1
|
Wu M, Zhang R, Fu P, Mei Y. Disrupted astrocyte-neuron signaling reshapes brain activity in epilepsy and Alzheimer's disease. Neuroscience 2025; 570:132-151. [PMID: 39986432 DOI: 10.1016/j.neuroscience.2025.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/20/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
Astrocytes establish dynamic interactions with surrounding neurons and synchronize neuronal networks within a specific range. However, these reciprocal astrocyte-neuronal interactions are selectively disrupted in epilepsy and Alzheimer's disease (AD), which contributes to the initiation and progression of network hypersynchrony. Deciphering how disrupted astrocyte-neuronal signaling reshapes brain activity is crucial to prevent subclinical epileptiform activity in epilepsy and AD. In this review, we provide an overview of the diverse astrocyte-neuronal crosstalk in maintaining of network activity via homeostatic control of extracellular ions and transmitters, synapse formation and elimination. More importantly, since AD and epilepsy share the common symptoms of neuronal hyperexcitability and astrogliosis, we then explore the crosstalk between astrocytes and neurons in the context of epilepsy and AD and discuss how these disrupted interactions reshape brain activity in pathological conditions. Collectively, this review sheds light on how disrupted astrocyte-neuronal signaling reshapes brain activity in epilepsy and AD, and highlights that modifying astrocyte-neuronal signaling could be a therapeutic approach to prevent epileptiform activity in AD.
Collapse
Affiliation(s)
- Mengjie Wu
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ruonan Zhang
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Peng Fu
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yufei Mei
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
2
|
Chen X, Tang SJ. Neural Circuitry Polarization in the Spinal Dorsal Horn (SDH): A Novel Form of Dysregulated Circuitry Plasticity during Pain Pathogenesis. Cells 2024; 13:398. [PMID: 38474361 PMCID: PMC10930392 DOI: 10.3390/cells13050398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Pathological pain emerges from nociceptive system dysfunction, resulting in heightened pain circuit activity. Various forms of circuitry plasticity, such as central sensitization, synaptic plasticity, homeostatic plasticity, and excitation/inhibition balance, contribute to the malfunction of neural circuits during pain pathogenesis. Recently, a new form of plasticity in the spinal dorsal horn (SDH), named neural circuit polarization (NCP), was discovered in pain models induced by HIV-1 gp120 and chronic morphine administration. NCP manifests as an increase in excitatory postsynaptic currents (EPSCs) in excitatory neurons and a decrease in EPSCs in inhibitory neurons, presumably facilitating hyperactivation of pain circuits. The expression of NCP is associated with astrogliosis. Ablation of reactive astrocytes or suppression of astrogliosis blocks NCP and, concomitantly, the development of gp120- or morphine-induced pain. In this review, we aim to compare and integrate NCP with other forms of plasticity in pain circuits to improve the understanding of the pathogenic contribution of NCP and its cooperation with other forms of circuitry plasticity during the development of pathological pain.
Collapse
Affiliation(s)
| | - Shao-Jun Tang
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA;
| |
Collapse
|
3
|
Hyung S, Park JH, Jung K. Application of optogenetic glial cells to neuron-glial communication. Front Cell Neurosci 2023; 17:1249043. [PMID: 37868193 PMCID: PMC10585272 DOI: 10.3389/fncel.2023.1249043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/15/2023] [Indexed: 10/24/2023] Open
Abstract
Optogenetic techniques combine optics and genetics to enable cell-specific targeting and precise spatiotemporal control of excitable cells, and they are increasingly being employed. One of the most significant advantages of the optogenetic approach is that it allows for the modulation of nearby cells or circuits with millisecond precision, enabling researchers to gain a better understanding of the complex nervous system. Furthermore, optogenetic neuron activation permits the regulation of information processing in the brain, including synaptic activity and transmission, and also promotes nerve structure development. However, the optimal conditions remain unclear, and further research is required to identify the types of cells that can most effectively and precisely control nerve function. Recent studies have described optogenetic glial manipulation for coordinating the reciprocal communication between neurons and glia. Optogenetically stimulated glial cells can modulate information processing in the central nervous system and provide structural support for nerve fibers in the peripheral nervous system. These advances promote the effective use of optogenetics, although further experiments are needed. This review describes the critical role of glial cells in the nervous system and reviews the optogenetic applications of several types of glial cells, as well as their significance in neuron-glia interactions. Together, it briefly discusses the therapeutic potential and feasibility of optogenetics.
Collapse
Affiliation(s)
- Sujin Hyung
- Precision Medicine Research Institute, Samsung Medical Center, Seoul, Republic of Korea
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
| | - Ji-Hye Park
- Graduate School of Cancer Science and Policy, Cancer Biomedical Science, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Kyuhwan Jung
- DAWINBIO Inc., Hanam-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
4
|
Stasenko SV, Hramov AE, Kazantsev VB. Loss of neuron network coherence induced by virus-infected astrocytes: a model study. Sci Rep 2023; 13:6401. [PMID: 37076526 PMCID: PMC10115799 DOI: 10.1038/s41598-023-33622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/15/2023] [Indexed: 04/21/2023] Open
Abstract
Coherent activations of brain neuron networks underlie many physiological functions associated with various behavioral states. These synchronous fluctuations in the electrical activity of the brain are also referred to as brain rhythms. At the cellular level, rhythmicity can be induced by various mechanisms of intrinsic oscillations in neurons or the network circulation of excitation between synaptically coupled neurons. One specific mechanism concerns the activity of brain astrocytes that accompany neurons and can coherently modulate synaptic contacts of neighboring neurons, synchronizing their activity. Recent studies have shown that coronavirus infection (Covid-19), which enters the central nervous system and infects astrocytes, can cause various metabolic disorders. Specifically, Covid-19 can depress the synthesis of astrocytic glutamate and gamma-aminobutyric acid. It is also known that in the post-Covid state, patients may suffer from symptoms of anxiety and impaired cognitive functions. We propose a mathematical model of a spiking neuron network accompanied by astrocytes capable of generating quasi-synchronous rhythmic bursting discharges. The model predicts that if the release of glutamate is depressed, normal burst rhythmicity will suffer dramatically. Interestingly, in some cases, the failure of network coherence may be intermittent, with intervals of normal rhythmicity, or the synchronization can disappear.
Collapse
Affiliation(s)
- Sergey V Stasenko
- Scientific-educational mathematical center "Mathematics of future technologies", Lobachevsky University, Nizhniy Novgorod, Russia, 603022.
- Laboratory of neurobiomorphic technologies, Moscow Institute of Physics and Technology, Moscow, Russia, 117303.
| | - Alexander E Hramov
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia, 236041
- Neuroscience Research Institute, Samara State Medical University, Samara, Russia, 443099
| | - Victor B Kazantsev
- Scientific-educational mathematical center "Mathematics of future technologies", Lobachevsky University, Nizhniy Novgorod, Russia, 603022
- Laboratory of neurobiomorphic technologies, Moscow Institute of Physics and Technology, Moscow, Russia, 117303
| |
Collapse
|
5
|
Morita M. Modern Microscopic Approaches to Astrocytes. Int J Mol Sci 2023; 24:ijms24065883. [PMID: 36982958 PMCID: PMC10051528 DOI: 10.3390/ijms24065883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Microscopy started as the histological analysis based on intrinsic optical properties of tissues such as the refractive index and light absorption, and is expanding to include the visualization of organelles by chemical staining, localization of molecules by immunostaining, physiological measurements such as Ca2+ imaging, functional manipulation by optogenetics, and comprehensive analysis of chemical composition by Raman spectra. The microscope is one of the most important tools in neuroscience, which aims to reveal the complex intercellular communications underlying brain function and pathology. Many aspects of astrocytes, including the structures of their fine processes and physiological activities in concert with neurons and blood vessels, were revealed in the course of innovations in modern microscopy. The evolution of modern microscopy is a consequence of breakthroughs in spatiotemporal resolutions and expansions in molecular and physiological targets due to the progress in optics and information technology, as well as the inventions of probes using organic chemistry and molecular biology. This review overviews the modern microscopic approach to astrocytes.
Collapse
Affiliation(s)
- Mitsuhiro Morita
- Department of Biology, Graduate School of Sciences, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
6
|
Cuellar-Santoyo AO, Ruiz-Rodríguez VM, Mares-Barbosa TB, Patrón-Soberano A, Howe AG, Portales-Pérez DP, Miquelajáuregui Graf A, Estrada-Sánchez AM. Revealing the contribution of astrocytes to glutamatergic neuronal transmission. Front Cell Neurosci 2023; 16:1037641. [PMID: 36744061 PMCID: PMC9893894 DOI: 10.3389/fncel.2022.1037641] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023] Open
Abstract
Research on glutamatergic neurotransmission has focused mainly on the function of presynaptic and postsynaptic neurons, leaving astrocytes with a secondary role only to ensure successful neurotransmission. However, recent evidence indicates that astrocytes contribute actively and even regulate neuronal transmission at different levels. This review establishes a framework by comparing glutamatergic components between neurons and astrocytes to examine how astrocytes modulate or otherwise influence neuronal transmission. We have included the most recent findings about the role of astrocytes in neurotransmission, allowing us to understand the complex network of neuron-astrocyte interactions. However, despite the knowledge of synaptic modulation by astrocytes, their contribution to specific physiological and pathological conditions remains to be elucidated. A full understanding of the astrocyte's role in neuronal processing could open fruitful new frontiers in the development of therapeutic applications.
