)
- Shenghan Teng
- 100 Lianhua Street, Zhongyuan District, Henan University of Technology, Zhengzhou 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Elvis Wang Hei Ng
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Zhenguo Zhang
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Chee Ning Soon
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hailun Xu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ruifang Li
- 100 Lianhua Street, Zhongyuan District, Henan University of Technology, Zhengzhou 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hajime Hirao
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Teck-Peng Loh
- 100 Lianhua Street, Zhongyuan District, Henan University of Technology, Zhengzhou 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
5
|
Tantipanjaporn A, Wong MK. Development and Recent Advances in Lysine and N-Terminal Bioconjugation for Peptides and Proteins. Molecules 2023; 28:molecules28031083. [PMID: 36770752 PMCID: PMC9953373 DOI: 10.3390/molecules28031083] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
The demand for creation of protein diversity and regulation of protein function through native protein modification and post-translational modification has ignited the development of selective chemical modification methods for peptides and proteins. Chemical bioconjugation offers selective functionalization providing bioconjugates with desired properties and functions for diverse applications in chemical biology, medicine, and biomaterials. The amino group existing at the lysine residue and N-terminus of peptides and proteins has been extensively studied in bioconjugation because of its good nucleophilicity and high surface exposure. Herein, we review the development of chemical methods for modification of the amino groups on lysine residue and N-terminus featuring excellent selectivity, mild reaction conditions, short reaction time, high conversion, biocompatibility, and preservation of protein integrity. This review is organized based on the chemoselectivity and site-selectivity of the chemical bioconjugation reagents to the amino acid residues aiming to provide guidance for the selection of appropriate bioconjugation methods.
Collapse
|
6
|
Gupta A, Gupta GS. Applications of mannose-binding lectins and mannan glycoconjugates in nanomedicine. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2022; 24:228. [PMID: 36373057 PMCID: PMC9638366 DOI: 10.1007/s11051-022-05594-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/12/2022] [Indexed: 06/01/2023]
Abstract
UNLABELLED Glycosylated nanoparticles (NPs) have drawn a lot of attention in the biomedical field over the past few decades, particularly in applications like targeted drug delivery. Mannosylated NPs and mannan-binding lectins/proteins (MBL/MBP) are emerging as promising tools for delivery of drugs, medicines, and enzymes to targeted tissues and cells as nanocarriers, enhancing their therapeutic benefits while avoiding the adverse effects of the drug. The occurrence of plenty of lectin receptors and their mannan ligands on cell surfaces makes them multifaceted carriers appropriate for specific delivery of bioactive drug materials to their targeted sites. Thus, the present review describes the tethering of mannose (Man) to several nanostructures, like micelles, liposomes, and other NPs, applicable for drug delivery systems. Bioadhesion through MBL-like receptors on cells has involvements applicable to additional arenas of science, for example gene delivery, tissue engineering, biomaterials, and nanotechnology. This review also focuses on the role of various aspects of drug/antigen delivery using (i) mannosylated NPs, (ii) mannosylated lectins, (iii) amphiphilic glycopolymer NPs, and (iv) natural mannan-containing polysaccharides, with most significant applications of MBL-based NPs as multivalent scaffolds, using different strategies. GRAPHICAL ABSTRACT Mannosylated NPs and/or MBL/MBP are coming up as viable and versatile tools as nanocarriers to deliver drugs and enzymes precisely to their target tissues or cells. The presence of abundant number of lectin receptors and their mannan ligands on cell surfaces makes them versatile carriers suitable for the targeted delivery of bioactive drugs.
Collapse
Affiliation(s)
- Anita Gupta
- Chitkara School of Health Sciences, Chitkara University, Punjab, India
| | - G. S. Gupta
- Department of Biophysics, Panjab University, Chandigarh, 160014 India
| |
Collapse
|
7
|
Singh Y, Cudic P, Cudic M. Exploring Glycan Binding Specificity of Odorranalectin by Alanine Scanning Library. European J Org Chem 2022; 2022:e202200302. [PMID: 36120398 PMCID: PMC9479679 DOI: 10.1002/ejoc.202200302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 11/09/2022]
Abstract
Fluorescently labelled alanine scan analogues of odorranalectin (OL), a cyclic peptide that exhibits lectin like properties, were screened for binding BSA-conjugated monosaccharides using an enzyme-linked lectin assay (ELLA). Results revealed that Lys5, Phe7, Tyr9, Gly12, Leu14, and Thr17 were crucial for binding BSA-L-fucose, BSA-D-galactose and BSA-N-acetyl-D-galactosamine. Notably, Ala substitution of Ser3, Pro4, and Val13 resulted in higher binding affinities compared to the native OL. The obtained data also indicated that Arg8 plays an important role in differentiation of binding for BSA-L-fucose/D-galactose from BSA-N-acetyl-D-galactosamine. The thermodynamics of binding of the selected alanine analogues was evaluated by isothermal titration calorimetry. Low to moderate binding affinities were determined for the tetravalent MUC1 glycopeptide and asialofetuin, respectively, and high for the fucose rich polysaccharide, fucoidan. The thermodynamic profile of interactions with asialofetuin exhibits shift to an entropy-driven mechanism compared to the fucoidan, which displayed an enthalpyentropy compensation, typically associated with the carbohydratelectin recognition process.
