1
|
Kalapos MP, de Bari L. The evolutionary arch of bioenergetics from prebiotic mechanisms to the emergence of a cellular respiratory chain. Biosystems 2024; 244:105288. [PMID: 39128646 DOI: 10.1016/j.biosystems.2024.105288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
This article proposes an evolutionary trajectory for the development of biological energy producing systems. Six main stages of energy producing system evolution are described, from early evolutionary pyrite-pulled mechanism through the Last Universal Common Ancestor (LUCA) to contemporary systems. We define the Last Pure Chemical Entity (LPCE) as the last completely non-enzymatic entity. LPCE could have had some life-like properties, but lacked genetic information carriers, thus showed greater instability and environmental dependence than LUCA. A double bubble model is proposed for compartmentalization and cellularization as a prerequisite to both highly efficient protein synthesis and transmembrane ion-gradient. The article finds that although LUCA predominantly functioned anaerobically, it was a non-exclusive anaerobe, and sulfur dominated metabolism preceded phosphate dominated one.
Collapse
Affiliation(s)
| | - Lidia de Bari
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| |
Collapse
|
2
|
Rossetto D, Cvjetan N, Walde P, Mansy SS. Protocellular Heme and Iron-Sulfur Clusters. Acc Chem Res 2024; 57:2293-2302. [PMID: 39099316 PMCID: PMC11339926 DOI: 10.1021/acs.accounts.4c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
ConspectusCentral to the quest of understanding the emergence of life is to uncover the role of metals, particularly iron, in shaping prebiotic chemistry. Iron, as the most abundant of the accessible transition metals on the prebiotic Earth, played a pivotal role in early biochemical processes and continues to be indispensable to modern biology. Here, we discuss our recent contributions to probing the plausibility of prebiotic complexes with iron, including heme and iron-sulfur clusters, in mediating chemistry beneficial to a protocell. Laboratory experiments and spectroscopic findings suggest plausible pathways, often facilitated by UV light, for the synthesis of heme and iron-sulfur clusters. Once formed, heme displays catalytic, peroxidase-like activity when complexed with amphiphiles. This activity could have been beneficial in two ways. First, heme could have catalytically removed a molecule (H2O2) that could have had degradative effects on a protocell. Second, heme could have helped in the synthesis of the building blocks of life by coupling the reduction of H2O2 with the oxidation of organic substrates. The necessity of amphiphiles to avoid the formation of inactive complexes of heme is telling, as the modern-day electron transport chain possesses heme embedded within a lipid membrane. Conversely, prebiotic iron-sulfur peptides have yet to be reported to partition into lipid membranes, nor have simple iron-sulfur peptides been found to be capable of participating in the synthesis of organic molecules. Instead, iron-sulfur peptides span a wide range of reduction potentials complementary to the reduction potentials of hemes. The reduction potential of iron-sulfur peptides can be tuned by the type of iron-sulfur cluster formed, e.g., [2Fe-2S] versus [4Fe-4S], or by the substitution of ligands to the metal center. Since iron-sulfur clusters easily form upon stochastic encounters between iron ions, hydrosulfide, and small organic molecules possessing a thiolate, including peptides, the likelihood of soluble iron-sulfur clusters seems to be high. What remains challenging to determine is if iron-sulfur peptides participated in early prebiotic chemistry or were recruited later when protocellular membranes evolved that were compatible with the exploitation of electron transfer for the storage of energy as a proton gradient. This problem mirrors in some ways the difficulty in deciphering the origins of metabolism as a whole. Chemistry that resembles some facets of extant metabolism must have transpired on the prebiotic Earth, but there are few clues as to how and when such chemistry was harnessed to support a (proto)cell. Ultimately, unraveling the roles of hemes and iron-sulfur clusters in prebiotic chemistry promises to deepen our understanding of the origins of life on Earth and aids the search for life elsewhere in the universe.
Collapse
Affiliation(s)
- Daniele Rossetto
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AlbertaT6G 2G2, Canada
- D-CIBIO, University of Trento, via Sommarive 9, Trento 38123, Italy
| | - Nemanja Cvjetan
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AlbertaT6G 2G2, Canada
- Department
of Materials, ETH Zürich, Leopold-Ruzicka-Weg 4, Zürich 8093, Switzerland
| | - Peter Walde
- Department
of Materials, ETH Zürich, Leopold-Ruzicka-Weg 4, Zürich 8093, Switzerland
| | - Sheref S. Mansy
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AlbertaT6G 2G2, Canada
- D-CIBIO, University of Trento, via Sommarive 9, Trento 38123, Italy
| |
Collapse
|
3
|
Nunes Palmeira R, Colnaghi M, Harrison SA, Pomiankowski A, Lane N. The limits of metabolic heredity in protocells. Proc Biol Sci 2022; 289:20221469. [PMID: 36350219 PMCID: PMC9653231 DOI: 10.1098/rspb.2022.1469] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The universal core of metabolism could have emerged from thermodynamically favoured prebiotic pathways at the origin of life. Starting with H
2
and CO
2
, the synthesis of amino acids and mixed fatty acids, which self-assemble into protocells, is favoured under warm anoxic conditions. Here, we address whether it is possible for protocells to evolve greater metabolic complexity, through positive feedbacks involving nucleotide catalysis. Using mathematical simulations to model metabolic heredity in protocells, based on branch points in protometabolic flux, we show that nucleotide catalysis can indeed promote protocell growth. This outcome only occurs when nucleotides directly catalyse CO
2
fixation. Strong nucleotide catalysis of other pathways (e.g. fatty acids and amino acids) generally unbalances metabolism and slows down protocell growth, and when there is competition between catalytic functions cell growth collapses. Autocatalysis of nucleotide synthesis can promote growth but only if nucleotides also catalyse CO
2
fixation; autocatalysis alone leads to the accumulation of nucleotides at the expense of CO
2
fixation and protocell growth rate. Our findings offer a new framework for the emergence of greater metabolic complexity, in which nucleotides catalyse broad-spectrum processes such as CO
2
fixation, hydrogenation and phosphorylation important to the emergence of genetic heredity at the origin of life.
Collapse
Affiliation(s)
- Raquel Nunes Palmeira
- Department of Computer Science, Engineering Building, Malet Place, University College London, WC1E 7JG, UK
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Marco Colnaghi
- Department of Computer Science, Engineering Building, Malet Place, University College London, WC1E 7JG, UK
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Stuart A. Harrison
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Andrew Pomiankowski
- Department of Computer Science, Engineering Building, Malet Place, University College London, WC1E 7JG, UK
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Nick Lane
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
4
|
Imai M, Sakuma Y, Kurisu M, Walde P. From vesicles toward protocells and minimal cells. SOFT MATTER 2022; 18:4823-4849. [PMID: 35722879 DOI: 10.1039/d1sm01695d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In contrast to ordinary condensed matter systems, "living systems" are unique. They are based on molecular compartments that reproduce themselves through (i) an uptake of ingredients and energy from the environment, and (ii) spatially and timely coordinated internal chemical transformations. These occur on the basis of instructions encoded in information molecules (DNAs). Life originated on Earth about 4 billion years ago as self-organised systems of inorganic compounds and organic molecules including macromolecules (e.g. nucleic acids and proteins) and low molar mass amphiphiles (lipids). Before the first living systems emerged from non-living forms of matter, functional molecules and dynamic molecular assemblies must have been formed as prebiotic soft matter systems. These hypothetical cell-like compartment systems often are called "protocells". Other systems that are considered as bridging units between non-living and living systems are called "minimal cells". They are synthetic, autonomous and sustainable reproducing compartment systems, but their constituents are not limited to prebiotic substances. In this review, we focus on both membrane-bounded (vesicular) protocells and minimal cells, and provide a membrane physics background which helps to understand how morphological transformations of vesicle systems might have happened and how vesicle reproduction might be coupled with metabolic reactions and information molecules. This research, which bridges matter and life, is a great challenge in which soft matter physics, systems chemistry, and synthetic biology must take joined efforts to better understand how the transformation of protocells into living systems might have occurred at the origin of life.
Collapse
Affiliation(s)
- Masayuki Imai
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan.
| | - Yuka Sakuma
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan.
| | - Minoru Kurisu
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan.
| | - Peter Walde
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH-8093 Zürich, Switzerland
| |
Collapse
|
5
|
Zhang M, Zhang Y, Mu W, Dong M, Han X. In Situ Synthesis of Lipid Analogues Leading to Artificial Cell Growth and Division. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202200007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mingrui Zhang
- Harbin Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Ying Zhang
- Heilongjiang Institute of Technology College of Materials and Chemical Engineering CHINA
| | - Wei Mu
- Harbin Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Mingdong Dong
- Aarhus Universitet Interdisciplinary Nanosci Ctr iNANO DENMARK
| | - Xiaojun Han
- Harbin Institute of Technology School of Chemical Engineering and Technology No.92, West Da-Zhi Street, Harbin, 150001, China 150001 harbin CHINA
| |
Collapse
|
6
|
Barge LM, Rodriguez LE, Weber JM, Theiling BP. Determining the "Biosignature Threshold" for Life Detection on Biotic, Abiotic, or Prebiotic Worlds. ASTROBIOLOGY 2022; 22:481-493. [PMID: 34898272 DOI: 10.1089/ast.2021.0079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The field of prebiotic chemistry has demonstrated that complex organic chemical systems that exhibit various life-like properties can be produced abiotically in the laboratory. Understanding these chemical systems is important for astrobiology and life detection since we do not know the extent to which prebiotic chemistry might exist or have existed on other worlds. Nor do we know what signatures are diagnostic of an extant or "failed" prebiotic system. On Earth, biology has suppressed most abiotic organic chemistry and overprints geologic records of prebiotic chemistry; therefore, it is difficult to validate whether chemical signatures from future planetary missions are remnant or extant prebiotic systems. The "biosignature threshold" between whether a chemical signature is more likely to be produced by abiotic versus biotic chemistry on a given world could vary significantly, depending on the particular environment, and could change over time, especially if life were to emerge and diversify on that world. To interpret organic signatures detected during a planetary mission, we advocate for (1) gaining a more complete understanding of prebiotic/abiotic chemical possibilities in diverse planetary environments and (2) involving experimental prebiotic samples as analogues when generating comparison libraries for "life-detection" mission instruments.
