1
|
Cornelius RJ, Maeoka Y, Shinde U, McCormick JA. Familial Hyperkalemic Hypertension. Compr Physiol 2024; 14:5839-5874. [PMID: 39699086 DOI: 10.1002/cphy.c240004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The rare disease Familial Hyperkalemic Hypertension (FHHt) is caused by mutations in the genes encoding Cullin 3 (CUL3), Kelch-Like 3 (KLHL3), and two members of the With-No-Lysine [K] (WNK) kinase family, WNK1 and WNK4. In the kidney, these mutations ultimately cause hyperactivation of NCC along the renal distal convoluted tubule. Hypertension results from increased NaCl retention, and hyperkalemia by impaired K + secretion by downstream nephron segments. CUL3 and KLHL3 are now known to form a ubiquitin ligase complex that promotes proteasomal degradation of WNK kinases, which activate downstream kinases that phosphorylate and thus activate NCC. For CUL3, potent effects on the vasculature that contribute to the more severe hypertensive phenotype have also been identified. Here we outline the in vitro and in vivo studies that led to the discovery of the molecular pathways regulating NCC and vascular tone, and how FHHt-causing mutations disrupt these pathways. Potential mechanisms for variability in disease severity related to differential effects of each mutation on the kidney and vasculature are described, and other possible effects of the mutant proteins beyond the kidney and vasculature are explored. © 2024 American Physiological Society. Compr Physiol 14:5839-5874, 2024.
Collapse
Affiliation(s)
- Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Yujiro Maeoka
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Ujwal Shinde
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - James A McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
2
|
Hershfinkel M. Cross-talk between zinc and calcium regulates ion transport: A role for the zinc receptor, ZnR/GPR39. J Physiol 2024; 602:1579-1594. [PMID: 37462604 DOI: 10.1113/jp283834] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/26/2023] [Indexed: 04/21/2024] Open
Abstract
Zinc is essential for many physiological functions, with a major role in digestive system, skin health, and learning and memory. On the cellular level, zinc is involved in cell proliferation and cell death. A selective zinc sensing receptor, ZnR/GPR39 is a Gq-coupled receptor that acts via the inositol trisphosphate pathway to release intracellular Ca2+. The ZnR/GPR39 serves as a mediator between extracellular changes in Zn2+ concentration and cellular Ca2+ signalling. This signalling pathway regulates ion transporters activity and thereby controls the formation of transepithelial gradients or neuronal membrane potential, which play a fundamental role in the physiological function of these tissues. This review focuses on the role of Ca2+ signalling, and specifically ZnR/GPR39, with respect to the regulation of the Na+/H+ exchanger, NHE1, and of the K+/Cl- cotransporters, KCC1-3, and also describes the physiological implications of this regulation.
Collapse
Affiliation(s)
- Michal Hershfinkel
- Department of Physiology and Cell Biology and the School of Brain Sciences and Cognition, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
3
|
Abstract
The with no lysine (K) (WNK) kinases are an evolutionarily ancient group of kinases with atypical placement of the catalytic lysine and diverse physiological roles. Recent studies have shown that WNKs are directly regulated by chloride, potassium, and osmotic pressure. Here, we review the discovery of WNKs as chloride-sensitive kinases and discuss physiological contexts in which chloride regulation of WNKs has been demonstrated. These include the kidney, pancreatic duct, neurons, and inflammatory cells. We discuss the interdependent relationship of osmotic pressure and intracellular chloride in cell volume regulation. We review the recent demonstration of potassium regulation of WNKs and speculate on possible physiological roles. Finally, structural and mechanistic aspects of intracellular ion and osmotic pressure regulation of WNKs are discussed.
Collapse
Affiliation(s)
- Elizabeth J Goldsmith
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Aylin R Rodan
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA; .,Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.,Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA.,Medical Service, Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, Utah, USA
| |
Collapse
|
4
|
Dalton DL, Pretorius C, de Klerk-Lorist LM, Reininghaus B, Buss P, Mitchell EP. Absence of 2899C<T Mutation in the WNK4 Gene in a Free-Ranging Lion (Panthera leo) with Polymyopathy. Animals (Basel) 2022; 12:ani12030389. [PMID: 35158718 PMCID: PMC8833707 DOI: 10.3390/ani12030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Samples from an African lion cub in the Greater Kruger National Park area (South Africa), which could not walk, were tested for a gene mutation that causes one type of muscle weakness in domestic cats. The cause of the muscle weakness is believed to be genetic, but our study showed that the mutation that is found in similarly affected domestic cats was not present in the cub. Genetic diseases are more common in inbred animal populations, so this condition needs to be further evaluated to assist in the conservation of these magnificent creatures. Abstract Polyphasic skeletal muscle degeneration, necrosis and mineralization of skeletal muscle was diagnosed in eight juvenile free-ranging lions (Panthera leo), from five different litters in the Greater Kruger National Park area that were unable to walk properly. A detailed investigation was not possible in free-ranging lions, so the cause could not be determined. The cases resembled hypokalemic polymyopathy in domestic cats with muscle weakness. A candidate-gene approach previously identified a nonsense mutation in the gene coding for the enzyme lysine-deficient 4 protein kinase (WNK4) associated with the disease in Burmese and Tonkinese cats. In this study, we sequenced all 19 exons of the gene in one case, and two control samples, to identify possible mutations that may be associated with polymyopathy in free-ranging lions. Here, no mutations were detected in any of the exons sequenced. Our findings indicate that the WNK4 gene is not a major contributor to the condition in these lions. Further studies into the pathogenesis of this condition are needed to inform conservation policies for this vulnerable, iconic African species.