Collapse
Affiliation(s)
- YashoNandini Singh
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| | - Predrag Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| | - Maré Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| |
Collapse
|
8
|
Weiz G, Molejon MI, Malvicini M, Sukowati CHC, Tiribelli C, Mazzolini G, Breccia JD. Glycosylated 4-methylumbelliferone as a targeted therapy for hepatocellular carcinoma. Liver Int 2022; 42:444-457. [PMID: 34800352 DOI: 10.1111/liv.15084] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/22/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Reaching efficacious drug delivery to target cells/tissues represents a major obstacle in the current treatment of solid malignancies including hepatocellular carcinoma (HCC). In this study, we developed a pipeline to selective add complex-sugars to the aglycone 4-methylumbelliferone (4MU) to help their bioavailability and tumour cell intake. METHODS The therapeutic efficacy of sugar-modified rutinosyl-4-methylumbelliferone (4MUR) and 4MU were compared in vitro and in an orthotopic HCC model established in fibrotic livers. The mechanistic bases of its selective target to liver tumour cells were evaluated by the interaction with asialoglycoprotein receptor (ASGPR), the mRNA expression of hyaluronan synthases (HAS2 or HAS3) and hyaluronan deposition. RESULTS 4MUR showed a significant antiproliferative effect on liver tumoural cells as compared to non-tumoural cells in a dose-dependent manner. Further analysis showed that 4MUR is incorporated mostly into HCC cells by interaction with ASGPR, a receptor commonly overexpressed in HCC cells. 4MUR-treatment decreased the levels of HAS2 and HAS3 and the cytoplasmic deposition of hyaluronan. Moreover, 4MUR reduced CFSC-2G activation, hence reducing the fibrosis. In vivo efficacy showed that 4MUR treatment displayed a greater tumour growth inhibition and increased survival in comparison to 4MU. 4MUR administration was associated with a significant reduction of liver fibrosis without any signs of tissue damage. Further, 60% of 4MUR treated mice did not present macroscopically tumour mass post-treatment. CONCLUSION Our results provide evidence that 4MUR may be used as an effective HCC therapy, without damaging non-tumoural cells or other organs, most probably due to the specific targeting.
Collapse
Affiliation(s)
- Gisela Weiz
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Universidad Nacional de La Pampa - Consejo Nacional de Investigaciones Científicas y Técnicas (UNLPam-CONICET), Santa Rosa, Argentina
| | - Maria I Molejon
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Universidad Nacional de La Pampa - Consejo Nacional de Investigaciones Científicas y Técnicas (UNLPam-CONICET), Santa Rosa, Argentina
| | - Mariana Malvicini
- Laboratorio de Inmunobiología del Cáncer, Instituto de Investigaciones en Medicina Traslacional (IIMT) Facultad de Ciencias Biomédicas, CONICET, Universidad Austral, Derqui-Pilar, Argentina
| | | | - Claudio Tiribelli
- Fondazione Italiana Fegato, AREA Science Park Basovizza, Trieste, Italy
| | - Guillermo Mazzolini
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET, Universidad Austral, Derqui-Pilar, Argentina.,Liver Unit, Hospital Universitario Austral, Universidad Austral, Derqui-Pilar, Argentina
| | - Javier D Breccia
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Universidad Nacional de La Pampa - Consejo Nacional de Investigaciones Científicas y Técnicas (UNLPam-CONICET), Santa Rosa, Argentina
| |
Collapse
|
9
|
Yi S, Wei S, Wu Q, Wang H, Yao Z. Azaphilones as Activation‐Free Primary‐Amine‐Specific Bioconjugation Reagents for Peptides, Proteins and Lipids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shandong Yi
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing Jiangsu 210023 China
| | - Siyuan Wei
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing Jiangsu 210023 China
| | - Qingsong Wu
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing Jiangsu 210023 China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing Jiangsu 210023 China
| | - Zhu‐Jun Yao
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing Jiangsu 210023 China
| |
Collapse
|
10
|
Yi S, Wei S, Wu Q, Wang H, Yao ZJ. Azaphilones as Activation-Free Primary-Amine-Specific Bioconjugation Reagents for Peptides, Proteins and Lipids. Angew Chem Int Ed Engl 2021; 61:e202111783. [PMID: 34825445 DOI: 10.1002/anie.202111783] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 01/11/2023]
Abstract
Residue-selective bioconjugation methods for biomolecules are highly sought to expand the scope of their biological and medical applications. Inspired by the mechanism of the generation of natural vinylogous γ-pyridones (vPDNs), we have developed a novel unique azaphilone-based, activation-free primary-amine-selective bioconjugation method for biomolecules. Our strategy allows facile functionalization of primary amine groups in peptides and proteins, including the clinically used therapeutic antibody trastuzumab, by generating a highly stable vPDN linkage. Excellent chemoselectivity toward primary amines also enables the azaphilone derivatives to specifically modify the lipid components of Gram-positive bacteria while bypassing Gram-negative bacteria and mammalian cells. The new method shows significant advantages including chemoselectivity, efficiency, flexibility and biocompatibility, and therefore provides a valuable addition to the current toolbox for biomolecule conjugation.
Collapse
Affiliation(s)
- Shandong Yi
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Siyuan Wei
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Qingsong Wu
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Zhu-Jun Yao
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
11
|
Immunomodulatory Lectin-like Peptides for Fish Erythrocytes-Targeting as Potential Antiviral Drug Delivery Platforms. Int J Mol Sci 2021; 22:ijms222111821. [PMID: 34769254 PMCID: PMC8584011 DOI: 10.3390/ijms222111821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 01/05/2023] Open
Abstract
One of the challenges of science in disease prevention is optimizing drug and vaccine delivery. Until now, many strategies have been employed in this sector, but most are quite complex and labile. To overcome these limitations, great efforts are directed to coupling drugs to carriers, either of natural or synthetic origin. Among the most studied cell carriers are antigen-presenting cells (APCs), however, red blood cells (RBCs) are positioned as attractive carriers in drug delivery due to their abundance and availability in the body. Furthermore, fish RBCs have a nucleus and have been shown to have a strong involvement in modulating the immune response. In this study, we evaluated the binding of three peptides to rainbow trout RBCs, two lectin-like peptides and another derived from Plasmodium falciparum membrane protein, in order to take advantage of this peptide-RBCs binding to generate tools to improve the specificity, efficacy, immunostimulatory effect, and safety of the antiviral therapeutic or prophylactic administration systems currently used.