Collapse
Affiliation(s)
- Ares Orlando Cuellar-Santoyo
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Victor Manuel Ruiz-Rodríguez
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Teresa Belem Mares-Barbosa
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
- Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | - Araceli Patrón-Soberano
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Andrew G. Howe
- Intelligent Systems Laboratory, HRL Laboratories, LLC, Malibu, CA, United States
| | - Diana Patricia Portales-Pérez
- Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | | | - Ana María Estrada-Sánchez
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| |
Collapse
|
7
|
Hui KK, Chater TE, Goda Y, Tanaka M. How Staying Negative Is Good for the (Adult) Brain: Maintaining Chloride Homeostasis and the GABA-Shift in Neurological Disorders. Front Mol Neurosci 2022; 15:893111. [PMID: 35875665 PMCID: PMC9305173 DOI: 10.3389/fnmol.2022.893111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/10/2022] [Indexed: 01/27/2023] Open
Abstract
Excitatory-inhibitory (E-I) imbalance has been shown to contribute to the pathogenesis of a wide range of neurodevelopmental disorders including autism spectrum disorders, epilepsy, and schizophrenia. GABA neurotransmission, the principal inhibitory signal in the mature brain, is critically coupled to proper regulation of chloride homeostasis. During brain maturation, changes in the transport of chloride ions across neuronal cell membranes act to gradually change the majority of GABA signaling from excitatory to inhibitory for neuronal activation, and dysregulation of this GABA-shift likely contributes to multiple neurodevelopmental abnormalities that are associated with circuit dysfunction. Whilst traditionally viewed as a phenomenon which occurs during brain development, recent evidence suggests that this GABA-shift may also be involved in neuropsychiatric disorders due to the "dematuration" of affected neurons. In this review, we will discuss the cell signaling and regulatory mechanisms underlying the GABA-shift phenomenon in the context of the latest findings in the field, in particular the role of chloride cotransporters NKCC1 and KCC2, and furthermore how these regulatory processes are altered in neurodevelopmental and neuropsychiatric disorders. We will also explore the interactions between GABAergic interneurons and other cell types in the developing brain that may influence the GABA-shift. Finally, with a greater understanding of how the GABA-shift is altered in pathological conditions, we will briefly outline recent progress on targeting NKCC1 and KCC2 as a therapeutic strategy against neurodevelopmental and neuropsychiatric disorders associated with improper chloride homeostasis and GABA-shift abnormalities.
Collapse
Affiliation(s)
- Kelvin K. Hui
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas E. Chater
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Japan
| | - Yukiko Goda
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Japan
- Synapse Biology Unit, Okinawa Institute for Science and Technology Graduate University, Onna, Japan
| | - Motomasa Tanaka
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
8
|
Controlling synchronization of gamma oscillations by astrocytic modulation in a model hippocampal neural network. Sci Rep 2022; 12:6970. [PMID: 35484169 PMCID: PMC9050920 DOI: 10.1038/s41598-022-10649-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
Recent in vitro and in vivo experiments demonstrate that astrocytes participate in the maintenance of cortical gamma oscillations and recognition memory. However, the mathematical understanding of the underlying dynamical mechanisms remains largely incomplete. Here we investigate how the interplay of slow modulatory astrocytic signaling with fast synaptic transmission controls coherent oscillations in the network of hippocampal interneurons that receive inputs from pyramidal cells. We show that the astrocytic regulation of signal transmission between neurons improves the firing synchrony and extends the region of coherent oscillations in the biologically relevant values of synaptic conductance. Astrocyte-mediated potentiation of inhibitory synaptic transmission markedly enhances the coherence of network oscillations over a broad range of model parameters. Astrocytic regulation of excitatory synaptic input improves the robustness of interneuron network gamma oscillations induced by physiologically relevant excitatory model drive. These findings suggest a mechanism, by which the astrocytes become involved in cognitive function and information processing through modulating fast neural network dynamics.
Collapse
|
9
|
Astrocytes Modulate Somatostatin Interneuron Signaling in the Visual Cortex. Cells 2022; 11:cells11091400. [PMID: 35563706 PMCID: PMC9102536 DOI: 10.3390/cells11091400] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 02/05/2023] Open
Abstract
At glutamatergic synapses, astrocytes respond to the neurotransmitter glutamate with intracellular Ca2+ elevations and the release of gliotransmitters that modulate synaptic transmission. While the functional interactions between neurons and astrocytes have been intensively studied at glutamatergic synapses, the role of astrocytes at GABAergic synapses has been less investigated. In the present study, we combine optogenetics with 2-photon Ca2+ imaging experiments and patch-clamp recording techniques to investigate the signaling between Somatostatin (SST)-releasing GABAergic interneurons and astrocytes in brain slice preparations from the visual cortex (VCx). We found that an intense stimulation of SST interneurons evokes Ca2+ elevations in astrocytes that fundamentally depend on GABAB receptor (GABABR) activation, and that this astrocyte response is modulated by the neuropeptide somatostatin. After episodes of SST interneuron hyperactivity, we also observed a long-lasting reduction of the inhibitory postsynaptic current (IPSC) amplitude onto pyramidal neurons (PNs). This reduction of inhibitory tone (i.e., disinhibition) is counterbalanced by the activation of astrocytes that upregulate SST interneuron-evoked IPSC amplitude by releasing ATP that, after conversion to adenosine, activates A1Rs. Our results describe a hitherto unidentified modulatory mechanism of inhibitory transmission to VCx layer II/III PNs that involves the functional recruitment of astrocytes by SST interneuron signaling.
Collapse
|
10
|
Linsambarth S, Carvajal FJ, Moraga‐Amaro R, Mendez L, Tamburini G, Jimenez I, Verdugo DA, Gómez GI, Jury N, Martínez P, Zundert B, Varela‐Nallar L, Retamal MA, Martin C, Altenberg GA, Fiori MC, Cerpa W, Orellana JA, Stehberg J. Astroglial gliotransmitters released via Cx43 hemichannels regulate NMDAR‐dependent transmission and short‐term fear memory in the basolateral amygdala. FASEB J 2022; 36:e22134. [DOI: 10.1096/fj.202100798rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Sergio Linsambarth
- Laboratorio de Neurobiología Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Francisco J. Carvajal
- Laboratorio de Función y Patología Neuronal Departamento de Biología Celular y Molecular Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile Santiago Chile
| | - Rodrigo Moraga‐Amaro
- Laboratorio de Neurobiología Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Luis Mendez
- Laboratorio de Neurobiología Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Giovanni Tamburini
- Laboratorio de Neurobiología Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Ivanka Jimenez
- Laboratorio de Neurobiología Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Daniel Antonio Verdugo
- Laboratorio de Neurobiología Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Gonzalo I. Gómez
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud Universidad Autónoma de Chile Santiago Chile
| | - Nur Jury
- Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Pablo Martínez
- Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Brigitte Zundert
- Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Lorena Varela‐Nallar
- Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Mauricio A. Retamal
- Centro de Fisiología Celular e Integrativa. Facultad de Medicina Clínica Alemana Universidad del Desarrollo Santiago Chile
| | - Claire Martin
- Unité de Biologie Fonctionnelle et Adaptative Centre National la Recherche Scientifique Unité Mixte de Recherche 8251 Université Paris Diderot, Sorbonne Paris Cité Paris France
| | - Guillermo A. Altenberg
- Department of Cell Physiology and Molecular Biophysics Center for Membrane Protein Research Texas Tech University Health Sciences Center Lubbock Texas USA
| | - Mariana C. Fiori
- Department of Cell Physiology and Molecular Biophysics Center for Membrane Protein Research Texas Tech University Health Sciences Center Lubbock Texas USA
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal Departamento de Biología Celular y Molecular Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile Santiago Chile
| | - Juan A. Orellana
- Departamento de Neurología Escuela de Medicina Pontificia Universidad Católica de Chile Santiago Chile
| | - Jimmy Stehberg
- Laboratorio de Neurobiología Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| |
Collapse
|
11
|
Zheng S, Wang H, Han F, Chu J, Zhang F, Zhang X, Shi Y, Zhang L. Detection of Microstructural Medial Prefrontal Cortex Changes Using Magnetic Resonance Imaging Texture Analysis in a Post-Traumatic Stress Disorder Rat Model. Front Psychiatry 2022; 13:805851. [PMID: 35530016 PMCID: PMC9068999 DOI: 10.3389/fpsyt.2022.805851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Radiomics is characterized by high-throughput extraction of texture features from medical images and the mining of information that can potentially be used to define neuroimaging markers in many neurological or psychiatric diseases. However, there have been few studies concerning MRI radiomics in post-traumatic stress disorder (PTSD). The study's aims were to appraise changes in microstructure of the medial prefrontal cortex (mPFC) in a PTSD animal model, specifically single-prolonged stress (SPS) rats, by using MRI texture analysis. The feasibility of using a radiomics approach to classify PTSD rats was examined. METHODS Morris water maze and elevated plus maze were used to assess behavioral changes in the rats. Two hundred and sixty two texture features were extracted from each region of interest in T2-weighted images. Stepwise discriminant analysis (SDA) and LASSO regression were used to perform feature selection and radiomics signature building to identify mPFC radiomics signatures consisting of optimal features, respectively. Receiver operating characteristic curve plots were used to evaluate the classification performance. Immunofluorescence techniques were used to examine the expression of glial fibrillary acidic protein (GFAP) and neuronal nuclei (NeuN) in the mPFC. Nuclear pycnosis was detected using 4',6-diamidino-2-phenylindole (DAPI) staining. RESULTS Behavioral results indicated decreased learning and spatial memory performance and increased anxiety-like behavior after SPS stimulation. SDA analysis showed that the general non-cross-validated and cross-validated discrimination accuracies were 86.5% and 80.4%. After LASSO dimensionality reduction, 10 classification models were established. For classifying PTSD rats between the control and each SPS group, these models achieved AUCs of 0.944, 0.950, 0.959, and 0.936. Among four SPS groups, the AUCs were 0.927, 0.943, 0.967, 0.916, 0.932, and 0.893, respectively. The number of GFAP-positive cells and intensity of GFAP-IR within the mPFC increased 1 day after SPS treatment, and then decreased. The intensity of NeuN-IR and number of NeuN-positive cells significantly decreased from 1 to 14 days after SPS stimulation. The brightness levels of DAPI-stained nuclei increased in SPS groups. CONCLUSION Non-invasive MRI radiomics features present an efficient and sensitive way to detect microstructural changes in the mPFC after SPS stimulation, and they could potentially serve as a novel neuroimaging marker in PTSD diagnosis.
