1
|
Fifer LM, Wong ML. Quantifying the Potential for Nitrate-Dependent Iron Oxidation on Early Mars: Implications for the Interpretation of Gale Crater Organics. ASTROBIOLOGY 2024; 24:590-603. [PMID: 38805190 DOI: 10.1089/ast.2023.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Geological evidence and atmospheric and climate models suggest habitable conditions occurred on early Mars, including in a lake in Gale crater. Instruments aboard the Curiosity rover measured organic compounds of unknown provenance in sedimentary mudstones at Gale crater. Additionally, Curiosity measured nitrates in Gale crater sediments, which suggests that nitrate-dependent Fe2+ oxidation (NDFO) may have been a viable metabolism for putative martian life. Here, we perform the first quantitative assessment of an NDFO community that could have existed in an ancient Gale crater lake and quantify the long-term preservation of biological necromass in lakebed mudstones. We find that an NDFO community would have the capacity to produce cell concentrations of up to 106 cells mL-1, which is comparable to microbes in Earth's oceans. However, only a concentration of <104 cells mL-1, due to organisms that inefficiently consume less than 10% of precipitating nitrate, would be consistent with the abundance of organics found at Gale. We also find that meteoritic sources of organics would likely be insufficient as a sole source for the Gale crater organics, which would require a separate source, such as abiotic hydrothermal or atmospheric production or possibly biological production from a slowly turning over chemotrophic community.
Collapse
Affiliation(s)
- Lucas M Fifer
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
- Astrobiology Program, University of Washington, Seattle, Washington, USA
| | - Michael L Wong
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA
- NHFP Sagan Fellow, NASA Hubble Fellowship Program, Space Telescope Science Institute, Baltimore, Maryland, USA
- NASA Nexus for Exoplanet System Science, Virtual Planetary Laboratory Team, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Ray AE, Tribbia DZ, Cowan DA, Ferrari BC. Clearing the air: unraveling past and guiding future research in atmospheric chemosynthesis. Microbiol Mol Biol Rev 2023; 87:e0004823. [PMID: 37914532 PMCID: PMC10732025 DOI: 10.1128/mmbr.00048-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
SUMMARY Atmospheric chemosynthesis is a recently proposed form of chemoautotrophic microbial primary production. The proposed process relies on the oxidation of trace concentrations of hydrogen (≤530 ppbv), carbon monoxide (≤90 ppbv), and methane (≤1,870 ppbv) gases using high-affinity enzymes. Atmospheric hydrogen and carbon monoxide oxidation have been primarily linked to microbial growth in desert surface soils scarce in liquid water and organic nutrients, and low in photosynthetic communities. It is well established that the oxidation of trace hydrogen and carbon monoxide gases widely supports the persistence of microbial communities in a diminished metabolic state, with the former potentially providing a reliable source of metabolic water. Microbial atmospheric methane oxidation also occurs in oligotrophic desert soils and is widespread throughout copiotrophic environments, with established links to microbial growth. Despite these findings, the direct link between trace gas oxidation and carbon fixation remains disputable. Here, we review the supporting evidence, outlining major gaps in our understanding of this phenomenon, and propose approaches to validate atmospheric chemosynthesis as a primary production process. We also explore the implications of this minimalistic survival strategy in terms of nutrient cycling, climate change, aerobiology, and astrobiology.
Collapse
Affiliation(s)
- Angelique E. Ray
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, Australia
- Australian Centre for Astrobiology, UNSW Sydney, Sydney, Australia
| | - Dana Z. Tribbia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, Australia
- Australian Centre for Astrobiology, UNSW Sydney, Sydney, Australia
| | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Belinda C. Ferrari
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, Australia
- Australian Centre for Astrobiology, UNSW Sydney, Sydney, Australia
| |
Collapse
|
3
|
Godin PJ, Moore CA, Smith C, Moores JE. Absorption and Scattering of UV and Visible Light Through Simulated Martian Regoliths and Rock Samples. ASTROBIOLOGY 2023; 23:280-290. [PMID: 36724478 DOI: 10.1089/ast.2021.0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ultraviolet shielding materials are potential ecological niches for biosignatures. Finding such materials on Mars would narrow the search for potentially habitable regions. A mini-goniometer was built to collect transmission spectra as a function of scattering angle for Mars analog regoliths (JSC Mars-1, basalt, cheto bentonite, and kieserite) and crystalline rock samples from the Haughton impact structure on Devon Island, Nunavut, in the Canadian High Arctic Archipelago. The transmission through the materials was assessed at ultraviolet and visible wavelengths and at different scattering angles. From the results, it is possible to classify the samples into UV transmitters and UV quenchers. UV transmitters are materials that favor transmittance of UV wavelengths compared to photosynthetically active radiation (PAR), while the UV quenchers are materials that effectively block UV radiation from propagating into the subsurface. Additionally, samples that are effective UV quenchers tend to have more isotropic scattering profiles, whereas UV transmitters tend to favor forward scattering profiles. Samples with greater porosity had greater overall transmission. The depths at which radioresistant microorganisms can exist on present-day Mars are estimated by modeling the transmission for regoliths and crystalline rocks under martian insolation. The depth at which LD90 occurs is found to range down to 0.3 mm, while still allowing up to 1000 kJ/m2 of PAR at those depths. Due to the exceptionally protective nature of JSC Mars-1, intimate mixtures of organisms and regolith will result in some organisms experiencing orders of magnitude less UV flux than others, even when protected by only a single grain of simulant.
Collapse
Affiliation(s)
- Paul J Godin
- Department of Earth and Space Science and Engineering, York University, Toronto, Canada
| | - Casey A Moore
- Department of Earth and Space Science and Engineering, York University, Toronto, Canada
| | - Christina Smith
- Department of Earth and Space Science and Engineering, York University, Toronto, Canada
| | - John E Moores
- Department of Earth and Space Science and Engineering, York University, Toronto, Canada
| |
Collapse
|
4
|
Soureshjani OK, Massumi A. Martian buildings: structural forms using in-place sources. Sci Rep 2022; 12:21992. [PMID: 36539552 PMCID: PMC9768128 DOI: 10.1038/s41598-022-25507-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
On Mars, structural loads and the low tensile strength of in-place Martian binders make existing solutions for Martian structures uneconomical because they are based on the terrestrial sources like inflatable units. Here we address this issue by introducing and analyzing three innovative structural forms in accordance with the structural engineering point of view using symmetric optimum parabolic rotated arch shapes and in-place waterless sulfur-based concrete. These forms minimize the tensile stresses under Martian structural loads. Probable Martian structural loads, including gravity, wind, marsquakes, asteroid and meteoroid impact loads and their effects have been investigated and calculated. The proposed models were analyzed under Martian structural loads using the implicit finite element method and the results were compared to two concrete structural forms from previous studies. The proposed models could tolerate Martian structural loads with complete elastic behavior and would significantly decrease the Martian colonization cost due to using Martian resources and reduce element importing from Earth.