Collapse
|
12
|
Pavan Kumar H, Kumara HK, Suhas R, Channe Gowda D. Multitarget-directed therapeutics: (Urea/thiourea) 2 derivatives of diverse heterocyclic-Lys conjugates. Arch Pharm (Weinheim) 2021; 354:e2000468. [PMID: 33728698 DOI: 10.1002/ardp.202000468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 11/11/2022]
Abstract
The synthesis of a new small library of molecules containing bis-urea/thiourea pendants in lysine conjugated to three different heterocycles is described. The heterocycles used in this study have benzisoxazole/piperazine/piperidine units. After a detailed antimicrobial, antioxidant, and anti-inflammatory evaluation, it was found that the most active compounds are 10, 11, 14, 15, 18, 19 and 10, 11, 19 and 8, 9, 12, 13, 16, 17, respectively. Further, it was observed that the presence of all three entities, that is, urea/thiourea, the substituent (OMe/F), as well as the heterocycle, is highly essential for exerting potent activity. Among the heterocycles, the presence of isoxazole seems to be highly beneficial for exerting good potency. In continuation, docking studies have revealed extraordinary binding efficiency for some of the active compounds. Given their potent biological results and docking score, some of the title compounds could be potential drug candidates for microbial-related diseases and provide a basis for future research into the development of molecules possessing multitask ability.
Collapse
Affiliation(s)
- H Pavan Kumar
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - H K Kumara
- Department of Chemistry, KLE Society's Jagadguru Tontadarya College, Gadag, Karnataka, India
| | - R Suhas
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science (A Recognised Research Centre of University of Mysore), Mysuru, Karnataka, India
| | - D Channe Gowda
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| |
Collapse
|
13
|
Kotik M, Brodsky K, Halada P, Javůrková H, Pelantová H, Konvalinková D, Bojarová P, Křen V. Access to both anomers of rutinosyl azide using wild-type rutinosidase and its catalytic nucleophile mutant. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2020.106193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
14
|
Molejon MI, Weiz G, Breccia JD, Vaccaro MI. Glycoconjugation: An approach to cancer therapeutics. World J Clin Oncol 2020; 11:110-120. [PMID: 32257842 PMCID: PMC7103525 DOI: 10.5306/wjco.v11.i3.110] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/31/2020] [Accepted: 02/08/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer constitutes the second leading cause of death globally and is considered to have been responsible for an estimated 9.6 million fatalities in 2018. Although treatments against gastrointestinal tumors have recently advanced, those interventions can only be applied to a minority of patients at the time of diagnosis. Therefore, new therapeutic options are necessary for advanced stages of the disease. Glycosylation of antitumor agents, has been found to improve pharmacokinetic parameters, reduce side effects, and expand drug half-life in comparison with the parent compounds. In addition, glycosylation of therapeutic agents has been proven to be an effective strategy for their targeting tumor tissue, thereby reducing the doses of the glycodrugs administered to patients. This review focusses on the effect of the targeting properties of glycosylated antitumor agents on gastrointestinal tumors.
Collapse
Affiliation(s)
- Maria I Molejon
- Institute of Earth and Environmental Sciences from La Pampa (INCITAP), National University of La Pampa, School of Natural Sciences (CONICET-UNLPam), Santa Rosa 6300, La Pampa, Argentina
- Institute of Biochemistry and Molecular Medicine (UBA-CONICET), Department of Pathophysiology, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - Gisela Weiz
- Institute of Earth and Environmental Sciences from La Pampa (INCITAP), National University of La Pampa, School of Natural Sciences (CONICET-UNLPam), Santa Rosa 6300, La Pampa, Argentina
| | - Javier D Breccia
- Institute of Earth and Environmental Sciences from La Pampa (INCITAP), National University of La Pampa, School of Natural Sciences (CONICET-UNLPam), Santa Rosa 6300, La Pampa, Argentina
| | - Maria Ines Vaccaro
- Institute of Biochemistry and Molecular Medicine (UBA-CONICET), Department of Pathophysiology, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires C1113AAD, Argentina
| |
Collapse
|
15
|
Pachl P, Kapešová J, Brynda J, Biedermannová L, Pelantová H, Bojarová P, Křen V, Řezáčová P, Kotik M. Rutinosidase from
Aspergillus niger
: crystal structure and insight into the enzymatic activity. FEBS J 2020; 287:3315-3327. [DOI: 10.1111/febs.15208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/13/2019] [Accepted: 01/09/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Petr Pachl
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic
| | - Jana Kapešová
- Institute of Microbiology of the Czech Academy of Sciences Prague Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic
- Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czech Republic
| | - Lada Biedermannová
- Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Vestec Czech Republic
| | - Helena Pelantová
- Institute of Microbiology of the Czech Academy of Sciences Prague Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology of the Czech Academy of Sciences Prague Czech Republic
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences Prague Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic
- Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czech Republic
| | - Michael Kotik
- Institute of Microbiology of the Czech Academy of Sciences Prague Czech Republic
| |
Collapse
|
16
|
Apel C, Kasper MA, Stieger CE, Hackenberger CPR, Christmann M. Protein Modification of Lysine with 2-(2-Styrylcyclopropyl)ethanal. Org Lett 2019; 21:10043-10047. [DOI: 10.1021/acs.orglett.9b03982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Caroline Apel
- Freie Universität Berlin, Institut für Chemie und Biochemie, Takustrasse 3, 14195 Berlin, Germany