Collapse
Affiliation(s)
- Desiré L. Dalton
- South African National Biodiversity Institute, P.O. Box 754, Pretoria 0001, South Africa; (D.L.D.); (C.P.)
| | - Chantelle Pretorius
- South African National Biodiversity Institute, P.O. Box 754, Pretoria 0001, South Africa; (D.L.D.); (C.P.)
| | - Lin-Mari de Klerk-Lorist
- Skukuza State Veterinary Office & Laboratory, Directorate Animal Health, Department of Agriculture, Land Reform and Rural Development, Kruger National Park, P.O. Box 12, Skukuza 1350, South Africa;
| | - Bjorn Reininghaus
- Mpumulanga Veterinary Services, Thulamahashe, P/Bag X11309, Mbombela 1200, South Africa;
| | - Peter Buss
- Veterinary Wildlife Services, South African National Parks, P.O. Box 86, Skukuza 1350, South Africa;
| | - Emily P. Mitchell
- South African National Biodiversity Institute, P.O. Box 754, Pretoria 0001, South Africa; (D.L.D.); (C.P.)
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, P/Bag X01, Onderstepoort 0110, South Africa
- Centre for Veterinary Wildlife Research, Faculty of Veterinary Science, University of Pretoria, P/Bag X01, Onderstepoort 0110, South Africa
- Correspondence:
| |
Collapse
|
5
|
Lim WM, Chin EWM, Tang BL, Chen T, Goh ELK. WNK3 Maintains the GABAergic Inhibitory Tone, Synaptic Excitation and Neuronal Excitability via Regulation of KCC2 Cotransporter in Mature Neurons. Front Mol Neurosci 2021; 14:762142. [PMID: 34858138 PMCID: PMC8631424 DOI: 10.3389/fnmol.2021.762142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
The activation of chloride (Cl−)permeable gamma (γ)-aminobutyric acid type A(GABAA) receptors induces synaptic inhibition in mature and excitation in immature neurons. This developmental “switch” in GABA function controlled by its polarity depends on the postnatal decrease in intraneuronal Cl− concentration mediated by KCC2, a member of cation-chloride cotransporters (CCCs). The serine-threonine kinase WNK3 (With No Lysine [K]), is a potent regulator of all CCCs and is expressed in neurons. Here, we characterized the functions of WNK3 and its role in GABAergic signaling in cultured embryonic day 18 (E18) hippocampal neurons. We observed a decrease in WNK3 expression as neurons mature. Knocking down of WNK3 significantly hyperpolarized EGABA in mature neurons (DIV13–15) but had no effect on immature neurons (DIV6–8). This hyperpolarized EGABA in WNK3-deficient neurons was not due to the total expression of NKCC1 and KCC2, that remained unchanged. However, there was a reduction in phosphorylated KCC2 at the membrane, suggesting an increase in KCC2 chloride export activity. Furthermore, hyperpolarized EGABA observed in WNK3-deficient neurons can be reversed by the KCC2 inhibitor, VU024055, thus indicating that WNK3 acts through KCC2 to influence EGABA. Notably, WNK3 knockdown resulted in morphological changes in mature but not immature neurons. Electrophysiological characterization of WNK3-deficient mature neurons revealed reduced capacitances but increased intrinsic excitability and synaptic excitation. Hence, our study demonstrates that WNK3 maintains the “adult” GABAergic inhibitory tone in neurons and plays a role in the morphological development of neurons and excitability.
Collapse
Affiliation(s)
- Wee Meng Lim
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, Singapore, Singapore
| | - Eunice W M Chin
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, Singapore, Singapore.,Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Bor Luen Tang
- NUS Graduate School for Integrative Sciences and Engineering, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tingting Chen
- School of Pharmacy, Nantong University, Nantong, China
| | - Eyleen L K Goh
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore.,Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
6
|
Murillo-de-Ozores AR, Rodríguez-Gama A, Carbajal-Contreras H, Gamba G, Castañeda-Bueno M. WNK4 kinase: from structure to physiology. Am J Physiol Renal Physiol 2021; 320:F378-F403. [PMID: 33491560 DOI: 10.1152/ajprenal.00634.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
With no lysine kinase-4 (WNK4) belongs to a serine-threonine kinase family characterized by the atypical positioning of its catalytic lysine. Despite the fact that WNK4 has been found in many tissues, the majority of its study has revolved around its function in the kidney, specifically as a positive regulator of the thiazide-sensitive NaCl cotransporter (NCC) in the distal convoluted tubule of the nephron. This is explained by the description of gain-of-function mutations in the gene encoding WNK4 that causes familial hyperkalemic hypertension. This disease is mainly driven by increased downstream activation of the Ste20/SPS1-related proline-alanine-rich kinase/oxidative stress responsive kinase-1-NCC pathway, which increases salt reabsorption in the distal convoluted tubule and indirectly impairs renal K+ secretion. Here, we review the large volume of information that has accumulated about different aspects of WNK4 function. We first review the knowledge on WNK4 structure and enumerate the functional domains and motifs that have been characterized. Then, we discuss WNK4 physiological functions based on the information obtained from in vitro studies and from a diverse set of genetically modified mouse models with altered WNK4 function. We then review in vitro and in vivo evidence on the different levels of regulation of WNK4. Finally, we go through the evidence that has suggested how different physiological conditions act through WNK4 to modulate NCC activity.