Collapse
Affiliation(s)
- Omid Karimzade Soureshjani
- grid.412265.60000 0004 0406 5813Department of Civil Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran
| | - Ali Massumi
- grid.412265.60000 0004 0406 5813Department of Civil Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran
| |
Collapse
|
5
|
Cowan DA, Ferrari BC, McKay CP. Out of Thin Air? Astrobiology and Atmospheric Chemotrophy. ASTROBIOLOGY 2022; 22:225-232. [PMID: 35025628 PMCID: PMC8861918 DOI: 10.1089/ast.2021.0066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The emerging understanding of microbial trace gas chemotrophy as a metabolic strategy to support energy and carbon acquisition for microbial survival and growth has significant implications in the search for past, and even extant, life beyond Earth. The use of trace gases, including hydrogen and carbon monoxide as substrates for microbial oxidation, potentially offers a viable strategy with which to support life on planetary bodies that possess a suitable atmospheric composition, such as Mars and Titan. Here, we discuss the current state of knowledge of this process and explore its potential in the field of astrobiological exploration.
Collapse
Affiliation(s)
- Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Address correspondence to: Don A. Cowan, Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Building NW2, Room 3-12, Hatfield Campus, Lynnwood Road, Pretoria 0002, South Africa
| | - Belinda C. Ferrari
- School of Biotechnology and Biomolecular Sciences, Australian Centre for Astrobiology, UNSW Sydney, Randwick, Australia
| | | |
Collapse
|
6
|
Tarnas JD, Mustard JF, Sherwood Lollar B, Stamenković V, Cannon KM, Lorand JP, Onstott TC, Michalski JR, Warr O, Palumbo AM, Plesa AC. Earth-like Habitable Environments in the Subsurface of Mars. ASTROBIOLOGY 2021; 21:741-756. [PMID: 33885329 DOI: 10.1089/ast.2020.2386] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In Earth's deep continental subsurface, where groundwaters are often isolated for >106 to 109 years, energy released by radionuclides within rock produces oxidants and reductants that drive metabolisms of non-photosynthetic microorganisms. Similar processes could support past and present life in the martian subsurface. Sulfate-reducing microorganisms are common in Earth's deep subsurface, often using hydrogen derived directly from radiolysis of pore water and sulfate derived from oxidation of rock-matrix-hosted sulfides by radiolytically derived oxidants. Radiolysis thus produces redox energy to support a deep biosphere in groundwaters isolated from surface substrate input for millions to billions of years on Earth. Here, we demonstrate that radiolysis by itself could produce sufficient redox energy to sustain a habitable environment in the subsurface of present-day Mars, one in which Earth-like microorganisms could survive wherever groundwater exists. We show that the source localities for many martian meteorites are capable of producing sufficient redox nutrients to sustain up to millions of sulfate-reducing microbial cells per kilogram rock via radiolysis alone, comparable to cell densities observed in many regions of Earth's deep subsurface. Additionally, we calculate variability in supportable sulfate-reducing cell densities between the martian meteorite source regions. Our results demonstrate that martian subsurface groundwaters, where present, would largely be habitable for sulfate-reducing bacteria from a redox energy perspective via radiolysis alone. We present evidence for crustal regions that could support especially high cell densities, including zones with high sulfide concentrations, which could be targeted by future subsurface exploration missions.
Collapse
Affiliation(s)
- J D Tarnas
- Brown University Department of Earth, Environmental and Planetary Sciences, Providence, Rhode Island, USA
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - J F Mustard
- Brown University Department of Earth, Environmental and Planetary Sciences, Providence, Rhode Island, USA
| | | | - V Stamenković
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - K M Cannon
- Department of Geology and Geological Engineering, Colorado School of Mines, Golden, Colorado, USA
- Space Resources Program, Colorado School of Mines, Golden, Colorado, USA
| | - J-P Lorand
- Université de Nantes Laboratoire de Planétologie et Géodynamique de Nantes, Nantes, France
| | - T C Onstott
- Princeton University Department of Geosciences, Princeton, New Jersey, USA
| | - J R Michalski
- University of Hong Kong Division of Earth & Planetary Science, Hong Kong
| | - O Warr
- University of Toronto Department of Earth Sciences, Toronto, Canada
| | - A M Palumbo
- Brown University Department of Earth, Environmental and Planetary Sciences, Providence, Rhode Island, USA
| | - A-C Plesa
- German Aerospace Center (DLR) Institute of Planetary Research, Berlin, Germany
| |
Collapse
|
7
|
Masuda S, Furukawa Y, Kobayashi T, Sekine T, Kakegawa T. Experimental Investigation of the Formation of Formaldehyde by Hadean and Noachian Impacts. ASTROBIOLOGY 2021; 21:413-420. [PMID: 33784199 DOI: 10.1089/ast.2020.2320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Formaldehyde (FA) is an important precursor in the abiotic synthesis of major biomolecules including amino acids, sugars, and nucleobases. Thus, spontaneous formation of prebiotic FA must have been crucial for the chemical origin of life. The frequent impacts of meteorites and asteroids on Hadean Earth have been considered one of the abiotic synthetic processes of organic compounds. However, the impact-induced formation of FA from CO2 as the major atmospheric constituent has not been confirmed yet. This study investigated the formation of FA in impact-induced reactions among meteoritic minerals, bicarbonate, gaseous nitrogen, and water to simulate the abiotic process experimentally. Products were analyzed with ultra-high-performance liquid chromatography/tandem mass spectrometry and powder X-ray diffraction techniques. The results show the formation of FA and oxidation of metallic iron to siderite in the impact shock experiments. This indicates that this important prebiotic molecule was also synthesized by impacts of iron-bearing meteorites/asteroids on the Hadean oceans. The impact events might have generated spatially and temporally FA-enriched localized environments. Moreover, the impact-induced synthesis of FA may have also occurred on Noachian Mars given the presence of liquid water and a CO2-N2-rich atmosphere on the planet.