Collapse
Affiliation(s)
- Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Laura E Rodriguez
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | |
Collapse
|
7
|
Nandi S, Ghosh B, Ghosh M, Layek S, Nandi PK, Sarkar N. Phenylalanine Interacts with Oleic Acid-Based Vesicle Membrane. Understanding the Molecular Role of Fibril-Vesicle Interaction under the Context of Phenylketonuria. J Phys Chem B 2021; 125:9776-9793. [PMID: 34420302 DOI: 10.1021/acs.jpcb.1c05592] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the present contribution, on the basis of a spectroscopic and microscopic investigation, the characterization and photophysics of various assemblies of oleic acid/oleate solution at three pH values, namely, 8.28, 9.72, and 11.77, were explored. The variation in the dynamic response of aqua molecules in and around the assemblies has been interrogated by a picoseconds solvation dynamics experiment using a time-correlated single-photon counting setup employing coumarin-153 as a probe. On the one hand, the time-resolved fluorescence anisotropy measurement along with the fluorescence correlation spectroscopy experiment was executed to extract information regarding the comparison of the extent of the internal restricted confinement of these assemblies. On the other hand, an effort to investigate the cross-interaction between the self-assembled architectures of l-phenylalanine (l-Phe), responsible for phenylketonuria (PKU) disorder, and the oleic acid at the vesicle-forming pH established that the l-Phe fibrillar morphologies strongly alter the dynamic properties of the vesicle membrane formed by the oleic acid. Specifically, the interaction of the l-Phe assemblies with the oleic acid vesicle membrane is found to introduce the flexibility of the vesicle membrane and alter the hydration properties of the membrane. To track the fibril-induced alterations of the oleic acid vesicle properties, various spectroscopic and microscopic investigations were performed. The mutual reconciliation of the experimental outputs, therefore, portrays the state of the art, which accounts for the fibril-induced alterations of the properties of the oleic acid vesicle membrane, the mimicking setup of the cellular membrane, thereby informing us that alterations of such a property of the membrane should be taken into active consideration during the rational development of therapeutic modulators against disorders like PKU.
Collapse
Affiliation(s)
- Sourav Nandi
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Biswajoy Ghosh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Meghna Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Souvik Layek
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Pratyush Kiran Nandi
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
8
|
Gaylor MO, Miro P, Vlaisavljevich B, Kondage AAS, Barge LM, Omran A, Videau P, Swenson VA, Leinen LJ, Fitch NW, Cole KL, Stone C, Drummond SM, Rageth K, Dewitt LR, González Henao S, Karanauskus V. Plausible Emergence and Self Assembly of a Primitive Phospholipid from Reduced Phosphorus on the Primordial Earth. ORIGINS LIFE EVOL B 2021; 51:185-213. [PMID: 34279769 DOI: 10.1007/s11084-021-09613-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/19/2021] [Indexed: 11/28/2022]
Abstract
How life arose on the primitive Earth is one of the biggest questions in science. Biomolecular emergence scenarios have proliferated in the literature but accounting for the ubiquity of oxidized (+ 5) phosphate (PO43-) in extant biochemistries has been challenging due to the dearth of phosphate and molecular oxygen on the primordial Earth. A compelling body of work suggests that exogenous schreibersite ((Fe,Ni)3P) was delivered to Earth via meteorite impacts during the Heavy Bombardment (ca. 4.1-3.8 Gya) and there converted to reduced P oxyanions (e.g., phosphite (HPO32-) and hypophosphite (H2PO2-)) and phosphonates. Inspired by this idea, we review the relevant literature to deduce a plausible reduced phospholipid analog of modern phosphatidylcholines that could have emerged in a primordial hydrothermal setting. A shallow alkaline lacustrine basin underlain by active hydrothermal fissures and meteoritic schreibersite-, clay-, and metal-enriched sediments is envisioned. The water column is laden with known and putative primordial hydrothermal reagents. Small system dimensions and thermal- and UV-driven evaporation further concentrate chemical precursors. We hypothesize that a reduced phospholipid arises from Fischer-Tropsch-type (FTT) production of a C8 alkanoic acid, which condenses with an organophosphinate (derived from schreibersite corrosion to hypophosphite with subsequent methylation/oxidation), to yield a reduced protophospholipid. This then condenses with an α-amino nitrile (derived from Strecker-type reactions) to form the polar head. Preliminary modeling results indicate that reduced phospholipids do not aggregate rapidly; however, single layer micelles are stable up to aggregates with approximately 100 molecules.
Collapse
Affiliation(s)
- Michael O Gaylor
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA.
| | - Pere Miro
- Department of Chemistry, University of South Dakota, Vermillion, SD, 57069, USA
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, Vermillion, SD, 57069, USA
| | | | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Arthur Omran
- School of Geosciences, University of South Florida, Tampa, FL, 33620, USA
- Department of Chemistry, University of North Florida, Jacksonville, FL, 32224, USA
| | - Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, OR, 97520, USA
- Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Vaille A Swenson
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lucas J Leinen
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Nathaniel W Fitch
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Krista L Cole
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Chris Stone
- Department of Biology, Southern Oregon University, Ashland, OR, 97520, USA
| | - Samuel M Drummond
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Kayli Rageth
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Lillian R Dewitt
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | | | | |
Collapse
|
9
|
Martin N, Douliez J. Fatty Acid Vesicles and Coacervates as Model Prebiotic Protocells. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Nicolas Martin
- Univ. Bordeaux CNRS Centre de Recherche Paul Pascal UMR 5031 115 Avenue du Dr. Albert Schweitzer 33600 Pessac France
| | - Jean‐Paul Douliez
- Univ. Bordeaux INRAE Biologie du Fruit et Pathologie UMR 1332 71 Avenue Edouard Bourlaux 33140 Villenave d'Ornon France
| |
Collapse
|
10
|
Lai YC, Liu Z, Chen IA. Encapsulation of ribozymes inside model protocells leads to faster evolutionary adaptation. Proc Natl Acad Sci U S A 2021; 118:e2025054118. [PMID: 34001592 PMCID: PMC8166191 DOI: 10.1073/pnas.2025054118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Functional biomolecules, such as RNA, encapsulated inside a protocellular membrane are believed to have comprised a very early, critical stage in the evolution of life, since membrane vesicles allow selective permeability and create a unit of selection enabling cooperative phenotypes. The biophysical environment inside a protocell would differ fundamentally from bulk solution due to the microscopic confinement. However, the effect of the encapsulated environment on ribozyme evolution has not been previously studied experimentally. Here, we examine the effect of encapsulation inside model protocells on the self-aminoacylation activity of tens of thousands of RNA sequences using a high-throughput sequencing assay. We find that encapsulation of these ribozymes generally increases their activity, giving encapsulated sequences an advantage over nonencapsulated sequences in an amphiphile-rich environment. In addition, highly active ribozymes benefit disproportionately more from encapsulation. The asymmetry in fitness gain broadens the distribution of fitness in the system. Consistent with Fisher's fundamental theorem of natural selection, encapsulation therefore leads to faster adaptation when the RNAs are encapsulated inside a protocell during in vitro selection. Thus, protocells would not only provide a compartmentalization function but also promote activity and evolutionary adaptation during the origin of life.
Collapse
Affiliation(s)
- Yei-Chen Lai
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Ziwei Liu
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095;
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| |
Collapse
|
11
|
Toparlak Ö, Wang A, Mansy SS. Population-Level Membrane Diversity Triggers Growth and Division of Protocells. JACS AU 2021; 1:560-568. [PMID: 34467319 PMCID: PMC8395648 DOI: 10.1021/jacsau.0c00079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 06/01/2023]
Abstract
To date, multiple mechanisms have been described for the growth and division of model protocells, all of which exploit the lipid dynamics of fatty acids. In some examples, the more heterogeneous aggregate consisting of fatty acid and diacyl phospholipid or fatty acid and peptide grows at the expense of the more homogeneous aggregate containing a restricted set of lipids with similar dynamics. Imbalances between surface area and volume during growth can generate filamentous vesicles, which are typically divided by shear forces. Here, we describe another pathway for growth and division that depends simply on differences in the compositions of fatty acid membranes without additional components. Growth is driven by the thermodynamically favorable mixing of lipids between two populations, i.e., the system as a whole proceeds toward equilibrium. Division is the result of growth-induced curvature. Importantly, growth and division do not require a specific composition of lipids. For example, vesicles made from one type of lipid, e.g., short-chain fatty acids, grow and divide when fed with vesicles consisting of another type of lipid, e.g., long-chain fatty acids, and vice versa. After equilibration, additional rounds of growth and division could potentially proceed by the introduction of compositionally distinct aggregates. Since prebiotic synthesis likely gave rise to mixtures of lipids, the data are consistent with the presence of growing and dividing protocells on the prebiotic Earth.
Collapse
Affiliation(s)
- Ö.
Duhan Toparlak
- Department
of Cellular, Computational and Integrative Biology (D-CIBIO), University of Trento, Via Sommarive 9, 38123 Povo, TN, Italy
| | - Anna Wang
- School
of Chemistry and Australian Centre for Astrobiology, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Sheref S. Mansy
- Department
of Cellular, Computational and Integrative Biology (D-CIBIO), University of Trento, Via Sommarive 9, 38123 Povo, TN, Italy
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G
2G2, Canada
| |
Collapse
|
12
|
Can coacervation unify disparate hypotheses in the origin of cellular life? Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2020.101415] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Wang X, Du H, Wang Z, Mu W, Han X. Versatile Phospholipid Assemblies for Functional Synthetic Cells and Artificial Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002635. [PMID: 32830387 DOI: 10.1002/adma.202002635] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/09/2020] [Indexed: 06/11/2023]
Abstract
The bottom-up construction of a synthetic cell from nonliving building blocks capable of mimicking cellular properties and behaviors helps to understand the particular biophysical properties and working mechanisms of a cell. A synthetic cell built in this way possesses defined chemical composition and structure. Since phospholipids are native biomembrane components, their assemblies are widely used to mimic cellular structures. Here, recent developments in the formation of versatile phospholipid assemblies are described, together with the applications of these assemblies for functional membranes (protein reconstituted giant unilamellar vesicles), spherical and nonspherical protoorganelles, and functional synthetic cells, as well as the high-order hierarchical structures of artificial tissues. Their biomedical applications are also briefly summarized. Finally, the challenges and future directions in the field of synthetic cells and artificial tissues based on phospholipid assemblies are proposed.