Collapse
Affiliation(s)
- Adrián Rafael Murillo-de-Ozores
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico.,Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico
| | | | - Héctor Carbajal-Contreras
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico.,Combined Studies Program in Medicine MD/PhD (PECEM), Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico, Mexico
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico.,Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico.,Combined Studies Program in Medicine MD/PhD (PECEM), Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico.,Combined Studies Program in Medicine MD/PhD (PECEM), Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico, Mexico
| |
Collapse
|
7
|
Pleinis JM, Norrell L, Akella R, Humphreys JM, He H, Sun Q, Zhang F, Sosa-Pagan J, Morrison DE, Schellinger JN, Jackson LK, Goldsmith EJ, Rodan AR. WNKs are potassium-sensitive kinases. Am J Physiol Cell Physiol 2021; 320:C703-C721. [PMID: 33439774 DOI: 10.1152/ajpcell.00456.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
With no lysine (K) (WNK) kinases regulate epithelial ion transport in the kidney to maintain homeostasis of electrolyte concentrations and blood pressure. Chloride ion directly binds WNK kinases to inhibit autophosphorylation and activation. Changes in extracellular potassium are thought to regulate WNKs through changes in intracellular chloride. Prior studies demonstrate that in some distal nephron epithelial cells, intracellular potassium changes with chronic low- or high-potassium diet. We, therefore, investigated whether potassium regulates WNK activity independent of chloride. We found decreased activity of Drosophila WNK and mammalian WNK3 and WNK4 in fly Malpighian (renal) tubules bathed in high extracellular potassium, even when intracellular chloride was kept constant at either ∼13 mM or 26 mM. High extracellular potassium also inhibited chloride-insensitive mutants of WNK3 and WNK4. High extracellular rubidium was also inhibitory and increased tubule rubidium. The Na+/K+-ATPase inhibitor, ouabain, which is expected to lower intracellular potassium, increased tubule Drosophila WNK activity. In vitro, potassium increased the melting temperature of Drosophila WNK, WNK1, and WNK3 kinase domains, indicating ion binding to the kinase. Potassium inhibited in vitro autophosphorylation of Drosophila WNK and WNK3, and also inhibited WNK3 and WNK4 phosphorylation of their substrate, Ste20-related proline/alanine-rich kinase (SPAK). The greatest sensitivity of WNK4 to potassium occurred in the range of 80-180 mM, encompassing physiological intracellular potassium concentrations. Together, these data indicate chloride-independent potassium inhibition of Drosophila and mammalian WNK kinases through direct effects of potassium ion on the kinase.
Collapse
Affiliation(s)
- John M Pleinis
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Logan Norrell
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Radha Akella
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John M Humphreys
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Haixia He
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Qifei Sun
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Feng Zhang
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Jason Sosa-Pagan
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Daryl E Morrison
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Jeffrey N Schellinger
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Elizabeth J Goldsmith
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Aylin R Rodan
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah.,Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Human Genetics, University of Utah, Salt Lake City, Utah.,Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
| |
Collapse
|
8
|
Murillo-de-Ozores AR, Chávez-Canales M, de los Heros P, Gamba G, Castañeda-Bueno M. Physiological Processes Modulated by the Chloride-Sensitive WNK-SPAK/OSR1 Kinase Signaling Pathway and the Cation-Coupled Chloride Cotransporters. Front Physiol 2020; 11:585907. [PMID: 33192599 PMCID: PMC7606576 DOI: 10.3389/fphys.2020.585907] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
The role of Cl- as an intracellular signaling ion has been increasingly recognized in recent years. One of the currently best described roles of Cl- in signaling is the modulation of the With-No-Lysine (K) (WNK) - STE20-Proline Alanine rich Kinase (SPAK)/Oxidative Stress Responsive Kinase 1 (OSR1) - Cation-Coupled Cl- Cotransporters (CCCs) cascade. Binding of a Cl- anion to the active site of WNK kinases directly modulates their activity, promoting their inhibition. WNK activation due to Cl- release from the binding site leads to phosphorylation and activation of SPAK/OSR1, which in turn phosphorylate the CCCs. Phosphorylation by WNKs-SPAK/OSR1 of the Na+-driven CCCs (mediating ions influx) promote their activation, whereas that of the K+-driven CCCs (mediating ions efflux) promote their inhibition. This results in net Cl- influx and feedback inhibition of WNK kinases. A wide variety of alterations to this pathway have been recognized as the cause of several human diseases, with manifestations in different systems. The understanding of WNK kinases as Cl- sensitive proteins has allowed us to better understand the mechanistic details of regulatory processes involved in diverse physiological phenomena that are reviewed here. These include cell volume regulation, potassium sensing and intracellular signaling in the renal distal convoluted tubule, and regulation of the neuronal response to the neurotransmitter GABA.
Collapse
Affiliation(s)
- Adrián Rafael Murillo-de-Ozores
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Chávez-Canales
- Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Paola de los Heros
- Unidad de Investigación UNAM-INC, Research Division, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
9
|
Lee D, Hong JH. The Fundamental Role of Bicarbonate Transporters and Associated Carbonic Anhydrase Enzymes in Maintaining Ion and pH Homeostasis in Non-Secretory Organs. Int J Mol Sci 2020; 21:ijms21010339. [PMID: 31947992 PMCID: PMC6981687 DOI: 10.3390/ijms21010339] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/18/2022] Open
Abstract
The bicarbonate ion has a fundamental role in vital systems. Impaired bicarbonate transport leads to various diseases, including immune disorders, cystic fibrosis, tumorigenesis, kidney diseases, brain dysfunction, tooth fracture, ischemic reperfusion injury, hypertension, impaired reproductive system, and systemic acidosis. Carbonic anhydrases are involved in the mechanism of bicarbonate movement and consist of complex of bicarbonate transport systems including bicarbonate transporters. This review focused on the convergent regulation of ion homeostasis through various ion transporters including bicarbonate transporters, their regulatory enzymes, such as carbonic anhydrases, pH regulatory role, and the expression pattern of ion transporters in non-secretory systems throughout the body. Understanding the correlation between these systems will be helpful in order to obtain new insights and design potential therapeutic strategies for the treatment of pH-related disorders. In this review, we have discussed the broad prospects and challenges that remain in elucidation of bicarbonate-transport-related biological and developmental systems.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Correspondence: ; Tel.: +82-32-899-6682; Fax: +82-32-899-6039
| |
Collapse
|
10
|
Structure-function relationships in the renal NaCl cotransporter (NCC). CURRENT TOPICS IN MEMBRANES 2019; 83:177-204. [PMID: 31196605 DOI: 10.1016/bs.ctm.2019.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The thiazide-sensitive Na+-Cl- cotransporter (NCC) is the major pathway for salt reabsorption in the distal convoluted tubule, serves as a receptor for thiazide-type diuretics, and is involved in inherited diseases associated with abnormal blood pressure. The functional and structural characterization of NCC from different species has led us to gain insights into the structure-function relationships of the cotransporter. Here we present an overview of different studies that had described these properties. Additionally, we report the cloning and characterization of the NCC from the spiny dogfish (Squalus acanthias) kidney (sNCC). The purpose of the present study was to determine the main functional, pharmacological and regulatory properties of sNCC to make a direct comparison with other NCC orthologous. The sNCC cRNA encodes a 1033 amino acid membrane protein, when expressed in Xenopus oocytes, functions as a thiazide-sensitive Na-Cl cotransporter with NCC regulation and thiazide-inhibition properties similar to mammals, rather than to teleosts. However, the Km values for ion transport kinetics are significantly higher than those observed in the mammal species. In summary, we present a review on NCC structure-function relationships with the addition of the sNCC information in order to enrich the NCC cotransporter knowledge.