Collapse
Affiliation(s)
- Shilei Zheng
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Han Wang
- Medical Imaging Center, Taian Central Hospital, Taian, China
| | - Fang Han
- Post-Traumatic Stress Disorder Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, Shenyang, China
| | - Jianyi Chu
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Fan Zhang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xianglin Zhang
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yuxiu Shi
- Post-Traumatic Stress Disorder Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, Shenyang, China
| | - Lili Zhang
- Department of Stomatology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
12
|
Dos Santos RR, Bernardino TC, da Silva MCM, de Oliveira ACP, Drumond LE, Rosa DV, Massensini AR, Moraes MFD, Doretto MC, Romano-Silva MA, Reis HJ. Neurochemical abnormalities in the hippocampus of male rats displaying audiogenic seizures, a genetic model of epilepsy. Neurosci Lett 2021; 761:136123. [PMID: 34293418 DOI: 10.1016/j.neulet.2021.136123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Epilepsy is a disorder characterized by recurrent seizures that affects 1% of the population. However, the neurochemical alterations observed in epilepsy are not fully understood. There are different animal models of epilepsy, such as genetic or drug induced. In the present study, we utilize Wistar Audiogenic Rats (WAR), a murine strain that develops seizures in response to high intensity audio stimulation, in order to investigate abnormalities in glutamatergic and GABAergic systems. METHODS Synaptosomes and glial plasmalemmal vesicles were prepared from hippocampus and cortex, respectively. Glutamate and GABA release and uptake were assayed by monitoring the fluorescence and using L-[3H]-radiolabeled compounds. Glutamate and calcium concentration in the synaptosomes were also measured. The expression of neuronal calcium sensor 1 (NCS-1) was determined by western blot. RESULTS Glutamate and GABA release evoked by KCl was decreased in WAR compared to control Wistar rats. Calcium independent release was not considerably different in both groups. The total amount of glutamate of synaptosomes, as well as glutamate uptake by synaptosomes and GPV were also decreased in WAR in comparison with the controls. In addition, [Ca2+]i of hippocampal synaptosomes, as well as NCS-1 expression in the hippocampus, were increased in WAR in comparison with controls. CONCLUSION In conclusion, our results suggest that WAR have important alterations in the glutamatergic and GABAergic pathways, as well as an increased expression of NCS-1 in the hippocampus and inferior colliculus. These alterations may be linked to the spreading of hyperexcitability and recruitment of various brain regions.
Collapse
Affiliation(s)
- Rodrigo Ribeiro Dos Santos
- Departamento de Saúde Mental, Faculdade de Medicina, Universidade Federal de Minas Gerais. Av Alfredo Balena 190, CEP 30130-100 Belo Horizonte, MG, Brazil; Laboratório de Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Túlio C Bernardino
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Maria Carolina Machado da Silva
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Antônio C P de Oliveira
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Luciana E Drumond
- Núcleo de Neurociências, Departamento de Biofísica e Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Daniela V Rosa
- Departamento de Saúde Mental, Faculdade de Medicina, Universidade Federal de Minas Gerais. Av Alfredo Balena 190, CEP 30130-100 Belo Horizonte, MG, Brazil
| | - André R Massensini
- Núcleo de Neurociências, Departamento de Biofísica e Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Márcio F D Moraes
- Núcleo de Neurociências, Departamento de Biofísica e Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Maria C Doretto
- Núcleo de Neurociências, Departamento de Biofísica e Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Marco A Romano-Silva
- Departamento de Saúde Mental, Faculdade de Medicina, Universidade Federal de Minas Gerais. Av Alfredo Balena 190, CEP 30130-100 Belo Horizonte, MG, Brazil
| | - Helton J Reis
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
13
|
Honoré E, Khlaifia A, Bosson A, Lacaille JC. Hippocampal Somatostatin Interneurons, Long-Term Synaptic Plasticity and Memory. Front Neural Circuits 2021; 15:687558. [PMID: 34149368 PMCID: PMC8206813 DOI: 10.3389/fncir.2021.687558] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022] Open
Abstract
A distinctive feature of the hippocampal structure is the diversity of inhibitory interneurons. These complex inhibitory interconnections largely contribute to the tight modulation of hippocampal circuitry, as well as to the formation and coordination of neuronal assemblies underlying learning and memory. Inhibitory interneurons provide more than a simple transitory inhibition of hippocampal principal cells (PCs). The synaptic plasticity of inhibitory neurons provides long-lasting changes in the hippocampal network and is a key component of memory formation. The dendrite targeting interneurons expressing the peptide somatostatin (SOM) are particularly interesting in this regard because they display unique long-lasting synaptic changes leading to metaplastic regulation of hippocampal networks. In this article, we examine the actions of the neuropeptide SOM on hippocampal cells, synaptic plasticity, learning, and memory. We address the different subtypes of hippocampal SOM interneurons. We describe the long-term synaptic plasticity that takes place at the excitatory synapses of SOM interneurons, its singular induction and expression mechanisms, as well as the consequences of these changes on the hippocampal network, learning, and memory. We also review evidence that astrocytes provide cell-specific dynamic regulation of inhibition of PC dendrites by SOM interneurons. Finally, we cover how, in mouse models of Alzheimer’s disease (AD), dysfunction of plasticity of SOM interneuron excitatory synapses may also contribute to cognitive impairments in brain disorders.
Collapse
Affiliation(s)
- Eve Honoré
- Department of Neurosciences, Centre for Interdisciplinary Research on Brain and Learning, Research Group on the Central Nervous System, Université de Montréal, Montreal, QC, Canada
| | - Abdessattar Khlaifia
- Department of Neurosciences, Centre for Interdisciplinary Research on Brain and Learning, Research Group on the Central Nervous System, Université de Montréal, Montreal, QC, Canada
| | - Anthony Bosson
- Department of Neurosciences, Centre for Interdisciplinary Research on Brain and Learning, Research Group on the Central Nervous System, Université de Montréal, Montreal, QC, Canada
| | - Jean-Claude Lacaille
- Department of Neurosciences, Centre for Interdisciplinary Research on Brain and Learning, Research Group on the Central Nervous System, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
14
|
Lange F, Hörnschemeyer J, Kirschstein T. Glutamatergic Mechanisms in Glioblastoma and Tumor-Associated Epilepsy. Cells 2021; 10:1226. [PMID: 34067762 PMCID: PMC8156732 DOI: 10.3390/cells10051226] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
The progression of glioblastomas is associated with a variety of neurological impairments, such as tumor-related epileptic seizures. Seizures are not only a common comorbidity of glioblastoma but often an initial clinical symptom of this cancer entity. Both, glioblastoma and tumor-associated epilepsy are closely linked to one another through several pathophysiological mechanisms, with the neurotransmitter glutamate playing a key role. Glutamate interacts with its ionotropic and metabotropic receptors to promote both tumor progression and excitotoxicity. In this review, based on its physiological functions, our current understanding of glutamate receptors and glutamatergic signaling will be discussed in detail. Furthermore, preclinical models to study glutamatergic interactions between glioma cells and the tumor-surrounding microenvironment will be presented. Finally, current studies addressing glutamate receptors in glioma and tumor-related epilepsy will be highlighted and future approaches to interfere with the glutamatergic network are discussed.
Collapse
Affiliation(s)
- Falko Lange
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany;
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, 18147 Rostock, Germany
| | - Julia Hörnschemeyer
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Timo Kirschstein
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany;
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, 18147 Rostock, Germany
| |
Collapse
|
15
|
Tabatabaee MS, Kerkovius J, Menard F. Design of an Imaging Probe to Monitor Real-Time Redistribution of L-type Voltage-Gated Calcium Channels in Astrocytic Glutamate Signaling. Mol Imaging Biol 2021; 23:407-416. [PMID: 33432518 DOI: 10.1007/s11307-020-01573-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE In the brain, astrocytes are non-excitable cells that undergo rapid morphological changes when stimulated by the excitatory neurotransmitter glutamate. We developed a chemical probe to monitor how glutamate affects the density and distribution of astrocytic L-type voltage-gated calcium channels (LTCC). PROCEDURES The imaging probe FluoBar1 was created from a barbiturate ligand modified with a fluorescent coumarin moiety. The probe selectivity was examined with colocalization analyses of confocal fluorescence imaging in U118-MG and transfected COS-7 cells. Living cells treated with 50 nM FluoBar1 were imaged in real time to reveal changes in density and distribution of astrocytic LTCCs upon exposure to glutamate. RESULTS FluoBar1 was synthesized in ten steps. The selectivity of the probe was demonstrated with immunoblotting and confocal imaging of immunostained cells expressing the CaV1.2 isoform of LTCCs proteins. Applying FluoBar1 to astrocyte model cells U118-MG allowed us to measure a fivefold increase in fluorescence density of LTCCs upon glutamate exposure. CONCLUSIONS Imaging probe FluoBar1 allows the real-time monitoring of LTCCs in living cells, revealing for first time that glutamate causes a rapid increase of LTCC membranar density in astrocyte model cells. FluoBar1 may help tackle previously intractable questions about LTCC dynamics in cellular events.
Collapse
Affiliation(s)
- Mitra Sadat Tabatabaee
- Department of Biochemistry & Molecular Biology, I.K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| | - Jeff Kerkovius
- Department of Chemistry, I.K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| | - Frederic Menard
- Department of Biochemistry & Molecular Biology, I.K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada. .,Department of Chemistry, I.K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
16
|
Fernández-García S, Sancho-Balsells A, Longueville S, Hervé D, Gruart A, Delgado-García JM, Alberch J, Giralt A. Astrocytic BDNF and TrkB regulate severity and neuronal activity in mouse models of temporal lobe epilepsy. Cell Death Dis 2020; 11:411. [PMID: 32483154 PMCID: PMC7264221 DOI: 10.1038/s41419-020-2615-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022]
Abstract
Astrocytes have emerged as crucial regulators of neuronal network activity, synapse formation, and underlying behavioral and cognitive processes. Despite some pathways have been identified, the communication between astrocytes and neurons remains to be completely elucidated. Unraveling this communication is crucial to design potential treatments for neurological disorders like temporal lobe epilepsy (TLE). The BDNF and TrkB molecules have emerged as very promising therapeutic targets. However, their modulation can be accompanied by several off-target effects such as excitotoxicity in case of uncontrolled upregulation or dementia, amnesia, and other memory disorders in case of downregulation. Here, we show that BDNF and TrkB from astrocytes modulate neuronal dysfunction in TLE models. First, conditional overexpression of BDNF from astrocytes worsened the phenotype in the lithium-pilocarpine mouse model. Our evidences pointed out to the astrocytic pro-BDNF isoform as a major player of this altered phenotype. Conversely, specific genetic deletion of BDNF in astrocytes prevented the increase in the number of firing neurons and the global firing rate in an in vitro model of TLE. Regarding to the TrkB, we generated mice with a genetic deletion of TrkB specifically in hippocampal neurons or astrocytes. Interestingly, both lines displayed neuroprotection in the lithium-pilocarpine model but only the mice with genetic deletion of TrkB in astrocytes showed significantly preserved spatial learning skills. These data identify the astrocytic BDNF and TrkB molecules as promising therapeutic targets for the treatment of TLE.