| | - Marc-André Kasper
- Chemical Biology Department Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Department of Chemistry Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Christian E. Stieger
- Chemical Biology Department Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Department of Chemistry Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Christian P. R. Hackenberger
- Chemical Biology Department Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Department of Chemistry Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Mathias Christmann
- Freie Universität Berlin, Institut für Chemie und Biochemie, Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
17
|
|
18
|
Weiz G, Mazzaferro LS, Kotik M, Neher BD, Halada P, Křen V, Breccia JD. The flavonoid degrading fungus Acremonium sp. DSM 24697 produces two diglycosidases with different specificities. Appl Microbiol Biotechnol 2019; 103:9493-9504. [PMID: 31705182 DOI: 10.1007/s00253-019-10180-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 01/01/2023]
Abstract
AbstractDiglycosidases hydrolyze the heterosidic linkage of diglycoconjugates, releasing the disaccharide and the aglycone. Usually, these enzymes do not hydrolyze or present only low activities towards monoglycosylated compounds. The flavonoid degrading fungus Acremonium sp. DSM 24697 produced two diglycosidases, which were termed 6-O-α-rhamnosyl-β-glucosidase I and II (αRβG I and II) because of their function of releasing the disaccharide rutinose (6-O-α-L-rhamnosyl-β-D-glucose) from the diglycoconjugates hesperidin or rutin. In this work, the genome of Acremonium sp. DSM 24697 was sequenced and assembled with a size of ~ 27 Mb. The genes encoding αRβG I and II were expressed in Pichia pastoris KM71 and the protein products were purified with apparent molecular masses of 42 and 82 kDa, respectively. A phylogenetic analysis showed that αRβG I grouped in glycoside hydrolase family 5, subfamily 23 (GH5), together with other fungal diglycosidases whose substrate specificities had been reported to be different from αRβG I. On the other hand, αRβG II grouped in glycoside hydrolase family 3 (GH3) and thus is the first GH3 member that hydrolyzes the heterosidic linkage of rutinosylated compounds. The substrate scopes of the enzymes were different: αRβG I showed exclusive specificity toward 7-O-β-rutinosyl flavonoids, whereas αRβG II hydrolyzed both 7-O-β-rutinosyl- and 3-O-β-rutinosyl- flavonoids. None of the enzymes displayed activity toward 7-O-β-neohesperidosyl- flavonoids. The recombinant enzymes also exhibited transglycosylation activities, transferring rutinose from hesperidin or rutin onto various alcoholic acceptors. The different substrate scopes of αRβG I and II may be part of an optimized strategy of the original microorganism to utilize different carbon sources.
Collapse
Affiliation(s)
- Gisela Weiz
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Universidad Nacional de La Pampa - Consejo Nacional de Investigaciones Científicas y Técnicas (UNLPam-CONICET), Av. Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina
| | - Laura S Mazzaferro
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Universidad Nacional de La Pampa - Consejo Nacional de Investigaciones Científicas y Técnicas (UNLPam-CONICET), Av. Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina
| | - Michael Kotik
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Bárbara D Neher
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Universidad Nacional de La Pampa - Consejo Nacional de Investigaciones Científicas y Técnicas (UNLPam-CONICET), Av. Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina
| | - Petr Halada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Javier D Breccia
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Universidad Nacional de La Pampa - Consejo Nacional de Investigaciones Científicas y Técnicas (UNLPam-CONICET), Av. Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina.
| |
Collapse
|
19
|
Xu L, Liu X, Li Y, Yin Z, Jin L, Lu L, Qu J, Xiao M. Enzymatic rhamnosylation of anticancer drugs by an α-L-rhamnosidase from Alternaria sp. L1 for cancer-targeting and enzyme-activated prodrug therapy. Appl Microbiol Biotechnol 2019; 103:7997-8008. [PMID: 31414160 DOI: 10.1007/s00253-019-10011-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/14/2019] [Accepted: 07/01/2019] [Indexed: 12/14/2022]
Abstract
The synthesis of rhamnosylated compounds has gained great importance since these compounds have potential therapeutic applications. The enzymatic approaches for glycosylation of bioactive molecules have been well developed; however, the enzymatic rhamnosylation has been largely hindered by lacking of the glycosyl donor for rhamnosyltransferases. Here, we employed an α-L-rhamnosidase from Alternaria sp. L1 (RhaL1) to perform one-step rhamnosylation of anticancer drugs, including 2'-deoxy-5-fluorouridine (FUDR), cytosine arabinoside (Ara C), and hydroxyurea (Hydrea). The key synthesis conditions including substrate concentrations and reaction time were carefully optimized, and the maximum yields of each rhamnosylated drugs were 57.7 mmol for rhamnosylated Ara C, 68.6 mmol for rhamnosylated Hydrea, and 42.2 mmol for rhamnosylated FUDR. It is worth pointing out that these rhamnosylated drugs exhibit little cytotoxic effects on cancer cells, but could efficiently restore cytotoxic activity when incubated with exogenous α-L-rhamnosidase, suggesting their potential applications in the enzyme-activated prodrug system. To evaluate the cancer-targeting ability of rhamnose moiety, the rhamnose-conjugated fluorescence dye rhodamine B (Rha-RhB) was constructed. The fluorescence probe Rha-RhB displayed much higher cell affinity and cellular internalization rate of oral cancer cell KB and breast cancer cell MDA-MB-231 than that of the normal epithelial cells MCF 10A, suggesting that the rhamnose moiety could mediate the specific internalization of rhamnosylated compounds into cancer cells, which greatly facilitated their applications for cancer-targeting drug delivery.