Collapse
|
11
|
Murillo-de-Ozores AR, Rodríguez-Gama A, Bazúa-Valenti S, Leyva-Ríos K, Vázquez N, Pacheco-Álvarez D, De La Rosa-Velázquez IA, Wengi A, Stone KL, Zhang J, Loffing J, Lifton RP, Yang CL, Ellison DH, Gamba G, Castañeda-Bueno M. C-terminally truncated, kidney-specific variants of the WNK4 kinase lack several sites that regulate its activity. J Biol Chem 2018; 293:12209-12221. [PMID: 29921588 DOI: 10.1074/jbc.ra118.003037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/14/2018] [Indexed: 12/13/2022] Open
Abstract
WNK lysine-deficient protein kinase 4 (WNK4) is an important regulator of renal salt handling. Mutations in its gene cause pseudohypoaldosteronism type II, mainly arising from overactivation of the renal Na+/Cl- cotransporter (NCC). In addition to full-length WNK4, we have observed faster migrating bands (between 95 and 130 kDa) in Western blots of kidney lysates. Therefore, we hypothesized that these could correspond to uncharacterized WNK4 variants. Here, using several WNK4 antibodies and WNK4-/- mice as controls, we showed that these bands indeed correspond to short WNK4 variants that are not observed in other tissue lysates. LC-MS/MS confirmed these bands as WNK4 variants that lack C-terminal segments. In HEK293 cells, truncation of WNK4's C terminus at several positions increased its kinase activity toward Ste20-related proline/alanine-rich kinase (SPAK), unless the truncated segment included the SPAK-binding site. Of note, this gain-of-function effect was due to the loss of a protein phosphatase 1 (PP1)-binding site in WNK4. Cotransfection with PP1 resulted in WNK4 dephosphorylation, an activity that was abrogated in the PP1-binding site WNK4 mutant. The electrophoretic mobility of the in vivo short variants of renal WNK4 suggested that they lack the SPAK-binding site and thus may not behave as constitutively active kinases toward SPAK. Finally, we show that at least one of the WNK4 short variants may be produced by proteolysis involving a Zn2+-dependent metalloprotease, as recombinant full-length WNK4 was cleaved when incubated with kidney lysate.
Collapse
Affiliation(s)
| | - Alejandro Rodríguez-Gama
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico
| | - Silvana Bazúa-Valenti
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico
| | - Karla Leyva-Ríos
- Escuela de Medicina, Universidad Panamericana, Mexico City 03920, Mexico
| | - Norma Vázquez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico
| | | | - Inti A De La Rosa-Velázquez
- Genomics Laboratory, RAI, Universidad Nacional Autónoma de México-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Agnieszka Wengi
- Institute of Anatomy and Swiss National Centre of Competence in Research "Kidney Control of Homeostasis," University of Zurich, Zurich 8057, Switzerland
| | - Kathryn L Stone
- MS and Proteomics Resource, W. M. Keck Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven 06510, Connecticut
| | - Junhui Zhang
- Department of Genetics, Yale University School of Medicine, New Haven 06510, Connecticut
| | - Johannes Loffing
- Institute of Anatomy and Swiss National Centre of Competence in Research "Kidney Control of Homeostasis," University of Zurich, Zurich 8057, Switzerland
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven 06510, Connecticut; Laboratory of Human Genetics and Genomics, Rockefeller University, New York, New York 10065
| | - Chao-Ling Yang
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon 97239; Veterans Affairs Portland Health Care System, Portland, Oregon 97239
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon 97239; Veterans Affairs Portland Health Care System, Portland, Oregon 97239
| | - Gerardo Gamba
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Nuevo León, Mexico
| | - Maria Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico.
| |
Collapse
|
12
|
Wu P, Gao ZX, Su XT, Ellison DH, Hadchouel J, Teulon J, Wang WH. Role of WNK4 and kidney-specific WNK1 in mediating the effect of high dietary K + intake on ROMK channel in the distal convoluted tubule. Am J Physiol Renal Physiol 2018; 315:F223-F230. [PMID: 29667910 DOI: 10.1152/ajprenal.00050.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
With-no-lysine kinase 4 (WNK4) and kidney-specific (KS)-WNK1 regulate ROMK (Kir1.1) channels in a variety of cell models. We now explore the role of WNK4 and KS-WNK1 in regulating ROMK in the native distal convoluted tubule (DCT)/connecting tubule (CNT) by measuring tertiapin-Q (TPNQ; ROMK inhibitor)-sensitive K+ currents with whole cell recording. TPNQ-sensitive K+ currents in DCT2/CNT of KS- WNK1-/- and WNK4-/- mice were significantly smaller than that of WT mice. In contrast, the basolateral K+ channels (a Kir4.1/5.1 heterotetramer) in the DCT were not inhibited. Moreover, WNK4-/- mice were hypokalemic, while KS- WNK1-/- mice had normal plasma K+ levels. High K+ (HK) intake significantly increased TPNQ-sensitive K+ currents in DCT2/CNT of WT and WNK4-/- mice but not in KS- WNK1-/- mice. However, TPNQ-sensitive K+ currents in the cortical collecting duct (CCD) were normal not only under control conditions but also significantly increased in response to HK in KS- WNK1-/- mice. This suggests that the deletion of KS-WNK1-induced inhibition of ROMK occurs only in the DCT2/CNT. Renal clearance study further demonstrated that the deletion of KS-WNK1 did not affect the renal ability of K+ excretion under control conditions and during increasing K+ intake. Also, HK intake did not cause hyperkalemia in KS- WNK1-/- mice. We conclude that KS-WNK1 but not WNK4 is required for HK intake-induced stimulation of ROMK activity in DCT2/CNT. However, KS-WNK1 is not essential for HK-induced stimulation of ROMK in the CCD, and the lack of KS-WNK1 does not affect net renal K+ excretion.