Collapse
Affiliation(s)
- Sara Fernández-García
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Anna Sancho-Balsells
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Sophie Longueville
- Inserm UMR-S 1270, 75005, Paris, France.,Sorbonne Université, Science and Engineering Faculty, 75005, Paris, France.,Institut du Fer a Moulin, 75005, Paris, France
| | - Denis Hervé
- Inserm UMR-S 1270, 75005, Paris, France.,Sorbonne Université, Science and Engineering Faculty, 75005, Paris, France.,Institut du Fer a Moulin, 75005, Paris, France
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, 41013, Seville, Spain
| | | | - Jordi Alberch
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.,Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, 08036, Barcelona, Spain
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain. .,Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, 08036, Barcelona, Spain.
| |
Collapse
|
17
|
Xu S, Sun Q, Fan J, Jiang Y, Yang W, Cui Y, Yu Z, Jiang H, Li B. Role of Astrocytes in Post-traumatic Epilepsy. Front Neurol 2019; 10:1149. [PMID: 31798512 PMCID: PMC6863807 DOI: 10.3389/fneur.2019.01149] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/14/2019] [Indexed: 12/25/2022] Open
Abstract
Traumatic brain injury, a common cause of acquired epilepsy, is typical to find necrotic cell death within the injury core. The dynamic changes in astrocytes surrounding the injury core contribute to epileptic seizures associated with intense neuronal firing. However, little is known about the molecular mechanisms that activate astrocytes during traumatic brain injury or the effect of functional changes of astrocytes on seizures. In this comprehensive review, we present our cumulated understanding of the complex neurological affection in astrocytes after traumatic brain injury. We approached the problem through describing the changes of cell morphology, neurotransmitters, biochemistry, and cytokines in astrocytes during post-traumatic epilepsy. In addition, we also discussed the relationship between dynamic changes in astrocytes and seizures and the current pharmacologic agents used for treatment. Hopefully, this review will provide a more detailed knowledge from which better therapeutic strategies can be developed to treat post-traumatic epilepsy.
Collapse
Affiliation(s)
- Songbai Xu
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China
| | - Qihan Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jie Fan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Yuanyuan Jiang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Yifeng Cui
- Department of Pediatrics, Yanbian Maternal and Child Health Hospital, Yanji, China
| | - Zhenxiang Yu
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China
| | - Huiyi Jiang
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Dallérac G, Zapata J, Rouach N. Versatile control of synaptic circuits by astrocytes: where, when and how? Nat Rev Neurosci 2019; 19:729-743. [PMID: 30401802 DOI: 10.1038/s41583-018-0080-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Close structural and functional interactions of astrocytes with synapses play an important role in brain function. The repertoire of ways in which astrocytes can regulate synaptic transmission is complex so that they can both promote and dampen synaptic efficacy. Such contrasting effects raise questions regarding the determinants of these divergent astroglial functions. Recent findings provide insights into where, when and how astroglial regulation of synapses takes place by revealing major molecular and functional intrinsic heterogeneity as well as switches in astrocytes occurring during development or specific patterns of neuronal activity. Astrocytes may therefore be seen as boosters or gatekeepers of synaptic circuits depending on their intrinsic and transformative properties throughout life.
Collapse
Affiliation(s)
- Glenn Dallérac
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Jonathan Zapata
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Nathalie Rouach
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| |
Collapse
|
19
|
Mederos S, Perea G. GABAergic-astrocyte signaling: A refinement of inhibitory brain networks. Glia 2019; 67:1842-1851. [PMID: 31145508 PMCID: PMC6772151 DOI: 10.1002/glia.23644] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022]
Abstract
Interneurons play a critical role in precise control of network operation. Indeed, higher brain capabilities such as working memory, cognitive flexibility, attention, or social interaction rely on the action of GABAergic interneurons. Evidence from excitatory neurons and synapses has revealed astrocytes as integral elements of synaptic transmission. However, GABAergic interneurons can also engage astrocyte signaling; therefore, it is tempting to speculate about different scenarios where, based on particular interneuron cell type, GABAergic‐astrocyte interplay would be involved in diverse outcomes of brain function. In this review, we will highlight current data supporting the existence of dynamic GABAergic‐astrocyte communication and its impact on the inhibitory‐regulated brain responses, bringing new perspectives on the ways astrocytes might contribute to efficient neuronal coding.
Collapse
Affiliation(s)
- Sara Mederos
- Department of Functional and Systems Neurobiology, Instituto Cajal, CSIC, Madrid, Spain
| | - Gertrudis Perea
- Department of Functional and Systems Neurobiology, Instituto Cajal, CSIC, Madrid, Spain
| |
Collapse
|
20
|
Kanakov O, Gordleeva S, Ermolaeva A, Jalan S, Zaikin A. Astrocyte-induced positive integrated information in neuron-astrocyte ensembles. Phys Rev E 2019; 99:012418. [PMID: 30780273 DOI: 10.1103/physreve.99.012418] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Indexed: 01/08/2023]
Abstract
Integrated information is a quantitative measure from information theory of how tightly all parts of a system are interconnected in terms of information exchange. In this study we show that astrocytes, playing an important role in regulation of information transmission between neurons, may contribute to a generation of positive integrated information in neuronal ensembles. Analytically and numerically we show that the presence of astrocytic regulation of neurotransmission may be essential for this information attribute in neuroastrocytic ensembles. Moreover, the proposed "spiking-bursting" mechanism of generating positive integrated information is shown to be generic and not limited to neuron-astrocyte networks and is given a complete analytic description.
Collapse
Affiliation(s)
- Oleg Kanakov
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Susanna Gordleeva
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | | | - Sarika Jalan
- Complex Systems Lab, Discipline of Physics, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Alexey Zaikin
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Institute for Women's Health and Department of Mathematics, University College London, London, United Kingdom.,Department of Pediatrics, Faculty of Pediatrics, Sechenov University, Moscow, Russia
| |
Collapse
|
21
|
Semyanov A. Spatiotemporal pattern of calcium activity in astrocytic network. Cell Calcium 2019; 78:15-25. [DOI: 10.1016/j.ceca.2018.12.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/16/2018] [Accepted: 12/16/2018] [Indexed: 12/22/2022]
|
22
|
Mahan VL. Neurointegrity and neurophysiology: astrocyte, glutamate, and carbon monoxide interactions. Med Gas Res 2019; 9:24-45. [PMID: 30950417 PMCID: PMC6463446 DOI: 10.4103/2045-9912.254639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/15/2019] [Indexed: 12/27/2022] Open
Abstract
Astrocyte contributions to brain function and prevention of neuropathologies are as extensive as that of neurons. Astroglial regulation of glutamate, a primary neurotransmitter, is through uptake, release through vesicular and non-vesicular pathways, and catabolism to intermediates. Homeostasis by astrocytes is considered to be of primary importance in determining normal central nervous system health and central nervous system physiology - glutamate is central to dynamic physiologic changes and central nervous system stability. Gasotransmitters may affect diverse glutamate interactions positively or negatively. The effect of carbon monoxide, an intrinsic central nervous system gasotransmitter, in the complex astrocyte homeostasis of glutamate may offer insights to normal brain development, protection, and its use as a neuromodulator and neurotherapeutic. In this article, we will review the effects of carbon monoxide on astrocyte homeostasis of glutamate.
Collapse
Affiliation(s)
- Vicki L. Mahan
- Division of Pediatric Cardiothoracic Surgery in the Department of Surgery, St. Christopher's Hospital for Children/Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
23
|
Gavrilov N, Golyagina I, Brazhe A, Scimemi A, Turlapov V, Semyanov A. Astrocytic Coverage of Dendritic Spines, Dendritic Shafts, and Axonal Boutons in Hippocampal Neuropil. Front Cell Neurosci 2018; 12:248. [PMID: 30174590 PMCID: PMC6108058 DOI: 10.3389/fncel.2018.00248] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/19/2018] [Indexed: 01/22/2023] Open
Abstract
Distal astrocytic processes have a complex morphology, reminiscent of branchlets and leaflets. Astrocytic branchlets are rod-like processes containing mitochondria and endoplasmic reticulum, capable of generating inositol-3-phosphate (IP3)-dependent Ca2+ signals. Leaflets are small and flat processes that protrude from branchlets and fill the space between synapses. Here we use three-dimensional (3D) reconstructions from serial section electron microscopy (EM) of rat CA1 hippocampal neuropil to determine the astrocytic coverage of dendritic spines, shafts and axonal boutons. The distance to the maximum of the astrocyte volume fraction (VF) correlated with the size of the spine when calculated from the center of mass of the postsynaptic density (PSD) or from the edge of the PSD, but not from the spine surface. This suggests that the astrocytic coverage of small and larger spines is similar in hippocampal neuropil. Diffusion simulations showed that such synaptic microenvironment favors glutamate spillover and extrasynaptic receptor activation at smaller spines. We used complexity and entropy measures to characterize astrocytic branchlets and leaflets. The 2D projections of astrocytic branchlets had smaller spatial complexity and entropy than leaflets, consistent with the higher structural complexity and less organized distribution of leaflets. The VF of astrocytic leaflets was highest around dendritic spines, lower around axonal boutons and lowest around dendritic shafts. In contrast, the VF of astrocytic branchlets was similarly low around these three neuronal compartments. Taken together, these results suggest that astrocytic leaflets preferentially contact synapses as opposed to the dendritic shaft, an arrangement that might favor neurotransmitter spillover and extrasynaptic receptor activation along dendritic shafts.