Collapse
Affiliation(s)
- Xuejing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Hang Du
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Marine Antifouling Engineering Technology Center of Shangdong Province, Harbin Institute of Technology, Weihai, 264209, China
| | - Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Wei Mu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
14
|
Liu L, Zou Y, Bhattacharya A, Zhang D, Lang SQ, Houk KN, Devaraj NK. Enzyme-free synthesis of natural phospholipids in water. Nat Chem 2020; 12:1029-1034. [PMID: 33046841 DOI: 10.1038/s41557-020-00559-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 08/25/2020] [Indexed: 11/09/2022]
Abstract
All living organisms synthesize phospholipids as the primary constituent of their cell membranes. Enzymatic synthesis of diacylphospholipids requires preexisting membrane-embedded enzymes. This limitation has led to models of early life in which the first cells used simpler types of membrane building blocks and has hampered integration of phospholipid synthesis into artificial cells. Here we demonstrate an enzyme-free synthesis of natural diacylphospholipids by transacylation in water, which is enabled by a combination of ion pairing and self-assembly between lysophospholipids and acyl donors. A variety of membrane-forming cellular phospholipids have been obtained in high yields. Membrane formation takes place in water from natural alkaline sources such as soda lakes and hydrothermal oceanic vents. When formed vesicles are transferred to more acidic solutions, electrochemical proton gradients are spontaneously established and maintained. This high-yielding non-enzymatic synthesis of natural phospholipids in water opens up new routes for lipid synthesis in artificial cells and sheds light on the origin and evolution of cellular membranes.
Collapse
Affiliation(s)
- Luping Liu
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Yike Zou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Ahanjit Bhattacharya
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Dongyang Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Susan Q Lang
- School of the Earth, Ocean, and Environment, University of South Carolina, Columbia, SC, USA
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA.
| |
Collapse
|
15
|
Kundu N, Mondal D, Sarkar N. Dynamics of the vesicles composed of fatty acids and other amphiphile mixtures: unveiling the role of fatty acids as a model protocell membrane. Biophys Rev 2020; 12:1117-1131. [PMID: 32926295 PMCID: PMC7575682 DOI: 10.1007/s12551-020-00753-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/03/2020] [Indexed: 01/31/2023] Open
Abstract
Fundamental research at the interface of chemistry and biology has the potential to shine light on the question of how living cells can be synthesized from inanimate matter thereby providing plausible pathways for the emergence of cellular life. Compartmentalization of different biochemical reactions within a membrane bound water environment is considered an essential first step in any origin of life pathway. It has been suggested that fatty acid-based vesicles can be considered a model protocell having the potential for change via Darwinian evolution. As such, protocell models have the potential to assist in furthering our understanding of the origin of life in the laboratory. Fatty acids, both by themselves and in mixtures with other amphiphiles, can form different self-assembled structures depending on their surroundings. Recent studies of fatty acid-based membranes have suggested likely pathways of protocell growth, division and membrane permeabilisation for the transport of different nutrients, such as nucleotides across the membrane. In this review, different dynamic processes related to the growth and division of the protocell membrane are discussed and possible pathways for transition of the protocell to the modern cell are explored. These areas of research may lead to a better understanding of the synthesis of artificial cell-like entities and thus herald the possibility of creating new form of life distinct from existing biology. Graphical Abstract Table of Content (TOC) only.
Collapse
Affiliation(s)
- Niloy Kundu
- Environment Research Group, R&D Department, Tata Steel Ltd, Jamshedpur, 831007, India.
| | - Dipankar Mondal
- Institute for System Genetics and Department of Cell Biology, New York University, Langone Medical Center, New York, 10016, USA
- Department of Chemistry, Indian Institute of Technology, Kharagpur, WB, 721302, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur, WB, 721302, India
| |
Collapse
|
16
|
Vazquez MM, Gutierrez MV, Salvatore SR, Puiatti M, Dato VA, Chiabrando GA, Freeman BA, Schopfer FJ, Bonacci G. Nitro-oleic acid, a ligand of CD36, reduces cholesterol accumulation by modulating oxidized-LDL uptake and cholesterol efflux in RAW264.7 macrophages. Redox Biol 2020; 36:101591. [PMID: 32531545 PMCID: PMC7287307 DOI: 10.1016/j.redox.2020.101591] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 01/09/2023] Open
Abstract
Macrophages play a pivotal role in the early stages of atherosclerosis development; they excessively accumulate cholesterol in the cytosol in response to modified Low Density Lipoprotein (mLDL). The mLDL are incorporated through scavenger receptors. CD36 is a high-affinity cell surface scavenger receptor that facilitates the binding and uptake of long-chain fatty acids and mLDL into the cell. Numerous structurally diverse ligands can initiate signaling responses through CD36 to regulate cell metabolism, migration, and angiogenesis. Nitro-fatty acids are endogenous electrophilic lipid mediators that react with and modulate the function of multiple enzymes and transcriptional regulatory proteins. These actions induce the expression of several anti-inflammatory and cytoprotective genes and limit pathologic responses in experimental models of atherosclerosis, cardiac ischemia/reperfusion, and inflammatory diseases. Pharmacological and genetic approaches were used to explore the actions of nitro-oleic acid (NO2-OA) on macrophage lipid metabolism. Pure synthetic NO2-OA dose-dependently increased CD36 expression in RAW264.7 macrophages and this up-regulation was abrogated in BMDM from Nrf2-KO mice. Ligand binding analysis revealed that NO2-OA specifically interacts with CD36, thus limiting the binding and uptake of mLDL. Docking analysis shows that NO2-OA establishes a low binding energy interaction with the alpha helix containing Lys164 in CD36. NO2-OA also restored autophagy flux in mLDL-loaded macrophages, thus reversing cholesterol deposition within the cell. In aggregate, these results indicate that NO2-OA reduces cholesterol uptake by binding to CD36 and increases cholesterol efflux by restoring autophagy.
Collapse
Affiliation(s)
- Matias M Vazquez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
| | - Maria V Gutierrez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
| | - Sonia R Salvatore
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, United States
| | - Marcelo Puiatti
- Departamento de Química Orgánica, INFIQC, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Virginia Actis Dato
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
| | - Gustavo A Chiabrando
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, United States
| | - Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, United States
| | - Gustavo Bonacci
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina.
| |
Collapse
|
17
|
Dalai P, Sahai N. A Model Protometabolic Pathway Across Protocell Membranes Assisted by Photocatalytic Minerals. J Phys Chem B 2019. [PMID: 31869230 DOI: 10.1021/acs.jpcb.9b10127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protocell analogs (lipid vesicles) to modern cell membranes have been postulated as compartments that may have been involved in primordial metabolism during the transition from geochemistry to biochemistry on early Earth. The transduction of light energy into chemical energy for metabolism was a key step in the transition from the earliest metabolisms to phototrophy. Photocatalytic minerals may have served the role of enzymes during these transitional stages. Here, we demonstrate a simple photoheterotrophic protometabolism promoted by photocatalytic minerals across a model protocell (vesicle) membrane. These minerals in the extra-vesicular medium utilized light energy to drive a coupled, multi-step transmembrane electron transfer reaction (TMETR), while simultaneously generating a transmembrane pH gradient and reducing nicotinamide adenine dinucleotide (NAD+) to NADH within the vesicle. The proton gradient or chemiosmotic potential could have provided a basis for adenosine triphosphate (ATP) synthesis and NADH could potentially have driven further metabolic chemistry inside the protocells.
Collapse
|
18
|
Promotion of protocell self-assembly from mixed amphiphiles at the origin of life. Nat Ecol Evol 2019; 3:1705-1714. [PMID: 31686020 DOI: 10.1038/s41559-019-1015-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/25/2019] [Indexed: 01/01/2023]
Abstract
Vesicles formed from single-chain amphiphiles (SCAs) such as fatty acids probably played an important role in the origin of life. A major criticism of the hypothesis that life arose in an early ocean hydrothermal environment is that hot temperatures, large pH gradients, high salinity and abundant divalent cations should preclude vesicle formation. However, these arguments are based on model vesicles using 1-3 SCAs, even though Fischer-Tropsch-type synthesis under hydrothermal conditions produces a wide array of fatty acids and 1-alkanols, including abundant C10-C15 compounds. Here, we show that mixtures of these C10-C15 SCAs form vesicles in aqueous solutions between pH ~6.5 and >12 at modern seawater concentrations of NaCl, Mg2+ and Ca2+. Adding C10 isoprenoids improves vesicle stability even further. Vesicles form most readily at temperatures of ~70 °C and require salinity and strongly alkaline conditions to self-assemble. Thus, alkaline hydrothermal conditions not only permit protocell formation at the origin of life but actively favour it.
Collapse
|
19
|
Moreno A. The Origin of a Trans-Generational Organization in the Phenomenon of Biogenesis. Front Physiol 2019; 10:1222. [PMID: 31611810 PMCID: PMC6769072 DOI: 10.3389/fphys.2019.01222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/09/2019] [Indexed: 11/24/2022] Open
Abstract
One of the central issues of the whole process of biogenesis is how to understand the progressive constitution of a large (in spatial and temporal terms) system that transcends the individual sphere of proto-metabolic organizations and includes collective networks, both synchronous (i.e., proto-ecosystem webs) and asynchronous (i.e., trans-generational protocell populations). This paper analyzes the appearance of a minimal form of reproduction in the process of biogenesis from an organizational perspective. This perspective highlights the problem of how a process transcending the actual organization of the reproducing entities (i.e., protocells) could have a causal power. It is proposed that this problem may be explained if we consider that reproduction generates a kind of feedback between the actual concatenation of the processes of each reproducing cycle and the type continuity that a reliable iteration of these cycles creates. Thus, reproduction generates a new form of self-maintaining system linking "organismal" and "evolutionary" domains, since the consequence of the iteration of self-reproducing cycles is the long-term continuity of a specific type of SM compartmentalized organization, and the functional role of a particular self-reproducing organization (token) lies in its capacity to trigger a diachronic succession of similar self-reproducing organizations, i.e., a lineage.