Collapse
Affiliation(s)
- Peng Wu
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Zhong-Xiuzi Gao
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Xiao-Tong Su
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University , Portland, Oregon
| | - Juliette Hadchouel
- Institut National de la Santé et de la Recherche Médicale, UMR_S1155, University Pierre et Marie Curie, Hospital Tenon , Paris , France.,University Pierre et Marie Curie, Centre de Recherches des Cordeliers, UMR_S1138, Paris , France
| | - Jacques Teulon
- University Pierre et Marie Curie, Centre de Recherches des Cordeliers, UMR_S1138, Paris , France
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
13
|
Chung WY, Han JW, Heo W, Lee MG, Kim JY. Overexpression of WNK1 in POMC-expressing neurons reduces weigh gain via WNK4-mediated degradation of Kir6.2. Mol Cell Biochem 2018; 447:165-174. [PMID: 29392534 DOI: 10.1007/s11010-018-3301-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/24/2018] [Indexed: 10/18/2022]
Abstract
"With no lysine" (WNK) kinases have been shown to regulate various ion transporters in various tissues, but studies on the function of WNK kinases in the brain have been limited. In this study, we discovered that WNK1 and WNK4 in POMC-expressing neuronal cells in WNK1 overexpressed transgenic mice (WNK1 TG) decrease appetite via degradation of Kir6.2. Weight gain after 20 weeks of age was delayed in WNK1 TG mice as a result of reduced food intake. Expression of WNK1 and proopiomelanocortin (POMC) was higher in POMC-expressing neurons in the hypothalamus of WNK1 TG mice than in WT mice. Immunostaining of serial sections of the hypothalamus revealed that POMC-expressing neurons were smaller in WNK1 TG mice than in WT mice. In addition, expression of Kir6.2 was significantly reduced in WNK1 TG mice. Overexpression and knockdown of WNK4 demonstrated that WNK4 regulates protein expression of Kir6.2 via protein-protein interaction. Accordingly, reduced age-dependent weight gain of WNK1 TG mice seems to be related with the decreased Kir6.2 expression via WNK1- and WNK4-regulated protein stability of Kir6.2.
Collapse
Affiliation(s)
- Woo Young Chung
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 120-752, South Korea
| | - Jung Woo Han
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 120-752, South Korea
| | - Woon Heo
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 120-752, South Korea
| | - Min Goo Lee
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 120-752, South Korea
| | - Joo Young Kim
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 120-752, South Korea.
| |
Collapse
|
14
|
Ferdaus MZ, Miller LN, Agbor LN, Saritas T, Singer JD, Sigmund CD, McCormick JA. Mutant Cullin 3 causes familial hyperkalemic hypertension via dominant effects. JCI Insight 2017; 2:96700. [PMID: 29263298 DOI: 10.1172/jci.insight.96700] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/15/2017] [Indexed: 11/17/2022] Open
Abstract
Mutations in the ubiquitin ligase scaffold protein Cullin 3 (CUL3) cause the disease familial hyperkalemic hypertension (FHHt). In the kidney, mutant CUL3 (CUL3-Δ9) increases abundance of With-No-Lysine [K] Kinase 4 (WNK4), with excessive activation of the downstream Sterile 20 (STE20)/SPS-1-related proline/alanine-rich kinase (SPAK) increasing phosphorylation of the Na+-Cl- cotransporter (NCC). CUL3-Δ9 promotes its own degradation via autoubiquitination, leading to the hypothesis that Cul3 haploinsufficiency causes FHHt. To directly test this, we generated Cul3 heterozygous mice (CUL3-Het), and Cul3 heterozygotes also expressing CUL3-Δ9 (CUL3-Het/Δ9), using an inducible renal epithelial-specific system. Endogenous CUL3 was reduced to 50% in both models, and consistent with autoubiquitination, CUL3-Δ9 protein was undetectable in CUL3-Het/Δ9 kidneys unless primary renal epithelia cells were cultured. Abundances of WNK4 and phosphorylated NCC did not differ between control and CUL3-Het mice, but they were elevated in CUL3-Het/Δ9 mice, which also displayed higher plasma [K+] and blood pressure. Abundance of phosphorylated Na+-K+-2Cl- cotransporter (NKCC2) was also increased, which may contribute to the severity of CUL3-Δ9-mediated FHHt. WNK4 and SPAK localized to puncta in NCC-positive segments but not in NKCC2-positive segments, suggesting differential effects of CUL3-Δ9. These results indicate that Cul3 haploinsufficiency does not cause FHHt, but dominant effects of CUL3-Δ9 are required.
Collapse
Affiliation(s)
- Mohammed Z Ferdaus
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Lauren N Miller
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Larry N Agbor
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Turgay Saritas
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeffrey D Singer
- Department of Biology, Portland State University, Portland, Oregon, USA
| | - Curt D Sigmund
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - James A McCormick
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
15
|
Zhang J, Karimy JK, Delpire E, Kahle KT. Pharmacological targeting of SPAK kinase in disorders of impaired epithelial transport. Expert Opin Ther Targets 2017; 21:795-804. [PMID: 28679296 PMCID: PMC6081737 DOI: 10.1080/14728222.2017.1351949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The mammalian SPS1-related proline/alanine-rich serine-threonine kinase SPAK (STK39) modulates ion transport across and between epithelial cells in response to environmental stimuli such osmotic stress and inflammation. Research over the last decade has established a central role for SPAK in the regulation of ion and water transport in the distal nephron, colonic crypts, and pancreatic ducts, and has implicated deregulated SPAK signaling in NaCl-sensitive hypertension, ulcerative colitis and Crohn's disease, and cystic fibrosis. Areas covered: We review recent advances in our understanding of the role of SPAK kinase in the regulation of epithelial transport. We highlight how SPAK signaling - including its upstream Cl- sensitive activators, the WNK kinases, and its downstream ion transport targets, the cation- Cl- cotransporters contribute to human disease. We discuss prospects for the pharmacotherapeutic targeting of SPAK kinase in specific human disorders that feature impaired epithelial homeostasis. Expert opinion: The development of novel drugs that antagonize the SPAK-WNK interaction, inhibit SPAK kinase activity, or disrupt SPAK kinase activation by interfering with its binding to MO25α/β could be useful adjuncts in essential hypertension, inflammatory colitis, and cystic fibrosis.
