1
|
Niu W, Zhang H, Ma X, Liang H, Qiao Z, Wang Z, Niu L. Etoposide, cisplatin, and sintilimab combined with anlotinib in successful treatment of adrenocortical carcinoma with lung metastasis: a case report. Front Oncol 2024; 14:1403762. [PMID: 39220648 PMCID: PMC11361937 DOI: 10.3389/fonc.2024.1403762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Background Adrenocortical carcinoma (ACC) is a rare malignant tumor that occurs in the adrenal cortex. It has a high degree of malignancy and comparatively poor overall prognosis. Surgery is the standard curative therapy for localized ACC patients. The combination regimen of etoposide, doxorubicin, cisplatin (EDP) plus mitotane has been considered as the standardized chemotherapy regimen for advanced ACC. However, new effective regimens are emerging for specific conditions in metastatic ACC. Case presentation We report a case of a 66-year-old man diagnosed with metastatic ACC who had a large left adrenal mass (110 mm × 87 mm) and multiple metastases in both lungs. The patient was treated with EP and sintilimab for six cycles; anlotinib was introduced after the third cycle. Follow-ups after the second to fourth cycles found significantly reduced lung metastases with all imaging examinations indicating partial response (PR) status. The patient received maintenance therapy thereafter with sintilimab plus anlotinib. Until recently, the patient's lung metastases and the left adrenal gland area mass (39mm × 29mm) have disappeared, and no disease progression has been observed. The progression-free survival of this patient has been extended to approximately 31 months, in sharp contrast to a median survival time of 12 months for majority of advanced ACC. The main adverse events during treatment were appetite loss and grade I myelosuppression and revealed only grade I hypertension and grade I hypothyroidism. Conclusion This case highlights the remarkable response of our patient's ACC to treatment with a novel combination of EP and sintilimab combined with anlotinib. Our findings suggest a safe and more effective combination therapeutic option for patients with adrenocortical carcinoma.
Collapse
Affiliation(s)
- Wenjing Niu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Haimei Zhang
- Department of Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| | - Xuezhen Ma
- Department of Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| | - Hua Liang
- Department of Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| | - Zhongshi Qiao
- Department of Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| | - Zheng Wang
- Department of Oncology, Zhucheng People’s Hospital, Weifang, China
| | - Lifeng Niu
- School of Clinical Medicine, Binzhou Medical University, Binzhou, China
| |
Collapse
|
2
|
Xu W, Xie B, Wei D, Song X. Dissecting hair breakage in alopecia areata: the central role of dysregulated cysteine homeostasis. Amino Acids 2024; 56:36. [PMID: 38772922 PMCID: PMC11108903 DOI: 10.1007/s00726-024-03395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/16/2024] [Indexed: 05/23/2024]
Abstract
In the initial stages of Alopecia Areata (AA), the predominance of hair breakage or exclamation mark hairs serves as vital indicators of disease activity. These signs are non-invasive and are commonly employed in dermatoscopic examinations. Despite their clinical salience, the underlying etiology precipitating this hair breakage remains largely uncharted territory. Our exhaustive review of the existing literature points to a pivotal role for cysteine-a key amino acid central to hair growth-in these mechanisms. This review will probe and deliberate upon the implications of aberrant cysteine metabolism in the pathogenesis of AA. It will examine the potential intersections of cysteine metabolism with autophagy, ferroptosis, immunity, and psychiatric manifestations associated with AA. Such exploration could illuminate new facets of the disease's pathophysiology, potentially paving the way for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Wen Xu
- School of Medicine, Zhejiang University, Yuhangtang Rd 866, Hangzhou, 310009, People's Republic of China
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital, Affiliated to Zhejiang Chinese Medical University, West Lake Ave 38, Hangzhou, 310009, People's Republic of China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital, Affiliated to Zhejiang Chinese Medical University, West Lake Ave 38, Hangzhou, 310009, People's Republic of China
| | - Dongfan Wei
- School of Medicine, Zhejiang University, Yuhangtang Rd 866, Hangzhou, 310009, People's Republic of China
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital, Affiliated to Zhejiang Chinese Medical University, West Lake Ave 38, Hangzhou, 310009, People's Republic of China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital, Affiliated to Zhejiang Chinese Medical University, West Lake Ave 38, Hangzhou, 310009, People's Republic of China.
| |
Collapse
|
3
|
Londhe AD, Boivin B. Measuring the Reversible Oxidation of Protein Tyrosine Phosphatases Using a Modified Cysteinyl-Labeling Assay. Methods Mol Biol 2024; 2743:223-237. [PMID: 38147219 DOI: 10.1007/978-1-0716-3569-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The modified cysteinyl-labeling assay enables the labeling, enrichment, and detection of all members of the protein tyrosine phosphatase (PTP) superfamily that become reversibly oxidized in cells to facilitate phosphorylation-dependent signaling. In this chapter, we describe the method in detail and highlight the pitfalls of avoiding post-lysis oxidation of PTPs to measure the dynamic and transient oxidation and reduction of PTPs in cell signaling.
Collapse
Affiliation(s)
- Avinash D Londhe
- Department of Nanobioscience, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, USA
| | - Benoit Boivin
- Department of Nanobioscience, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, USA.
- Department of Nanoscale Science and Engineering, University at Albany, Albany, NY, USA.
| |
Collapse
|
4
|
Yang CY, Yang CF, Tang XF, Machado LESF, Singh JP, Peti W, Chen CS, Meng TC. Active-site cysteine 215 sulfonation targets protein tyrosine phosphatase PTP1B for Cullin1 E3 ligase-mediated degradation. Free Radic Biol Med 2023; 194:147-159. [PMID: 36462629 DOI: 10.1016/j.freeradbiomed.2022.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/14/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Reactive oxygen species (ROS), released as byproducts of mitochondrial metabolism or as products of NADPH oxidases and other processes, can directly oxidize the active-site cysteine (Cys) residue of protein tyrosine phosphatases (PTPs) in a mammalian cell. Robust degradation of irreversibly oxidized PTPs is essential for preventing accumulation of these permanently inactive enzymes. However, the mechanism underlying the degradation of these proteins was unknown. In this study, we found that the active-site Cys215 of endogenous PTP1B is sulfonated in H9c2 cardiomyocytes under physiological conditions. The sulfonation of Cys215 led PTP1B to exhibit a conformational change, and drive the subsequent ubiquitination and degradation of this protein. We then discovered that Cullin1, an E3 ligase, interacts with the Cys215-sulfonated PTP1B. The functional impairment of Cullin1 prevented PTP1B from oxidation-dependent ubiquitination and degradation in H9c2 cells. Moreover, delivery of the terminally oxidized PTP1B resulted in proteotoxicity-caused injury in the affected cells. In conclusion, we elucidate how sulfonation of the active-site Cys215 can direct turnover of endogenous PTP1B through the engagement of ubiquitin-proteasome system. These data highlight a novel mechanism that maintains PTP homeostasis in cardiomyocytes with constitutive ROS production.
Collapse
Affiliation(s)
- Chun-Yi Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, 115, Taiwan
| | - Chiu-Fen Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan; Department of Cardiology, Cardiovascular Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan
| | - Xiao-Fang Tang
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, 300 Jhongda Road, Jhongli, 320, Taiwan
| | - Luciana E S F Machado
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Jai Prakash Singh
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Chien-Sheng Chen
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, 300 Jhongda Road, Jhongli, 320, Taiwan; Department of Biomedical Science and Engineering, National Central University, Jongli District, Taoyuan City, 32001, Taiwan; Department of Food Safety / Hygiene and Risk Management, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Ching Meng
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, 115, Taiwan.
| |
Collapse
|
5
|
Netto LES, Machado LESF. Preferential redox regulation of cysteine‐based protein tyrosine phosphatases: structural and biochemical diversity. FEBS J 2022; 289:5480-5504. [DOI: 10.1111/febs.16466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/20/2022] [Accepted: 04/28/2022] [Indexed: 12/30/2022]
Affiliation(s)
- Luís Eduardo S. Netto
- Departamento de Genética e Biologia Evolutiva Instituto de Biociências Universidade de São Paulo Brazil
| | | |
Collapse
|
6
|
Niesteruk A, Sreeramulu S, Jonker HRA, Richter C, Schwalbe H. Oxidation of the Mycobacterium tuberculosis key virulence factor Protein Tyrosine Phosphatase A (MptpA) reduces its phosphatase activity. FEBS Lett 2022; 596:1503-1515. [PMID: 35397176 DOI: 10.1002/1873-3468.14348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/06/2022]
Abstract
The Mycobacterium tuberculosis tyrosine-specific phosphatase MptpA and its cognate kinase PtkA are prospective targets for anti- tuberculosis drugs as they interact with the host defense response within the macrophages. Although both are structurally well characterized, the functional mechanism regulating their activity remains poorly understood. Here, we investigate the effect of post-translational oxidation in regulating the function of MptpA. Treatment of MptpA with H2 O2 /NaHCO3 , mimicking cellular oxidative stress conditions, leads to oxidation of the catalytic cysteine (C11) and to a conformational rearrangement of the phosphorylation loop (D-loop) by repositioning the conserved tyrosine 128 (Y128) and generating a temporarily inactive pre-closed state of the phosphatase. Thus, the catalytic cysteine in the P-loop acts as a redox switch and regulates the phosphatase activity of MptpA.