Collapse
Affiliation(s)
- Saeka Masuda
- Department of Earth Science, Tohoku University, Sendai, Japan
| | | | | | - Toshimori Sekine
- Center for High Pressure Science & Technology Advanced Research, Shanghai, China
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | | |
Collapse
|
8
|
Onstott T, Ehlmann B, Sapers H, Coleman M, Ivarsson M, Marlow J, Neubeck A, Niles P. Paleo-Rock-Hosted Life on Earth and the Search on Mars: A Review and Strategy for Exploration. ASTROBIOLOGY 2019; 19:1230-1262. [PMID: 31237436 PMCID: PMC6786346 DOI: 10.1089/ast.2018.1960] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 04/25/2019] [Indexed: 05/19/2023]
Abstract
Here we review published studies on the abundance and diversity of terrestrial rock-hosted life, the environments it inhabits, the evolution of its metabolisms, and its fossil biomarkers to provide guidance in the search for life on Mars. Key findings are (1) much terrestrial deep subsurface metabolic activity relies on abiotic energy-yielding fluxes and in situ abiotic and biotic recycling of metabolic waste products rather than on buried organic products of photosynthesis; (2) subsurface microbial cell concentrations are highest at interfaces with pronounced chemical redox gradients or permeability variations and do not correlate with bulk host rock organic carbon; (3) metabolic pathways for chemolithoautotrophic microorganisms evolved earlier in Earth's history than those of surface-dwelling phototrophic microorganisms; (4) the emergence of the former occurred at a time when Mars was habitable, whereas the emergence of the latter occurred at a time when the martian surface was not continually habitable; (5) the terrestrial rock record has biomarkers of subsurface life at least back hundreds of millions of years and likely to 3.45 Ga with several examples of excellent preservation in rock types that are quite different from those preserving the photosphere-supported biosphere. These findings suggest that rock-hosted life would have been more likely to emerge and be preserved in a martian context. Consequently, we outline a Mars exploration strategy that targets subsurface life and scales spatially, focusing initially on identifying rocks with evidence for groundwater flow and low-temperature mineralization, then identifying redox and permeability interfaces preserved within rock outcrops, and finally focusing on finding minerals associated with redox reactions and associated traces of carbon and diagnostic chemical and isotopic biosignatures. Using this strategy on Earth yields ancient rock-hosted life, preserved in the fossil record and confirmable via a suite of morphologic, organic, mineralogical, and isotopic fingerprints at micrometer scale. We expect an emphasis on rock-hosted life and this scale-dependent strategy to be crucial in the search for life on Mars.
Collapse
Affiliation(s)
- T.C. Onstott
- Department of Geosciences, Princeton University, Princeton, New Jersey, USA
- Address correspondence to: T.C. Onstott, Department of Geosciences, Princeton University,, Princeton, NJ 008544
| | - B.L. Ehlmann
- Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- B.L. Ehlmann, Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - H. Sapers
- Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - M. Coleman
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- NASA Astrobiology Institute, Pasadena, California, USA
| | - M. Ivarsson
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - J.J. Marlow
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - A. Neubeck
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| | - P. Niles
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, Texas, USA
| |
Collapse
|
9
|
Sholes SF, Krissansen-Totton J, Catling DC. A Maximum Subsurface Biomass on Mars from Untapped Free Energy: CO and H 2 as Potential Antibiosignatures. ASTROBIOLOGY 2019; 19:655-668. [PMID: 30950631 DOI: 10.1089/ast.2018.1835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Whether extant life exists in the martian subsurface is an open question. High concentrations of photochemically produced CO and H2 in the otherwise oxidizing martian atmosphere represent untapped sources of biologically useful free energy. These out-of-equilibrium species diffuse into the regolith, so subsurface microbes could use them as a source of energy and carbon. Indeed, CO oxidation and methanogenesis are relatively simple and evolutionarily ancient metabolisms on Earth. Consequently, assuming CO- or H2-consuming metabolisms would evolve on Mars, the persistence of CO and H2 in the martian atmosphere sets limits on subsurface metabolic activity. In this study, we constrain such maximum subsurface metabolic activity on Mars using a one-dimensional photochemical model with a hypothetical global biological sink on atmospheric CO and H2. We increase the biological sink until the modeled atmospheric composition diverges from observed abundances. We find maximum biological downward subsurface sinks of 1.5 × 108 molecules/(cm2·s) for CO and 1.9 × 108 molecules/(cm2·s1) for H2. These convert to a maximum metabolizing biomass of ≲1027 cells or ≤2 × 1011 kg, equivalent to ≤10-4-10-5 of Earth's biomass, depending on the terrestrial estimate. Diffusion calculations suggest that this upper biomass limit applies to the top few kilometers of the martian crust in communication with the atmosphere at low to mid-latitudes. This biomass limit is more robust than previous estimates because we test multiple possible chemoautotrophic ecosystems over a broad parameter space of tunable model variables using an updated photochemical model with precise atmospheric concentrations and uncertainties from Curiosity. Our results of sparse or absent life in the martian subsurface also demonstrate how the atmospheric redox pairs of CO-O2 and H2-O2 may constitute antibiosignatures, which may be relevant to excluding life on exoplanets.
Collapse
Affiliation(s)
- Steven F Sholes
- 1 Department of Earth and Space Sciences, University of Washington, Seattle, Washington
- 2 Astrobiology Program, University of Washington, Seattle, Washington
| | - Joshua Krissansen-Totton
- 1 Department of Earth and Space Sciences, University of Washington, Seattle, Washington
- 2 Astrobiology Program, University of Washington, Seattle, Washington
| | - David C Catling
- 1 Department of Earth and Space Sciences, University of Washington, Seattle, Washington
- 2 Astrobiology Program, University of Washington, Seattle, Washington
| |
Collapse
|
10
|
|
11
|
Yung YL, Chen P, Nealson K, Atreya S, Beckett P, Blank JG, Ehlmann B, Eiler J, Etiope G, Ferry JG, Forget F, Gao P, Hu R, Kleinböhl A, Klusman R, Lefèvre F, Miller C, Mischna M, Mumma M, Newman S, Oehler D, Okumura M, Oremland R, Orphan V, Popa R, Russell M, Shen L, Sherwood Lollar B, Staehle R, Stamenković V, Stolper D, Templeton A, Vandaele AC, Viscardy S, Webster CR, Wennberg PO, Wong ML, Worden J. Methane on Mars and Habitability: Challenges and Responses. ASTROBIOLOGY 2018; 18:1221-1242. [PMID: 30234380 PMCID: PMC6205098 DOI: 10.1089/ast.2018.1917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 05/05/2023]
Abstract
Recent measurements of methane (CH4) by the Mars Science Laboratory (MSL) now confront us with robust data that demand interpretation. Thus far, the MSL data have revealed a baseline level of CH4 (∼0.4 parts per billion by volume [ppbv]), with seasonal variations, as well as greatly enhanced spikes of CH4 with peak abundances of ∼7 ppbv. What do these CH4 revelations with drastically different abundances and temporal signatures represent in terms of interior geochemical processes, or is martian CH4 a biosignature? Discerning how CH4 generation occurs on Mars may shed light on the potential habitability of Mars. There is no evidence of life on the surface of Mars today, but microbes might reside beneath the surface. In this case, the carbon flux represented by CH4 would serve as a link between a putative subterranean biosphere on Mars and what we can measure above the surface. Alternatively, CH4 records modern geochemical activity. Here we ask the fundamental question: how active is Mars, geochemically and/or biologically? In this article, we examine geological, geochemical, and biogeochemical processes related to our overarching question. The martian atmosphere and surface are an overwhelmingly oxidizing environment, and life requires pairing of electron donors and electron acceptors, that is, redox gradients, as an essential source of energy. Therefore, a fundamental and critical question regarding the possibility of life on Mars is, "Where can we find redox gradients as energy sources for life on Mars?" Hence, regardless of the pathway that generates CH4 on Mars, the presence of CH4, a reduced species in an oxidant-rich environment, suggests the possibility of redox gradients supporting life and habitability on Mars. Recent missions such as ExoMars Trace Gas Orbiter may provide mapping of the global distribution of CH4. To discriminate between abiotic and biotic sources of CH4 on Mars, future studies should use a series of diagnostic geochemical analyses, preferably performed below the ground or at the ground/atmosphere interface, including measurements of CH4 isotopes, methane/ethane ratios, H2 gas concentration, and species such as acetic acid. Advances in the fields of Mars exploration and instrumentation will be driven, augmented, and supported by an improved understanding of atmospheric chemistry and dynamics, deep subsurface biogeochemistry, astrobiology, planetary geology, and geophysics. Future Mars exploration programs will have to expand the integration of complementary areas of expertise to generate synergistic and innovative ideas to realize breakthroughs in advancing our understanding of the potential of life and habitable conditions having existed on Mars. In this spirit, we conducted a set of interdisciplinary workshops. From this series has emerged a vision of technological, theoretical, and methodological innovations to explore the martian subsurface and to enhance spatial tracking of key volatiles, such as CH4.