Collapse
Affiliation(s)
- Li Xu
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Xiaohong Liu
- State Key Lab of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Yinping Li
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Zhenhao Yin
- State Key Lab of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Lan Jin
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Lili Lu
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Jingyao Qu
- State Key Lab of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Min Xiao
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China. .,State Key Lab of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
20
|
Sajja RK, Cudic P, Cucullo L. In vitro characterization of odorranalectin for peptide-based drug delivery across the blood-brain barrier. BMC Neurosci 2019; 20:22. [PMID: 31068126 PMCID: PMC6505199 DOI: 10.1186/s12868-019-0504-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 04/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The use of siRNA-based gene silencing has been recently underscored as a potential therapeutic strategy for the treatment of neurological disorders. However, the stability of siRNA and other small molecule therapeutics is challenged by their intrinsic instability and limited passage across the blood-brain barrier (BBB). Based on these premises, our objective was to characterize/optimize odorranalectin (OL), a small non-immunogenic lectin-like peptide, as a carrier for targeted delivery across the BBB. For this purpose, 5(6)-carboxyfluorescein-conjugated OL and scramble peptide were synthesized, and then their BBB cellular internalization/trafficking and stability were characterized versus temperature, pH and serum content in the media in hCMEC/D3 cells as a model of BBB endothelium. Specifically, integrity of the internalized peptide in cell lysates was analyzed by LC/MS while cellular distribution and intracellular trafficking of OL was examined by fluorescence microscopy with early-late endosome (pHRodo Red®) and lysosome (Lysotracker®) markers. RESULTS Our data show that cellular uptake of OL increased linearly with the concentrations tested in this study at 37 °C and the uptake was two to threefolds higher when compared to scramble peptide. While there were no differences for scramble peptide, the uptake of OL decreased by 50% at 4 °C incubation (vs. 37 °C). No effects of pH were observed on endothelial uptake of OL. Immunofluorescence studies also indicated a significant cellular internalization of OL that remained intact (as evaluated by LC-MS/MS) and co-localized with endosomal, but not lysosome marker. Importantly, OL was found non-toxic to cells at all concentrations tested. CONCLUSIONS In summary, our data suggest the existence of a receptor-mediated transcytosis pathway for cellular uptake of OL at the BBB endothelium. However, in vivo studies will be needed to assess the siRNA loading capacity of OL and its trans-BBB transport efficiency for targeted delivery in the brain.
Collapse
Affiliation(s)
- Ravi K Sajja
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Predrag Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, USA
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA.
| |
Collapse
|
21
|
Oldenkamp HF, Vela Ramirez JE, Peppas NA. Re-evaluating the importance of carbohydrates as regenerative biomaterials. Regen Biomater 2019; 6:1-12. [PMID: 30740237 PMCID: PMC6362819 DOI: 10.1093/rb/rby023] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/20/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- Heidi F Oldenkamp
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Julia E Vela Ramirez
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Nicholas A Peppas
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
22
|
Affiliation(s)
- Seiji SAKAMOTO
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University
| | - Itaru HAMACHI
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University
- ERATO Innovative Molecular Technology for Neuroscience Project, Japan Science and Technology Agency (JST)
| |
Collapse
|
23
|
Mazzaferro LS, Weiz G, Braun L, Kotik M, Pelantová H, Křen V, Breccia JD. Enzyme-mediated transglycosylation of rutinose (6-O-α-l-rhamnosyl-d-glucose) to phenolic compounds by a diglycosidase fromAcremoniumsp. DSM 24697. Biotechnol Appl Biochem 2018; 66:53-59. [DOI: 10.1002/bab.1695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/04/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Laura S. Mazzaferro
- INCITAP (CONICET-UNLPam) National Scientific and Technical Research Council, Department of Chemistry, Faculty of Natural Sciences; National University of La Pampa (UNLPam); Santa Rosa La Pampa Argentina
| | - Gisela Weiz
- INCITAP (CONICET-UNLPam) National Scientific and Technical Research Council, Department of Chemistry, Faculty of Natural Sciences; National University of La Pampa (UNLPam); Santa Rosa La Pampa Argentina
| | - Lucas Braun
- INCITAP (CONICET-UNLPam) National Scientific and Technical Research Council, Department of Chemistry, Faculty of Natural Sciences; National University of La Pampa (UNLPam); Santa Rosa La Pampa Argentina
| | - Michael Kotik
- Laboratory of Biotransformation, Institute of Microbiology; Czech Academy of Sciences; Prague Czech Republic
| | - Helena Pelantová
- Laboratory of Molecular Structure Characterization, Institute of Microbiology; Czech Academy of Sciences; Prague Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology; Czech Academy of Sciences; Prague Czech Republic
| | - Javier D. Breccia
- INCITAP (CONICET-UNLPam) National Scientific and Technical Research Council, Department of Chemistry, Faculty of Natural Sciences; National University of La Pampa (UNLPam); Santa Rosa La Pampa Argentina
| |
Collapse
|
24
|
Koseki T, Ishikawa M, Kawasaki M, Shiono Y. β-Diglycosidases from microorganisms as industrial biocatalysts: biochemical characteristics and potential applications. Appl Microbiol Biotechnol 2018; 102:8717-8723. [DOI: 10.1007/s00253-018-9286-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/29/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
|
25
|
Ishikawa M, Kawasaki M, Shiono Y, Koseki T. A novel Aspergillus oryzae diglycosidase that hydrolyzes 6-O-α-L-rhamnosyl-β-D-glucoside from flavonoids. Appl Microbiol Biotechnol 2018; 102:3193-3201. [PMID: 29476400 DOI: 10.1007/s00253-018-8840-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/25/2018] [Accepted: 02/06/2018] [Indexed: 10/18/2022]
Abstract
α-L-Rhamnosyl-β-D-glucosidase (rutinosidase) hydrolyzes the glycosidic linkage between the disaccharide 6-O-α-L-rhamnosyl-β-D-glucoside (rutinose) and the aglycone. We identified a hypothetical protein (annotated as AO090012000917) encoded in the Aspergillus oryzae genome that exhibits sequence similarity with Aspergillus niger rutinosidase. The recombinant enzyme was expressed in Pichia pastoris GS115 and purified as a glyco-protein with apparent molecular mass of 65-75 kDa by SDS-PAGE. After N-deglycosylation, we observed a 42- and 40-kDa band, representing proteins before and after N-terminal signal peptide processing, respectively. Optimal enzymatic activity was observed at pH 4.0 and temperature of 45 °C. This enzyme is also significantly thermo-stable, with 90% activity retained after 1 h at 45 °C and 70% activity retained after 4 h, even at 50 °C. Biochemical characterization revealed that the enzyme has higher substrate specificity for 3-O-linked flavonoid β-rutinosides like rutin and kaempferol-3-O-rutinoside, than for 7-O-linked flavonoid β-rutinoside like hesperidin. However, no activity was found with naringin, diosmin, monoglycosylated chromogenic substrates, and polymeric laminarin substrate. Kinetic analyses showed that K m value toward rutin was higher than those toward hesperidin and kaempferol-3-O-rutinoside. Meanwhile, kcat value toward hesperidin was lower than those toward kaempferol-3-O-rutinoside and rutin. Overall, the catalytic efficiency (kcat/K m ) was highest for kaempferol-3-O-rutinoside.