Collapse
Affiliation(s)
- Anna Niesteruk
- Goethe University Frankfurt am Main, Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Frankfurt am Main, Germany
| | - Sridhar Sreeramulu
- Goethe University Frankfurt am Main, Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Frankfurt am Main, Germany
| | - Hendrik R A Jonker
- Goethe University Frankfurt am Main, Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Frankfurt am Main, Germany
| | - Christian Richter
- Goethe University Frankfurt am Main, Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Frankfurt am Main, Germany
| | - Harald Schwalbe
- Goethe University Frankfurt am Main, Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Frankfurt am Main, Germany
| |
Collapse
|
7
|
Demasi M, Augusto O, Bechara EJH, Bicev RN, Cerqueira FM, da Cunha FM, Denicola A, Gomes F, Miyamoto S, Netto LES, Randall LM, Stevani CV, Thomson L. Oxidative Modification of Proteins: From Damage to Catalysis, Signaling, and Beyond. Antioxid Redox Signal 2021; 35:1016-1080. [PMID: 33726509 DOI: 10.1089/ars.2020.8176] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: The systematic investigation of oxidative modification of proteins by reactive oxygen species started in 1980. Later, it was shown that reactive nitrogen species could also modify proteins. Some protein oxidative modifications promote loss of protein function, cleavage or aggregation, and some result in proteo-toxicity and cellular homeostasis disruption. Recent Advances: Previously, protein oxidation was associated exclusively to damage. However, not all oxidative modifications are necessarily associated with damage, as with Met and Cys protein residue oxidation. In these cases, redox state changes can alter protein structure, catalytic function, and signaling processes in response to metabolic and/or environmental alterations. This review aims to integrate the present knowledge on redox modifications of proteins with their fate and role in redox signaling and human pathological conditions. Critical Issues: It is hypothesized that protein oxidation participates in the development and progression of many pathological conditions. However, no quantitative data have been correlated with specific oxidized proteins or the progression or severity of pathological conditions. Hence, the comprehension of the mechanisms underlying these modifications, their importance in human pathologies, and the fate of the modified proteins is of clinical relevance. Future Directions: We discuss new tools to cope with protein oxidation and suggest new approaches for integrating knowledge about protein oxidation and redox processes with human pathophysiological conditions. Antioxid. Redox Signal. 35, 1016-1080.
Collapse
Affiliation(s)
- Marilene Demasi
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, Brazil
| | - Ohara Augusto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Etelvino J H Bechara
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Renata N Bicev
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda M Cerqueira
- CENTD, Centre of Excellence in New Target Discovery, Instituto Butantan, São Paulo, Brazil
| | - Fernanda M da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Denicola
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Fernando Gomes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Luis E S Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Lía M Randall
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Cassius V Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Leonor Thomson
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
8
|
Kuwabara T, Ishikawa F, Ikeda M, Ide T, Kohwi-Shigematsu T, Tanaka Y, Kondo M. SATB1-dependent mitochondrial ROS production controls TCR signaling in CD4 T cells. Life Sci Alliance 2021; 4:4/11/e202101093. [PMID: 34583974 PMCID: PMC8500228 DOI: 10.26508/lsa.202101093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/24/2022] Open
Abstract
SATB1 regulates mitochondrial function and reactive oxygen species (ROS) production through the expression of mitochondrial transcription factor A. SATB1-mediated ROS production is necessary for TCR stimulation and T-cell function. Special AT-rich sequence binding protein-1 (SATB1) is localized to the nucleus and remodels chromatin structure in T cells. SATB1-deficient CD4 T cells cannot respond to TCR stimulation; however, the cause of this unresponsiveness is to be clarified. Here, we demonstrate that SATB1 is indispensable to proper mitochondrial functioning and necessary for the activation of signal cascades via the TCR in CD4 T cells. Naïve SATB1-deficient CD4 T cells contain fewer mitochondria than WT T cells, as the former do not express mitochondrial transcription factor A (TFAM). Impaired mitochondrial function in SATB1-deficient T cells subverts mitochondrial ROS production and SHP-1 inactivation by constitutive oxidization. Ectopic TFAM expression increases mitochondrial mass and mitochondrial ROS production and rescues defects in the antigen-specific response in the SATB1-deficient T cells. Thus, SATB1 is vital for maintaining mitochondrial mass and function by regulating TFAM expression, which is necessary for TCR signaling.
Collapse
Affiliation(s)
- Taku Kuwabara
- Department of Molecular Immunology, Toho University School of Medicine, Tokyo, Japan
| | - Fumio Ishikawa
- Department of Molecular Immunology, Toho University School of Medicine, Tokyo, Japan.,Faculty of Health Sciences, Tsukuba International University, Tsuchiura, Japan
| | - Masataka Ikeda
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Terumi Kohwi-Shigematsu
- Department of Orofacial Science, University of California San Francisco School of Dentistry, San Francisco, CA, USA
| | - Yuriko Tanaka
- Department of Molecular Immunology, Toho University School of Medicine, Tokyo, Japan
| | - Motonari Kondo
- Department of Molecular Immunology, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Londhe AD, Rizvi SHM, Boivin B. In Vitro Activity Assays to Quantitatively Assess the Endogenous Reversible Oxidation State of Protein Tyrosine Phosphatases in Cells. ACTA ACUST UNITED AC 2021; 12:e84. [PMID: 32805074 DOI: 10.1002/cpch.84] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The reversible oxidation of protein tyrosine phosphatases (PTPs) impairs their ability to dephosphorylate substrates in vivo. This transient inactivation of PTPs occurs as their conserved catalytic cysteine residue reacts with cellular oxidants thereby abolishing the ability of this reactive cysteine to attack the phosphate of the target substrate. Hence, in vivo, the inhibition of specific PTPs in response to regulated and localized rises in cellular oxidants enables phospho-dependent signaling. We present assays that measure the endogenous activity of specific PTPs that become transiently inactivated in cells exposed to growth factors. Here, we describe the methods and highlight the pitfalls to avoid post-lysis oxidation of PTPs in order to assess the inactivation and the reactivation of PTPs targeted by cellular oxidants in signal transduction. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Cell transfection (optional) Support Protocol: Preparation of degassed lysis buffers Basic Protocol 2: Cellular extraction in anaerobic conditions Basic Protocol 3: Enrichment and activity assay of specific PTPs Alternate Protocol: Measurement of active PTPs via direct cysteinyl labeling.
Collapse
Affiliation(s)
- Avinash D Londhe
- Department of Nanobioscience, SUNY Polytechnic Institute, Albany, New York
| | - Syed H M Rizvi
- Department of Nanobioscience, SUNY Polytechnic Institute, Albany, New York
| | - Benoit Boivin
- Department of Nanobioscience, SUNY Polytechnic Institute, Albany, New York
| |
Collapse
|
10
|
Luong NC, Abiko Y, Shibata T, Uchida K, Warabi E, Suzuki M, Noguchi T, Matsuzawa A, Kumagai Y. Redox cycling of 9,10-phenanthrenequinone activates epidermal growth factor receptor signaling through S-oxidation of protein tyrosine phosphatase 1B. J Toxicol Sci 2020; 45:349-363. [PMID: 32493877 DOI: 10.2131/jts.45.349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
9,10-Phenanthrenequinone (9,10-PQ) is a polycyclic aromatic hydrocarbon quinone contaminated in diesel exhaust particles and particulate matter 2.5. It is an efficient electron acceptor that induces redox cycling with electron donors, resulting in excessive reactive oxygen species and oxidized protein production in cells. The current study examined whether 9,10-PQ could activate epidermal growth factor receptor (EGFR) signaling in A431 cells through S-oxidation of its negative regulators such as protein tyrosine phosphatase (PTP) 1B. 9,10-PQ oxidized recombinant human PTP1B at Cys215 and inhibited its catalytic activity, an effect that was blocked by catalase (CAT), whereas cis-9,10-dihydroxy-9,10-dihydrophenanthrene (DDP), which lacks redox cycling activity, had no effect on PTP1B activity. Exposure of A431 cells to 9,10-PQ, but not DDP, activated signaling through EGFR and its downstream extracellular signal-regulated kinase 1/2 (ERK1/2), coupled with a decrease of cellular PTP activity. Immunoprecipitation and UPLC-MSE revealed that PTP1B easily undergoes oxidation during exposure of A431 cells to 9,10-PQ. Pretreatment with polyethylene glycol conjugated with CAT (PEG-CAT) abolished 9,10-PQ-generated H2O2 production and significantly blocked the activation of EGFR-ERK1/2 signaling by 9,10-PQ, indicating the involvement of H2O2 in the activation because scavenging agents for hydroxyl radicals had no effect on the redox signal activation. These results suggest that such an air pollutant producing H2O2, activates EGFR-ERK1/2 signaling, presumably through the S-oxidation of PTPs such as PTP1B, and activation of the signal cascade may contribute, at least in part, to cellular responses in A431 cells.
Collapse
Affiliation(s)
- Nho Cong Luong
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba.,Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Vietnam
| | - Yumi Abiko
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba.,Faculty of Medicine, University of Tsukuba
| | | | - Koji Uchida
- Graduate School of Bioagricultural Sciences, Nagoya University.,Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Eiji Warabi
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba.,Faculty of Medicine, University of Tsukuba
| | - Midori Suzuki
- Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Takuya Noguchi
- Graduate School of Pharmaceutical Sciences, Tohoku University
| | | | - Yoshito Kumagai
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba.,Faculty of Medicine, University of Tsukuba
| |
Collapse
|
11
|
Cohen-Sharir Y, Kuperman Y, Apelblat D, den Hertog J, Spiegel I, Knobler H, Elson A. Protein tyrosine phosphatase alpha inhibits hypothalamic leptin receptor signaling and regulates body weight in vivo. FASEB J 2019; 33:5101-5111. [PMID: 30615487 DOI: 10.1096/fj.201800860rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Understanding how body weight is regulated at the molecular level is essential for treating obesity. We show that female mice genetically lacking protein tyrosine phosphatase (PTP) receptor type α (PTPRA) exhibit reduced weight and adiposity and increased energy expenditure, and are more resistant to diet-induced obesity than matched wild-type control mice. These mice also exhibit reduced levels of circulating leptin and are leptin hypersensitive, suggesting that PTPRA inhibits leptin signaling in the hypothalamus. Male and female PTPRA-deficient mice fed a high-fat diet were leaner and displayed increased metabolic rates and lower circulating leptin levels, indicating that the effects of loss of PTPRA persist in the obese state. Molecularly, PTPRA down-regulates leptin receptor signaling by dephosphorylating the receptor-associated kinase JAK2, with which the phosphatase associates constitutively. In contrast to the closely related tyrosine phosphatase ε, leptin induces only weak phosphorylation of PTPRA at its C-terminal regulatory site Y789, and this does not affect the activity of PTPRA toward JAK2. PTPRA is therefore an inhibitor of hypothalamic leptin signaling in vivo and may prevent premature activation of leptin signaling, as well as return signaling to baseline after exposure to leptin.-Cohen-Sharir, Y., Kuperman, Y., Apelblat, D., den Hertog, J., Spiegel, I., Knobler, H., Elson, A. Protein tyrosine phosphatase alpha inhibits hypothalamic leptin receptor signaling and regulates body weight in vivo.