Collapse
Affiliation(s)
- Yuk L. Yung
- California Institute of Technology, Pasadena, California
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Pin Chen
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | | | | | - Jennifer G. Blank
- NASA Ames Research Center, Blue Marble Space Institute of Science, Mountain View, California
| | - Bethany Ehlmann
- California Institute of Technology, Pasadena, California
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - John Eiler
- California Institute of Technology, Pasadena, California
| | - Giuseppe Etiope
- Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - James G. Ferry
- The Pennsylvania State University, University Park, Pennsylvania
| | - Francois Forget
- Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace, CNRS, Paris, France
| | - Peter Gao
- University of California, Berkeley, California
| | - Renyu Hu
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Armin Kleinböhl
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | - Franck Lefèvre
- Laboratoire Atmospheres, Milieux, Observations Spatiales (LATMOS), IPSL, Paris, France
| | - Charles Miller
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Michael Mischna
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Michael Mumma
- NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Sally Newman
- California Institute of Technology, Pasadena, California
| | | | | | | | | | - Radu Popa
- University of Southern California, Los Angeles, California
| | - Michael Russell
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Linhan Shen
- California Institute of Technology, Pasadena, California
| | | | - Robert Staehle
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Vlada Stamenković
- California Institute of Technology, Pasadena, California
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | | | - Ann C. Vandaele
- The Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
| | - Sébastien Viscardy
- The Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
| | - Christopher R. Webster
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | | | - John Worden
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| |
Collapse
|
12
|
Jones RM, Goordial JM, Orcutt BN. Low Energy Subsurface Environments as Extraterrestrial Analogs. Front Microbiol 2018; 9:1605. [PMID: 30072971 PMCID: PMC6058055 DOI: 10.3389/fmicb.2018.01605] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/27/2018] [Indexed: 11/13/2022] Open
Abstract
Earth's subsurface is often isolated from phototrophic energy sources and characterized by chemotrophic modes of life. These environments are often oligotrophic and limited in electron donors or electron acceptors, and include continental crust, subseafloor oceanic crust, and marine sediment as well as subglacial lakes and the subsurface of polar desert soils. These low energy subsurface environments are therefore uniquely positioned for examining minimum energetic requirements and adaptations for chemotrophic life. Current targets for astrobiology investigations of extant life are planetary bodies with largely inhospitable surfaces, such as Mars, Europa, and Enceladus. Subsurface environments on Earth thus serve as analogs to explore possibilities of subsurface life on extraterrestrial bodies. The purpose of this review is to provide an overview of subsurface environments as potential analogs, and the features of microbial communities existing in these low energy environments, with particular emphasis on how they inform the study of energetic limits required for life. The thermodynamic energetic calculations presented here suggest that free energy yields of reactions and energy density of some metabolic redox reactions on Mars, Europa, Enceladus, and Titan could be comparable to analog environments in Earth's low energy subsurface habitats.
Collapse
Affiliation(s)
| | | | - Beth N. Orcutt
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| |
Collapse
|
13
|
Kite ES, Gaidos E, Onstott TC. Valuing Life-Detection Missions. ASTROBIOLOGY 2018; 18:834-840. [PMID: 30035639 DOI: 10.1089/ast.2017.1813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
|
14
|
Mickol RL, Kral TA. Low Pressure Tolerance by Methanogens in an Aqueous Environment: Implications for Subsurface Life on Mars. ORIGINS LIFE EVOL B 2017; 47:511-532. [PMID: 27663448 DOI: 10.1007/s11084-016-9519-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/05/2016] [Indexed: 11/26/2022]
Abstract
The low pressure at the surface of Mars (average: 6 mbar) is one potentially biocidal factor that any extant life on the planet would need to endure. Near subsurface life, while shielded from ultraviolet radiation, would also be exposed to this low pressure environment, as the atmospheric gas-phase pressure increases very gradually with depth. Few studies have focused on low pressure as inhibitory to the growth or survival of organisms. However, recent work has uncovered a potential constraint to bacterial growth below 25 mbar. The study reported here tested the survivability of four methanogen species (Methanothermobacter wolfeii, Methanosarcina barkeri, Methanobacterium formicicum, Methanococcus maripaludis) under low pressure conditions approaching average martian surface pressure (6 mbar - 143 mbar) in an aqueous environment. Each of the four species survived exposure of varying length (3 days - 21 days) at pressures down to 6 mbar. This research is an important stepping-stone to determining if methanogens can actively metabolize/grow under these low pressures. Additionally, the recently discovered recurring slope lineae suggest that liquid water columns may connect the surface to deeper levels in the subsurface. If that is the case, any organism being transported in the water column would encounter the changing pressures during the transport.