Collapse
Affiliation(s)
- Nikolay Gavrilov
- UNN Institute of Neuroscience, N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Inna Golyagina
- UNN Institute of Neuroscience, N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alexey Brazhe
- Department of Biophysics, Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Annalisa Scimemi
- Department of Biology, University at Albany, The State University of New York (SUNY), Albany, NY, United States
| | - Vadim Turlapov
- Institute of Information Technologies, Mathematics and Mechanics, N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alexey Semyanov
- UNN Institute of Neuroscience, N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow, Russia
| |
Collapse
|
24
|
Kondo C, Clark RB, Al‐Jezani N, Kim TY, Belke D, Banderali U, Szerencsei RT, Jalloul AH, Schnetkamp PPM, Spitzer KW, Giles WR. ATP triggers a robust intracellular [Ca 2+ ]-mediated signalling pathway in human synovial fibroblasts. Exp Physiol 2018; 103:1101-1122. [PMID: 29791754 DOI: 10.1113/ep086851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/26/2018] [Indexed: 01/05/2023]
Abstract
NEW FINDINGS What is the central question of this study? What are the main [Ca2+ ]i signalling pathways activated by ATP in human synovial fibroblasts? What is the main finding and its importance? In human synovial fibroblasts ATP acts through a linked G-protein (Gq ) and phospholipase C signalling mechanism to produce IP3 , which then markedly enhances release of Ca2+ from the endoplasmic reticulum. These results provide new information for the detection of early pathophysiology of arthritis. ABSTRACT In human articular joints, synovial fibroblasts (HSFs) have essential physiological functions that include synthesis and secretion of components of the extracellular matrix and essential articular joint lubricants, as well as release of paracrine substances such as ATP. Although the molecular and cellular processes that lead to a rheumatoid arthritis (RA) phenotype are not fully understood, HSF cells exhibit significant changes during this disease progression. The effects of ATP on HSFs were studied by monitoring changes in intracellular Ca2+ ([Ca2+ ]i ), and measuring electrophysiological properties. ATP application to HSF cell populations that had been enzymatically released from 2-D cell culture revealed that ATP (10-100 μm), or its analogues UTP or ADP, consistently produced a large transient increase in [Ca2+ ]i . These changes (i) were initiated by activation of the P2 Y purinergic receptor family, (ii) required Gq -mediated signal transduction, (iii) did not involve a transmembrane Ca2+ influx, but instead (iv) arose almost entirely from activation of endoplasmic reticulum (ER)-localized inositol 1,4,5-trisphosphate (IP3 ) receptors that triggered Ca2+ release from the ER. Corresponding single cell electrophysiological studies revealed that these ATP effects (i) were insensitive to [Ca2+ ]o removal, (ii) involved an IP3 -mediated intracellular Ca2+ release process, and (iii) strongly turned on Ca2+ -activated K+ current(s) that significantly hyperpolarized these cells. Application of histamine produced very similar effects in these HSF cells. Since ATP is a known paracrine agonist and histamine is released early in the inflammatory response, these findings may contribute to identification of early steps/defects in the initiation and progression of RA.
Collapse
Affiliation(s)
- C Kondo
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - R B Clark
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | | | - T Y Kim
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - D Belke
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | | | - R T Szerencsei
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - A H Jalloul
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - P P M Schnetkamp
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - K W Spitzer
- Nora Eccles Harrison Cardiovascular Centre, Salt Lake City, UT, USA
| | - W R Giles
- Faculty of Kinesiology, University of Calgary, Calgary, Canada.,Faculty of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
25
|
Mayhew J, Graham BA, Biber K, Nilsson M, Walker FR. Purinergic modulation of glutamate transmission: An expanding role in stress-linked neuropathology. Neurosci Biobehav Rev 2018; 93:26-37. [PMID: 29959963 DOI: 10.1016/j.neubiorev.2018.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/18/2018] [Accepted: 06/24/2018] [Indexed: 02/04/2023]
Abstract
Chronic stress has been extensively linked to disturbances in glutamatergic signalling. Emerging from this field of research is a considerable number of studies identifying the ability of purines at the pre-, post-, and peri-synaptic levels to tune glutamatergic neurotransmission. While the evidence describing purinergic control of glutamate has continued to grow, there has been relatively little attention given to how chronic stress modulates purinergic functions. The available research on this topic has demonstrated that chronic stress can not only disturb purinergic receptors involved in the regulation of glutamate neurotransmission, but also perturb glial-dependent purinergic signalling. This review will provide a detailed examining of the complex literature relating to glutamatergic-purinergic interactions with a focus on both neuronal and glial contributions. Once these detailed interactions have been described and contextualised, we will integrate recent findings from the field of stress research.
Collapse
Affiliation(s)
- J Mayhew
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| | - B A Graham
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - K Biber
- Department of Psychiatry and Psychotherapy, University Hospital Freiburg, 79104 Freiburg, Germany; Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - M Nilsson
- Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - F R Walker
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
26
|
Lia A, Zonta M, Requie LM, Carmignoto G. Dynamic interactions between GABAergic and astrocytic networks. Neurosci Lett 2018; 689:14-20. [PMID: 29908949 DOI: 10.1016/j.neulet.2018.06.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 10/28/2022]
Abstract
Brain network activity derives from the concerted action of different cell populations. Together with interneurons, astrocytes play fundamental roles in shaping the inhibition in brain circuitries and modulating neuronal transmission. In this review, we summarize past and recent findings that reveal in neural networks the importance of the interaction between GABAergic signaling and astrocytes and discuss its physiological and pathological relevance.
Collapse
Affiliation(s)
- Annamaria Lia
- University of Padua, Department of Biomedical Sciences, Padua, Italy; CNR, Neuroscience Institute, Padua, Italy
| | - Micaela Zonta
- University of Padua, Department of Biomedical Sciences, Padua, Italy; CNR, Neuroscience Institute, Padua, Italy.
| | - Linda Maria Requie
- University of Padua, Department of Biomedical Sciences, Padua, Italy; CNR, Neuroscience Institute, Padua, Italy
| | - Giorgio Carmignoto
- University of Padua, Department of Biomedical Sciences, Padua, Italy; CNR, Neuroscience Institute, Padua, Italy
| |
Collapse
|
27
|
Jammal L, Whalley B, Barkai E. Learning-induced modulation of the effect of neuroglial transmission on synaptic plasticity. J Neurophysiol 2018; 119:2373-2379. [PMID: 29561201 DOI: 10.1152/jn.00101.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Training rats in a complex olfactory discrimination task results in acquisition of "rule learning" (learning how to learn), a term describing the capability to perform the task superbly. Such rule learning results in strengthening of both excitatory and inhibitory synaptic connections between neurons in the piriform cortex. Moreover, intrinsic excitability is also enhanced throughout the pyramidal neuron population. Surprisingly, the cortical network retains its stability under these long-term modifications. In particular, the susceptibility for long-term potentiation (LTP) induction, while decreased for a short time window, returns to almost its pretraining value, although significant strengthening of AMPA receptor-mediated glutamatergic transmission remains. Such network balance is essential for maintaining the single-cell modifications that underlie long-term memory while preventing hyperexcitability that would result in runaway synaptic activity. However, the mechanisms underlying the long-term maintenance of such balance have yet to be described. In this study, we explored the role of astrocyte-mediated gliotransmission in long-term maintenance of learning-induced modifications in susceptibility for LTP induction and control of the strength of synaptic inhibition. We show that blocking connexin 43 hemichannels, which form gap junctions between astrocytes, decreases significantly the ability to induce LTP by stimulating the excitatory connections between piriform cortex pyramidal neurons after learning only. In parallel, spontaneous miniature inhibitory postsynaptic current amplitude is reduced in neurons from trained rats only, to the level of prelearning. Thus gliotransmission has a key role in maintaining learning-induced cortical stability by a wide-ranged control on synaptic transmission and plasticity. NEW & NOTEWORTHY We explore the role of astrocyte-mediated gliotransmission in maintenance of olfactory discrimination learning-induced modifications. We show that blocking gap junctions between astrocytes decreases significantly the ability to induce long-term potentiation in the piriform cortex after learning only. In parallel, synaptic inhibition is reduced in neurons from trained rats only, to the level of prelearning. Thus gliotransmission has a key role in maintaining learning-induced cortical stability by a wide-ranged control on synaptic transmission and plasticity.
Collapse
Affiliation(s)
- Luna Jammal
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa , Haifa , Israel
| | - Ben Whalley
- School of Chemistry, Food & Nutritional Sciences and Pharmacy, The University of Reading, White Knights, Reading , United Kingdom
| | - Edi Barkai
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa , Haifa , Israel
| |
Collapse
|
28
|
Rosskothen-Kuhl N, Hildebrandt H, Birkenhäger R, Illing RB. Astrocyte Hypertrophy and Microglia Activation in the Rat Auditory Midbrain Is Induced by Electrical Intracochlear Stimulation. Front Cell Neurosci 2018. [PMID: 29520220 PMCID: PMC5827675 DOI: 10.3389/fncel.2018.00043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Neuron–glia interactions contribute to tissue homeostasis and functional plasticity in the mammalian brain, but it remains unclear how this is achieved. The potential of central auditory brain tissue for stimulation-dependent cellular remodeling was studied in hearing-experienced and neonatally deafened rats. At adulthood, both groups received an intracochlear electrode into the left cochlea and were continuously stimulated for 1 or 7 days after waking up from anesthesia. Normal hearing and deafness were assessed by auditory brainstem responses (ABRs). The effectiveness of stimulation was verified by electrically evoked ABRs as well as immunocytochemistry and in situ hybridization for the immediate early gene product Fos on sections through the auditory midbrain containing the inferior colliculus (IC). Whereas hearing-experienced animals showed a tonotopically restricted Fos response in the IC contralateral to electrical intracochlear stimulation, Fos-positive neurons were found almost throughout the contralateral IC in deaf animals. In deaf rats, the Fos response was accompanied by a massive increase of GFAP indicating astrocytic hypertrophy, and a local activation of microglial cells identified by IBA1. These glia responses led to a noticeable increase of neuron–glia approximations. Moreover, staining for the GABA synthetizing enzymes GAD65 and GAD67 rose significantly in neuronal cell bodies and presynaptic boutons in the contralateral IC of deaf rats. Activation of neurons and glial cells and tissue re-composition were in no case accompanied by cell death as would have been apparent by a Tunel reaction. These findings suggest that growth and activity of glial cells is crucial for the local adjustment of neuronal inhibition to neuronal excitation.