Collapse
Affiliation(s)
- Yael Cohen-Sharir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Kuperman
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Daniella Apelblat
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Jeroen den Hertog
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center Utrecht, Utrecht, The Netherlands.,Institute Biology Leiden, Leiden, The Netherlands; and
| | - Ivo Spiegel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Hilla Knobler
- Diabetes, Endocrinology and Metabolic Institute, Kaplan Medical Center, Rehovot, Israel
| | - Ari Elson
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Shen G, Zheng F, Ren D, Du F, Dong Q, Wang Z, Zhao F, Ahmad R, Zhao J. Anlotinib: a novel multi-targeting tyrosine kinase inhibitor in clinical development. J Hematol Oncol 2018; 11:120. [PMID: 30231931 PMCID: PMC6146601 DOI: 10.1186/s13045-018-0664-7] [Citation(s) in RCA: 400] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022] Open
Abstract
Anlotinib is a new, orally administered tyrosine kinase inhibitor that targets vascular endothelial growth factor receptor (VEGFR), fibroblast growth factor receptor (FGFR), platelet-derived growth factor receptors (PDGFR), and c-kit. Compared to the effect of placebo, it improved both progression-free survival (PFS) and overall survival (OS) in a phase III trial in patients with advanced non-small-cell lung cancer (NSCLC), despite progression of the cancer after two lines of prior treatments. Recently, the China Food and Drug Administration (CFDA) approved single agent anlotinib as a third-line treatment for patients with advanced NSCLC. Moreover, a randomized phase IIB trial demonstrated that anlotinib significantly prolonged the median PFS in patients with advanced soft tissue sarcoma (STS). Anlotinib also showed promising efficacy in patients with advanced medullary thyroid carcinoma and metastatic renal cell carcinoma (mRCC). The tolerability profile of anlotinib is similar to that of other tyrosine kinase inhibitors that target VEGFR and other tyrosine kinase-mediated pathways; however, anlotinib has a significantly lower incidence of grade 3 or higher side effects compared to that of sunitinib. We review the rationale, clinical evidence, and future perspectives of anlotinib for the treatment of multiple cancers.
Collapse
Affiliation(s)
- Guoshuang Shen
- Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Fangchao Zheng
- Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
- Shouguang Hospital of Traditional Chinese Medicine, Weifang, 262700, China
| | - Dengfeng Ren
- Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Feng Du
- Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Qiuxia Dong
- The Fifth People's Hospital of Qinghai Province, Xining, 810000, China
| | - Ziyi Wang
- Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Fuxing Zhao
- Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Raees Ahmad
- Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Jiuda Zhao
- Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China.
| |
Collapse
|
13
|
Zhao Y, Wang X, Noviana M, Hou M. Nitric oxide in red blood cell adaptation to hypoxia. Acta Biochim Biophys Sin (Shanghai) 2018; 50:621-634. [PMID: 29860301 DOI: 10.1093/abbs/gmy055] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Indexed: 12/28/2022] Open
Abstract
Nitric oxide (NO) appears to be involved in virtually every aspect of cardiovascular biology. Most attention has been focused on the role of endothelial-derived NO in basal blood flow regulation by relaxing vascular smooth muscle; however, it is now known that NO derived from red blood cells (RBCs) plays a fundamental role in vascular homeostasis by enhancing oxygen (O2) release at the cellular and physiological level. Hypoxia is an often seen problem in diverse conditions; systemic adaptations to hypoxia permit people to adjust to the hypoxic environment at high altitudes and to disease processes. In addition to the cardiopulmonary and hematologic adaptations that support systemic O2 delivery in hypoxia, RBCs assist through newly described NO-based mechanisms, in line with their vital role in O2 transport and delivery. Furthermore, to increase the local blood flow in proportion to metabolic demand, NO regulates membrane mechanical properties thereby modulating RBC deformability and O2 carrying-releasing function. In this review article, we focus on the effect of NO bioactivity on RBC-based mechanisms that regulate blood flow and RBC deformability. RBC adaptations to hypoxia are summarized, with particular attention to NO-dependent S-nitrosylation of membrane proteins and hemoglobin (S-nitrosohemoglobin). The NO/S-nitrosylation/RBC vasoregulatory cascade contributes fundamentally to the molecular understanding of the role of NO in human adaptation to hypoxia and may inform novel therapeutic strategies.
Collapse
Affiliation(s)
- Yajin Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Milody Noviana
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Man Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
14
|
Abstract
Hydrogen peroxide (H2O2) is produced on stimulation of many cell surface receptors and serves as an intracellular messenger in the regulation of diverse physiological events, mostly by oxidizing cysteine residues of effector proteins. Mammalian cells express multiple H2O2-eliminating enzymes, including catalase, glutathione peroxidase (GPx), and peroxiredoxin (Prx). A conserved cysteine in Prx family members is the site of oxidation by H2O2. Peroxiredoxins possess a high-affinity binding site for H2O2 that is lacking in catalase and GPx and which renders the catalytic cysteine highly susceptible to oxidation, with a rate constant several orders of magnitude greater than that for oxidation of cysteine in most H2O2 effector proteins. Moreover, Prxs are abundant and present in all subcellular compartments. The cysteines of most H2O2 effectors are therefore at a competitive disadvantage for reaction with H2O2. Recent Advances: Here we review intracellular sources of H2O2 as well as H2O2 target proteins classified according to biochemical and cellular function. We then highlight two strategies implemented by cells to overcome the kinetic disadvantage of most target proteins with regard to H2O2-mediated oxidation: transient inactivation of local Prx molecules via phosphorylation, and indirect oxidation of target cysteines via oxidized Prx. Critical Issues and Future Directions: Recent studies suggest that only a small fraction of the total pools of Prxs and H2O2 effector proteins localized in specific subcellular compartments participates in H2O2 signaling. Development of sensitive tools to selectively detect phosphorylated Prxs and oxidized effector proteins is needed to provide further insight into H2O2 signaling. Antioxid. Redox Signal. 28, 537-557.
Collapse
Affiliation(s)
- Sue Goo Rhee
- 1 Yonsei Biomedical Research Institute, Yonsei University College of Medicine , Seoul, Korea
| | - Hyun Ae Woo
- 2 College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University , Seoul, Korea
| | - Dongmin Kang
- 3 Department of Life Science, Ewha Womans University , Seoul, Korea
| |
Collapse
|
15
|
Choi S, Love PE. Detection of Intracellular Reduced (Catalytically Active) SHP-1 and Analyses of Catalytically Inactive SHP-1 after Oxidation by Pervanadate or H 2O 2. Bio Protoc 2018; 8:e2684. [PMID: 29552589 DOI: 10.21769/bioprotoc.2684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Oxidative inactivation of cysteine-dependent Protein Tyrosine Phosphatases (PTPs) by cellular reactive oxygen species (ROS) plays a critical role in regulating signal transduction in multiple cell types. The phosphatase activity of most PTPs depends upon a 'signature' cysteine residue within the catalytic domain that is maintained in the de-protonated state at physiological pH rendering it susceptible to ROS-mediated oxidation. Direct and indirect techniques for detection of PTP oxidation have been developed (Karisch and Neel, 2013). To detect catalytically active PTPs, cell lysates are treated with iodoacetyl-polyethylene glycol-biotin (IAP-biotin), which irreversibly binds to reduced (S-) cysteine thiols. Irreversible oxidation of SHP-1 after treatment of cells with pervanadate or H2O2 is detected with antibodies specific for the sulfonic acid (SO3H) form of the conserved active site cysteine of PTPs. In this protocol, we describe a method for the detection of the reduced (S-; active) or irreversibly oxidized (SO3H; inactive) form of the hematopoietic PTP SHP-1 in thymocytes, although this method is applicable to any cysteine-dependent PTP in any cell type.
Collapse
Affiliation(s)
- Seeyoung Choi
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Paul E Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Abstract
Cysteine thiols are involved in a diverse set of biological transformations, including nucleophilic and redox catalysis, metal coordination and formation of both dynamic and structural disulfides. Often posttranslationally modified, cysteines are also frequently alkylated by electrophilic compounds, including electrophilic metabolites, drugs, and natural products, and are attractive sites for covalent probe and drug development. Quantitative proteomics combined with activity-based protein profiling has been applied to annotate cysteine reactivity, susceptibility to posttranslational modifications, and accessibility to chemical probes, uncovering thousands of functional and small-molecule targetable cysteines across a diverse set of proteins, proteome-wide in an unbiased manner. Reactive cysteines have been targeted by high-throughput screening and fragment-based ligand discovery efforts. New cysteine-reactive electrophiles and compound libraries have been synthesized to enable inhibitor discovery broadly and to minimize nonspecific toxicity and off-target activity of compounds. With the recent blockbuster success of several covalent inhibitors, and the development of new chemical proteomic strategies to broadly identify reactive, ligandable and posttranslationally modified cysteines, cysteine profiling is poised to enable the development of new potent and selective chemical probes and even, in some cases, new drugs.
Collapse
|
17
|
Differential oxidation of protein-tyrosine phosphatases during zebrafish caudal fin regeneration. Sci Rep 2017; 7:8460. [PMID: 28814789 PMCID: PMC5559610 DOI: 10.1038/s41598-017-07109-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/22/2017] [Indexed: 11/17/2022] Open
Abstract
Zebrafish have the capacity to regenerate lost tissues and organs. Amputation of the caudal fin results in a rapid, transient increase in H2O2 levels emanating from the wound margin, which is essential for regeneration, because quenching of reactive oxygen species blocks regeneration. Protein-tyrosine phosphatases (PTPs) have a central role in cell signalling and are susceptible to oxidation, which results in transient inactivation of their catalytic activity. We hypothesized that PTPs may become oxidized in response to amputation of the caudal fin. Using the oxidized PTP-specific (ox-PTP) antibody and liquid chromatography-mass spectrometry, we identified 33 PTPs in adult zebrafish fin clips of the total of 44 PTPs that can theoretically be detected based on sequence conservation. Of these 33 PTPs, 8 were significantly more oxidized 40 min after caudal fin amputation. Surprisingly, Shp2, one of the PTPs that were oxidized in response to caudal fin amputation, was required for caudal fin regeneration. In contrast, Rptpα, which was not oxidized upon amputation, was dispensable for caudal fin regeneration. Our results demonstrate that PTPs are differentially oxidized in response to caudal fin amputation and that there is a differential requirement for PTPs in regeneration.