Collapse
Affiliation(s)
- Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter, EX4 4PS, UK
| | - Jason K. Karimy
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Eric Delpire
- Department of Anesthesiolgy, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristopher T. Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology; and Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
16
|
Kasagi Y, Takahashi D, Aida T, Nishida H, Nomura N, Zeniya M, Mori T, Sasaki E, Ando F, Rai T, Uchida S, Sohara E. Impaired degradation of medullary WNK4 in the kidneys of KLHL2 knockout mice. Biochem Biophys Res Commun 2017; 487:368-374. [PMID: 28414128 DOI: 10.1016/j.bbrc.2017.04.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 12/16/2022]
Abstract
Mutations in the with-no-lysine kinase 1 (WNK1), WNK4, Kelch-like 3 (KLHL3), and Cullin3 (CUL3) genes were identified as being responsible for hereditary hypertensive disease pseudohypoaldosteronism type II (PHAII). Normally, the KLHL3/CUL3 ubiquitin ligase complex degrades WNKs. In PHAII, the loss of interaction between KLHL3 and WNK4 increases levels of WNKs because of impaired ubiquitination, leading to abnormal over-activation of the WNK-OSR1/SPAK-NCC cascade in the kidney's distal convoluted tubules (DCT). KLHL2, which is highly homologous to KLHL3, was reported to ubiquitinate and degrade WNKs in vitro. Mutations in KLHL2 have not been reported in patients with PHAII, suggesting that KLHL2 plays a different physiological role than that played by KLHL3 in the kidney. To investigate the physiological roles of KLHL2 in the kidney, we generated KLHL2-/- mice. KLHL2-/- mice did not exhibit increased phosphorylation of the OSR1/SPAK-NCC cascade and PHAII-like phenotype. KLHL2 was predominantly expressed in the medulla compared with the cortex. Accordingly, medullary WNK4 protein levels were significantly increased in the kidneys of KLHL2-/- mice. KLHL2 is indeed a physiological regulator of WNK4 in vivo; however, its function might be different from that of KLHL3 because KLHL2 mainly localized in medulla.
Collapse
Affiliation(s)
- Yuri Kasagi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Daiei Takahashi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Tomomi Aida
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan; Laboratory of Recombinant Animals, MRI, Tokyo Medical and Dental University, Chiyoda, Tokyo 101-0062, Japan
| | - Hidenori Nishida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Naohiro Nomura
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Moko Zeniya
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Emi Sasaki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Fumiaki Ando
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Tatemitsu Rai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan.
| |
Collapse
|
17
|
Abstract
WNK kinases, along with their upstream regulators (CUL3/KLHL3) and downstream targets (the SPAK/OSR1 kinases and the cation-Cl- cotransporters [CCCs]), comprise a signaling cascade essential for ion homeostasis in the kidney and nervous system. Recent work has furthered our understanding of the WNKs in epithelial transport, cell volume homeostasis, and GABA signaling, and uncovered novel roles for this pathway in immune cell function and cell proliferation.
Collapse
Affiliation(s)
- Masoud Shekarabi
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jinwei Zhang
- Departments of Neurosurgery, Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06477, USA; MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Arjun R Khanna
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
| | - David H Ellison
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon 97239, USA; VA Portland Health Care System, Portland, OR 97239, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristopher T Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology, Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06477, USA.
| |
Collapse
|
18
|
Hadchouel J, Ellison DH, Gamba G. Regulation of Renal Electrolyte Transport by WNK and SPAK-OSR1 Kinases. Annu Rev Physiol 2016; 78:367-89. [PMID: 26863326 DOI: 10.1146/annurev-physiol-021115-105431] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery of four genes responsible for pseudohypoaldosteronism type II, or familial hyperkalemic hypertension, which features arterial hypertension with hyperkalemia and metabolic acidosis, unmasked a complex multiprotein system that regulates electrolyte transport in the distal nephron. Two of these genes encode the serine-threonine kinases WNK1 and WNK4. The other two genes [kelch-like 3 (KLHL3) and cullin 3 (CUL3)] form a RING-type E3-ubiquitin ligase complex that modulates WNK1 and WNK4 abundance. WNKs regulate the activity of the Na(+):Cl(-) cotransporter (NCC), the epithelial sodium channel (ENaC), the renal outer medullary potassium channel (ROMK), and other transport pathways. Interestingly, the modulation of NCC occurs via the phosphorylation by WNKs of other serine-threonine kinases known as SPAK-OSR1. In contrast, the process of regulating the channels is independent of SPAK-OSR1. We present a review of the remarkable advances in this area in the past 10 years.