Collapse
Affiliation(s)
- Alvaro Moreno
- Department of Logic and Philosophy of Science, IAS-Research Centre for Life, Mind and Society, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| |
Collapse
|
20
|
de la Escosura A. The Informational Substrate of Chemical Evolution: Implications for Abiogenesis. Life (Basel) 2019; 9:E66. [PMID: 31398942 PMCID: PMC6789672 DOI: 10.3390/life9030066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
A key aspect of biological evolution is the capacity of living systems to process information, coded in deoxyribonucleic acid (DNA), and used to direct how the cell works. The overall picture that emerges today from fields such as developmental, synthetic, and systems biology indicates that information processing in cells occurs through a hierarchy of genes regulating the activity of other genes through complex metabolic networks. There is an implicit semiotic character in this way of dealing with information, based on functional molecules that act as signs to achieve self-regulation of the whole network. In contrast to cells, chemical systems are not thought of being able to process information, yet they must have preceded biological organisms, and evolved into them. Hence, there must have been prebiotic molecular assemblies that could somehow process information, in order to regulate their own constituent reactions and supramolecular organization processes. The purpose of this essay is then to reflect about the distinctive features of information in living and non-living matter, and on how the capacity of biological organisms for information processing was possibly rooted in a particular type of chemical systems (here referred to as autonomous chemical systems), which could self-sustain and reproduce through organizational closure of their molecular building blocks.
Collapse
Affiliation(s)
- Andrés de la Escosura
- Department of Organic Chemistry, Universidad Autónoma of Madrid, Cantoblanco Campus, 28049 Madrid, Spain.
- Department of Organic Chemistry, Institute for Advanced Research in Chemistry (IAdChem), Cantoblanco Campus, 28049 Madrid, Spain.
| |
Collapse
|
21
|
Hilburger CE, Jacobs ML, Lewis KR, Peruzzi JA, Kamat NP. Controlling Secretion in Artificial Cells with a Membrane AND Gate. ACS Synth Biol 2019; 8:1224-1230. [PMID: 31051071 DOI: 10.1021/acssynbio.8b00435] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The assembly of channel proteins into vesicle membranes is a useful strategy to control activities of vesicle-based systems. Here, we developed a membrane AND gate that responds to both a fatty acid and a pore-forming channel protein to induce the release of encapsulated cargo. We explored how membrane composition affects the functional assembly of α-hemolysin into phospholipid vesicles as a function of oleic acid content and α-hemolysin concentration. We then showed that we could induce α-hemolysin assembly when we added oleic acid micelles to a specific composition of phospholipid vesicles. Finally, we demonstrated that our membrane AND gate could be coupled to a gene expression system. Our study provides a new method to control the temporal dynamics of vesicle permeability by controlling when the functional assembly of a channel protein into synthetic vesicles occurs. Furthermore, a membrane AND gate that utilizes membrane-associating biomolecules introduces a new way to implement Boolean logic that should complement genetic logic circuits and ultimately enhance the capabilities of artificial cellular systems.
Collapse
|
22
|
Howe ENW, Gale PA. Fatty Acid Fueled Transmembrane Chloride Transport. J Am Chem Soc 2019; 141:10654-10660. [DOI: 10.1021/jacs.9b02116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ethan N. W. Howe
- School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | - Philip A. Gale
- School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
23
|
Kundu N, Banik D, Sarkar N. Self-Assembly of Amphiphiles into Vesicles and Fibrils: Investigation of Structure and Dynamics Using Spectroscopy and Microscopy Techniques. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11637-11654. [PMID: 29544249 DOI: 10.1021/acs.langmuir.7b04355] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Amphiphiles are a class of molecules which are known to assemble into a variety of nanostructures. The understanding and applications of self-assembled systems are based on what has been learned from biology. Among the vast number of self-assemblies, in this article, we have described the formation, characterization, and dynamics of two important biologically inspired assemblies: vesicles and fibrils. Vesicles, which can be classified into several categories depending on the sizes and components, are of great interest due to their potential applications in drug delivery and as nanoscale reactors. The structure and dynamics of vesicles can also mimic the complex geometry of the cell membrane. On the other hand, the self-assembly of proteins, peptides, and even single amino acids leads to a number of degenerative disorders. Thus, a complete understanding of these self-assembled systems is necessary. In this article, we discuss recent work on vesicular aggregates composed of phospholipids, fatty acids, and ionic as well as nonionic surfactants and single amino acid-based fibrils such as phenylalanine and tyrosine. Beside the characterization, we also emphasize the excited-state dynamics inside the aggregates for a proper understanding of the organization, reactivity, and heterogeneity of the aggregates.
Collapse
Affiliation(s)
- Niloy Kundu
- Department of Chemistry , Indian Institute of Technology , Kharagpur 721302 , WB India
| | - Debasis Banik
- Department of Chemistry , Indian Institute of Technology , Kharagpur 721302 , WB India
| | - Nilmoni Sarkar
- Department of Chemistry , Indian Institute of Technology , Kharagpur 721302 , WB India
| |
Collapse
|
24
|
Roy S, Mandal S, Banerjee P, Sarkar N. Modification of fatty acid vesicle using an imidazolium-based surface active ionic liquid: a detailed study on its modified properties using spectroscopy and microscopy techniques
$$^{\S }$$
§. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1532-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Bonfio C, Godino E, Corsini M, Fabrizi de Biani F, Guella G, Mansy SS. Prebiotic iron–sulfur peptide catalysts generate a pH gradient across model membranes of late protocells. Nat Catal 2018. [DOI: 10.1038/s41929-018-0116-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Soslau G. Circular RNA (circRNA) was an important bridge in the switch from the RNA world to the DNA world. J Theor Biol 2018; 447:32-40. [PMID: 29567323 DOI: 10.1016/j.jtbi.2018.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/10/2018] [Accepted: 03/14/2018] [Indexed: 12/01/2022]
Abstract
The concept that life on Earth began as an RNA world has been built upon extensive experimentation demonstrating that many of the building blocks required for living cells could be synthesized in the laboratory under conditions approximating our primordial world. Many of the building blocks for life have also been found in meteorites indicating that meteors may have been a source for these molecules, or more likely, that they represent the chemical library present in most/all bodies in the universe after the big bang. Perhaps the most important support for the concept comes from the fact that some RNA species possess catalytic activity, ribozymes, and that RNA could be reverse transcribe to DNA. The thrust of numerous papers on this topic has been to explore how the available molecules on Earth, at its birth, gave rise to life as we know it today. This paper focuses more on a reverse view of the topic. The "how" molecular building blocks were synthesized is not addressed nor how the "first" RNA molecules were synthesized. We can clearly speculate on the variable environmental conditions and chemistry available on Earth billions of years ago. However, we can never truly replicate the changing conditions or know the chemical composition of Earth at the beginning of time. We can, however, confirm that over millions, perhaps billions of years the basic building blocks for life accumulated sufficiently to initiate evolution to an RNA world followed by our RNA/DNA world. Here we are attempting to take the information from our current knowledge of biology and by inference and extrapolation work backward to hypothesize biological events in the march forward from RNA to DNA. It is proposed that the primordial replicating RNA cell, the ribocyte, evolved from liposomes encompassing required reactants and products for "life" and that ribonucleopeptide complexes formed membrane pores to support bidirectional ion and molecular transport to maintain biological functions and osmolarity. Circular RNA, circRNA, is proposed as a critical stable RNA molecule that served as the genetic precursor for the switch to DNA and the replication of circRNA by a rolling circle mechanism gave rise to the RNA complexity required for the genetic functions of the cell. The replicating ribocyte would have required protein synthesis as well as RNA replication and a model for non-coded and primordial coded protein synthesis is proposed. Finally, the switch from the RNA to the DNA world would have involved the synthesis of an RNA:DNA hybrid prior to the formation of dsDNA. If the hybrid was a circular molecule that ultimately yielded a circular dsDNA molecule, it could predict that the primordial DNA cell would evolve into a bacterial cell with a single circular chromosome. One would hope that continued speculation of the origin of life will spur new directions of research that may never fully answer the questions of the past but add to our ability to regulate potentially harmful biological events in the present and in the future.
Collapse
Affiliation(s)
- Gerald Soslau
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N 15th ST, Philadelphia, PA 19102, United States.
| |
Collapse
|
27
|
Chatterjee S. A symbiotic view of the origin of life at hydrothermal impact crater-lakes. Phys Chem Chem Phys 2018; 18:20033-46. [PMID: 27126878 DOI: 10.1039/c6cp00550k] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. The theory suffers from the 'concentration problem' of cosmic and terrestrial biomolecules because of the vastness of the Eoarchean global ocean. An attractive alternative site would be highly sequestered, small, hydrothermal crater-lakes that might have cradled life on early Earth. A new symbiotic model for the origin of life at hydrothermal crater-lakes is proposed here. Meteoritic impacts on the Eoarchean crust at the tail end of the Heavy Bombardment period might have played important roles in the origin of life. Impacts and collisions that created hydrothermal crater lakes on the Eoarchean crust inadvertently became the perfect crucibles for prebiotic chemistry with building blocks of life, which ultimately led to the first organisms by prebiotic synthesis. In this scenario, life arose through four hierarchical stages of increasing molecular complexity in multiple niches of crater basins. In the cosmic stage (≥4.6 Ga), the building blocks of life had their beginnings in the interstellar space during the explosion of a nearby star. Both comets and carbonaceous chondrites delivered building blocks of life and ice to early Earth, which were accumulated in hydrothermal impact crater-lakes. In the geologic stage (∼4 Ga), crater basins contained an assortment of cosmic and terrestrial organic compounds, powered by hydrothermal, solar, tidal, and chemical energies, which drove the prebiotic synthesis. At the water surface, self-assembled primitive lipid membranes floated as a thick oil slick. Archean Greenstone belts in Greenland, Australia, and South Africa possibly represent the relics of these Archean craters, where the oldest fossils of thermophilic life (∼3.5 Ga) have been detected. In the chemical stage, monomers such as nucleotides and amino acids were selected from random assemblies of the prebiotic soup; they were polymerized at pores of mineral surfaces with the coevolution of RNA and protein molecules to form the 'RNA/protein world'. Lipid membranes randomly encapsulated these RNA and protein molecules to initiate a molecular symbiosis in a 'RNA/protein/lipid world' that led to hierarchical emergence of several cell components: plasma membranes, ribosomes, coding RNA and proteins, DNA, and finally protocells with a primitive genetic code. In the biological stage, the emergence of the first cells capable of reproduction, heredity, variation, and Darwinian evolution is the key breakthrough in the origin of life. RNA virus and prions may represent the evolutionary relics of the RNA/protein world that survived as parasites for billions of years. Although the proposed endosymbiotic model is speculative it has intrinsic heuristic value. Future experiments on encapsulated RNA virus and prions have the potential to create a synthetic cell that may confirm a coherent narrative of this hierarchical evolutionary sequence.