Collapse
|
18
|
Garcia FJ, Carroll KS. An immunochemical approach to detect oxidized protein tyrosine phosphatases using a selective C-nucleophile tag. MOLECULAR BIOSYSTEMS 2017; 12:1790-8. [PMID: 26757830 DOI: 10.1039/c5mb00847f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein tyrosine phosphatases are crucial regulators of signal transduction and function as antagonists towards protein tyrosine kinases to control reversible tyrosine phosphorylation, thereby regulating fundamental physiological processes. Growing evidence has supported the notion that reversible oxidative inactivation of the catalytic cysteine residue in protein tyrosine phosphatases serves as an oxidative post-translational modification that regulates its activity to influence downstream signaling by promoting phosphorylation and induction of the signaling cascade. The oxidation of cysteine to the sulfenic acid is often transient and difficult to detect, thus making it problematic in understanding the role that this oxidative post-translational modification plays in redox-biology and pathogenesis. Several methods to detect cysteine oxidation in biological systems have been developed, though targeted approaches to directly detect oxidized phosphatases are still lacking. Herein we describe the development of a novel immunochemical approach to directly profile oxidized phosphatases. This immunochemical approach consists of an antibody designed to recognize the conserved sequence of the PTP active site (VHCDMDSAG) harboring the catalytic cysteine modified with dimedone (CDMD), a nucleophile that chemoselectively reacts with cysteine sulfenic acids to form a stable thioether adduct. Additionally, we provide biochemical and mass spectrometry workflows to be used in conjugation with this newly developed immunochemical approach to assist in the identification and quantification of basal and oxidized phosphatases.
Collapse
Affiliation(s)
- Francisco J Garcia
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Kate S Carroll
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
19
|
Chen MJ, Dixon JE, Manning G. Genomics and evolution of protein phosphatases. Sci Signal 2017; 10:10/474/eaag1796. [DOI: 10.1126/scisignal.aag1796] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
NRF2, a Key Regulator of Antioxidants with Two Faces towards Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2746457. [PMID: 27340506 PMCID: PMC4909917 DOI: 10.1155/2016/2746457] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/10/2016] [Indexed: 12/30/2022]
Abstract
While reactive oxygen species (ROS) is generally considered harmful, a relevant amount of ROS is necessary for a number of cellular functions, including the intracellular signal transduction. In order to deal with an excessive amount of ROS, organisms are equipped with a sufficient amount of antioxidants together with NF-E2-related factor-2 (NRF2), a transcription factor that plays a key role in the protection of organisms against environmental or intracellular stresses. While the NRF2 activity has been generally viewed as beneficial to preserve the integrity of organisms, recent studies have demonstrated that cancer cells hijack the NRF2 activity to survive under the oxidative stress and, therefore, a close check must be kept on the NRF2 activity in cancer. In the present review, we briefly highlight important progresses in understanding the molecular mechanism, structure, and function of KEAP1 and NRF2 interaction. In addition, we provide general perspectives that justify conflicting views on the NRF2 activity in cancer.
Collapse
|
21
|
Pan J, Carroll KS. Chemical biology approaches to study protein cysteine sulfenylation. Biopolymers 2016; 101:165-72. [PMID: 23576224 DOI: 10.1002/bip.22255] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/01/2013] [Indexed: 01/08/2023]
Abstract
The oxidation of cysteine thiol side chains by hydrogen peroxide to afford protein sulfenyl modifications is an important mechanism in signal transduction. In addition, aberrant protein sulfenylation contributes to a range of human pathologies, including cancer. Efforts to elucidate the roles of protein sulfenylation in physiology and disease have been hampered by the lack of techniques to probe these modifications in native environments with molecular specificity. In this review, we trace the history of chemical and biological methods that have been developed to detect protein sulfenylation and illustrate how a recent cell-permeable chemical reporter, DYn-2, has been used to detect and identify intracellular targets of endogenous H2 O2 during growth factor signaling, including the epidermal growth factor receptor. The array of new tools and methods discussed herein enables the discovery of new biological roles for cysteine sulfenylation in human health and disease.
Collapse
Affiliation(s)
- Jia Pan
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33456
| | | |
Collapse
|
22
|
Aquaporin-3 Controls Breast Cancer Cell Migration by Regulating Hydrogen Peroxide Transport and Its Downstream Cell Signaling. Mol Cell Biol 2016; 36:1206-18. [PMID: 26830227 DOI: 10.1128/mcb.00971-15] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/22/2016] [Indexed: 12/25/2022] Open
Abstract
Most breast cancer mortality is due to clinical relapse associated with metastasis. CXCL12/CXCR4-dependent cell migration is a critical process in breast cancer progression; however, its underlying mechanism remains to be elucidated. Here, we show that the water/glycerol channel protein aquaporin-3 (AQP3) is required for CXCL12/CXCR4-dependent breast cancer cell migration through a mechanism involving its hydrogen peroxide (H2O2) transport function. Extracellular H2O2, produced by CXCL12-activated membrane NADPH oxidase 2 (Nox2), was transported into breast cancer cells via AQP3. Transient H2O2 accumulation was observed around the membrane during CXCL12-induced migration, which may be facilitated by the association of AQP3 with Nox2. Intracellular H2O2 then oxidized PTEN and protein tyrosine phosphatase 1B (PTP1B) followed by activation of the Akt pathway. This contributed to directional cell migration. The expression level of AQP3 in breast cancer cells was related to their migration ability both in vitro and in vivo through CXCL12/CXCR4- or H2O2-dependent pathways. Coincidentally, spontaneous metastasis of orthotopic xenografts to the lung was reduced upon AQP3 knockdown. These findings underscore the importance of AQP3-transported H2O2 in CXCL12/CXCR4-dependent signaling and migration in breast cancer cells and suggest that AQP3 has potential as a therapeutic target for breast cancer.
Collapse
|
23
|
Brewer TF, Garcia FJ, Onak CS, Carroll KS, Chang CJ. Chemical approaches to discovery and study of sources and targets of hydrogen peroxide redox signaling through NADPH oxidase proteins. Annu Rev Biochem 2015; 84:765-90. [PMID: 26034893 DOI: 10.1146/annurev-biochem-060614-034018] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hydrogen peroxide (H2O2) is a prime member of the reactive oxygen species (ROS) family of molecules produced during normal cell function and in response to various stimuli, but if left unchecked, it can inflict oxidative damage on all types of biological macromolecules and lead to cell death. In this context, a major source of H2O2 for redox signaling purposes is the NADPH oxidase (Nox) family of enzymes, which were classically studied for their roles in phagocytic immune response but have now been found to exist in virtually all mammalian cell types in various isoforms with distinct tissue and subcellular localizations. Downstream of this tightly regulated ROS generation, site-specific, reversible covalent modification of proteins, particularly oxidation of cysteine thiols to sulfenic acids, represents a prominent posttranslational modification akin to phosphorylation as an emerging molecular mechanism for transforming an oxidant signal into a dynamic biological response. We review two complementary types of chemical tools that enable (a) specific detection of H2O2 generated at its sources and (b) mapping of sulfenic acid posttranslational modification targets that mediate its signaling functions, which can be used to study this important chemical signal in biological systems.
Collapse
|
24
|
Jang JY, Min JH, Wang SB, Chae YH, Baek JY, Kim M, Ryu JS, Chang TS. Resveratrol inhibits collagen-induced platelet stimulation through suppressing NADPH oxidase and oxidative inactivation of SH2 domain-containing protein tyrosine phosphatase-2. Free Radic Biol Med 2015; 89:842-51. [PMID: 26482867 DOI: 10.1016/j.freeradbiomed.2015.10.413] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/05/2015] [Accepted: 10/14/2015] [Indexed: 11/18/2022]
Abstract
Reactive oxygen species (ROS) produced upon collagen stimulation are implicated in propagating various platelet-activating pathways. Among ROS-producing enzymes, NADPH oxidase (NOX) is largely responsible for collagen receptor-dependent ROS production. Therefore, NOX has been proposed as a novel target for the development of antiplatelet agent. We here investigate whether resveratrol inhibits collagen-induced NOX activation and further examine the effects of resveratrol on ROS-dependent signaling pathways in collagen-stimulated platelets. Collagen-induced superoxide anion production in platelets was inhibited by resveratrol. Resveratrol suppressed collagen-induced phosphorylation of p47(phox), a major regulatory subunit of NOX. Correlated with the inhibitory effects on NOX, resveratrol protected SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) from ROS-mediated inactivation and subsequently attenuated the specific tyrosine phosphorylation of key components (spleen tyrosine kinase, Vav1, Bruton's tyrosine kinase, and phospholipase Cγ2) for collagen receptor signaling cascades. Resveratrol also inhibited downstream responses such as cytosolic calcium elevation, P-selectin surface exposure, and integrin-αIIbβ3 activation. Furthermore, resveratrol inhibited platelet aggregation and adhesion in response to collagen. The antiplatelet effects of resveratrol through the inhibition of NOX-derived ROS production and subsequent oxidative inactivation of SHP-2 suggest that resveratrol is a potential compound for prevention and treatment of thrombovascular diseases.