Collapse
Affiliation(s)
- Nicole Rosskothen-Kuhl
- Neurobiological Research Laboratory, Section for Clinical and Experimental Otology, University Medical Center Freiburg, Freiburg, Germany
| | - Heika Hildebrandt
- Neurobiological Research Laboratory, Section for Clinical and Experimental Otology, University Medical Center Freiburg, Freiburg, Germany
| | - Ralf Birkenhäger
- Molecular Biological Laboratory, Section for Clinical and Experimental Otology, University Medical Center Freiburg, Freiburg, Germany
| | - Robert-Benjamin Illing
- Neurobiological Research Laboratory, Section for Clinical and Experimental Otology, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
29
|
Covelo A, Araque A. Neuronal activity determines distinct gliotransmitter release from a single astrocyte. eLife 2018; 7:32237. [PMID: 29380725 PMCID: PMC5790377 DOI: 10.7554/elife.32237] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/23/2018] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence indicates that astrocytes are actively involved in brain function by regulating synaptic activity and plasticity. Different gliotransmitters, such as glutamate, ATP, GABA or D-serine, released form astrocytes have been shown to induce different forms of synaptic regulation. However, whether a single astrocyte may release different gliotransmitters is unknown. Here we show that mouse hippocampal astrocytes activated by endogenous (neuron-released endocannabinoids or GABA) or exogenous (single astrocyte Ca2+ uncaging) stimuli modulate putative single CA3-CA1 hippocampal synapses. The astrocyte-mediated synaptic modulation was biphasic and consisted of an initial glutamate-mediated potentiation followed by a purinergic-mediated depression of neurotransmitter release. The temporal dynamic properties of this biphasic synaptic regulation depended on the firing frequency and duration of the neuronal activity that stimulated astrocytes. Present results indicate that single astrocytes can decode neuronal activity and, in response, release distinct gliotransmitters to differentially regulate neurotransmission at putative single synapses.
Collapse
Affiliation(s)
- Ana Covelo
- Department of Neuroscience, University of Minnesota, Minneapolis, United States
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, United States
| |
Collapse
|
30
|
Rakela B, Brehm P, Mandel G. Astrocytic modulation of excitatory synaptic signaling in a mouse model of Rett syndrome. eLife 2018; 7:31629. [PMID: 29313799 PMCID: PMC5771668 DOI: 10.7554/elife.31629] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022] Open
Abstract
Studies linking mutations in Methyl CpG Binding Protein 2 (MeCP2) to physiological defects in the neurological disease, Rett syndrome, have focused largely upon neuronal dysfunction despite MeCP2 ubiquitous expression. Here we explore roles for astrocytes in neuronal network function using cortical slice recordings. We find that astrocyte stimulation in wild-type mice increases excitatory synaptic activity that is absent in male mice lacking MeCP2 globally. To determine the cellular basis of the defect, we exploit a female mouse model for Rett syndrome that expresses wild-type MeCP2-GFP in a mosaic distribution throughout the brain, allowing us to test all combinations of wild-type and mutant cells. We find that the defect is dependent upon MeCP2 expression status in the astrocytes and not in the neurons. Our findings highlight a new role for astrocytes in regulation of excitatory synaptic signaling and in the neurological defects associated with Rett syndrome.
Collapse
Affiliation(s)
- Benjamin Rakela
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Paul Brehm
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Gail Mandel
- Vollum Institute, Oregon Health & Science University, Portland, United States
| |
Collapse
|
31
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
32
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 1012] [Impact Index Per Article: 144.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
33
|
Ding S, Wang X, Zhuge W, Yang J, Zhuge Q. Dopamine induces glutamate accumulation in astrocytes to disrupt neuronal function leading to pathogenesis of minimal hepatic encephalopathy. Neuroscience 2017; 365:94-113. [PMID: 28965835 DOI: 10.1016/j.neuroscience.2017.09.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 09/20/2017] [Accepted: 09/23/2017] [Indexed: 12/15/2022]
Abstract
Minimal hepatic encephalopathy (MHE) is induced by elevated intracranial dopamine (DA). Glutamate (Glu) toxicity is known to be involved in many neurological disorders. In this study, we investigated whether DA increased Glu levels and collaborated with Glu to impair memory. We found that DA upregulated TAAR1, leading to reduced EAAT2 expression and Glu clearance in primary cortical astrocytes (PCAs). High DA increased TAAR1 expression, and high Glu increased AMPAR expression, inducing the activation of CaN/NFAT signaling and a decrease in the production of BDNF (Brain Derived Nerve Growth Factor)/NT3 (neurotrophin-3) in primary cortical neurons (PCNs). DA activated TAAR1 to downregulate EAAT2 and increase extracellular Glu levels in MHE. Additionally, DA together with Glu caused decreased production of neuronal BDNF/NT3 and memory impairment through the activation of CaN/NFAT signaling in MHE. From these findings, we conclude that DA increases Glu levels via interaction with TAAR1 and disruption of EAAT2 signaling in astrocytes, and DA interacting with TAAR1 and Glu interacting with AMPAR synergistically decreased the production of BDNF by activation of CaN/NFAT signaling to impair memory in MHE rats.
Collapse
Affiliation(s)
- Saidan Ding
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Department of Surgery Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xuebao Wang
- Analytical and Testing Center, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Weishan Zhuge
- Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jianjing Yang
- Neurosurgery Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qichuan Zhuge
- Neurosurgery Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
34
|
Singh A, Abraham WC. Astrocytes and synaptic plasticity in health and disease. Exp Brain Res 2017; 235:1645-1655. [PMID: 28299411 DOI: 10.1007/s00221-017-4928-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 02/20/2017] [Indexed: 12/22/2022]
Abstract
Activity-dependent synaptic plasticity phenomena such as long-term potentiation and long-term depression are candidate mechanisms for storing information in the brain. Regulation of synaptic plasticity is critical for healthy cognition and learning and this is provided in part by metaplasticity, which can act to maintain synaptic transmission within a dynamic range and potentially prevent excitotoxicity. Metaplasticity mechanisms also allow neurons to integrate plasticity-associated signals over time. Interestingly, astrocytes appear to be critical for certain forms of synaptic plasticity and metaplasticity mechanisms. Synaptic dysfunction is increasingly viewed as an early feature of AD that is correlated with the severity of cognitive decline, and the development of these pathologies is correlated with a rise in reactive astrocytes. This review focuses on the contributions of astrocytes to synaptic plasticity and metaplasticity in normal tissue, and addresses whether astroglial pathology may lead to aberrant engagement of these mechanisms in neurological diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- A Singh
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Box 56, Dunedin, 9054, New Zealand
| | - Wickliffe C Abraham
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
35
|
Bang J, Kim HY, Lee H. Optogenetic and Chemogenetic Approaches for Studying Astrocytes and Gliotransmitters. Exp Neurobiol 2016; 25:205-221. [PMID: 27790055 PMCID: PMC5081467 DOI: 10.5607/en.2016.25.5.205] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 08/19/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022] Open
Abstract
The brain consists of heterogeneous populations of neuronal and non-neuronal cells. The revelation of their connections and interactions is fundamental to understanding normal brain functions as well as abnormal changes in pathological conditions. Optogenetics and chemogenetics have been developed to allow functional manipulations both in vitro and in vivo to examine causal relationships between cellular changes and functional outcomes. These techniques are based on genetically encoded effector molecules that respond exclusively to exogenous stimuli, such as a certain wavelength of light or a synthetic ligand. Activation of effector molecules provokes diverse intracellular changes, such as an influx or efflux of ions, depolarization or hyperpolarization of membranes, and activation of intracellular signaling cascades. Optogenetics and chemogenetics have been applied mainly to the study of neuronal circuits, but their use in studying non-neuronal cells has been gradually increasing. Here we introduce recent studies that have employed optogenetics and chemogenetics to reveal the function of astrocytes and gliotransmitters.
Collapse
Affiliation(s)
- Juwon Bang
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
| | - Hak Yeong Kim
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
| | - Hyosang Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
| |
Collapse
|
36
|
Pai YH, Lim CS, Park KA, Cho HS, Lee GS, Shin YS, Kim HW, Jeon BH, Yoon SH, Park JB. Facilitation of AMPA receptor-mediated steady-state current by extrasynaptic NMDA receptors in supraoptic magnocellular neurosecretory cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:425-32. [PMID: 27382359 PMCID: PMC4930911 DOI: 10.4196/kjpp.2016.20.4.425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 01/02/2023]
Abstract
In addition to classical synaptic transmission, information is transmitted between cells via the activation of extrasynaptic receptors that generate persistent tonic current in the brain. While growing evidence supports the presence of tonic NMDA current (INMDA) generated by extrasynaptic NMDA receptors (eNMDARs), the functional significance of tonic INMDA in various brain regions remains poorly understood. Here, we demonstrate that activation of eNMDARs that generate INMDA facilitates the α-amino-3-hydroxy-5-methylisoxazole-4-proprionate receptor (AMPAR)-mediated steady-state current in supraoptic nucleus (SON) magnocellular neurosecretory cells (MNCs). In low-Mg2+ artificial cerebrospinal fluid (aCSF), glutamate induced an inward shift in Iholding (IGLU) at a holding potential (Vholding) of –70 mV which was partly blocked by an AMPAR antagonist, NBQX. NBQX-sensitive IGLU was observed even in normal aCSF at Vholding of –40 mV or –20 mV. IGLU was completely abolished by pretreatment with an NMDAR blocker, AP5, under all tested conditions. AMPA induced a reproducible inward shift in Iholding (IAMPA) in SON MNCs. Pretreatment with AP5 attenuated IAMPA amplitudes to ~60% of the control levels in low-Mg2+ aCSF, but not in normal aCSF at Vholding of –70 mV. IAMPA attenuation by AP5 was also prominent in normal aCSF at depolarized holding potentials. Memantine, an eNMDAR blocker, mimicked the AP5-induced IAMPA attenuation in SON MNCs. Finally, chronic dehydration did not affect IAMPA attenuation by AP5 in the neurons. These results suggest that tonic INMDA, mediated by eNMDAR, facilitates AMPAR function, changing the postsynaptic response to its agonists in normal and osmotically challenged SON MNCs.