Collapse
Affiliation(s)
- Sankar Chatterjee
- Department of Geosciences, Museum of Texas Tech University, P. O. Box 43191, Lubbock, TX 79409, USA.
| |
Collapse
|
28
|
Suga K, Otsuka Y, Okamoto Y, Umakoshi H. Gel-Phase-like Ordered Membrane Properties Observed in Dispersed Oleic Acid/1-Oleoylglycerol Self-Assemblies: Systematic Characterization Using Raman Spectroscopy and a Laurdan Fluorescent Probe. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2081-2088. [PMID: 29309161 DOI: 10.1021/acs.langmuir.7b04044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Aqueous dispersions of oleic acid (OA) and those modified with 1-oleoylglycerol (monoolein, MO) form various kinds of self-assembled structures: micelles, vesicles, oil-in-water (O/W) emulsions, hexagonal phases, and dispersed cubic phases. Conventionally, these self-assembled structures have been characterized using cryogenic transmission electron microscopy or X-ray diffraction spectroscopy. However, these methodologies require specialized treatment before they can be used, which may lead to the self-assemblies not adopting their true equilibrium state. Herein, we systematically characterized the self-assemblies composed of OA and MO in aqueous solution using Raman spectroscopy and fluorescent probe 6-dodecanoyl-2-dimethylaminonaphthalene (Laurdan). The OA/MO dispersions at pH 5.0 showed increased chain packing in comparison to the OA micelle at pH 11 or OA vesicle at pH 9.0, which were characterized by the intensity ratio of the Raman peaks at 2850 and 2890 cm-1, R = I2890/I2850. In the Laurdan fluorescence measurements, the obtained spectra were deconvoluted to two peak fractions (A1: λem= 490 nm; A2: λem = 440 nm), and the peak area ratio, A1/(A1 + A2), was defined as the membrane hydrophilicity Øm. The Øm value of the OA/MO dispersion at pH 5.0 was similar to that of the OA O/W emulsion, indicating that the membrane surfaces of these self-assemblies were relatively dehydrated compared to the OA micelle or OA vesicle. To categorize the type of self-assembly dispersion, a Cartesian diagram plot was systematically drawn: R on the x axis and Øm on the y axis, with the cross point at x = 1, y = 0.5. By comparing the membrane properties of the OA-based micelles, O/W emulsions, and dispersed cubic phases, we determined that the OA/MO dispersion at pH 5.0 possessed higher chain packing (R > 1) and a dehydrated membrane surface (Øm < 0.5), which is similar to that of the ordered membranes in gel phases. This characterization method can be useful in evaluating the ordered membrane properties in dispersed self-assemblies in aqueous media.
Collapse
Affiliation(s)
- Keishi Suga
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Yoko Otsuka
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Yukihiro Okamoto
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
29
|
Ruiz-Mirazo K, Briones C, de la Escosura A. Chemical roots of biological evolution: the origins of life as a process of development of autonomous functional systems. Open Biol 2018; 7:rsob.170050. [PMID: 28446711 PMCID: PMC5413913 DOI: 10.1098/rsob.170050] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/31/2017] [Indexed: 01/06/2023] Open
Abstract
In recent years, an extension of the Darwinian framework is being considered for the study of prebiotic chemical evolution, shifting the attention from homogeneous populations of naked molecular species to populations of heterogeneous, compartmentalized and functionally integrated assemblies of molecules. Several implications of this shift of perspective are analysed in this critical review, both in terms of the individual units, which require an adequate characterization as self-maintaining systems with an internal organization, and also in relation to their collective and long-term evolutionary dynamics, based on competition, collaboration and selection processes among those complex individuals. On these lines, a concrete proposal for the set of molecular control mechanisms that must be coupled to bring about autonomous functional systems, at the interface between chemistry and biology, is provided.
Collapse
Affiliation(s)
- Kepa Ruiz-Mirazo
- Biofisika Institute (CSIC, UPV/EHU), 48940 Leioa, Spain.,Department of Logic and Philosophy of Science, University of the Basque Country, 20018 Donostia - San Sebastián, Spain
| | - Carlos Briones
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA, Associated to NASA Astrobiology Institute), 28850 Torrejón de Ardoz, Madrid, Spain
| | - Andrés de la Escosura
- Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain .,Institute for Advanced Research in Chemical Sciences (IAdChem), 28049 Cantoblanco, Madrid, Spain
| |
Collapse
|
30
|
Maurer S. The Impact of Salts on Single Chain Amphiphile Membranes and Implications for the Location of the Origin of Life. Life (Basel) 2017; 7:life7040044. [PMID: 29135960 PMCID: PMC5745557 DOI: 10.3390/life7040044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/01/2022] Open
Abstract
One of the key steps in the origins of life was the formation of a membrane to separate protocells from their environment. These membranes are proposed to have been formed out of single chain amphiphiles, which are less stable than the dialkyl lipids used to form modern membranes. This lack of stability, specifically for decanoate, is often used to refute ocean locations for the origins of life. This review addresses the formation of membranes in hydrothermal-vent like conditions, as well as other environmental constraints. Specifically, single chain amphiphiles can form membranes at high sea salt concentrations (150 g/L), high temperatures (65 °C), and a wide pH range (2 to 10). It additionally discusses the major challenges and advantages of membrane formation in both ocean and fresh water locations.
Collapse
Affiliation(s)
- Sarah Maurer
- Department of Chemistry and Biochemistry, Central Connecticut State University, 1615 Stanley St., New Britain, CT 06050, USA.
| |
Collapse
|
31
|
Shirt-Ediss B, Murillo-Sánchez S, Ruiz-Mirazo K. Framing major prebiotic transitions as stages of protocell development: three challenges for origins-of-life research. Beilstein J Org Chem 2017; 13:1388-1395. [PMID: 28781704 PMCID: PMC5530630 DOI: 10.3762/bjoc.13.135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/27/2017] [Indexed: 01/18/2023] Open
Abstract
Conceiving the process of biogenesis as the evolutionary development of highly dynamic and integrated protocell populations provides the most appropriate framework to address the difficult problem of how prebiotic chemistry bridged the gap to full-fledged living organisms on the early Earth. In this contribution we briefly discuss the implications of taking dynamic, functionally integrated protocell systems (rather than complex reaction networks in bulk solution, sets of artificially evolvable replicating molecules, or even these same replicating molecules encapsulated in passive compartments) as the proper units of prebiotic evolution. We highlight, in particular, how the organisational features of those chemically active and reactive protocells, at different stages of the process, would strongly influence their corresponding evolutionary capacities. As a result of our analysis, we suggest three experimental challenges aimed at constructing protocell systems made of a diversity of functionally coupled components and, thereby, at characterizing more precisely the type of prebiotic evolutionary dynamics that such protocells could engage in.
Collapse
Affiliation(s)
- Ben Shirt-Ediss
- Interdisciplinary Computing and Complex BioSystems Group, University of Newcastle, UK
| | - Sara Murillo-Sánchez
- Dept. Logic and Philosophy of Science, University of the Basque Country, Spain.,Biofisika Institute (CSIC, UPV-EHU), Spain
| | - Kepa Ruiz-Mirazo
- Dept. Logic and Philosophy of Science, University of the Basque Country, Spain.,Biofisika Institute (CSIC, UPV-EHU), Spain
| |
Collapse
|
32
|
Xu H, Du N, Song Y, Song S, Hou W. Microviscosity, encapsulation, and permeability of 2-ketooctanoic acid vesicle membranes. SOFT MATTER 2017; 13:3514-3520. [PMID: 28440377 DOI: 10.1039/c7sm00458c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In the current work, the microviscosity, encapsulation, and permeability of 2-ketooctanoic acid (KOCOOH) vesicle membranes were investigated by steady-state and time-resolved fluorescence techniques, using 1,6-diphenyl-1,3,5-hexatriene (DPH), riboflavin, and calcein as fluorescence probes. Our results show that the microviscosity of KOCOOH membranes is similar to that of common bilayer aggregates, the KOCOOH vesicles have the ability to encapsulate hydrophilic guests, and the KOCOOH membranes are permeable to ions. The permeation of OH- across KOCOOH membranes can be well described using a first-order kinetic model. The KOCOOH vesicles may be a good alternative protocell model that possesses some functional properties necessary for early cell membranes. To the best of our knowledge, this is the first report on the characteristics of vesicle membranes of single-tailed keto-acid amphiphiles.
Collapse
Affiliation(s)
- Huifang Xu
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, P. R. China.
| | - Na Du
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, P. R. China.
| | - Yawen Song
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, P. R. China.
| | - Shue Song
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, P. R. China.
| | - Wanguo Hou
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, P. R. China.
| |
Collapse
|
33
|
Xu H, Du N, Song Y, Song S, Hou W. Vesicles of 2-ketooctanoic acid in water. SOFT MATTER 2017; 13:2246-2252. [PMID: 28255587 DOI: 10.1039/c6sm02665f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We report the spontaneous formation of vesicles from 2-ketooctanoic acid (KOCOOH), a single-tailed weakly acidic surfactant, in water. The vesicles were characterized using negative-staining, cryogenic transmission electron microscopy, conductivity, and atomic force microscopy. The pH effect on the vesicle formation and the stability of the vesicular structures were determined. The vesicles form at a very low concentration (ca. 1.4 mM) and within a wide pH range (ca. 2-10). Uni- and multilamellar vesicle structures are observed, which coexist in the KOCOOH solution. The hydrogen bonding between KOCOOH molecules probably plays an important role in the formation of the vesicles. Importantly, the vesicles exhibit remarkable stability upon long-term storage, and in artificial seawater. KOCOOH vesicles are a good alternative model system for protocell-like vesicles, as they are easily formed under plausible prebiotic conditions. In addition, they may have the same potential applications, such as in medicine, chemical engineering, and biotechnology, as conventional vesicles. To the best of our knowledge, this is the first report on the vesicles of single-tailed keto-acid amphiphiles.