Collapse
Affiliation(s)
- Ji Yong Jang
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Ji Hyun Min
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Su Bin Wang
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Yun Hee Chae
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Jin Young Baek
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Myunghee Kim
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Jae-Sang Ryu
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Tong-Shin Chang
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Republic of Korea.
| |
Collapse
|
25
|
Dwivedi G, Gran MA, Bagchi P, Kemp ML. Dynamic Redox Regulation of IL-4 Signaling. PLoS Comput Biol 2015; 11:e1004582. [PMID: 26562652 PMCID: PMC4642971 DOI: 10.1371/journal.pcbi.1004582] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/29/2015] [Indexed: 12/22/2022] Open
Abstract
Quantifying the magnitude and dynamics of protein oxidation during cell signaling is technically challenging. Computational modeling provides tractable, quantitative methods to test hypotheses of redox mechanisms that may be simultaneously operative during signal transduction. The interleukin-4 (IL-4) pathway, which has previously been reported to induce reactive oxygen species and oxidation of PTP1B, may be controlled by several other putative mechanisms of redox regulation; widespread proteomic thiol oxidation observed via 2D redox differential gel electrophoresis upon IL-4 treatment suggests more than one redox-sensitive protein implicated in this pathway. Through computational modeling and a model selection strategy that relied on characteristic STAT6 phosphorylation dynamics of IL-4 signaling, we identified reversible protein tyrosine phosphatase (PTP) oxidation as the primary redox regulatory mechanism in the pathway. A systems-level model of IL-4 signaling was developed that integrates synchronous pan-PTP oxidation with ROS-independent mechanisms. The model quantitatively predicts the dynamics of IL-4 signaling over a broad range of new redox conditions, offers novel hypotheses about regulation of JAK/STAT signaling, and provides a framework for interrogating putative mechanisms involving receptor-initiated oxidation. Incomplete reduction of oxygen during respiration results in the formation of highly reactive molecules known as reactive oxygen species (ROS) that react indiscriminately with cellular components and adversely affect cellular function. For a long time ROS were thought solely to be undesirable byproducts of respiration. Indeed, high levels of ROS are associated with a number of diseases. Despite these facts, antioxidants, agents that neutralize ROS, have not shown any clinical benefits when used as oral supplements. This paradox is partially explained by discoveries over the last two decades demonstrating that ROS are not always detrimental and may be essential for controlling physiological processes like cell signaling. However, the mechanisms by which ROS react with biomolecules are not well understood. In this work we have combined biological experiments with novel computational methods to identify the most important mechanisms of ROS-mediated regulation in the IL-4 signaling pathway of the immune system. We have also developed a detailed computer model of the IL-4 pathway and its regulation by ROS dependent and independent methods. Our work enhances the understanding of principles underlying regulation of cell signaling by ROS and has potential implications in advancing therapeutic methods targeting ROS and their adverse effects.
Collapse
Affiliation(s)
- Gaurav Dwivedi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Margaret A. Gran
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Pritha Bagchi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Melissa L. Kemp
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
26
|
Kuban-Jankowska A, Gorska M, Jaremko L, Jaremko M, Tuszynski JA, Wozniak M. The physiological concentration of ferrous iron (II) alters the inhibitory effect of hydrogen peroxide on CD45, LAR and PTP1B phosphatases. Biometals 2015; 28:975-86. [PMID: 26407665 PMCID: PMC4635172 DOI: 10.1007/s10534-015-9882-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/22/2015] [Indexed: 11/27/2022]
Abstract
Hydrogen peroxide is an important regulator of protein tyrosine phosphatase activity via reversible oxidation. However, the role of iron in this reaction has not been yet elucidated. Here we compare the influence of hydrogen peroxide and the ferrous iron (reagent for Fenton reaction) on the enzymatic activity of recombinant CD45, LAR, PTP1B phosphatases and cellular CD45 in Jurkat cells. The obtained results show that ferrous iron (II) is potent inhibitor of CD45, LAR and PTP1B, but the inhibitory effect is concentration dependent. We found that the higher concentrations of ferrous iron (II) increase the inactivation of CD45, LAR and PTP1B phosphatase caused by hydrogen peroxide, but the addition of the physiological concentration (500 nM) of ferrous iron (II) has even a slightly preventive effect on the phosphatase activity against hydrogen peroxide.
Collapse
Affiliation(s)
| | - Magdalena Gorska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Lukasz Jaremko
- Max Planck Institute for Biophysical Chemistry and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Mariusz Jaremko
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland.,Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Michal Wozniak
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
27
|
Krishnan N, Tonks NK. Anxious moments for the protein tyrosine phosphatase PTP1B. Trends Neurosci 2015; 38:462-5. [PMID: 26166619 DOI: 10.1016/j.tins.2015.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 11/16/2022]
Abstract
Chronic stress can lead to the development of anxiety and mood disorders. Thus, novel therapies for preventing adverse effects of stress are vitally important. Recently, the protein tyrosine phosphatase PTP1B was identified as a novel regulator of stress-induced anxiety. This opens up exciting opportunities to exploit PTP1B inhibitors as anxiolytics.
Collapse
Affiliation(s)
- Navasona Krishnan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Nicholas K Tonks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA.
| |
Collapse
|
28
|
Wang SB, Jang JY, Chae YH, Min JH, Baek JY, Kim M, Park Y, Hwang GS, Ryu JS, Chang TS. Kaempferol suppresses collagen-induced platelet activation by inhibiting NADPH oxidase and protecting SHP-2 from oxidative inactivation. Free Radic Biol Med 2015; 83:41-53. [PMID: 25645952 DOI: 10.1016/j.freeradbiomed.2015.01.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/08/2015] [Accepted: 01/21/2015] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS) generated upon collagen stimulation act as second messengers to propagate various platelet-activating events. Among the ROS-generating enzymes, NADPH oxidase (NOX) plays a prominent role in platelet activation. Thus, NOX has been suggested as a novel target for anti-platelet drug development. Although kaempferol has been identified as a NOX inhibitor, the influence of kaempferol on the activation of platelets and the underlying mechanism have never been investigated. Here, we studied the effects of kaempferol on NOX activation, ROS-dependent signaling pathways, and functional responses in collagen-stimulated platelets. Superoxide anion generation stimulated by collagen was significantly inhibited by kaempferol in a concentration-dependent manner. More importantly, kaempferol directly bound p47(phox), a major regulatory subunit of NOX, and significantly inhibited collagen-induced phosphorylation of p47(phox) and NOX activation. In accordance with the inhibition of NOX, ROS-dependent inactivation of SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) was potently protected by kaempferol. Subsequently, the specific tyrosine phosphorylation of key components (Syk, Vav1, Btk, and PLCγ2) of collagen receptor signaling pathways was suppressed by kaempferol. Kaempferol also attenuated downstream responses, including cytosolic calcium elevation, P-selectin surface exposure, and integrin-αIIbβ3 activation. Ultimately, kaempferol inhibited platelet aggregation and adhesion in response to collagen in vitro and prolonged in vivo thrombotic response in carotid arteries of mice. This study shows that kaempferol impairs collagen-induced platelet activation through inhibition of NOX-derived ROS production and subsequent oxidative inactivation of SHP-2. This effect suggests that kaempferol has therapeutic potential for the prevention and treatment of thrombovascular diseases.
Collapse
Affiliation(s)
- Su Bin Wang
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Women's University, Seoul 120-750, Republic of Korea
| | - Ji Yong Jang
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Women's University, Seoul 120-750, Republic of Korea
| | - Yun Hee Chae
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Women's University, Seoul 120-750, Republic of Korea
| | - Ji Hyun Min
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Women's University, Seoul 120-750, Republic of Korea
| | - Jin Young Baek
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Women's University, Seoul 120-750, Republic of Korea
| | - Myunghee Kim
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Women's University, Seoul 120-750, Republic of Korea
| | - Yunjeong Park
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Women's University, Seoul 120-750, Republic of Korea
| | - Gwi Seo Hwang
- Lab of Cell Differentiation Research, College of Oriental Medicine, Gachon University, Seongnam 461-701, Republic of Korea
| | - Jae-Sang Ryu
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Women's University, Seoul 120-750, Republic of Korea
| | - Tong-Shin Chang
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Women's University, Seoul 120-750, Republic of Korea.
| |
Collapse
|
29
|
Coles CH, Jones EY, Aricescu AR. Extracellular regulation of type IIa receptor protein tyrosine phosphatases: mechanistic insights from structural analyses. Semin Cell Dev Biol 2015; 37:98-107. [PMID: 25234613 PMCID: PMC4765084 DOI: 10.1016/j.semcdb.2014.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/02/2014] [Accepted: 09/05/2014] [Indexed: 01/06/2023]
Abstract
The receptor protein tyrosine phosphatases (RPTPs) exhibit a wide repertoire of cellular signalling functions. In particular, type IIa RPTP family members have recently been highlighted as hubs for extracellular interactions in neurons, regulating neuronal extension and guidance, as well as synaptic organisation. In this review, we will discuss the recent progress of structural biology investigations into the architecture of type IIa RPTP ectodomains and their interactions with extracellular ligands. Structural insights, in combination with biophysical and cellular studies, allow us to begin to piece together molecular mechanisms for the transduction and integration of type IIa RPTP signals and to propose hypotheses for future experimental validation.
Collapse
Affiliation(s)
- Charlotte H Coles
- Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| | - A Radu Aricescu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
30
|
Yuan K, Liu Y, Chen HN, Zhang L, Lan J, Gao W, Dou Q, Nice EC, Huang C. Thiol-based redox proteomics in cancer research. Proteomics 2014; 15:287-99. [PMID: 25251260 DOI: 10.1002/pmic.201400164] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/15/2014] [Accepted: 09/18/2014] [Indexed: 02/05/2023]
Abstract
Cancer cells maintain their intracellular ROS concentrations at required levels for their survival. Changes in ROS concentrations can regulate biochemical signaling mechanisms that control cell function. It has been demonstrated that ROS regulate the cellular events through redox regulation of redox-sensitive proteins (redox sensors). Upon oxidative stress, redox sensors undergo redox modifications that cause the allosteric changes of these proteins and endow them with different functions. Understanding the altered functions of redox sensors and the underlying mechanisms is critical for the development of novel cancer therapeutics. Recently, a series of high-throughput proteomics approaches have been developed for screening redox processes. In this manuscript, we review these methodologies and discuss the important redox sensors recently identified that are related to cancer.