Collapse
Affiliation(s)
- R L Mickol
- Arkansas Center for Space and Planetary Sciences, University of Arkansas, Stone House North, 332 N. Arkansas Ave, Fayetteville, AR, 72701, USA.
| | - T A Kral
- Arkansas Center for Space and Planetary Sciences, University of Arkansas, Stone House North, 332 N. Arkansas Ave, Fayetteville, AR, 72701, USA
- Department of Biological Sciences, Science and Engineering 601, University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
15
|
Taghioskoui M, Zaghloul M. Plasma ionization under simulated ambient Mars conditions for quantification of methane by mass spectrometry. Analyst 2016; 141:2270-7. [PMID: 26947458 DOI: 10.1039/c5an02305j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ambient ionization techniques enable ion production in the native sample environment for mass spectrometry, without a need for sample preparation or separation. These techniques provide superior advantages over conventional ionization methods and are well developed and investigated for various analytical applications. However, employing ambient ionization techniques for in situ extra-terrestrial chemical analysis requires these techniques to be designed and developed according to the ambient conditions of extra-terrestrial environments, which substantially differ from the ambient conditions of Earth. Here, we report a plasma ionization source produced under simulated ambient Mars conditions for mass spectrometry. The plasma ionization source was coupled to a quadrupole mass spectrometer, and quantitative and qualitative analyses of trace amounts of methane, as an analyte of interest in Mars discovery missions, were demonstrated. The miniature plasma source was operational at a net power as low as ∼1.7 W in the pressure range of 4-16 Torr. A detection limit as low as ∼0.15 ppm (v/v) at 16 Torr for methane was demonstrated.
Collapse
Affiliation(s)
| | - Mona Zaghloul
- The Institute for MEMS and VLSI Technology, Department of Electrical and Computer Engineering, The George Washington University, 800, 22nd Street, NW, Washington DC 20052, USA.
| |
Collapse
|
16
|
Hu R, Bloom AA, Gao P, Miller CE, Yung YL. Hypotheses for Near-Surface Exchange of Methane on Mars. ASTROBIOLOGY 2016; 16:539-550. [PMID: 27315136 DOI: 10.1089/ast.2015.1410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
UNLABELLED The Curiosity rover recently detected a background of 0.7 ppb and spikes of 7 ppb of methane on Mars. This in situ measurement reorients our understanding of the martian environment and its potential for life, as the current theories do not entail any geological source or sink of methane that varies sub-annually. In particular, the 10-fold elevation during the southern winter indicates episodic sources of methane that are yet to be discovered. Here we suggest a near-surface reservoir could explain this variability. Using the temperature and humidity measurements from the rover, we find that perchlorate salts in the regolith deliquesce to form liquid solutions, and deliquescence progresses to deeper subsurface in the season of the methane spikes. We therefore formulate the following three testable hypotheses. The first scenario is that the regolith in Gale Crater adsorbs methane when dry and releases this methane to the atmosphere upon deliquescence. The adsorption energy needs to be 36 kJ mol(-1) to explain the magnitude of the methane spikes, higher than existing laboratory measurements. The second scenario is that microorganisms convert organic matter in the soil to methane when they are in liquid solutions. This scenario does not require regolith adsorption but entails extant life on Mars. The third scenario is that deep subsurface aquifers produce the bursts of methane. Continued in situ measurements of methane and water, as well as laboratory studies of adsorption and deliquescence, will test these hypotheses and inform the existence of the near-surface reservoir and its exchange with the atmosphere. KEY WORDS Mars-Methane-Astrobiology-Regolith. Astrobiology 16, 539-550.
Collapse
Affiliation(s)
- Renyu Hu
- 1 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
- 2 Division of Geological and Planetary Sciences, California Institute of Technology , Pasadena, California
| | - A Anthony Bloom
- 1 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| | - Peter Gao
- 2 Division of Geological and Planetary Sciences, California Institute of Technology , Pasadena, California
| | - Charles E Miller
- 1 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| | - Yuk L Yung
- 1 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
- 2 Division of Geological and Planetary Sciences, California Institute of Technology , Pasadena, California
| |
Collapse
|
17
|
Abstract
The putative occurrence of methane in the Martian atmosphere has had a major influence on the exploration of Mars, especially by the implication of active biology. The occurrence has not been borne out by measurements of atmosphere by the MSL rover Curiosity but, as on Earth, methane on Mars is most likely in the subsurface of the crust. Serpentinization of olivine-bearing rocks, to yield hydrogen that may further react with carbon-bearing species, has been widely invoked as a source of methane on Mars, but this possibility has not hitherto been tested. Here we show that some Martian meteorites, representing basic igneous rocks, liberate a methane-rich volatile component on crushing. The occurrence of methane in Martian rock samples adds strong weight to models whereby any life on Mars is/was likely to be resident in a subsurface habitat, where methane could be a source of energy and carbon for microbial activity.
Collapse
|
18
|
Schirmack J, Alawi M, Wagner D. Influence of Martian regolith analogs on the activity and growth of methanogenic archaea, with special regard to long-term desiccation. Front Microbiol 2015; 6:210. [PMID: 25852668 PMCID: PMC4367439 DOI: 10.3389/fmicb.2015.00210] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/02/2015] [Indexed: 12/05/2022] Open
Abstract
Methanogenic archaea have been studied as model organisms for possible life on Mars for several reasons: they can grow lithoautotrophically by using hydrogen and carbon dioxide as energy and carbon sources, respectively; they are anaerobes; and they evolved at a time when conditions on early Earth are believed to have looked similar to those of early Mars. As Mars is currently dry and cold and as water might be available only at certain time intervals, any organism living on this planet would need to cope with desiccation. On Earth there are several regions with low water availability as well, e.g., permafrost environments, desert soils, and salt pans. Here, we present the results of a set of experiments investigating the influence of different Martian regolith analogs (MRAs) on the metabolic activity and growth of three methanogenic strains exposed to culture conditions as well as long-term desiccation. In most cases, concentrations below 1 wt% of regolith in the media resulted in an increase of methane production rates, whereas higher concentrations decreased the rates, thus prolonging the lag phase. Further experiments showed that methanogenic archaea are capable of producing methane when incubated on a water-saturated sedimentary matrix of regolith lacking nutrients. Survival of methanogens under these conditions was analyzed with a 400 day desiccation experiment in the presence of regolith analogs. All tested strains of methanogens survived the desiccation period as it was determined through reincubation on fresh medium and via qPCR following propidium monoazide treatment to identify viable cells. The survival of long-term desiccation and the ability of active metabolism on water-saturated MRAs strengthens the possibility of methanogenic archaea or physiologically similar organisms to exist in environmental niches on Mars. The best results were achieved in presence of a phyllosilicate, which provides insights of possible positive effects in habitats on Earth as well.