Collapse
Affiliation(s)
- Juliette Hadchouel
- INSERM UMR970, Paris Cardiovascular Research Center, 75015 Paris, France.,Faculty of Medicine, Paris Descartes University, Sorbonne Paris Cité, 75006 Paris, France
| | - David H Ellison
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City 14080, Mexico;
| |
Collapse
|
19
|
Mercado A, de Los Heros P, Melo Z, Chávez-Canales M, Murillo-de-Ozores AR, Moreno E, Bazúa-Valenti S, Vázquez N, Hadchouel J, Gamba G. With no lysine L-WNK1 isoforms are negative regulators of the K+-Cl- cotransporters. Am J Physiol Cell Physiol 2016; 311:C54-66. [PMID: 27170636 PMCID: PMC4967140 DOI: 10.1152/ajpcell.00193.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 05/02/2016] [Indexed: 12/11/2022]
Abstract
The K(+)-Cl(-) cotransporters (KCC1-KCC4) encompass a branch of the SLC12 family of electroneutral cation-coupled chloride cotransporters that translocate ions out of the cell to regulate various factors, including cell volume and intracellular chloride concentration, among others. L-WNK1 is an ubiquitously expressed kinase that is activated in response to osmotic stress and intracellular chloride depletion, and it is implicated in two distinct hereditary syndromes: the renal disease pseudohypoaldosteronism type II (PHAII) and the neurological disease hereditary sensory neuropathy 2 (HSN2). The effect of L-WNK1 on KCC activity is unknown. Using Xenopus laevis oocytes and HEK-293 cells, we show that the activation of KCCs by cell swelling was prevented by L-WNK1 coexpression. In contrast, the activity of the Na(+)-K(+)-2Cl(-) cotransporter NKCC1 was remarkably increased with L-WNK1 coexpression. The negative effect of L-WNK1 on the KCCs is kinase dependent. Elimination of the STE20 proline-alanine rich kinase (SPAK)/oxidative stress-responsive kinase (OSR1) binding site or the HQ motif required for the WNK-WNK interaction prevented the effect of L-WNK1 on KCCs, suggesting a required interaction between L-WNK1 molecules and SPAK. Together, our data support that NKCC1 and KCCs are coordinately regulated by L-WNK1 isoforms.
Collapse
Affiliation(s)
- Adriana Mercado
- Department of Nephrology, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City, Mexico
| | - Paola de Los Heros
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, Mexico
| | - Zesergio Melo
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico
| | - María Chávez-Canales
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico; Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Tlalpan, Mexico City, Mexico; INSERM UMR970-Paris Cardiovascular Research Center, Paris, France; and University Paris-Descartes, Sorbonne Paris Cité, Faculty of Medicine, Paris, France
| | - Adrián R Murillo-de-Ozores
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico
| | - Erika Moreno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Tlalpan, Mexico City, Mexico
| | - Silvana Bazúa-Valenti
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico; Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Tlalpan, Mexico City, Mexico
| | - Norma Vázquez
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico; Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Tlalpan, Mexico City, Mexico
| | - Juliette Hadchouel
- INSERM UMR970-Paris Cardiovascular Research Center, Paris, France; and University Paris-Descartes, Sorbonne Paris Cité, Faculty of Medicine, Paris, France
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico; Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Tlalpan, Mexico City, Mexico;
| |
Collapse
|
20
|
Dbouk HA, Huang CL, Cobb MH. Hypertension: the missing WNKs. Am J Physiol Renal Physiol 2016; 311:F16-27. [PMID: 27009339 PMCID: PMC4967160 DOI: 10.1152/ajprenal.00358.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 03/16/2016] [Indexed: 12/23/2022] Open
Abstract
The With no Lysine [K] (WNK) family of enzymes are central in the regulation of blood pressure. WNKs have been implicated in hereditary hypertension disorders, mainly through control of the activity and levels of ion cotransporters and channels. Actions of WNKs in the kidney have been heavily investigated, and recent studies have provided insight into not only the regulation of these enzymes but also how mutations in WNKs and their interacting partners contribute to hypertensive disorders. Defining the roles of WNKs in the cardiovascular system will provide clues about additional mechanisms by which WNKs can regulate blood pressure. This review summarizes recent developments in the regulation of the WNK signaling cascade and its role in regulation of blood pressure.
Collapse
Affiliation(s)
- Hashem A Dbouk
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Chou-Long Huang
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| |
Collapse
|
21
|
Tang BL. (WNK)ing at death: With-no-lysine (Wnk) kinases in neuropathies and neuronal survival. Brain Res Bull 2016; 125:92-8. [PMID: 27131446 DOI: 10.1016/j.brainresbull.2016.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/11/2016] [Accepted: 04/24/2016] [Indexed: 12/22/2022]
Abstract
Members of With-no-lysine (WNK) family of serine-threonine kinase are key regulators of chloride ion transport in diverse cell types, controlling the activity and the surface expression of cation-chloride (Na(+)/K(+)-Cl(-)) co-transporters. Mutations in WNK1 and WNK4 are linked to a hereditary form of hypertension, and WNKs have been extensively investigated pertaining to their roles in renal epithelial ion homeostasis. However, some members of the WNK family and their splice isoforms are also expressed in the mammalian brain, and have been implicated in aspects of hereditary neuropathy as well as neuronal and glial survival. WNK2, which is exclusively enriched in neurons, is well known as an anti-proliferative tumor suppressor. WNK3, on the other hand, appears to promote cell survival as its inhibition enhances neuronal apoptosis. However, loss of WNK3 has been recently shown to reduce ischemia-associated brain damage. In this review, I surveyed the potentially context-dependent roles of WNKs in neurological disorders and neuronal survival.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.
| |
Collapse
|
22
|
O'Shaughnessy KM. Gordon Syndrome: a continuing story. Pediatr Nephrol 2015; 30:1903-8. [PMID: 25503323 DOI: 10.1007/s00467-014-2956-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 01/01/2023]
Abstract
Gordon Syndrome (GS) is a rare familial hypertension syndrome with a characteristic hyperkalaemia which distinguishes it from other syndromic forms of hypertension that typically cause hypokalaemia. Patients with GS respond to aggressive salt-restriction or relatively small doses of thiazide diuretics, which suggests that activation of the thiazide-sensitive Na/Cl cotransporter (NCC) in the distal nephron is to blame. However, the mechanism has proved to be complex. In 2001, mutations in genes encoding two serine/threonine kinases, WNK1 and WNK4, were identified as causing GS. However, it took several years to appreciate that these kinases operated in a cascade with downstream serine/threonine kinases (SPAK and OSR1) actually phosphorylating and activating NCC and the closely related cotransporters NKCC1 and NKCC2. The hyperkalaemia in GS arises from an independent action of WNK1/WNK4 to reduce cell-surface expression of ROMK, the secretory K-channel in the collecting ducts. However, mutations in WNK1/4 are present in a small minority of GS families, and further genes have emerged (CUL3 and KLHL3) that code for Cullin-3 (a scaffold protein in an ubiquitin-E3 ligase) and an adaptor protein, Kelch3, respectively. These new players regulate the ubiquitination and proteasomal degradation of WNK kinases, thereby adding to the complex picture we now have of NCC regulation in the distal nephron.