Collapse
Affiliation(s)
- Kefei Yuan
- The State Key Laboratory for Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ursolic Acid-Regulated Energy Metabolism-Reliever or Propeller of Ultraviolet-Induced Oxidative Stress and DNA Damage? Proteomes 2014; 2:399-425. [PMID: 28250388 PMCID: PMC5302752 DOI: 10.3390/proteomes2030399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 06/12/2014] [Accepted: 07/29/2014] [Indexed: 01/27/2023] Open
Abstract
Ultraviolet (UV) light is a leading cause of diseases, such as skin cancers and cataracts. A main process mediating UV-induced pathogenesis is the production of reactive oxygen species (ROS). Excessive ROS levels induce the formation of DNA adducts (e.g., pyrimidine dimers) and result in stalled DNA replication forks. In addition, ROS promotes phosphorylation of tyrosine kinase-coupled hormone receptors and alters downstream energy metabolism. With respect to the risk of UV-induced photocarcinogenesis and photodamage, the antitumoral and antioxidant functions of natural compounds become important for reducing UV-induced adverse effects. One important question in the field is what determines the differential sensitivity of various types of cells to UV light and how exogenous molecules, such as phytochemicals, protect normal cells from UV-inflicted damage while potentiating tumor cell death, presumably via interaction with intracellular target molecules and signaling pathways. Several endogenous molecules have emerged as possible players mediating UV-triggered DNA damage responses. Specifically, UV activates the PIKK (phosphatidylinositol 3-kinase-related kinase) family members, which include DNA-PKcs, ATM (ataxia telangiectasia mutated) and mTOR (mammalian target of rapamycin), whose signaling can be affected by energy metabolism; however, it remains unclear to what extent the activation of hormone receptors regulates PIKKs and whether this crosstalk occurs in all types of cells in response to UV. This review focuses on proteomic descriptions of the relationships between cellular photosensitivity and the phenotypic expression of the insulin/insulin-like growth receptor. It covers the cAMP-dependent pathways, which have recently been shown to regulate the DNA repair machinery through interactions with the PIKK family members. Finally, this review provides a strategic illustration of how UV-induced mitogenic activity is modulated by the insulin sensitizer, ursolic acid (UA), which results in the metabolic adaptation of normal cells against UV-induced ROS, and the metabolic switch of tumor cells subject to UV-induced damage. The multifaceted natural compound, UA, specifically inhibits photo-oxidative DNA damage in retinal pigment epithelial cells while enhancing that in skin melanoma. Considering the UA-mediated differential effects on cell bioenergetics, this article reviews the disparities in glucose metabolism between tumor and normal cells, along with (peroxisome proliferator-activated receptor-γ coactivator 1α)-dependent mitochondrial metabolism and redox (reduction-oxidation) control to demonstrate UA-induced synthetic lethality in tumor cells.
Collapse
|
32
|
Martínez-Reyes I, Cuezva JM. The H+-ATP synthase: A gate to ROS-mediated cell death or cell survival. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1099-112. [DOI: 10.1016/j.bbabio.2014.03.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/03/2014] [Accepted: 03/19/2014] [Indexed: 12/13/2022]
|
33
|
Redox-based probes as tools to monitor oxidized protein tyrosine phosphatases in living cells. Eur J Med Chem 2014; 88:28-33. [PMID: 24974258 DOI: 10.1016/j.ejmech.2014.06.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/15/2014] [Accepted: 06/18/2014] [Indexed: 01/12/2023]
Abstract
Reversible oxidation of protein tyrosine phosphatases (PTPs) has emerged as an important regulatory mechanism whereby reactive oxygen species (ROS) inactivates the PTP and promotes phosphorylation and induction of the signaling cascade. The lack of sensitive and robust methods to directly detect oxidized PTPs has made it difficult to understand the effects that PTP oxidative inactivation play in redox signaling. We report the use of redox-based probes to directly detect oxidized PTPs in a cellular context, which highlights the importance of direct approaches to assist in the study of physiological and pathophysiological PTP activity in redox regulation. We also demonstrate, as a proof-of-concept, that these redox-based probes serve as prototypes for the design and development of a new class of inhibitors for phosphatases. We envision a nucleophile reacting with the oxidized inactive catalytic cysteine to generate an irreversible thioether adduct which prevents the phosphatase from being reactivated and ultimately fortifies the signaling cascade. Our results reveal the potential of translation of our redox-based probes, which are used to understand redox cell circuitry and disease biology, to small-molecule nucleophile-based inhibitors, which may treat diseases associated with redox stress. This may have implications in the treatment of type 2 diabetes and cancer.
Collapse
|
34
|
Cellular signaling in the aging immune system. Curr Opin Immunol 2014; 29:105-11. [PMID: 24934647 DOI: 10.1016/j.coi.2014.05.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 12/11/2022]
Abstract
Causes for immunosenescence and inflamm-aging have to be established. Efficient function of the immune system requires homeostatic regulation from receptor recognition of antigenic challenge to cell responses and adaptation to its changing environment. It is reasonable to assume that one of the most important molecular causes of immunosenescence is alteration in the regulation of signaling pathways. Indeed, alterations in feed-forward and negative feedback (inhibitory) signaling have been highlighted in all cells involved in the immune response including short-lived (neutrophils) and long-lived (T lymphocytes) cells. These dysregulations tip the balance in favor of altered (less efficient) function of the immune system. In this review, we summarize our knowledge on signal transduction changes in the aging immune system and propose a unifying mechanism as one of the causes of immunosenescence. Modulation of these pathways with aging represents a major challenge to restore the immune response to functional levels.
Collapse
|
35
|
Jang JY, Min JH, Chae YH, Baek JY, Wang SB, Park SJ, Oh GT, Lee SH, Ho YS, Chang TS. Reactive oxygen species play a critical role in collagen-induced platelet activation via SHP-2 oxidation. Antioxid Redox Signal 2014; 20:2528-40. [PMID: 24093153 PMCID: PMC4025609 DOI: 10.1089/ars.2013.5337] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS The collagen-stimulated generation of reactive oxygen species (ROS) regulates signal transduction in platelets, although the mechanism is unclear. The major targets of ROS include protein tyrosine phosphatases (PTPs). ROS-mediated oxidation of the active cysteine site in PTPs abrogates the PTP catalytic activity. The aim of this study was to elucidate whether collagen-induced ROS generation leads to PTP oxidation, which promotes platelet stimulation. RESULTS SH2 domain-containing PTP-2 (SHP-2) is oxidized in platelets by ROS produced upon collagen stimulation. The oxidative inactivation of SHP-2 leads to the enhanced tyrosine phosphorylation of spleen tyrosine kinase (Syk), Vav1, and Bruton's tyrosine kinase (Btk) in the linker for the activation of T cells signaling complex, which promotes the tyrosine phosphorylation-mediated activation of phospholipase Cγ2 (PLCγ2). Moreover, we found that, relative to wild-type platelets, platelets derived from glutathione peroxidase 1 (GPx1)/catalase double-deficient mice showed enhanced cellular ROS levels, oxidative inactivation of SHP-2, and tyrosine phosphorylation of Syk, Vav1, Btk, and PLCγ2 in response to collagen, which subsequently led to increased intracellular calcium levels, degranulation, and integrin αIIbβ3 activation. Consistent with these findings, GPx1/catalase double-deficiency accelerated the thrombotic response in FeCl3-injured carotid arteries. INNOVATION The present study is the first to demonstrate that SHP-2 is targeted by ROS produced in collagen-stimulated platelets and suggests that a novel mechanism for the regulation of platelet activation by ROS is due to oxidative inactivation of SHP-2. CONCLUSION We conclude that collagen-induced ROS production leads to SHP-2 oxidation, which promotes platelet activation by upregulating tyrosine phosphorylation-based signal transduction.
Collapse
Affiliation(s)
- Ji Yong Jang
- 1 Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University , Seoul, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ahuja LG, Gopal B. Bi-domain protein tyrosine phosphatases reveal an evolutionary adaptation to optimize signal transduction. Antioxid Redox Signal 2014; 20:2141-59. [PMID: 24206235 DOI: 10.1089/ars.2013.5721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE The bi-domain protein tyrosine phosphatases (PTPs) exemplify functional evolution in signaling proteins for optimal spatiotemporal signal transduction. Bi-domain PTPs are products of gene duplication. The catalytic activity, however, is often localized to one PTP domain. The inactive PTP domain adopts multiple functional roles. These include modulation of catalytic activity, substrate specificity, and stability of the bi-domain enzyme. In some cases, the inactive PTP domain is a receptor for redox stimuli. Since multiple bi-domain PTPs are concurrently active in related cellular pathways, a stringent regulatory mechanism and selective cross-talk is essential to ensure fidelity in signal transduction. RECENT ADVANCES The inactive PTP domain is an activator for the catalytic PTP domain in some cases, whereas it reduces catalytic activity in other bi-domain PTPs. The relative orientation of the two domains provides a conformational rationale for this regulatory mechanism. Recent structural and biochemical data reveal that these PTP domains participate in substrate recruitment. The inactive PTP domain has also been demonstrated to undergo substantial conformational rearrangement and oligomerization under oxidative stress. CRITICAL ISSUES AND FUTURE DIRECTIONS The role of the inactive PTP domain in coupling environmental stimuli with catalytic activity needs to be further examined. Another aspect that merits attention is the role of this domain in substrate recruitment. These aspects have been poorly characterized in vivo. These lacunae currently restrict our understanding of neo-functionalization of the inactive PTP domain in the bi-domain enzyme. It appears likely that more data from these research themes could form the basis for understanding the fidelity in intracellular signal transduction.
Collapse
Affiliation(s)
- Lalima Gagan Ahuja
- 1 Molecular Biophysics Unit, Indian Institute of Science , Bangalore, India
| | | |
Collapse
|
37
|
Frijhoff J, Dagnell M, Godfrey R, Ostman A. Regulation of protein tyrosine phosphatase oxidation in cell adhesion and migration. Antioxid Redox Signal 2014; 20:1994-2010. [PMID: 24111825 DOI: 10.1089/ars.2013.5643] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SIGNIFICANCE Redox-regulated control of protein tyrosine phosphatases (PTPs) through inhibitory reversible oxidation of their active site is emerging as a novel and general mechanism for control of cell surface receptor-activated signaling. This mechanism allows for a previously unrecognized crosstalk between redox regulators and signaling pathways, governed by, for example, receptor tyrosine kinases and integrins, which control cell proliferation and migration. RECENT ADVANCES A large number of different molecules, in addition to hydrogen peroxide, have been found to induce PTP inactivation, including lipid peroxides, reactive nitrogen species, and hydrogen sulfide. Characterization of oxidized PTPs has identified different types of oxidative modifications that are likely to display differential sensitivity to various reducing systems. Accumulating evidence demonstrates that PTP oxidation occurs in a temporally and spatially restricted manner. Studies in cell and animal models indicate altered PTP oxidation in models of common diseases, such as cancer and metabolic/cardiovascular disease. Novel methods have appeared that allow characterization of global PTP oxidation. CRITICAL ISSUES As the understanding of the molecular and cellular biology of PTP oxidation is developing, it will be important to establish experimental procedures that allow analyses of PTP oxidation, and its regulation, in physiological and pathophysiological settings. Future studies should also aim to establish specific connections between various oxidants, specific PTPs, and defined signaling contexts. FUTURE DIRECTIONS Modulation of PTP activity still appears as a valid strategy for correction or inhibition of dys-regulated cell signaling. Continued studies on PTP oxidation might present yet unrecognized means to exploit this regulatory mechanism for pharmacological purposes.