Collapse
Affiliation(s)
- Mai Ishikawa
- Department of Food and Applied Life Sciences, Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, 997-8555, Japan
| | - Mayu Kawasaki
- Department of Food and Applied Life Sciences, Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, 997-8555, Japan
| | - Yoshihito Shiono
- Department of Food and Applied Life Sciences, Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, 997-8555, Japan
| | - Takuya Koseki
- Department of Food and Applied Life Sciences, Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, 997-8555, Japan.
| |
Collapse
|
26
|
Karnišová Potocká E, Mastihubová M, Čičová I, Mastihuba V. New assay of α-l-rhamnosidase. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-017-2055-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Lesniewska-Kowiel MA, Muszalska I. Strategies in the designing of prodrugs, taking into account the antiviral and anticancer compounds. Eur J Med Chem 2017; 129:53-71. [DOI: 10.1016/j.ejmech.2017.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/13/2017] [Accepted: 02/05/2017] [Indexed: 12/22/2022]
|
28
|
Lee HG, Lautrette G, Pentelute BL, Buchwald SL. Palladium-Mediated Arylation of Lysine in Unprotected Peptides. Angew Chem Int Ed Engl 2017; 56:3177-3181. [PMID: 28206688 DOI: 10.1002/anie.201611202] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Indexed: 11/09/2022]
Abstract
A mild method for the arylation of lysine in an unprotected peptide is presented. In the presence of a preformed biarylphosphine-supported palladium(II)-aryl complex and a weak base, lysine amino groups underwent C-N bond formation at room temperature. The process generally exhibited high selectivity for lysine over other amino acids containing nucleophilic side chains and was applicable to the conjugation of a variety of organic compounds, including complex drug molecules, with an array of peptides. Finally, this method was also successfully applied to the formation of cyclic peptides by macrocyclization.
Collapse
Affiliation(s)
- Hong Geun Lee
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Guillaume Lautrette
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
29
|
Lee HG, Lautrette G, Pentelute BL, Buchwald SL. Palladium-Mediated Arylation of Lysine in Unprotected Peptides. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611202] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hong Geun Lee
- Department of Chemistry; Massachusetts Institute of Technology; 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Guillaume Lautrette
- Department of Chemistry; Massachusetts Institute of Technology; 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Bradley L. Pentelute
- Department of Chemistry; Massachusetts Institute of Technology; 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Stephen L. Buchwald
- Department of Chemistry; Massachusetts Institute of Technology; 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
30
|
De Lise F, Mensitieri F, Tarallo V, Ventimiglia N, Vinciguerra R, Tramice A, Marchetti R, Pizzo E, Notomista E, Cafaro V, Molinaro A, Birolo L, Di Donato A, Izzo V. RHA-P: Isolation, expression and characterization of a bacterial α- l -rhamnosidase from Novosphingobium sp. PP1Y. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Alexander SR, Fairbanks AJ. Direct aqueous synthesis of cyanomethyl thioglycosides from reducing sugars; ready access to reagents for protein glycosylation. Org Biomol Chem 2016; 14:6679-82. [DOI: 10.1039/c6ob01069e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unprotected carbohydrates can be directly converted into cyanooethyl thioglycosides, which in turn may be used for protein glycosylation, in a completely stereoselective manner by reaction with 2-chloro-1,3-dimethylimidazolinium chloride (DMC) and mercaptoacetonitrile in aqueous solution.
Collapse
Affiliation(s)
| | - Antony J. Fairbanks
- Department of Chemistry
- University of Canterbury
- Christchurch 8140
- New Zealand
- Biomolecular Interaction Centre
| |
Collapse
|
32
|
Ahmed M, Narain R. Carbohydrate-based materials for targeted delivery of drugs and genes to the liver. Nanomedicine (Lond) 2015. [DOI: 10.2217/nnm.15.58] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The insult to liver by toxic materials leads to cirrhosis, hepatitis and cancer. Upon administration, drugs accumulate in liver, which is systemically cleared by reticuloendothelial system. However, specific targeting of drugs to liver is a serious challenge. Specific delivery of molecules to hepatocytes is accomplished by targeting cell surface lectins, asialoglycoprotein receptors. Asialofetuin, N-acetyl glucosamine and galactose are high-affinity ligands of asialoglycoprotein receptors. The bioconjugation of drugs, fluorescent molecules and gene delivery vectors with lectin-targeting agents, and their delivery in liver hepatocytes, is discussed. Mannose and N-acetyl glucosamine conjugates are evaluated for their delivery to hepatic stellate and kupffer cells. The glycosylated gene and drug delivery vectors in clinical trials are outlined.