Collapse
Affiliation(s)
- Janosch Schirmack
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research - Research Unit Potsdam, Potsdam Germany
| | - Mashal Alawi
- GFZ German Research Centre for Geosciences, Section 4.5 Geomicrobiology, Potsdam Germany
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section 4.5 Geomicrobiology, Potsdam Germany
| |
Collapse
|
19
|
Carbon monoxide as a metabolic energy source for extremely halophilic microbes: implications for microbial activity in Mars regolith. Proc Natl Acad Sci U S A 2015; 112:4465-70. [PMID: 25831529 DOI: 10.1073/pnas.1424989112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carbon monoxide occurs at relatively high concentrations (≥800 parts per million) in Mars' atmosphere, where it represents a potentially significant energy source that could fuel metabolism by a localized putative surface or near-surface microbiota. However, the plausibility of CO oxidation under conditions relevant for Mars in its past or at present has not been evaluated. Results from diverse terrestrial brines and saline soils provide the first documentation, to our knowledge, of active CO uptake at water potentials (-41 MPa to -117 MPa) that might occur in putative brines at recurrent slope lineae (RSL) on Mars. Results from two extremely halophilic isolates complement the field observations. Halorubrum str. BV1, isolated from the Bonneville Salt Flats, Utah (to our knowledge, the first documented extremely halophilic CO-oxidizing member of the Euryarchaeota), consumed CO in a salt-saturated medium with a water potential of -39.6 MPa; activity was reduced by only 28% relative to activity at its optimum water potential of -11 MPa. A proteobacterial isolate from hypersaline Mono Lake, California, Alkalilimnicola ehrlichii MLHE-1, also oxidized CO at low water potentials (-19 MPa), at temperatures within ranges reported for RSL, and under oxic, suboxic (0.2% oxygen), and anoxic conditions (oxygen-free with nitrate). MLHE-1 was unaffected by magnesium perchlorate or low atmospheric pressure (10 mbar). These results collectively establish the potential for microbial CO oxidation under conditions that might obtain at local scales (e.g., RSL) on contemporary Mars and at larger spatial scales earlier in Mars' history.
Collapse
|
20
|
Cockell CS. Habitable worlds with no signs of life. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2014; 372:20130082. [PMID: 24664917 PMCID: PMC3982426 DOI: 10.1098/rsta.2013.0082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
'Most habitable worlds in the cosmos will have no remotely detectable signs of life' is proposed as a biological hypothesis to be tested in the study of exoplanets. Habitable planets could be discovered elsewhere in the Universe, yet there are many hypothetical scenarios whereby the search for life on them could yield negative results. Scenarios for habitable worlds with no remotely detectable signatures of life include: planets that are habitable, but have no biosphere (Uninhabited Habitable Worlds); planets with life, but lacking any detectable surface signatures of that life (laboratory examples are provided); and planets with life, where the concentrations of atmospheric gases produced or removed by biota are impossible to disentangle from abiotic processes because of the lack of detailed knowledge of planetary conditions (the 'problem of exoplanet thermodynamic uncertainty'). A rejection of the hypothesis would require that the origin of life usually occurs on habitable planets, that spectrally detectable pigments and/or metabolisms that produce unequivocal biosignature gases (e.g. oxygenic photosynthesis) usually evolve and that the organisms that harbour them usually achieve a sufficient biomass to produce biosignatures detectable to alien astronomers.
Collapse
Affiliation(s)
- Charles S. Cockell
- UK Centre for Astrobiology, University of Edinburgh, Edinburgh EH10 4EP, UK
| |
Collapse
|
21
|
Cockell CS. Trajectories of martian habitability. ASTROBIOLOGY 2014; 14:182-203. [PMID: 24506485 PMCID: PMC3929387 DOI: 10.1089/ast.2013.1106] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/29/2013] [Indexed: 05/21/2023]
Abstract
Beginning from two plausible starting points-an uninhabited or inhabited Mars-this paper discusses the possible trajectories of martian habitability over time. On an uninhabited Mars, the trajectories follow paths determined by the abundance of uninhabitable environments and uninhabited habitats. On an inhabited Mars, the addition of a third environment type, inhabited habitats, results in other trajectories, including ones where the planet remains inhabited today or others where planetary-scale life extinction occurs. By identifying different trajectories of habitability, corresponding hypotheses can be described that allow for the various trajectories to be disentangled and ultimately a determination of which trajectory Mars has taken and the changing relative abundance of its constituent environments.
Collapse
Affiliation(s)
- Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| |
Collapse
|
22
|
Atreya SK. The significance of trace constituents in the solar system. Faraday Discuss 2011; 147:9-29; discussion 83-102. [PMID: 21302540 DOI: 10.1039/c005460g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trace or minor constituents are key to the origin, maintenance, and the eventual fate of atmospheres of solar system objects. In this Introductory Paper, I illustrate this point by discussing certain cross cutting themes, including the chemistry of the formation and stability of a nitrogen atmosphere on Titan and the Earth, the chemical and biochemical origin of methane on the terrestrial planets and Titan, production and role of photochemical haze and aerosols, especially on Titan, and the significance of electro-photochemistry for habitability of Mars.
Collapse
Affiliation(s)
- Sushil K Atreya
- Department of Atmospheric, Oceanic, and Space Sciences Space Research Building, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA
| |
Collapse
|
23
|
Chastain BK, Kral TA. Approaching Mars-like geochemical conditions in the laboratory: omission of artificial buffers and reductants in a study of biogenic methane production on a smectite clay. ASTROBIOLOGY 2010; 10:889-897. [PMID: 21118022 DOI: 10.1089/ast.2010.0480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Methanogens have not been shown to metabolize in conditions exactly analogous to those present in Mars' subsurface. In typical studies of methanogenic metabolism, nutrient-rich buffered media and reducing agents are added to the cultures in an attempt to optimize the environment for methanogen survival and growth. To study methanogens in more Mars-relevant laboratory conditions, efforts should be made to eliminate artificial media, buffers, and reducing agents from investigations of methanogenic metabolism. After preliminary work to compare methanogen viability on montmorillonite clay and JSC Mars-1 regolith simulant, a study was conducted to determine whether biological methanogenesis could occur in non-reduced, non-buffered environments containing only H(2), CO(2), montmorillonite, and the liquid fraction extracted from a montmorillonite/deionized water suspension. Biogenic methane was observed in the microenvironments despite the omission of traditional media, buffers, and reducing agents. Mean headspace methane concentration after 96 days of observation was 10.23% ± 0.64% (% vol ± SEM, n = 4). However, methane production was severely decreased with respect to reduced, buffered microenvironments (Day 28: 31.98% ± 0.19%, n = 3). Analysis of results and comparison to previous work indicate that montmorillonite clay has a strong ability to supply micronutrients necessary for methanogenic metabolism, and the liquid fraction from a montmorillonite/deionized water slurry can successfully be used as an alternative to reduced and buffered nutritive media in Mars-relevant studies of methanogenic metabolism.