Collapse
Affiliation(s)
- Jeroen Frijhoff
- 1 Department of Oncology-Pathology, Karolinska Institutet , Stockholm, Sweden
| | | | | | | |
Collapse
|
38
|
Frijhoff J, Dagnell M, Augsten M, Beltrami E, Giorgio M, Östman A. The mitochondrial reactive oxygen species regulator p66Shc controls PDGF-induced signaling and migration through protein tyrosine phosphatase oxidation. Free Radic Biol Med 2014; 68:268-77. [PMID: 24378437 DOI: 10.1016/j.freeradbiomed.2013.12.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/05/2013] [Accepted: 12/20/2013] [Indexed: 11/16/2022]
Abstract
Growth factor receptors induce a transient increase in reactive oxygen species (ROS) levels upon receptor binding to promote signaling through oxidation of protein tyrosine phosphatases (PTPs). Most studies have focused on NADPH oxidases as the dominant source of ROS to induce PTP oxidation. A potential additional regulator of growth factor-induced PTP oxidation is p66Shc, which stimulates mitochondrial ROS production. This study explores the contribution of p66Shc-induced ROS to PTP oxidation and growth factor receptor-induced signaling and migration through analyses of p66Shc-KO fibroblasts and cells with siRNA-mediated p66Shc downregulation. Analyses of PDGFβR phosphorylation in two independent cell systems demonstrated a decrease in PDGFβR phosphorylation after p66Shc deletion or downregulation, which occurred in a partially site-selective and antioxidant-sensitive manner. Deletion of p66Shc also reduced PDGF-induced activation of downstream signaling of Erk, Akt, PLCγ-1, and FAK. Importantly, reduced levels of p66Shc led to decreased oxidation of DEP1, PTP1B, and SHP2 after PDGF stimulation. The cell biological relevance of these findings was indicated by demonstration of a significantly reduced migratory response in PDGF-stimulated p66Shc-KO fibroblasts, consistent with reduced PDGFβR-Y1021 and PLCγ-1 phosphorylation. Downregulation of p66Shc also reduced EGFR phosphorylation and signaling, indicating that the positive role of p66Shc in receptor tyrosine kinase signaling is potentially general. Moreover, downregulation of the mitochondrial hydrogen peroxide scavenger peroxiredoxin 3 increased PDGFβR phosphorylation, showing that mitochondrial ROS in general promote PDGFβR signaling. This study thus identifies a previously unrecognized role for p66Shc in the regulation of PTP oxidation controlling growth factor-induced signaling and migration. In more general terms, the study indicates a regulatory role for mitochondrial-derived ROS in the control of PTP oxidation influencing growth factor signaling.
Collapse
Affiliation(s)
- Jeroen Frijhoff
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Markus Dagnell
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Martin Augsten
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Elena Beltrami
- Department of Experimental Oncology, European Institute of Oncology, 20142 Milan, Italy
| | - Marco Giorgio
- Department of Experimental Oncology, European Institute of Oncology, 20142 Milan, Italy
| | - Arne Östman
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, 171 76 Stockholm, Sweden.
| |
Collapse
|
39
|
Boivin B, Chaudhary F, Dickinson BC, Haque A, Pero SC, Chang CJ, Tonks NK. Receptor protein-tyrosine phosphatase α regulates focal adhesion kinase phosphorylation and ErbB2 oncoprotein-mediated mammary epithelial cell motility. J Biol Chem 2013; 288:36926-35. [PMID: 24217252 DOI: 10.1074/jbc.m113.527564] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the role of protein-tyrosine phosphatase α (PTPα) in regulating signaling by the ErbB2 oncoprotein in mammary epithelial cells. Using this model, we demonstrated that activation of ErbB2 led to the transient inactivation of PTPα, suggesting that attenuation of PTPα activity may contribute to enhanced ErbB2 signaling. Furthermore, RNAi-induced suppression of PTPα led to increased cell migration in an ErbB2-dependent manner. The ability of ErbB2 to increase cell motility in the absence of PTPα was characterized by prolonged interaction of GRB7 with ErbB2 and increased association of ErbB2 with a β1-integrin-rich complex, which depended on GRB7-SH2 domain interactions. Finally, suppression of PTPα resulted in increased phosphorylation of focal adhesion kinase on Tyr-407, which induced the recruitment of vinculin and the formation of a novel focal adhesion kinase complex in response to ErbB2 activation in mammary epithelial cells. Collectively, these results reveal a new role for PTPα in the regulation of motility of mammary epithelial cells in response to ErbB2 activation.
Collapse
Affiliation(s)
- Benoit Boivin
- From the Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | | | | | | | | | | | | |
Collapse
|
40
|
van Ameijde J, Overvoorde J, Knapp S, den Hertog J, Ruijtenbeek R, Liskamp RMJ. Real-Time Monitoring of the Dephosphorylating Activity of Protein Tyrosine Phosphatases Using Microarrays with 3-Nitrophosphotyrosine Substrates. Chempluschem 2013; 78:1349-1357. [PMID: 31986648 DOI: 10.1002/cplu.201300299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Indexed: 11/10/2022]
Abstract
Phosphatases and kinases regulate the crucial phosphorylation post-translational modification. In spite of their similarly important role in many diseases and therapeutic potential, phosphatases have received arguably less attention. One reason for this is a scarcity of high-throughput phosphatase assays. Herein, a new real-time, dynamic protein tyrosine phosphatase (PTP) substrate microarray assay measuring product formation is described. PTP substrates comprising a novel 3-nitrophosphotyrosine residue are immobilized in discrete spots. After reaction catalyzed by a PTP a 3-nitrotyrosine residue is formed that can be detected by specific, sequence-independent antibodies. The resulting microarray was successfully evaluated with a panel of recombinant PTPs and cell lysates, which afforded results comparable to data from other assays. Its parallel nature, convenience, and low sample requirements facilitate investigation of the therapeutically relevant PTP enzyme family.
Collapse
Affiliation(s)
- Jeroen van Ameijde
- Medicinal Chemistry and Chemical Biology, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (The Netherlands), Fax: (+31) (0)30-253-6655.,Netherlands Proteomics Centre, Padualaan 8, 3584 CA Utrecht (The Netherlands)
| | - John Overvoorde
- Hubrecht Institute, KNAW and University Medical Centre, Uppsalalaan 8, 3508 AD Utrecht (The Netherlands)
| | - Stefan Knapp
- Structural Genomics Consortium, Oxford University, Roosevelt Drive, Headington, Oxford OX3 7DQ (U.K.)
| | - Jeroen den Hertog
- Hubrecht Institute, KNAW and University Medical Centre, Uppsalalaan 8, 3508 AD Utrecht (The Netherlands).,Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden (The Netherlands)
| | - Rob Ruijtenbeek
- Pamgene International Ltd. Wolvenhoek 10, 5200 BJ Den Bosch (The Netherlands)
| | - Rob M J Liskamp
- Medicinal Chemistry and Chemical Biology, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (The Netherlands), Fax: (+31) (0)30-253-6655.,School of Chemistry, Joseph Black Building, Glasgow University, University Avenue, Glasgow G12 8QQ (U.K.)
| |
Collapse
|
41
|
McCole DF. Phosphatase regulation of intercellular junctions. Tissue Barriers 2013; 1:e26713. [PMID: 24868494 DOI: 10.4161/tisb.26713] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/03/2013] [Accepted: 10/04/2013] [Indexed: 02/06/2023] Open
Abstract
Intercellular junctions represent the key contact points and sites of communication between neighboring cells. Assembly of these junctions is absolutely essential for the structural integrity of cell monolayers, tissues and organs. Disruption of junctions can have severe consequences such as diarrhea, edema and sepsis, and contribute to the development of chronic inflammatory diseases. Cell junctions are not static structures, but rather they represent highly dynamic micro-domains that respond to signals from the intracellular and extracellular environments to modify their composition and function. This review article will focus on the regulation of tight junctions and adherens junctions by phosphatase enzymes that play an essential role in preserving and modulating the properties of intercellular junction proteins.
Collapse
Affiliation(s)
- Declan F McCole
- Division of Biomedical Sciences; University of California, Riverside; Riverside, CA USA
| |
Collapse
|
42
|
Bonham CA, Steevensz AJ, Geng Q, Vacratsis PO. Investigating redox regulation of protein tyrosine phosphatases using low pH thiol labeling and enrichment strategies coupled to MALDI-TOF mass spectrometry. Methods 2013; 65:190-200. [PMID: 23978514 DOI: 10.1016/j.ymeth.2013.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/08/2013] [Accepted: 08/13/2013] [Indexed: 11/19/2022] Open
Abstract
A central feature of the protein tyrosine phosphatase (PTP) catalytic mechanism is an attack of the substrate's phosphate moiety by a thiolate ion in the signature CX5R motif. In addition to being an effective nucleophile in this form, the thiolate ion is also susceptible to reversible redox regulation. This attribute permits temporal inhibition of PTP activities, which affects numerous cellular processes utilizing kinase-mediated signal propagation. Accumulating evidence has revealed diverse mechanisms adopted by PTPs to avoid irreversible thiol oxidation of the active site Cys residue, often involving structurally proximal thiols within the active site region. Therefore, there has been a significant effort made to develop thiol labeling strategies coupled to mass spectrometry to identify and characterize redox sensitive thiols within PTPs as a necessary step in understanding how a particular PTP is regulated by redox signaling. A common drawback to many current methods is the use of neutral pH labeling techniques, requiring special attention with regards to non-specific thiol oxidation during sample preparation. This study describes the use of rapid, low pH thiol labeling methods to overcome this issue. Mercury immobilized metal affinity chromatography (Hg-IMAC) demonstrated high selectivity and specificity while enriching for thiol-containing peptides from the atypical dual specificity phosphatase hYVH1 (also known as DUSP12). This approach revealed several reversibly oxidized thiols within the catalytic domain of hYVH1. Subsequently, use of another low pH labeling reagent, 4,4-dithiopyridine (4-DTP) helped identify novel disulfide linkages providing evidence that hYVH1 utilizes a disulfide exchange mechanism to prevent irreversible oxidation of the catalytic Cys residue in the active site.