Collapse
Affiliation(s)
- Marya Ahmed
- Chemical Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA
| | - Ravin Narain
- Chemical & Materials Engineering, University of Alberta, 116 St & 85 Ave, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
33
|
De Munari S, Schiffner T, Davis BG. A Triply Divergent Reagent for Glycoprotein Synthesis. Isr J Chem 2015. [DOI: 10.1002/ijch.201400182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Affiliation(s)
- Omar Boutureira
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili , C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | | |
Collapse
|
35
|
Šimčíková D, Kotik M, Weignerová L, Halada P, Pelantová H, Adamcová K, Křen V. α-L
-Rhamnosyl-β-D
-glucosidase (Rutinosidase) from Aspergillus niger
: Characterization and Synthetic Potential of a Novel Diglycosidase. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201400566] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Villalonga ML, Díez P, Sánchez A, Gamella M, Pingarrón JM, Villalonga R. Neoglycoenzymes. Chem Rev 2014; 114:4868-917. [DOI: 10.1021/cr400290x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Paula Díez
- Department
of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040-Madrid, Spain
| | - Alfredo Sánchez
- Department
of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040-Madrid, Spain
| | - María Gamella
- Department
of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040-Madrid, Spain
| | - José M. Pingarrón
- Department
of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040-Madrid, Spain
- IMDEA
Nanoscience, Cantoblanco Universitary City, 28049-Madrid, Spain
| | - Reynaldo Villalonga
- Department
of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040-Madrid, Spain
- IMDEA
Nanoscience, Cantoblanco Universitary City, 28049-Madrid, Spain
| |
Collapse
|
37
|
Chester KA, Baker M, Mayer A. Overcoming the immunologic response to foreign enzymes in cancer therapy. Expert Rev Clin Immunol 2014; 1:549-59. [DOI: 10.1586/1744666x.1.4.549] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Valdes G, Schulte RW, Ostermeier M, Iwamoto KS. The High-Affinity Maltose Switch MBP317-347 has Low Affinity for Glucose: Implications for Targeting Tumors with Metabolically Directed Enzyme Prodrug Therapy. Chem Biol Drug Des 2013; 83:266-71. [DOI: 10.1111/cbdd.12249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 08/23/2013] [Accepted: 10/04/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Gilmer Valdes
- Department of Radiation Oncology; David Geffen School of Medicine at UCLA; 10833 LeConte Ave. Los Angeles CA 90095-1714 USA
| | - Reinhard W. Schulte
- Department of Radiation Medicine; Loma Linda University Medical Center; B121 Loma Linda CA 92354 USA
| | - Marc Ostermeier
- Department of Chemical and Biomolecular Engineering; Whiting School of Engineering, Johns Hopkins University; 3400 N. Charles St. Baltimore MD 21218 USA
| | - Keisuke S. Iwamoto
- Department of Radiation Oncology; David Geffen School of Medicine at UCLA; 10833 LeConte Ave. Los Angeles CA 90095-1714 USA
| |
Collapse
|
39
|
Méndez J, Morales Cruz M, Delgado Y, Figueroa CM, Orellano EA, Morales M, Monteagudo A, Griebenow K. Delivery of chemically glycosylated cytochrome c immobilized in mesoporous silica nanoparticles induces apoptosis in HeLa cancer cells. Mol Pharm 2013; 11:102-11. [PMID: 24294910 DOI: 10.1021/mp400400j] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cytochrome c (Cyt c) is a small mitochondrial heme protein involved in the intrinsic apoptotic pathway. Once Cyt c is released into the cytosol, the caspase mediated apoptosis cascade is activated resulting in programmed cell death. Herein, we explore the covalent immobilization of Cyt c into mesoporous silica nanoparticles (MSN) to generate a smart delivery system for intracellular drug delivery to cancer cells aiming at affording subsequent cell death. Cyt c was modified with sulfosuccinimidyl-6-[3'-(2-pyridyldithio)-propionamido] hexanoate (SPDP) and incorporated into SH-functionalized MSN by thiol-disulfide interchange. Unfortunately, the delivery of Cyt c from the MSN was not efficient in inducing apoptosis in human cervical cancer HeLa cells. We tested whether chemical Cyt c glycosylation could be useful in overcoming the efficacy problems by potentially improving Cyt c thermodynamic stability and reducing proteolytic degradation. Cyt c lysine residues were modified with lactose at a lactose-to-protein molar ratio of 3.7 ± 0.9 using mono(lactosylamido)-mono(succinimidyl) suberate linker chemistry. Circular dichroism (CD) spectra demonstrated that part of the activity loss of Cyt c was due to conformational changes upon its modification with the SPDP linker. These conformational changes were prevented in the glycoconjugate. In agreement with the unfolding of Cyt c by the linker, a proteolytic assay demonstrated that the Cyt c-SPDP conjugate was more susceptible to proteolysis than Cyt c. Attachment of the four lactose molecules reversed this increased susceptibility and protected Cyt c from proteolytic degradation. Furthermore, a cell-free caspase-3 assay revealed 47% and 87% of relative caspase activation by Cyt c-SPDP and the Cyt c-lactose bioconjugate, respectively, when compared to Cyt c. This again demonstrates the efficiency of the glycosylation to improve maintaining Cyt c structure and thus function. To test for cytotoxicity, HeLa cells were incubated with Cyt c loaded MSN at different Cyt c concentrations (12.5, 25.0, and 37.5 μg/mL) for 24-72 h and cellular metabolic activity determined by a cell proliferation assay. While MSN-SPDP-Cyt c did not induced cell death, the Cyt c-lactose bioconjugate induced significant cell death after 72 h, reducing HeLa cell viability to 67% and 45% at the 25 μg/mL and 37.5 μg/mL concentrations, respectively. Confocal microscopy confirmed that the MSN immobilized Cyt c-lactose bioconjugate was internalized by HeLa cells and that the bioconjugate was capable of endosomal escape. The results clearly demonstrate that chemical glycosylation stabilized Cyt c upon formulation of a smart drug delivery system and upon delivery into cancer cells and highlight the general potential of chemical protein glycosylation to improve the stability of protein drugs.
Collapse
Affiliation(s)
- Jessica Méndez
- Department of Chemistry, University of Puerto Rico , Río Piedras Campus, P.O. Box 23346, San Juan, Puerto Rico 00931-3346, United States
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Ribeiro-Viana R, Sánchez-Navarro M, Luczkowiak J, Koeppe JR, Delgado R, Rojo J, Davis BG. Virus-like glycodendrinanoparticles displaying quasi-equivalent nested polyvalency upon glycoprotein platforms potently block viral infection. Nat Commun 2013; 3:1303. [PMID: 23250433 PMCID: PMC3535419 DOI: 10.1038/ncomms2302] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 11/15/2012] [Indexed: 01/08/2023] Open
Abstract
Ligand polyvalency is a powerful modulator of protein–receptor interactions. Host–pathogen infection interactions are often mediated by glycan ligand–protein interactions, yet its interrogation with very high copy number ligands has been limited to heterogenous systems. Here we report that through the use of nested layers of multivalency we are able to assemble the most highly valent glycodendrimeric constructs yet seen (bearing up to 1,620 glycans). These constructs are pure and well-defined single entities that at diameters of up to 32 nm are capable of mimicking pathogens both in size and in their highly glycosylated surfaces. Through this mimicry these glyco-dendri-protein-nano-particles are capable of blocking (at picomolar concentrations) a model of the infection of T-lymphocytes and human dendritic cells by Ebola virus. The high associated polyvalency effects (β>106, β/N ~102–103) displayed on an unprecedented surface area by precise clusters suggest a general strategy for modulation of such interactions. Host–pathogen relationships can be mediated by polyvalent glycan ligand–protein interactions. Here well-defined highly valent glycodendrimeric constructs are synthesized that can mimic pathogens, and can inhibit a model of infection by the Ebola virus.