Collapse
Affiliation(s)
- Huifang Xu
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, P. R. China.
| | - Na Du
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, P. R. China.
| | - Yawen Song
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, P. R. China.
| | - Shue Song
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, P. R. China.
| | - Wanguo Hou
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, P. R. China.
| |
Collapse
|
34
|
Sahai N, Kaddour H, Dalai P, Wang Z, Bass G, Gao M. Mineral Surface Chemistry and Nanoparticle-aggregation Control Membrane Self-Assembly. Sci Rep 2017; 7:43418. [PMID: 28266537 PMCID: PMC5339912 DOI: 10.1038/srep43418] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/16/2017] [Indexed: 11/09/2022] Open
Abstract
The self-assembly of lipid bilayer membranes to enclose functional biomolecules, thus defining a “protocell,” was a seminal moment in the emergence of life on Earth and likely occurred at the micro-environment of the mineral-water interface. Mineral-lipid interactions are also relevant in biomedical, industrial and technological processes. Yet, no structure-activity relationships (SARs) have been identified to predict lipid self-assembly at mineral surfaces. Here we examined the influence of minerals on the self-assembly and survival of vesicles composed of single chain amphiphiles as model protocell membranes. The apparent critical vesicle concentration (CVC) increased in the presence of positively-charged nanoparticulate minerals at high loadings (mg/mL) suggesting unfavorable membrane self-assembly in such situations. Above the CVC, initial vesicle formation rates were faster in the presence of minerals. Rates were correlated with the mineral’s isoelectric point (IEP) and reactive surface area. The IEP depends on the crystal structure, chemical composition and surface hydration. Thus, membrane self-assembly showed rational dependence on fundamental mineral properties. Once formed, membrane permeability (integrity) was unaffected by minerals. Suggesting that, protocells could have survived on rock surfaces. These SARs may help predict the formation and survival of protocell membranes on early Earth and other rocky planets, and amphiphile-mineral interactions in diverse other phenomena.
Collapse
Affiliation(s)
- Nita Sahai
- Department of Polymer Science, University of Akron, Akron, OH 44325, USA.,Department of Geology, University of Akron, Akron, OH 44325, USA.,Integrated Bioscience Program, University of Akron, Akron, OH 44325, USA
| | - Hussein Kaddour
- Department of Polymer Science, University of Akron, Akron, OH 44325, USA
| | - Punam Dalai
- Department of Polymer Science, University of Akron, Akron, OH 44325, USA
| | - Ziqiu Wang
- Department of Polymer Science, University of Akron, Akron, OH 44325, USA
| | - Garrett Bass
- Department of Polymer Science, University of Akron, Akron, OH 44325, USA
| | - Min Gao
- Liquid Crystal Institute, Kent State University, Kent, OH 44240, USA
| |
Collapse
|
35
|
Novakovsky GE, Dibrova DV, Mulkidjanian AY. Phylogenomic Analysis of Type 1 NADH:Quinone Oxidoreductase. BIOCHEMISTRY (MOSCOW) 2017; 81:770-84. [PMID: 27449624 DOI: 10.1134/s0006297916070142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We performed phylogenomic analysis of the catalytic core of NADH:quinone oxidoreductases of type 1 (NDH-1). Analysis of phylogenetic trees, as constructed for the core subunits of NDH-1, revealed fundamental differences in their topologies. In the case of four putatively homologous ion-carrying membrane subunits, the trees for the NuoH and NuoN subunits contained separate archaeal clades, whereas subunits NuoL and NuoM were characterized by multiple archaeal clades spread among bacterial branches. Large, separate clades, which united sequences belonging to different archaeal subdomains, were also found for cytoplasmic subunits NuoD and NuoB, homologous to the large and small subunits of nickel-iron hydrogenases. A smaller such clade was also shown for subunit NuoC. Based on these data, we suggest that the ancestral NDH-1 complex could be present already at the stage of the Last Universal Cellular Ancestor (LUCA). Ancestral forms of membrane subunits NuoN and NuoH and cytoplasmic subunits NuoD, NuoB, and, perhaps NuoC, may have formed a membrane complex that operated as an ion-translocating membrane hydrogenase. After the complex attained the ability to reduce membrane quinones, gene duplications could yield the subunits NuoL and NuoM, which enabled translocation of additional ions.
Collapse
Affiliation(s)
- G E Novakovsky
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia
| | | | | |
Collapse
|
36
|
Kundu N, Banerjee P, Kundu S, Dutta R, Sarkar N. Sodium Chloride Triggered the Fusion of Vesicle Composed of Fatty Acid Modified Protic Ionic Liquid: A New Insight into the Membrane Fusion Monitored through Fluorescence Lifetime Imaging Microscopy. J Phys Chem B 2016; 121:24-34. [PMID: 27959558 DOI: 10.1021/acs.jpcb.6b09298] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of stable vesicular assemblies and the understanding of their interaction and dynamics in aqueous solution are long-standing topics in the research of chemistry and biology. Fatty acids are known to form vesicle structure in aqueous solution depending on the pH of the medium. Protic ionic liquid of fatty acid with ethyl amine (oleate ethyl amine, OEA) as a component spontaneously forms a vesicle in aqueous solution. The general comparison of dynamics and interaction of these two vesicles have been drawn using fluorescence correlation spectroscopy (FCS) and fluorescence lifetime imaging microscopy (FLIM) measurements. Further, FLIM images of a single vesicle are taken at multiple wavelengths, and the solvation of the probe molecules has been observed from the multiwavelength FLIM images. The lifetime of the probe molecule in OEA vesicle is higher than that in simple fatty acid vesicles. Therefore, it suggests that the membrane of the OEA vesicle is more dehydrated compared to that of fatty acid vesicles, and it facilitates OEA vesicles to fuse themselves in the presence of electrolyte, sodium chloride (NaCl). However, under the same conditions, only fatty acid vesicles do not fuse. The fusion of OEA vesicles is successfully demonstrated by the time scan FLIM measurements. The different events in the fusion process are analyzed in the light of the reported model of vesicle fusion. Finally, the local viscosity of the water pool of the vesicle is determined using kiton red, as a molecular rotor. With addition of NaCl, the fluidity in the interior of the vesicle is increased which leads to disassembly of vesicle. The rich dynamic properties of this vesicular assembly and the FLIM based approach of vesicle fusion will provide better insight into the growth of a protocell membrane.
Collapse
Affiliation(s)
- Niloy Kundu
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302 WB, India
| | - Pavel Banerjee
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302 WB, India
| | - Sangita Kundu
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302 WB, India
| | - Rupam Dutta
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302 WB, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302 WB, India
| |
Collapse
|
37
|
Izgu EC, Björkbom A, Kamat NP, Lelyveld VS, Zhang W, Jia TZ, Szostak JW. N-Carboxyanhydride-Mediated Fatty Acylation of Amino Acids and Peptides for Functionalization of Protocell Membranes. J Am Chem Soc 2016; 138:16669-16676. [PMID: 27959544 PMCID: PMC7547885 DOI: 10.1021/jacs.6b08801] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Early protocells are likely to have arisen from the self-assembly of RNA, peptide, and lipid molecules that were generated and concentrated within geologically favorable environments on the early Earth. The reactivity of these components in a prebiotic environment that supplied sources of chemical energy could have produced additional species with properties favorable to the emergence of protocells. The geochemically plausible activation of amino acids by carbonyl sulfide has been shown to generate short peptides via the formation of cyclic amino acid N-carboxyanhydrides (NCAs). Here, we show that the polymerization of valine-NCA in the presence of fatty acids yields acylated amino acids and peptides via a mixed anhydride intermediate. Notably, Nα-oleoylarginine, a product of the reaction between arginine and oleic acid in the presence of valine-NCA, partitions spontaneously into vesicle membranes and mediates the association of RNA with the vesicles. Our results suggest a potential mechanism by which activated amino acids could diversify the chemical functionality of fatty acid membranes and colocalize RNA with vesicles during the formation of early protocells.
Collapse
Affiliation(s)
- Enver Cagri Izgu
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Anders Björkbom
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.,Department of Biosciences, Åbo Akademi University , Åbo FI-20520, Finland
| | - Neha P Kamat
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Victor S Lelyveld
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Weicheng Zhang
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.,Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Tony Z Jia
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.,Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.,Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
38
|
Moreno A. Some conceptual issues in the transition from chemistry to biology. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2016; 38:16. [PMID: 27726106 DOI: 10.1007/s40656-016-0117-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/27/2016] [Indexed: 06/06/2023]
Abstract
The transition from chemistry to biology is an extremely complex issue because of the huge phenomenological differences between the two domains and because this transition has many different aspects and dimensions. In this paper, I will try to analyze how chemical systems have developed a cohesive, self-maintaining and functionally differentiated system that recruits its organization to stay far from equilibrium. This organization cannot exist but in an individualized form, and yet, it unfolds both a diachronic-historical and a synchronic collective dimension. I will argue that, far from being a problem, these different dimensions of the phenomenon of life, appear as a consequence of the nature of this individualized organization.