Collapse
Affiliation(s)
- Brendon K Chastain
- Department of Biological and Life Sciences, West Kentucky Community and Technical College, Paducah, Kentucky 42002-7380, USA.
| | | |
Collapse
|
24
|
Probst A, Vaishampayan P, Osman S, Moissl-Eichinger C, Andersen GL, Venkateswaran K. Diversity of anaerobic microbes in spacecraft assembly clean rooms. Appl Environ Microbiol 2010; 76:2837-45. [PMID: 20228115 PMCID: PMC2863428 DOI: 10.1128/aem.02167-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 02/25/2010] [Indexed: 11/20/2022] Open
Abstract
Although the cultivable and noncultivable microbial diversity of spacecraft assembly clean rooms has been previously documented using conventional and state-of-the-art molecular techniques, the occurrence of obligate anaerobes within these clean rooms is still uncertain. Therefore, anaerobic bacterial communities of three clean-room facilities were analyzed during assembly of the Mars Science Laboratory rover. Anaerobic bacteria were cultured on several media, and DNA was extracted from suitable anaerobic enrichments and examined with conventional 16S rRNA gene clone library, as well as high-density phylogenetic 16S rRNA gene microarray (PhyloChip) technologies. The culture-dependent analyses predominantly showed the presence of clostridial and propionibacterial strains. The 16S rRNA gene sequences retrieved from clone libraries revealed distinct microbial populations associated with each clean-room facility, clustered exclusively within gram-positive organisms. PhyloChip analysis detected a greater microbial diversity, spanning many phyla of bacteria, and provided a deeper insight into the microbial community structure of the clean-room facilities. This study presents an integrated approach for assessing the anaerobic microbial population within clean-room facilities, using both molecular and cultivation-based analyses. The results reveal that highly diverse anaerobic bacterial populations persist in the clean rooms even after the imposition of rigorous maintenance programs and will pose a challenge to planetary protection implementation activities.
Collapse
Affiliation(s)
- Alexander Probst
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, California 91109, Center for Environmental Biotechnology, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720, Lehrstuhl fuer Mikrobiologie und Archaeenzentrum, Universitaet Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Parag Vaishampayan
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, California 91109, Center for Environmental Biotechnology, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720, Lehrstuhl fuer Mikrobiologie und Archaeenzentrum, Universitaet Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Shariff Osman
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, California 91109, Center for Environmental Biotechnology, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720, Lehrstuhl fuer Mikrobiologie und Archaeenzentrum, Universitaet Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Christine Moissl-Eichinger
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, California 91109, Center for Environmental Biotechnology, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720, Lehrstuhl fuer Mikrobiologie und Archaeenzentrum, Universitaet Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Gary L. Andersen
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, California 91109, Center for Environmental Biotechnology, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720, Lehrstuhl fuer Mikrobiologie und Archaeenzentrum, Universitaet Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, California 91109, Center for Environmental Biotechnology, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720, Lehrstuhl fuer Mikrobiologie und Archaeenzentrum, Universitaet Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
25
|
Cultivation of anaerobic and facultatively anaerobic bacteria from spacecraft-associated clean rooms. Appl Environ Microbiol 2009; 75:3484-91. [PMID: 19363082 DOI: 10.1128/aem.02565-08] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the course of this biodiversity study, the cultivable microbial community of European spacecraft-associated clean rooms and the Herschel Space Observatory located therein were analyzed during routine assembly operations. Here, we focused on microorganisms capable of growing without oxygen. Anaerobes play a significant role in planetary protection considerations since extraterrestrial environments like Mars probably do not provide enough oxygen for fully aerobic microbial growth. A broad assortment of anaerobic media was used in our cultivation strategies, which focused on microorganisms with special metabolic skills. The majority of the isolated strains grew on anaerobic, complex, nutrient-rich media. Autotrophic microorganisms or microbes capable of fixing nitrogen were also cultivated. A broad range of facultatively anaerobic bacteria was detected during this study and also, for the first time, some strictly anaerobic bacteria (Clostridium and Propionibacterium) were isolated from spacecraft-associated clean rooms. The multiassay cultivation approach was the basis for the detection of several bacteria that had not been cultivated from these special environments before and also led to the discovery of two novel microbial species of Pseudomonas and Paenibacillus.
Collapse
|
26
|
Hofmann BA, Farmer JD, von Blanckenburg F, Fallick AE. Subsurface filamentous fabrics: an evaluation of origins based on morphological and geochemical criteria, with implications for exopaleontology. ASTROBIOLOGY 2008; 8:87-117. [PMID: 18241094 DOI: 10.1089/ast.2007.0130] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The fossil record of the subsurface biosphere is sparse. Results obtained on subsurface filamentous fabrics (SFF) from >225 paleosubsurface sites in volcanics, oxidized ores, and paleokarst of subrecent to Proterozoic age are presented. SFF are mineral encrustations on filamentous or fibrous substrates that formed in subsurface environments. SFF occur in association with low-temperature aqueous mineral assemblages and consist of tubular, micron-thick (median 1.6 micron) filaments in high spatial density, which occur as irregular masses, matted fabrics, and vertically draped features that resemble stalactites. Micron-sized filamentous centers rule out a stalactitic origin. Morphometric analysis of SFF filamentous forms demonstrates that their shape more closely resembles microbial filaments than fibrous minerals. Abiogenic filament-like forms are considered unlikely precursors of most SFF, because abiogenic forms differ in the distribution of widths and have a lower degree of curvature and a lower number of direction changes. Elemental analyses of SFF show depletion in immobile elements (e.g., Al, Th) and a systematic enrichment in As and Sb, which demonstrates a relation to environments with high flows of water. Sulfur isotopic analyses are consistent with a biological origin of a SFF sample from a Mississippi Valley-Type deposit, which is consistent with data in the literature. Fe isotopes in SFF and active analogue systems, however, allow no discrimination between biogenic and abiogenic origins. The origin of most SFF is explained as permineralized remains of microbial filaments that possibly record rapid growth during phases of high water flow that released chemical energy. It is possible that some SFF formed due to encrustation of mineral fibers. SFF share similarities with Microcodium from soil environments. SFF are a logical target in the search for past life on Mars. The macroscopic nature of many SFF allows for their relatively easy in situ recognition and targeting for more detailed microstructural and geochemical analysis.