Collapse
Affiliation(s)
- Renato Ribeiro-Viana
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | | | | | | | | | | | | |
Collapse
|
41
|
Meng L, Ji B, Huang W, Wang D, Tong G, Su Y, Zhu X, Yan D. Preparation of Pixantrone/Poly(γ-glutamic acid) Nanoparticles through Complex Self-Assembly for Oral Chemotherapy. Macromol Biosci 2012; 12:1524-33. [DOI: 10.1002/mabi.201200137] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/15/2012] [Indexed: 01/09/2023]
|
42
|
Maher S, Ryan KB, Ahmad T, O'driscoll CM, Brayden* DJ. Nanostructures Overcoming the Intestinal Barrier: Physiological Considerations and Mechanistic Issues. NANOSTRUCTURED BIOMATERIALS FOR OVERCOMING BIOLOGICAL BARRIERS 2012. [DOI: 10.1039/9781849735292-00039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
43
|
|
44
|
Updates on naringinase: structural and biotechnological aspects. Appl Microbiol Biotechnol 2011; 93:49-60. [PMID: 22080346 DOI: 10.1007/s00253-011-3679-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 10/11/2011] [Accepted: 10/27/2011] [Indexed: 10/15/2022]
Abstract
Naringinases has attracted a great deal of attention in recent years due to its hydrolytic activities which include the production of rhamnose, and prunin and debittering of citrus fruit juices. While this enzyme is widely distributed in fungi, its production from bacterial sources is less commonly known. Fungal naringinase are very important as they are used industrially in large amounts and have been extensively studied during the past decade. In this article, production of bacterial naringinase and potential biotechnological applications are discussed. Bacterial rhamnosidases are exotype enzymes that hydrolyse terminal non-reducing α-L-rhamnosyl groups from α-L-rhamnose containing polysaccharides and glycosides. Structurally, they are classified into family 78 of glycoside hydrolases and characterized by the presence of Asp567 and Glu841 in their active site. Optimization of fermentation conditions and enzyme engineering will allow the development of improved rhamnosidases for advancing suggested industrial applications.
Collapse
|
45
|
Boutureira O, Bernardes GJL, D'Hooge F, Davis BG. Direct radiolabelling of proteins at cysteine using [18F]-fluorosugars. Chem Commun (Camb) 2011; 47:10010-2. [PMID: 21833430 DOI: 10.1039/c1cc13524d] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A strategy for the site-specific attachment of 2-deoxy-2-fluorosugars to cysteine and dehydroalanine tagged proteins is reported. When combined with thionation of fluorosugars, such as the widely available (18)F probe 2-deoxy-2-[(18)F]fluoroglucose ([(18)F]FDG), this methodology allows fast and direct access to site-specific [(18)F]FDG-labelled proteins.
Collapse
Affiliation(s)
- Omar Boutureira
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | | | | | | |
Collapse
|
46
|
Garnier P, Wang XT, Robinson MA, van Kasteren S, Perkins AC, Frier M, Fairbanks AJ, Davis BG. Lectin-directed enzyme activated prodrug therapy (LEAPT): Synthesis and evaluation of rhamnose-capped prodrugs. J Drug Target 2011; 18:794-802. [PMID: 21047273 DOI: 10.3109/1061186x.2010.529909] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The lectin-directed enzyme activated prodrug therapy (LEAPT) bipartite drug delivery system utilizes glycosylated enzyme, localized according to its sugar pattern, and capped prodrugs released by that enzyme. In this way, the sugar coat of a synthetic enzyme determines the site of release of a given drug. Here, prodrugs of doxorubicin and 5-fluorouracil capped by the nonmammalian l-rhamnosyl sugar unit have been efficiently synthesized and evaluated for use in the LEAPT system. Both are stable in blood, released by synthetically d-galactosylated rhamnosidase enzyme, and do not inhibit the uptake of the synthetic enzyme to its liver target. These results are consistent with their proposed mode of action and efficacy in models of liver cancer, and confirm modular flexibility in the drugs that may be used in LEAPT.
Collapse
Affiliation(s)
- Philippe Garnier
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
47
|
‘Click’ to bidentate bis-triazolyl sugar derivatives with promising biological and optical features. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2010.12.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
Wang S, Lee WS, Ha HH, Chang YT. Combinatorial synthesis of galactosyl-1,3,5-triazines as novel nucleoside analogues. Org Biomol Chem 2011; 9:6924-6. [DOI: 10.1039/c1ob05733b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Illum L. Stanley (Bob) Davis: An outstanding contribution to drug delivery. J Drug Target 2010; 18:702-3. [PMID: 21029034 DOI: 10.3109/1061186x.2010.529267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Patel MK, Vijayakrishnan B, Koeppe JR, Chalker JM, Doores KJ, Davis BG. Analysis of the dispersity in carbohydrate loading of synthetic glycoproteins using MALDI-TOF mass spectrometry. Chem Commun (Camb) 2010; 46:9119-21. [PMID: 21038043 DOI: 10.1039/c0cc03420g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Statistical correlation of mass spectrum peak broadening with product dispersity in protein conjugation reactions allows more detailed characterization of putative therapeutic conjugates.
Collapse
Affiliation(s)
- Mitul K Patel
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | | | | | | | | | | |
Collapse
|