Collapse
Affiliation(s)
- Alvaro Moreno
- Department of Logic and Philosophy of Science, IAS-Research Centre for Life, Mind and Society, University of the Basque Country, Avenida de Tolosa 70, 20018, Donostia-San Sebastian, Spain.
| |
Collapse
|
39
|
Strbak O, Kanuchova Z, Krafcik A. Proton Gradients as a Key Physical Factor in the Evolution of the Forced Transport Mechanism Across the Lipid Membrane. ORIGINS LIFE EVOL B 2016; 46:523-531. [PMID: 27038470 DOI: 10.1007/s11084-016-9496-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/15/2015] [Indexed: 12/29/2022]
Abstract
A critical phase in the transition from prebiotic chemistry to biological evolution was apparently an asymmetric ion flow across the lipid membrane. Due to imbalance in the ion flow, the early lipid vesicles could selectively take the necessary molecules from the environment, and release the side-products from the vesicle. Natural proton gradients played a definitively crucial role in this process, since they remain the basis of energy transfer in the present-day cells. On the basis of this supposition, and the premise of the early vesicle membrane's impermeability to protons, we have shown that the emergence of the proton gradient in the lipid vesicle could be a key physical factor in the evolution of the forced transport mechanism (pore formation and active transport) across the lipid bilayer. This driven flow of protons across the membrane is the result of the electrochemical proton gradient and osmotic pressures on the integrity of the lipid vesicle. At a critical number of new lipid molecules incorporated into the vesicle, the energies associated with the creation of the proton gradient exceed the bending stiffness of the lipid membrane, and overlap the free energy of the lipid bilayer pore formation.
Collapse
Affiliation(s)
- Oliver Strbak
- Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Dubravska cesta 9, 841 04, Bratislava, Slovakia.
| | - Zuzana Kanuchova
- Astronomical Institute, Slovak Academy of Sciences, 059 60, Tatranska Lomnica, Slovakia
| | - Andrej Krafcik
- Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Dubravska cesta 9, 841 04, Bratislava, Slovakia
| |
Collapse
|
40
|
Abstract
Understanding how life arose is a fundamental problem of biology. Much progress has been made by adopting a synthetic and mechanistic perspective on originating life. We present a current view of the biochemistry of the origin of life, focusing on issues surrounding the emergence of an RNA World in which RNA dominated informational and functional roles. There is cause for optimism on this difficult problem: the prebiotic chemical inventory may not have been as nightmarishly complex as previously thought; the catalytic repertoire of ribozymes continues to expand, approaching the goal of self-replicating RNA; encapsulation in protocells provides evolutionary and biophysical advantages. Nevertheless, major issues remain unsolved, such as the origin of a genetic code. Attention to this field is particularly timely given the accelerating discovery and characterization of exoplanets.
Collapse
|
41
|
Suga K, Kondo D, Otsuka Y, Okamoto Y, Umakoshi H. Characterization of Aqueous Oleic Acid/Oleate Dispersions by Fluorescent Probes and Raman Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7606-7612. [PMID: 27404017 DOI: 10.1021/acs.langmuir.6b02257] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Oleic acid (OA) and oleates form self-assembled structures dispersible in aqueous media. Herein, the physicochemical properties of OA/oleate assemblies were characterized using fluorescent probes and Raman spectroscopy, under relatively high dilution (<100 mM of total amphiphile) at 25 °C. Anisotropy analysis using 1,6-diphenyl-1,3,5-hexatriene showed that the microviscosity of the OA/oleate assembly was highest at pH 7.5 (the pH range of 6.9-10.6 was investigated). The fluorescence spectra of 6-lauroyl-2-dimethylaminonaphthalene revealed the dehydrated environments on membrane surfaces at pH < 7.7. The pH-dependent Raman peak intensity ratios, chain torsion (S = I1124/I1096) and chain packing (R = I2850/I2930), showed local maxima, indicating the occurrence of metastable phases, such as dispersed cubic phase (pH = 7.5), vesicle (pH = 8.5), and dispersed cylindrical micelle (pH = 9.7). These results suggest that large-scale OA/oleate assemblies could possess particular membrane properties in a narrow pH region, e.g., at pH 7.5, and 9.7.
Collapse
Affiliation(s)
- Keishi Suga
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Dai Kondo
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Yoko Otsuka
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Yukihiro Okamoto
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
42
|
Domagal-Goldman SD, Wright KE, Adamala K, Arina de la Rubia L, Bond J, Dartnell LR, Goldman AD, Lynch K, Naud ME, Paulino-Lima IG, Singer K, Walther-Antonio M, Abrevaya XC, Anderson R, Arney G, Atri D, Azúa-Bustos A, Bowman JS, Brazelton WJ, Brennecka GA, Carns R, Chopra A, Colangelo-Lillis J, Crockett CJ, DeMarines J, Frank EA, Frantz C, de la Fuente E, Galante D, Glass J, Gleeson D, Glein CR, Goldblatt C, Horak R, Horodyskyj L, Kaçar B, Kereszturi A, Knowles E, Mayeur P, McGlynn S, Miguel Y, Montgomery M, Neish C, Noack L, Rugheimer S, Stüeken EE, Tamez-Hidalgo P, Imari Walker S, Wong T. The Astrobiology Primer v2.0. ASTROBIOLOGY 2016; 16:561-653. [PMID: 27532777 PMCID: PMC5008114 DOI: 10.1089/ast.2015.1460] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/06/2016] [Indexed: 05/09/2023]
Affiliation(s)
- Shawn D Domagal-Goldman
- 1 NASA Goddard Space Flight Center , Greenbelt, Maryland, USA
- 2 Virtual Planetary Laboratory , Seattle, Washington, USA
| | - Katherine E Wright
- 3 University of Colorado at Boulder , Colorado, USA
- 4 Present address: UK Space Agency, UK
| | - Katarzyna Adamala
- 5 Department of Genetics, Cell Biology and Development, University of Minnesota , Minneapolis, Minnesota, USA
| | | | - Jade Bond
- 7 Department of Physics, University of New South Wales , Sydney, Australia
| | | | | | - Kennda Lynch
- 10 Division of Biological Sciences, University of Montana , Missoula, Montana, USA
| | - Marie-Eve Naud
- 11 Institute for research on exoplanets (iREx) , Université de Montréal, Montréal, Canada
| | - Ivan G Paulino-Lima
- 12 Universities Space Research Association , Mountain View, California, USA
- 13 Blue Marble Space Institute of Science , Seattle, Washington, USA
| | - Kelsi Singer
- 14 Southwest Research Institute , Boulder, Colorado, USA
| | | | - Ximena C Abrevaya
- 16 Instituto de Astronomía y Física del Espacio (IAFE) , UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Rika Anderson
- 17 Department of Biology, Carleton College , Northfield, Minnesota, USA
| | - Giada Arney
- 18 University of Washington Astronomy Department and Astrobiology Program , Seattle, Washington, USA
| | - Dimitra Atri
- 13 Blue Marble Space Institute of Science , Seattle, Washington, USA
| | | | - Jeff S Bowman
- 19 Lamont-Doherty Earth Observatory, Columbia University , Palisades, New York, USA
| | | | | | - Regina Carns
- 22 Polar Science Center, Applied Physics Laboratory, University of Washington , Seattle, Washington, USA
| | - Aditya Chopra
- 23 Planetary Science Institute, Research School of Earth Sciences, Research School of Astronomy and Astrophysics, The Australian National University , Canberra, Australia
| | - Jesse Colangelo-Lillis
- 24 Earth and Planetary Science, McGill University , and the McGill Space Institute, Montréal, Canada
| | | | - Julia DeMarines
- 13 Blue Marble Space Institute of Science , Seattle, Washington, USA
| | | | - Carie Frantz
- 27 Department of Geosciences, Weber State University , Ogden, Utah, USA
| | - Eduardo de la Fuente
- 28 IAM-Departamento de Fisica, CUCEI , Universidad de Guadalajara, Guadalajara, México
| | - Douglas Galante
- 29 Brazilian Synchrotron Light Laboratory , Campinas, Brazil
| | - Jennifer Glass
- 30 School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia , USA
| | | | | | - Colin Goldblatt
- 33 School of Earth and Ocean Sciences, University of Victoria , Victoria, Canada
| | - Rachel Horak
- 34 American Society for Microbiology , Washington, DC, USA
| | | | - Betül Kaçar
- 36 Harvard University , Organismic and Evolutionary Biology, Cambridge, Massachusetts, USA
| | - Akos Kereszturi
- 37 Research Centre for Astronomy and Earth Sciences , Hungarian Academy of Sciences, Budapest, Hungary
| | - Emily Knowles
- 38 Johnson & Wales University , Denver, Colorado, USA
| | - Paul Mayeur
- 39 Rensselaer Polytechnic Institute , Troy, New York, USA
| | - Shawn McGlynn
- 40 Earth Life Science Institute, Tokyo Institute of Technology , Tokyo, Japan
| | - Yamila Miguel
- 41 Laboratoire Lagrange, UMR 7293, Université Nice Sophia Antipolis , CNRS, Observatoire de la Côte d'Azur, Nice, France
| | | | - Catherine Neish
- 43 Department of Earth Sciences, The University of Western Ontario , London, Canada
| | - Lena Noack
- 44 Royal Observatory of Belgium , Brussels, Belgium
| | - Sarah Rugheimer
- 45 Department of Astronomy, Harvard University , Cambridge, Massachusetts, USA
- 46 University of St. Andrews , St. Andrews, UK
| | - Eva E Stüeken
- 47 University of Washington , Seattle, Washington, USA
- 48 University of California , Riverside, California, USA
| | | | - Sara Imari Walker
- 13 Blue Marble Space Institute of Science , Seattle, Washington, USA
- 50 School of Earth and Space Exploration and Beyond Center for Fundamental Concepts in Science, Arizona State University , Tempe, Arizona, USA
| | - Teresa Wong
- 51 Department of Earth and Planetary Sciences, Washington University in St. Louis , St. Louis, Missouri, USA
| |
Collapse
|
43
|
Dibrova DV, Galperin MY, Koonin EV, Mulkidjanian AY. Ancient Systems of Sodium/Potassium Homeostasis as Predecessors of Membrane Bioenergetics. BIOCHEMISTRY (MOSCOW) 2016; 80:495-516. [PMID: 26071768 DOI: 10.1134/s0006297915050016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cell cytoplasm of archaea, bacteria, and eukaryotes contains substantially more potassium than sodium, and potassium cations are specifically required for many key cellular processes, including protein synthesis. This distinct ionic composition and requirements have been attributed to the emergence of the first cells in potassium-rich habitats. Different, albeit complementary, scenarios have been proposed for the primordial potassium-rich environments based on experimental data and theoretical considerations. Specifically, building on the observation that potassium prevails over sodium in the vapor of inland geothermal systems, we have argued that the first cells could emerge in the pools and puddles at the periphery of primordial anoxic geothermal fields, where the elementary composition of the condensed vapor would resemble the internal milieu of modern cells. Marine and freshwater environments generally contain more sodium than potassium. Therefore, to invade such environments, while maintaining excess of potassium over sodium in the cytoplasm, primordial cells needed means to extrude sodium ions. The foray into new, sodium-rich habitats was the likely driving force behind the evolution of diverse redox-, light-, chemically-, or osmotically-dependent sodium export pumps and the increase of membrane tightness. Here we present a scenario that details how the interplay between several, initially independent sodium pumps might have triggered the evolution of sodium-dependent membrane bioenergetics, followed by the separate emergence of the proton-dependent bioenergetics in archaea and bacteria. We also discuss the development of systems that utilize the sodium/potassium gradient across the cell membranes.