Collapse
Affiliation(s)
- Christopher A Bonham
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| | - Aaron J Steevensz
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Qiudi Geng
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Panayiotis O Vacratsis
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| |
Collapse
|
43
|
Selective activation of oxidized PTP1B by the thioredoxin system modulates PDGF-β receptor tyrosine kinase signaling. Proc Natl Acad Sci U S A 2013; 110:13398-403. [PMID: 23901112 DOI: 10.1073/pnas.1302891110] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The inhibitory reversible oxidation of protein tyrosine phosphatases (PTPs) is an important regulatory mechanism in growth factor signaling. Studies on PTP oxidation have focused on pathways that increase or decrease reactive oxygen species levels and thereby affect PTP oxidation. The processes involved in reactivation of oxidized PTPs remain largely unknown. Here the role of the thioredoxin (Trx) system in reactivation of oxidized PTPs was analyzed using a combination of in vitro and cell-based assays. Cells lacking the major Trx reductase TrxR1 (Txnrd1(-/-)) displayed increased oxidation of PTP1B, whereas SHP2 oxidation was unchanged. Furthermore, in vivo-oxidized PTP1B was reduced by exogenously added Trx system components, whereas SHP2 oxidation remained unchanged. Trx1 reduced oxidized PTP1B in vitro but failed to reactivate oxidized SHP2. Interestingly, the alternative TrxR1 substrate TRP14 also reactivated oxidized PTP1B, but not SHP2. Txnrd1-depleted cells displayed increased phosphorylation of PDGF-β receptor, and an enhanced mitogenic response, after PDGF-BB stimulation. The TrxR inhibitor auranofin also increased PDGF-β receptor phosphorylation. This effect was not observed in cells specifically lacking PTP1B. Together these results demonstrate that the Trx system, including both Trx1 and TRP14, impacts differentially on the oxidation of individual PTPs, with a preference of PTP1B over SHP2 activation. The studies demonstrate a previously unrecognized pathway for selective redox-regulated control of receptor tyrosine kinase signaling.
Collapse
|
44
|
Jeon TJ, Chien PN, Chun HJ, Ryu SE. Structure of the catalytic domain of protein tyrosine phosphatase sigma in the sulfenic acid form. Mol Cells 2013; 36:55-61. [PMID: 23820885 PMCID: PMC3887927 DOI: 10.1007/s10059-013-0033-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/15/2013] [Accepted: 04/18/2013] [Indexed: 01/07/2023] Open
Abstract
Protein tyrosine phosphatase sigma (PTPσ) plays a vital role in neural development. The extracellular domain of PTPσ binds to various proteoglycans, which control the activity of 2 intracellular PTP domains (D1 and D2). To understand the regulatory mechanism of PTPσ, we carried out structural and biochemical analyses of PTPσ D1D2. In the crystal structure analysis of a mutant form of D1D2 of PTPσ, we unexpectedly found that the catalytic cysteine of D1 is oxidized to cysteine sulfenic acid, while that of D2 remained in its reduced form, suggesting that D1 is more sensitive to oxidation than D2. This finding contrasts previous observations on PTPα. The cysteine sulfenic acid of D1 was further confirmed by immunoblot and mass spectrometric analyses. The stabilization of the cysteine sulfenic acid in the active site of PTP suggests that the formation of cysteine sulfenic acid may function as a stable intermediate during the redox-regulation of PTPs.
Collapse
Affiliation(s)
- Tae Jin Jeon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 133-070,
Korea
| | - Pham Ngoc Chien
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 133-070,
Korea
| | - Ha-Jung Chun
- Department of Radiation Oncology, College of Medicine, Hanyang University, Seoul 133-070,
Korea
| | - Seong Eon Ryu
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 133-070,
Korea
| |
Collapse
|
45
|
Gupta V, Carroll KS. Sulfenic acid chemistry, detection and cellular lifetime. Biochim Biophys Acta Gen Subj 2013; 1840:847-75. [PMID: 23748139 DOI: 10.1016/j.bbagen.2013.05.040] [Citation(s) in RCA: 306] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/24/2013] [Accepted: 05/26/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND Reactive oxygen species-mediated cysteine sulfenic acid modification has emerged as an important regulatory mechanism in cell signaling. The stability of sulfenic acid in proteins is dictated by the local microenvironment and ability of antioxidants to reduce this modification. Several techniques for detecting this cysteine modification have been developed, including direct and in situ methods. SCOPE OF REVIEW This review presents a historical discussion of sulfenic acid chemistry and highlights key examples of this modification in proteins. A comprehensive survey of available detection techniques with advantages and limitations is discussed. Finally, issues pertaining to rates of sulfenic acid formation, reduction, and chemical trapping methods are also covered. MAJOR CONCLUSIONS Early chemical models of sulfenic acid yielded important insights into the unique reactivity of this species. Subsequent pioneering studies led to the characterization of sulfenic acid formation in proteins. In parallel, the discovery of oxidant-mediated cell signaling pathways and pathological oxidative stress has led to significant interest in methods to detect these modifications. Advanced methods allow for direct chemical trapping of protein sulfenic acids directly in cells and tissues. At the same time, many sulfenic acids are short-lived and the reactivity of current probes must be improved to sample these species, while at the same time, preserving their chemical selectivity. Inhibitors with binding scaffolds can be rationally designed to target sulfenic acid modifications in specific proteins. GENERAL SIGNIFICANCE Ever increasing roles for protein sulfenic acids have been uncovered in physiology and pathology. A more complete understanding of sulfenic acid-mediated regulatory mechanisms will continue to require rigorous and new chemical insights. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
Collapse
Affiliation(s)
- Vinayak Gupta
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | |
Collapse
|
46
|
Tonks NK. Protein tyrosine phosphatases--from housekeeping enzymes to master regulators of signal transduction. FEBS J 2013; 280:346-78. [PMID: 23176256 DOI: 10.1111/febs.12077] [Citation(s) in RCA: 340] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/13/2012] [Accepted: 11/15/2012] [Indexed: 12/12/2022]
Abstract
There are many misconceptions surrounding the roles of protein phosphatases in the regulation of signal transduction, perhaps the most damaging of which is the erroneous view that these enzymes exert their effects merely as constitutively active housekeeping enzymes. On the contrary, the phosphatases are critical, specific regulators of signalling in their own right and serve an essential function, in a coordinated manner with the kinases, to determine the response to a physiological stimulus. This review is a personal perspective on the development of our understanding of the protein tyrosine phosphatase family of enzymes. I have discussed various aspects of the structure, regulation and function of the protein tyrosine phosphatase family, which I hope will illustrate the fundamental importance of these enzymes in the control of signal transduction.
Collapse
Affiliation(s)
- Nicholas K Tonks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724-2208, USA.
| |
Collapse
|
47
|
Böhmer F, Szedlacsek S, Tabernero L, Ostman A, den Hertog J. Protein tyrosine phosphatase structure-function relationships in regulation and pathogenesis. FEBS J 2013; 280:413-31. [PMID: 22682070 DOI: 10.1111/j.1742-4658.2012.08655.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protein phosphorylation on tyrosine residues is tightly controlled by protein tyrosine phosphatases (PTPs) at multiple levels: spatio-temporal expression, subcellular localization and post-translational modification. Structural and functional analysis of the PTP domains has provided insight into catalysis and regulatory mechanisms that control the enzymatic activity. Understanding the molecular basis of PTP regulation is of fundamental importance to dissect the pleiotropic effect of these enzymes in both health and disease. Here, we review recent insights into the regulation of receptor-like PTPs by extracellular ligands and into regulation by reversible oxidation that impairs catalysis directly. The physiological roles of PTPs are essential in homeostasis in eukaryotic cells and pertubation of their functional attributes causes different disease states. As an example, we discuss recent findings indicating how inappropriate oxidation of PTPs in cancer cells may contribute to cell transformation. On the other hand, PTPs from many pathogens are key virulence factors and manipulate signalling pathways in the host cells to promote invasion and survival of the microorganisms. This research area has received relatively little attention but has advanced remarkably. We review the structural features of pathogenic PTPs, their similarities and differences with eukaryotic PTPs, and the possible exploitation of this knowledge for therapeutic intervention.
Collapse
Affiliation(s)
- Frank Böhmer
- Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | | | | | | | | |
Collapse
|
48
|
Chien PN, Ryu SE. Protein Tyrosine Phosphatase σ in Proteoglycan-Mediated Neural Regeneration Regulation. Mol Neurobiol 2012; 47:220-7. [DOI: 10.1007/s12035-012-8346-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/27/2012] [Indexed: 12/25/2022]
|
49
|
Receptor type protein tyrosine phosphatases (RPTPs) - roles in signal transduction and human disease. J Cell Commun Signal 2012; 6:125-38. [PMID: 22851429 DOI: 10.1007/s12079-012-0171-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 07/12/2012] [Indexed: 01/06/2023] Open
Abstract
Protein tyrosine phosphorylation is a fundamental regulatory mechanism controlling cell proliferation, differentiation, communication, and adhesion. Disruption of this key regulatory mechanism contributes to a variety of human diseases including cancer, diabetes, and auto-immune diseases. Net protein tyrosine phosphorylation is determined by the dynamic balance of the activity of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Mammals express many distinct PTKs and PTPs. Both of these families can be sub-divided into non-receptor and receptor subtypes. Receptor protein tyrosine kinases (RPTKs) comprise a large family of cell surface proteins that initiate intracellular tyrosine phosphorylation-dependent signal transduction in response to binding of extracellular ligands, such as growth factors and cytokines. Receptor-type protein tyrosine phosphatases (RPTPs) are enzymatic and functional counterparts of RPTKs. RPTPs are a family of integral cell surface proteins that possess intracellular PTP activity, and extracellular domains that have sequence homology to cell adhesion molecules. In comparison to extensively studied RPTKs, much less is known about RPTPs, especially regarding their substrate specificities, regulatory mechanisms, biological functions, and their roles in human diseases. Based on the structure of their extracellular domains, the RPTP family can be grouped into eight sub-families. This article will review one representative member from each RPTP sub-family.
Collapse
|
50
|
Lo HM, Wu MW, Pan SL, Peng CY, Wu PH, Wu WB. Chrysin restores PDGF-induced inhibition on protein tyrosine phosphatase and reduces PDGF signaling in cultured VSMCs. J Nutr Biochem 2012; 23:667-78. [DOI: 10.1016/j.jnutbio.2011.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 03/11/2011] [Accepted: 03/18/2011] [Indexed: 12/16/2022]
|