Collapse
Affiliation(s)
- Yoon Hyoung Pai
- Department of Physiology, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Chae Seong Lim
- Department of Anesthesiology & Pain Medicine, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Kyung-Ah Park
- Department of Physiology, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Hyun Sil Cho
- Department of Physiology, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Gyu-Seung Lee
- Department of Physiology, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Yong Sup Shin
- Department of Anesthesiology & Pain Medicine, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Hyun-Woo Kim
- Department of Physiology, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Byeong Hwa Jeon
- Department of Physiology, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Seok Hwa Yoon
- Department of Anesthesiology & Pain Medicine, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Jin Bong Park
- Department of Physiology, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| |
Collapse
|
37
|
Modulation of Synaptic Plasticity by Glutamatergic Gliotransmission: A Modeling Study. Neural Plast 2016; 2016:7607924. [PMID: 27195153 PMCID: PMC4852535 DOI: 10.1155/2016/7607924] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/15/2016] [Indexed: 01/03/2023] Open
Abstract
Glutamatergic gliotransmission, that is, the release of glutamate from perisynaptic astrocyte processes in an activity-dependent manner, has emerged as a potentially crucial signaling pathway for regulation of synaptic plasticity, yet its modes of expression and function in vivo remain unclear. Here, we focus on two experimentally well-identified gliotransmitter pathways, (i) modulations of synaptic release and (ii) postsynaptic slow inward currents mediated by glutamate released from astrocytes, and investigate their possible functional relevance on synaptic plasticity in a biophysical model of an astrocyte-regulated synapse. Our model predicts that both pathways could profoundly affect both short- and long-term plasticity. In particular, activity-dependent glutamate release from astrocytes could dramatically change spike-timing-dependent plasticity, turning potentiation into depression (and vice versa) for the same induction protocol.
Collapse
|
38
|
Peña-Ortega F, Rivera-Angulo AJ, Lorea-Hernández JJ. Pharmacological Tools to Study the Role of Astrocytes in Neural Network Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 949:47-66. [DOI: 10.1007/978-3-319-40764-7_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Losi G, Mariotti L, Carmignoto G. GABAergic interneuron to astrocyte signalling: a neglected form of cell communication in the brain. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130609. [PMID: 25225102 DOI: 10.1098/rstb.2013.0609] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
GABAergic interneurons represent a minority of all cortical neurons and yet they efficiently control neural network activities in all brain areas. In parallel, glial cell astrocytes exert a broad control of brain tissue homeostasis and metabolism, modulate synaptic transmission and contribute to brain information processing in a dynamic interaction with neurons that is finely regulated in time and space. As most studies have focused on glutamatergic neurons and excitatory transmission, our knowledge of functional interactions between GABAergic interneurons and astrocytes is largely defective. Here, we critically discuss the currently available literature that hints at a potential relevance of this specific signalling in brain function. Astrocytes can respond to GABA through different mechanisms that include GABA receptors and transporters. GABA-activated astrocytes can, in turn, modulate local neuronal activity by releasing gliotransmitters including glutamate and ATP. In addition, astrocyte activation by different signals can modulate GABAergic neurotransmission. Full clarification of the reciprocal signalling between different GABAergic interneurons and astrocytes will improve our understanding of brain network complexity and has the potential to unveil novel therapeutic strategies for brain disorders.
Collapse
Affiliation(s)
- Gabriele Losi
- Department of Biomedical Science, Consiglio Nazionale delle Ricerche, Neuroscience Institute and University of Padova, Padova, Italy
| | - Letizia Mariotti
- Department of Biomedical Science, Consiglio Nazionale delle Ricerche, Neuroscience Institute and University of Padova, Padova, Italy
| | - Giorgio Carmignoto
- Department of Biomedical Science, Consiglio Nazionale delle Ricerche, Neuroscience Institute and University of Padova, Padova, Italy
| |
Collapse
|
40
|
Sahlender DA, Savtchouk I, Volterra A. What do we know about gliotransmitter release from astrocytes? Philos Trans R Soc Lond B Biol Sci 2015; 369:20130592. [PMID: 25225086 PMCID: PMC4173278 DOI: 10.1098/rstb.2013.0592] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Astrocytes participate in information processing by actively modulating synaptic properties via gliotransmitter release. Various mechanisms of astrocytic release have been reported, including release from storage organelles via exocytosis and release from the cytosol via plasma membrane ion channels and pumps. It is still not fully clear which mechanisms operate under which conditions, but some of them, being Ca2+-regulated, may be physiologically relevant. The properties of Ca2+-dependent transmitter release via exocytosis or via ion channels are different and expected to produce different extracellular transmitter concentrations over time and to have distinct functional consequences. The molecular aspects of these two release pathways are still under active investigation. Here, we discuss the existing morphological and functional evidence in support of either of them. Transgenic mouse models, specific antagonists and localization studies have provided insight into regulated exocytosis, albeit not in a systematic fashion. Even more remains to be uncovered about the details of channel-mediated release. Better functional tools and improved ultrastructural approaches are needed in order fully to define specific modalities and effects of astrocytic gliotransmitter release pathways.
Collapse
Affiliation(s)
- Daniela A Sahlender
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, Lausanne 1005, Switzerland
| | - Iaroslav Savtchouk
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, Lausanne 1005, Switzerland
| | - Andrea Volterra
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, Lausanne 1005, Switzerland
| |
Collapse
|
41
|
Matschke V, Theiss C, Hollmann M, Schulze-Bahr E, Lang F, Seebohm G, Strutz-Seebohm N. NDRG2 phosphorylation provides negative feedback for SGK1-dependent regulation of a kainate receptor in astrocytes. Front Cell Neurosci 2015; 9:387. [PMID: 26500492 PMCID: PMC4594022 DOI: 10.3389/fncel.2015.00387] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/16/2015] [Indexed: 11/13/2022] Open
Abstract
Glutamate receptors play an important role in the function of astrocytes. Among their tasks is the regulation of gliotransmission, gene expression and exocytosis of the tissue-type plasminogen activator (tPA), which has an enhancing effect on N-methyl-D-aspartate (NMDA) receptors and thus prevent over-excitation of neighboring neurons. The kainate receptor GluK2, which is expressed in neurons and astrocytes, is under tight regulation of the PI3-kinase SGK pathway as shown in neurons. SGK1 targets include N-myc downstream-regulated genes (NDRGs) 1 and 2 (NDRG1, NDRG2), proteins with elusive function. In the present study, we analyzed the effects of SGK1, NDRG1, and NDRG2 on GluK2 current amplitude and plasma membrane localization in astrocytes and heterologous expression. We demonstrate that NDRG1 and NDRG2 themselves have no effect on GluK2 current amplitudes in heterologous expressed ion channels. However, when NDRG2 is coexpressed with GluK2 and SGK1, the stimulating effect of SGK1 on GluK2 is suppressed both in heterologous expression and in astrocytes. Here, we reveal a new negative feedback mechanism, whereby GluK2 stimulation by SGK1 is regulated by parallel phosphorylation of NDRG2. This regulation of GluK2 by SGK1 and NDRG2 in astrocytes may play an important role in gliotransmission, modulation of gene expression and regulation of exocytosis of tPA.
Collapse
Affiliation(s)
- Veronika Matschke
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Muenster Muenster, Germany ; Department of Cytology, Institute of Anatomy, Ruhr University Bochum Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr University Bochum Bochum, Germany
| | - Michael Hollmann
- Department of Biochemistry I - Receptor Biochemistry, Ruhr University Bochum Bochum, Germany
| | - Eric Schulze-Bahr
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Muenster Muenster, Germany
| | - Florian Lang
- Department of Physiology, University Tuebingen Tuebingen, Germany
| | - Guiscard Seebohm
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Muenster Muenster, Germany
| | - Nathalie Strutz-Seebohm
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Muenster Muenster, Germany
| |
Collapse
|
42
|
Abstract
Neuroglia, the "glue" that fills the space between neurons in the central nervous system, takes active part in nerve cell signaling. Neuroglial cells, astroglia, oligodendroglia, and microglia, are together about as numerous as neurons in the brain as a whole, and in the cerebral cortex grey matter, but the proportion varies widely among brain regions. Glial volume, however, is less than one-fifth of the tissue volume in grey matter. When stimulated by neurons or other cells, neuroglial cells release gliotransmitters by exocytosis, similar to neurotransmitter release from nerve endings, or by carrier-mediated transport or channel flux through the plasma membrane. Gliotransmitters include the common neurotransmitters glutamate and GABA, the nonstandard amino acid d-serine, the high-energy phosphate ATP, and l-lactate. The latter molecule is a "buffer" between glycolytic and oxidative metabolism as well as a signaling substance recently shown to act on specific lactate receptors in the brain. Complementing neurotransmission at a synapse, neuroglial transmission often implies diffusion of the transmitter over a longer distance and concurs with the concept of volume transmission. Transmission from glia modulates synaptic neurotransmission based on energetic and other local conditions in a volume of tissue surrounding the individual synapse. Neuroglial transmission appears to contribute significantly to brain functions such as memory, as well as to prevalent neuropathologies.
Collapse
Affiliation(s)
- Vidar Gundersen
- SN-Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, and CMBN/SERTA/Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; and Brain and Muscle Energy Group, Department of Oral Biology and Division of Anatomy, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Jon Storm-Mathisen
- SN-Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, and CMBN/SERTA/Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; and Brain and Muscle Energy Group, Department of Oral Biology and Division of Anatomy, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Linda Hildegard Bergersen
- SN-Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, and CMBN/SERTA/Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; and Brain and Muscle Energy Group, Department of Oral Biology and Division of Anatomy, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
43
|
Motor-Skill Learning Is Dependent on Astrocytic Activity. Neural Plast 2015; 2015:938023. [PMID: 26346977 PMCID: PMC4539503 DOI: 10.1155/2015/938023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 02/24/2015] [Indexed: 12/26/2022] Open
Abstract
Motor-skill learning induces changes in synaptic structure and function in the primary motor cortex through the involvement of a long-term potentiation- (LTP-) like mechanism. Although there is evidence that calcium-dependent release of gliotransmitters by astrocytes plays an important role in synaptic transmission and plasticity, the role of astrocytes in motor-skill learning is not known. To test the hypothesis that astrocytic activity is necessary for motor-skill learning, we perturbed astrocytic function using pharmacological and genetic approaches. We find that perturbation of astrocytes either by selectively attenuating IP3R2 mediated astrocyte Ca2+ signaling or using an astrocyte specific metabolic inhibitor fluorocitrate (FC) results in impaired motor-skill learning of a forelimb reaching-task in mice. Moreover, the learning impairment caused by blocking astrocytic activity using FC was rescued by administration of the gliotransmitter D-serine. The learning impairments are likely caused by impaired LTP as FC blocked LTP in slices and prevented motor-skill training-induced increases in synaptic AMPA-type glutamate receptor in vivo. These results support the conclusion that normal astrocytic Ca2+ signaling during a reaching task is necessary for motor-skill learning.