Collapse
|
27
|
Moissl C, Bruckner JC, Venkateswaran K. Archaeal diversity analysis of spacecraft assembly clean rooms. ISME JOURNAL 2007; 2:115-9. [DOI: 10.1038/ismej.2007.98] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Vignais PM, Billoud B. Occurrence, Classification, and Biological Function of Hydrogenases: An Overview. Chem Rev 2007; 107:4206-72. [PMID: 17927159 DOI: 10.1021/cr050196r] [Citation(s) in RCA: 1039] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Paulette M. Vignais
- CEA Grenoble, Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, UMR CEA/CNRS/UJF 5092, Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), 17 rue des Martyrs, 38054 Grenoble cedex 9, France, and Atelier de BioInformatique Université Pierre et Marie Curie (Paris 6), 12 rue Cuvier, 75005 Paris, France
| | - Bernard Billoud
- CEA Grenoble, Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, UMR CEA/CNRS/UJF 5092, Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), 17 rue des Martyrs, 38054 Grenoble cedex 9, France, and Atelier de BioInformatique Université Pierre et Marie Curie (Paris 6), 12 rue Cuvier, 75005 Paris, France
| |
Collapse
|
29
|
Hudson TL, Aharonson O, Schorghofer N, Farmer CB, Hecht MH, Bridges NT. Water vapor diffusion in Mars subsurface environments. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002815] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Nealson KH, Inagaki F, Takai K. Hydrogen-driven subsurface lithoautotrophic microbial ecosystems (SLiMEs): do they exist and why should we care? Trends Microbiol 2005; 13:405-10. [PMID: 16054814 DOI: 10.1016/j.tim.2005.07.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 06/30/2005] [Accepted: 07/21/2005] [Indexed: 11/15/2022]
Abstract
One of the keys to success of many anaerobic ecosystems is the process of syntrophic intercellular hydrogen transfer. This process facilitates the overall reaction by end-product removal, taking advantage of a wide variety of organisms that are able to use hydrogen directly as an energy source by uptake hydrogenases. Thus, the issue is not whether there are hydrogen-driven processes or communities but whether there are hydrogen-driven communities that exist and persist independently of the products of photosynthesis (so-called subsurface lithoautotrophic microbial ecosystems, or SLiMEs). It is the proof of long-term independence from photosynthesis and its products that is the most difficult issue to establish, and perhaps the most important one with regard to searching for SLiMEs both on and off our planet. Although the evidence is not yet unequivocal, a growing body of evidence supports the existence of SLiME-like communities: if they exist, the implications are immense with regard to understanding subsurface environments on Earth, looking for present day analogs of early Earth and the search for life in other worlds.
Collapse
Affiliation(s)
- Kenneth H Nealson
- Department of Earth Sciences, University of Southern California, 3651 Trousdale Parkway, Los Angeles, CA 90089-0740, USA.
| | | | | |
Collapse
|
31
|
|
32
|
Formisano V, Atreya S, Encrenaz T, Ignatiev N, Giuranna M. Detection of Methane in the Atmosphere of Mars. Science 2004; 306:1758-61. [PMID: 15514118 DOI: 10.1126/science.1101732] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We report a detection of methane in the martian atmosphere by the Planetary Fourier Spectrometer onboard the Mars Express spacecraft. The global average methane mixing ratio is found to be 10 +/- 5 parts per billion by volume (ppbv). However, the mixing ratio varies between 0 and 30 ppbv over the planet. The source of methane could be either biogenic or nonbiogenic, including past or present subsurface microorganisms, hydrothermal activity, or cometary impacts.
Collapse
Affiliation(s)
- Vittorio Formisano
- Istituto di Fisica dello Spazio Interplanetario INAF-IFSI, Via del Fosso del Cavaliere 100, 00133 Rome, Italy.
| | | | | | | | | |
Collapse
|
33
|
Fox A. Chemical markers for bacteria in extraterrestrial samples. THE ANATOMICAL RECORD 2002; 268:180-5. [PMID: 12382316 DOI: 10.1002/ar.10152] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interplanetary missions to collect pristine Martian surface samples for analysis of organic molecules, and to search for evidence of life, are in the planning phases. The only extraterrestrial samples currently on Earth are lunar dust and rocks, brought back by the Apollo (U.S.) and Luna (Soviet Union) missions to the moon, and meteorites. Meteorites are contaminated when they pass through the Earth's atmosphere, and during environmental exposure on Earth. Lunar fines have been stored on Earth for over 30 years under conditions designed to avoid chemical but not microbiological contamination. It has been extremely difficult to draw firm conclusions about the origin of chemicals (including amino acids) in extraterrestrial samples. Of particular concern has been the possibility of bacterial contamination. Recent work using state-of-the-art gas chromatography tandem mass spectrometry (GC-MS/MS) has dramatically lowered the chemical background, allowing a clear demonstration that lunar fines are remarkably different from terrestrial dust in that they generally lack certain chemical markers (muramic acid and 3-hydroxy fatty acids) characteristic of Earth's bacteria. Thus, lunar dust might be used as a negative control, in conjunction with GC-MS/MS analyses, in future analytical studies of lunar dust and meteorites. Such analyses may also be important in studies designed to search for the presence of life on Mars.
Collapse
Affiliation(s)
- Alvin Fox
- Department of Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia 29208, USA.
| |
Collapse
|
34
|
Lang Q, Cheng IF, Wai CM, Paszczynski A, Crawford RL, Barnes B, Anderson TJ, Wells R, Corti G, Allenbach L, Erwin DP, Assefi T, Mojarradi M. Supercritical fluid extraction and high-performance liquid chromatography-diode array-electrochemical detection of signature redox compounds from sand and soil samples. Anal Biochem 2002; 301:225-34. [PMID: 11814293 DOI: 10.1006/abio.2001.5502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A supercritical fluid extraction procedure and a chromatographic separation/detection method were developed for the detection of Earth-based microorganisms. After microbes in a sand or a soil sample were hydrolyzed in a diluted NH(4)OH/acetone solution, several redox compounds from bacteria could be effectively extracted with trimethylamine-modified supercritical CO(2) at 35 degrees C and 300 atm. These signature redox-active compounds were separated by a reversed-phase HPLC column in an ion-pair mode and then monitored with a diode array detector and an electrochemical detector. The analytical results demonstrated the feasibility of using the reported techniques to detect the chemical signature of life in barren desert sand samples.
Collapse
Affiliation(s)
- Qingyong Lang
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Life as we know it on Earth depends on liquid water, a suite of 'biogenic' elements (most famously carbon) and a useful source of free energy. Here we review Europa's suitability for life from the perspective of these three requirements. It is likely, though not yet certain, that Europa harbors a subsurface ocean of liquid water whose volume is about twice that of Earth's oceans. Little is known about Europa's inventory of carbon, nitrogen, and other biogenic elements, but lower bounds on these can be placed by considering the role of commentary delivery over Europa's history. Sources of free energy are challenging for a world covered with an ice layer kilometers thick, but it is possible that hydrothermal activity and/or organics and oxidants provided by the action of radiation chemistry at Europa's surface and subsequent mixing into Europa's ocean could provide the electron donors and acceptors needed to power a Europan ecosystem. It is not premature to draw lessons from the search for life on Mars with the Viking spacecraft for planning exobiological missions to Europa.
Collapse
Affiliation(s)
- Christopher F Chyba
- Center for the Study of Life in the Universe, SETI Institute, Mountain View, CA, USA
| | | |
Collapse
|
36
|
Jakosky BM, Mellon MT. High-resolution thermal inertia mapping of Mars: Sites of exobiological interest. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2000je001311] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Ball P. How to spot a Martian. Nature 2000. [DOI: 10.1038/news000302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|