Collapse
Affiliation(s)
- D V Dibrova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | | | | | | |
Collapse
|
44
|
Göppel T, Palyulin VV, Gerland U. The efficiency of driving chemical reactions by a physical non-equilibrium is kinetically controlled. Phys Chem Chem Phys 2016; 18:20135-43. [DOI: 10.1039/c6cp01034b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A model system illustrates how the coupling efficiency of a physical non-equilibrium to a chemical reaction is affected by the relative timescales of the respective kinetics.
Collapse
Affiliation(s)
- Tobias Göppel
- Physics of Complex Biosystems
- Physics Department
- Technical University of Munich
- D-85748 Garching
- Germany
| | - Vladimir V. Palyulin
- Physics of Complex Biosystems
- Physics Department
- Technical University of Munich
- D-85748 Garching
- Germany
| | - Ulrich Gerland
- Physics of Complex Biosystems
- Physics Department
- Technical University of Munich
- D-85748 Garching
- Germany
| |
Collapse
|
45
|
Wei C, Pohorille A. M2 proton channel: toward a model of a primitive proton pump. ORIGINS LIFE EVOL B 2015; 45:241-8. [PMID: 25777465 DOI: 10.1007/s11084-015-9421-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/06/2014] [Indexed: 01/23/2023]
Abstract
Transmembrane proton transfer was essential to early cellular systems in order to transduce energy for metabolic functions. The reliable, efficient and controlled generation of proton gradients became possible only with the emergence of active proton pumps. On the basis of features shared by most modern proton pumps we identify the essential mechanistic steps in active proton transport. Further, we discuss the mechanism of action of a small, transmembrane M2 proton channel from influenza A virus as a model for proton transport in protocells. The M2 channel is a 94-residue long, α-helical tetramer that is activated at low pH and exhibits high selectivity and directionality. A shorter construct, built of transmembrane fragments that are only 24 amino acids in length, exhibits very similar proton transport properties. Molecular dynamics simulations on the microsecond time-scale carried out for the M2 channel provided atomic level details on the activation of the channel in response to protonation of the histidine residue, His37. The pathway of proton conduction is mediated by His37, which accepts and donates protons at different interconverting conformation states when pH is lower than 6.5. The Val27 and Trp41 gates and the salt bridge between Asp44 and Arg45 further enhance the directionality of proton transport. It is argued that the architecture and the mechanism of action similar to that found in the M2 channel might have been the perfect starting point for evolution towards the earliest proton pumps, indicating that active proton transport could have readily emerged from simple, passive proton channels.
Collapse
Affiliation(s)
- Chenyu Wei
- NASA Ames Research Center, Mail Stop 239-4, Moffett Field, CA, 94035, USA
| | | |
Collapse
|
46
|
Dutta LP, Das M. Coacervation—A Method for Drug Delivery. ADVANCEMENTS OF MEDICAL ELECTRONICS 2015. [DOI: 10.1007/978-81-322-2256-9_35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
47
|
Lombard J. Once upon a time the cell membranes: 175 years of cell boundary research. Biol Direct 2014; 9:32. [PMID: 25522740 PMCID: PMC4304622 DOI: 10.1186/s13062-014-0032-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 12/03/2014] [Indexed: 11/23/2022] Open
Abstract
All modern cells are bounded by cell membranes best described by the fluid mosaic model. This statement is so widely accepted by biologists that little attention is generally given to the theoretical importance of cell membranes in describing the cell. This has not always been the case. When the Cell Theory was first formulated in the XIX(th) century, almost nothing was known about the cell membranes. It was not until well into the XX(th) century that the existence of the plasma membrane was broadly accepted and, even then, the fluid mosaic model did not prevail until the 1970s. How were the cell boundaries considered between the articulation of the Cell Theory around 1839 and the formulation of the fluid mosaic model that has described the cell membranes since 1972? In this review I will summarize the major historical discoveries and theories that tackled the existence and structure of membranes and I will analyze how these theories impacted the understanding of the cell. Apart from its purely historical relevance, this account can provide a starting point for considering the theoretical significance of membranes to the definition of the cell and could have implications for research on early life.
Collapse
Affiliation(s)
- Jonathan Lombard
- National Evolutionary Synthesis Center, 2024 W. Main Street Suite A200, Durham, NC, 27705, USA.
| |
Collapse
|
48
|
Hentrich C, Szostak JW. Controlled growth of filamentous fatty acid vesicles under flow. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:14916-14925. [PMID: 25402759 PMCID: PMC4985002 DOI: 10.1021/la503933x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/14/2014] [Indexed: 06/01/2023]
Abstract
The earliest forms of cellular life would have required a membrane compartment capable of growth and division. Fatty acid vesicles are an attractive model of protocell membranes, as they can grow into filamentous vesicles that readily divide while retaining their contents. In order to study vesicle growth, we have developed a method for immobilizing multilamellar fatty acid vesicles on modified glass surfaces and inducing filamentous membrane growth under flow. Filament formation strictly depended on the presence of freshly neutralized fatty acid micelles in the flow chamber. Using light microscopy, we observed a strong dependence of initial growth velocity on initial vesicle size, suggesting that new fatty acid molecules were incorporated into the membrane over the entire external surface of the vesicle. We examined the influences of flow rate, fatty acid concentration, and salt concentration on filamentous growth and observed drastic shape changes, including membrane pearling, of preexisting membrane tubules in response to osmotic stress. These results illustrate the versatility of flow studies for exploring the process of fatty acid vesicle growth following exposure to free fatty acids.
Collapse
Affiliation(s)
- Christian Hentrich
- Howard
Hughes Medical Institute, Department of Molecular Biology and Center
for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
- Department
of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Jack W. Szostak
- Howard
Hughes Medical Institute, Department of Molecular Biology and Center
for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
- Department
of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford
St., Cambridge, Massachusetts 02138, United States
| |
Collapse
|
49
|
Suga K, Yokoi T, Kondo D, Hayashi K, Morita S, Okamoto Y, Shimanouchi T, Umakoshi H. Systematical characterization of phase behaviors and membrane properties of fatty acid/didecyldimethylammonium bromide vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:12721-12728. [PMID: 25295838 DOI: 10.1021/la503331r] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Fatty acids (FAs) are known to form vesicle structures, depending on the surrounding pH conditions. In this study, we prepared vesicles by mixing FAs and a cationic surfactant, and then investigated their physicochemical properties using fluorescence spectroscopy and dielectric dispersion analysis (DDA). The assemblies formed from oleic acid (OA) and linoleic acid (LA) were modified by adding didecyldimethylammonium bromide (DDAB). The phase state of FA/DDAB mixtures was investigated with pH titration curves and turbidity measurements. The trigonal diagram of FA/ionized FA/DDAB was successfully drawn to understand the phase behaviors of FA/DDAB systems. The analysis of fluidities in the interior of the membrane with use of 1,6-diphenyl-1,3,5-hexatriene (DPH) indicated that the membrane fluidities of OA/DDAB and LA/DDAB at pH 8.5 slightly decreased in proportion to the molar ratio of DDAB in FA/DDAB systems. The fluorescent probe 6-lauroyl-2-dimethylamino naphthalene (Laurdan) indicated that the LA vesicle possessed a dehydrated surface, while the OA vesicle surface was hydrated. Modification of LA vesicles with DDAB induced the hydration of membrane surfaces, whereas modification of OA vesicles by DDAB had the opposite effect. DDA analysis indicated that the membrane surfaces were hydrated in the presence of DDAB, suggesting that the surface properties of FA vesicles are tunable by DDAB modification.
Collapse
Affiliation(s)
- Keishi Suga
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Wei C, Pohorille A. Flip-flop of oleic acid in a phospholipid membrane: rate and mechanism. J Phys Chem B 2014; 118:12919-26. [PMID: 25319959 DOI: 10.1021/jp508163e] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Flip-flop of protonated oleic acid molecules dissolved at two different concentrations in membranes made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine is studied with the aid of molecular dynamics simulations at a time scale of several microseconds. Direct, single-molecule flip-flop events are observed at this time scale, and the flip-flop rate is estimated at 0.2-0.3 μs(-1). As oleic acid molecules move toward the center of the bilayer during flip-flop, they undergo gradual, correlated translational, and rotational motion. Rare, double-flipping events of two hydrogen-bonded oleic acid molecules are also observed. A two-dimensional free energy surface is obtained for the translational and rotational degree of freedom of the oleic acid molecule, and the minimum energy path on this surface is determined. A barrier to flip-flop of ~4.2 kcal/mol is found at the center of the bilayer. A two-dimensional diffusion model is found to provide a good description of the flip-flop process. The fast flip-flop rate lends support to the proposal that fatty acids permeate membranes without assistance of transport proteins. It also suggests that desorption rather than flip-flop is the rate-limiting step in fatty acid transport through membranes. The relation of flip-flop rates to the evolution of ancestral cellular systems is discussed.
Collapse
Affiliation(s)
- Chenyu Wei
- NASA Ames Research Center , Mail Stop 229-1, Moffett Field, California 94035, United States
| | | |
Collapse
|