Collapse
|
44
|
Astrocytes: Orchestrating synaptic plasticity? Neuroscience 2015; 323:43-61. [PMID: 25862587 DOI: 10.1016/j.neuroscience.2015.04.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/25/2015] [Accepted: 04/01/2015] [Indexed: 01/09/2023]
Abstract
Synaptic plasticity is the capacity of a preexisting connection between two neurons to change in strength as a function of neural activity. Because synaptic plasticity is the major candidate mechanism for learning and memory, the elucidation of its constituting mechanisms is of crucial importance in many aspects of normal and pathological brain function. In particular, a prominent aspect that remains debated is how the plasticity mechanisms, that encompass a broad spectrum of temporal and spatial scales, come to play together in a concerted fashion. Here we review and discuss evidence that pinpoints to a possible non-neuronal, glial candidate for such orchestration: the regulation of synaptic plasticity by astrocytes.
Collapse
|
45
|
Cisneros IE, Ghorpade A. Methamphetamine and HIV-1-induced neurotoxicity: role of trace amine associated receptor 1 cAMP signaling in astrocytes. Neuropharmacology 2014; 85:499-507. [PMID: 24950453 PMCID: PMC4315503 DOI: 10.1016/j.neuropharm.2014.06.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 06/05/2014] [Accepted: 06/10/2014] [Indexed: 01/01/2023]
Abstract
Methamphetamine (METH) is abused by about 5% of the United States population with approximately 10-15% of human immunodeficiency virus-1 (HIV-1) patients reporting its use. METH abuse accelerates the onset and severity of HIV-associated neurocognitive disorders (HAND) and astrocyte-induced neurotoxicity. METH activates G-protein coupled receptors such as trace amine associated receptor 1 (TAAR1) increasing intracellular cyclic adenosine monophosphate (cAMP) levels in presynaptic cells of monoaminergic systems. In the present study, we investigated the effects of METH and HIV-1 on primary human astrocyte TAAR1 expression, function and glutamate clearance. Our results demonstrate combined conditions increased TAAR1 mRNA levels 7-fold and increased intracellular cAMP levels. METH and beta-phenylethylamine (β-PEA), known TAAR1 agonists, increased intracellular cAMP levels in astrocytes. Further, TAAR1 knockdown significantly reduced intracellular cAMP levels in response to METH/β-PEA, indicating signaling through astrocyte TAAR1. METH±HIV-1 decreased excitatory amino acid transporter-2 (EAAT-2) mRNA and significantly decreased glutamate clearance. RNA interference for TAAR1 prevented METH-mediated decreases in EAAT-2. TAAR1 knockdown significantly increased glutamate clearance, which was further heightened significantly by METH. Moreover, TAAR1 overexpression significantly decreased EAAT-2 levels and glutamate clearance that were further reduced by METH. Taken together, our data show that METH treatment activated TAAR1 leading to intracellular cAMP in human astrocytes and modulated glutamate clearance abilities. Furthermore, molecular alterations in astrocyte TAAR1 levels correspond to changes in astrocyte EAAT-2 levels and function. To our knowledge this is the first report implicating astrocyte TAAR1 as a novel receptor for METH during combined injury in the context of HAND.
Collapse
Affiliation(s)
- Irma E Cisneros
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA.
| | - Anuja Ghorpade
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA.
| |
Collapse
|
46
|
Xiao Y, Wu X, Deng X, Huang L, Zhou Y, Yang X. Optimal electroacupuncture frequency for maintaining astrocyte structural integrity in cerebral ischemia. Neural Regen Res 2014; 8:1122-31. [PMID: 25206406 PMCID: PMC4145895 DOI: 10.3969/j.issn.1673-5374.2013.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 03/19/2013] [Indexed: 11/18/2022] Open
Abstract
The astrocyte is a critical regulator of neuronal survival after ischemic brain injury. Electroacupuncture may be an effective therapy for cerebral ischemia, as electroacupuncture frequency can affect the structural integrity of astrocytes. In this study, a rat model of middle cerebral artery occlusion established using the modified thread embolism method was treated with electroacupuncture of the bilateral Quchi (LI11) and Zusanli (ST36) at 15, 30, and 100 Hz frequencies. Behavioral testing, immunohistochemistry and electron microscopy were used to explore the effect of these electroacupuncture frequencies used on maintaining the structural integrity of ischemic brain tissue. Compared with the model and 100 Hz electroacupuncture groups, the 15 and 30 Hz electroacupuncture groups displayed decreased neurological deficit scores, as evaluated by the "Longa" method, significantly increased glial fibrillary acidic protein expression, and alleviated ultrastructural damage of astrocytes at the edge of the infarct. Our experimental findings indicate that 15 and 30 Hz electroacupuncture intervention can favorably maintain the structural integrity of astrocytes and play a protective role in cerebral ischemic injury. Astrocyte structural integrity may be the mechanism underlying acupuncture production of ischemic tolerance.
Collapse
Affiliation(s)
- Yicai Xiao
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xingui Wu
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiangfa Deng
- Department of Anatomy, Faculty of Preclinical Medicine, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Liping Huang
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yuancheng Zhou
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xuejie Yang
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
47
|
Role of astrocytes in memory and psychiatric disorders. ACTA ACUST UNITED AC 2014; 108:240-51. [PMID: 25169821 DOI: 10.1016/j.jphysparis.2014.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 04/12/2014] [Accepted: 08/18/2014] [Indexed: 01/10/2023]
Abstract
Over the past decade, the traditional description of astrocytes as being merely accessories to brain function has shifted to one in which their role has been pushed into the forefront of importance. Current views suggest that astrocytes:(1) are excitable through calcium fluctuations and respond to neurotransmitters released at synapses; (2) communicate with each other via calcium waves and release their own gliotransmitters which are essential for synaptic plasticity; (3) activate hundreds of synapses at once, thereby synchronizing neuronal activity and activating or inhibiting complete neuronal networks; (4) release vasoactive substances to the smooth muscle surrounding blood vessels enabling the coupling of circulation (blood flow) to local brain activity; and (5) release lactate in an activity-dependent manner in order to supply neuronal metabolic demand. In consequence, the role of astrocytes and astrocytic gliotransmitters is now believed to be critical for higher brain function and recently, evidence begins to gather suggesting that astrocytes are pivotal for learning and memory. All of the above are reviewed here while focusing on the role of astrocytes in memory and psychiatric disorders.
Collapse
|
48
|
Araque A, Carmignoto G, Haydon PG, Oliet SHR, Robitaille R, Volterra A. Gliotransmitters travel in time and space. Neuron 2014; 81:728-39. [PMID: 24559669 DOI: 10.1016/j.neuron.2014.02.007] [Citation(s) in RCA: 892] [Impact Index Per Article: 81.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2014] [Indexed: 12/12/2022]
Abstract
The identification of the presence of active signaling between astrocytes and neurons in a process termed gliotransmission has caused a paradigm shift in our thinking about brain function. However, we are still in the early days of the conceptualization of how astrocytes influence synapses, neurons, networks, and ultimately behavior. In this Perspective, our goal is to identify emerging principles governing gliotransmission and consider the specific properties of this process that endow the astrocyte with unique functions in brain signal integration. We develop and present hypotheses aimed at reconciling confounding reports and define open questions to provide a conceptual framework for future studies. We propose that astrocytes mainly signal through high-affinity slowly desensitizing receptors to modulate neurons and perform integration in spatiotemporal domains complementary to those of neurons.
Collapse
Affiliation(s)
- Alfonso Araque
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Giorgio Carmignoto
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche and Dipartimento Scienze Biomediche, Università di Padova, 35121 Padova, Italy.
| | - Philip G Haydon
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Stéphane H R Oliet
- Inserm U862, Neurocentre Magendie, 33077 Bordeaux, France; Université de Bordeaux, 33077 Bordeaux, France
| | - Richard Robitaille
- Département de Neurosciences, Université de Montréal, Montréal, QC H3C 3J7, Canada; Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Andrea Volterra
- Département de Neurosciences Fondamentales (DNF), Faculté de Biologie et de Médecine, Université de Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
49
|
|
50
|
Photolysis of caged Ca2+ but not receptor-mediated Ca2+ signaling triggers astrocytic glutamate release. J Neurosci 2013; 33:17404-12. [PMID: 24174673 DOI: 10.1523/jneurosci.2178-13.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Astrocytes in hippocampal slices can dynamically regulate synaptic transmission in a process mediated by increases in intracellular Ca(2+). However, it is debated whether astrocytic Ca(2+) signals result in release of glutamate. We here compared astrocytic Ca(2+) signaling triggered by agonist exposure versus photolysis side by side. Using transgenic mice in which astrocytes selectively express the MrgA1 receptor, we found that receptor-mediated astrocytic Ca(2+) signaling consistently triggered neuronal hyperpolarization and decreased the frequency of miniature excitatory postsynaptic currents (EPSCs). In contrast, photolysis of caged Ca(2+) (o-nitrophenyl-EGTA) in astrocytes led to neuronal depolarization and increased the frequency of mEPSCs through a metabotropic glutamate receptor-mediated pathway. Analysis of transgenic mice in which astrocytic vesicular release is suppressed (dominant-negative SNARE mice) and pharmacological manipulations suggested that glutamate is primarily released by opening of anion channels rather than exocytosis. Combined, these studies show that photolysis but not by agonists induced astrocytic Ca(2+) signaling triggers glutamate release.
Collapse
|