Collapse
Affiliation(s)
- Kevin M O'Shaughnessy
- Division of Experimental Medicine and Immunotherapeutics, Department of Medicine, Addenbrooke's Hospital-University of Cambridge, Cambridge, CB2 2QQ UK.
| |
Collapse
|
23
|
Seki G, Nakamura M, Suzuki M, Satoh N, Horita S. Species differences in regulation of renal proximal tubule transport by certain molecules. World J Nephrol 2015; 4:307-312. [PMID: 25949945 PMCID: PMC4419141 DOI: 10.5527/wjn.v4.i2.307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/24/2014] [Accepted: 01/20/2015] [Indexed: 02/06/2023] Open
Abstract
Renal proximal tubules (PTs) play important roles in the regulation of acid/base, plasma volume and blood pressure. Recent studies suggest that there are substantial species differences in the regulation of PT transport. For example, thiazolidinediones (TZDs) are widely used for the treatment of type 2 diabetes mellitus, but the use of TZDs is associated with fluid overload. In addition to the transcriptional enhancement of sodium transport in distal nephrons, TZDs rapidly stimulate PT sodium transport via a non-genomic mechanism depending on peroxisome proliferator activated receptor γ/Src/epidermal growth factor receptor (EGFR)/MEK/ERK. In mouse PTs, however, TZDs fail to stimulate PT transport probably due to constitutive activation of Src/EGFR/ERK pathway. This unique activation of Src/ERK may also affect the effect of high concentrations of insulin on mouse PT transport. On the other hand, the effect of angiotensin II (Ang II) on PT transport is known to be biphasic in rabbits, rats, and mice. However, Ang II induces a concentration-dependent, monophasic transport stimulation in human PTs. The contrasting responses to nitric oxide/guanosine 3’,5’-cyclic monophosphate pathway may largely explain these different effects of Ang II on PT transport. In this review, we focus on the recent findings on the species differences in the regulation of PT transport, which may help understand the species-specific mechanisms underlying edema formation and/or hypertension occurrence.
Collapse
|
24
|
Malik R, Musca FJ, Gunew MN, Menrath VH, Simpson C, Culvenor J, Grahn RA, Helps C, Lyons LA, Gandolfi B. Periodic hypokalaemic polymyopathy in Burmese and closely related cats: a review including the latest genetic data. J Feline Med Surg 2015; 17:417-26. [PMID: 25896241 PMCID: PMC10816241 DOI: 10.1177/1098612x15581135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
GLOBAL IMPORTANCE Hypokalaemic polymyopathy is a genetic disease of Burmese cats that has been encountered in Australasia, Europe and South Africa. CLINICAL FEATURES Affected cats usually present with signs of muscle weakness and muscle pain in the first year of life. Although certain clinical features, such as ventroflexion of the head and neck, are especially characteristic, some cats do not display these signs. Usually weakness is periodic or episodic, but occasionally it is incessant. DIAGNOSTIC CHALLENGES In the past, diagnosis was problematic in that clinical signs and a lowered serum potassium concentration were not always observed synchronously. This necessitated serial serum potassium concentration determinations, testing of serum creatine kinase activity and exclusion of other potential causes of muscle disease in cats (including muscular dystrophies, Toxoplasma myositis, immune-mediated polymyositis, organophosphorus intoxication and envenomations). Signs in affected cats often waxed and waned, possibly in response to changes in dietary factors and stress, and some cats could apparently 'grow out of' the condition. RECENT ADVANCES AND FUTURE PROSPECTS Recent molecular genetics research has identified a single nonsense mutation in the gene (WNK4) coding for lysine-deficient 4 protein kinase, an enzyme present primarily in the distal nephron. The underlying pathomechanism in affected cats is therefore likely to be a potassium wasting nephropathy, as this enzyme is involved in complex sodium/potassium exchange mechanisms in the kidney. Additional functional characterisation of the condition is warranted to define precisely how, why and when the serum potassium concentration declines. The diagnosis of Burmese hypokalaemia is now straightforward, as an inexpensive PCR test can identify affected homozygous individuals, as well as carriers. The elimination of this condition from the Burmese breed, and also from pedigree cats infused with Burmese lines, such as the Bombay, Tonkinese and Tiffanie breeds, should therefore be possible.
Collapse
Affiliation(s)
- Richard Malik
- Centre for Veterinary Education, B22, The University of Sydney, New South Wales, Australia
| | - Fran J Musca
- The Cat Clinic, Creek Road, Mount Gravatt, Queensland, Australia
| | - Marcus N Gunew
- The Cat Clinic, Creek Road, Mount Gravatt, Queensland, Australia
| | - Victor H Menrath
- The Cat Clinic, Creek Road, Mount Gravatt, Queensland, Australia
| | - Christopher Simpson
- Southern Animal Referral Centre and Emergency Centre, 248 Wickham Road, Highett, Victoria, Australia
| | - John Culvenor
- North Shore Veterinary Specialist Centre, 64 Atchison Street, Crows Nest, New South Wales, Australia
| | - Robert A Grahn
- Veterinary Genetics Laboratory, 980 Old Davis Road, University of California, Davis, CA, USA
| | | | - Leslie A Lyons
- College of Veterinary Medicine, University of Missouri, USA
| | | |
Collapse
|
25
|
Roy A, Goodman JH, Begum G, Donnelly BF, Pittman G, Weinman EJ, Sun D, Subramanya AR. Generation of WNK1 knockout cell lines by CRISPR/Cas-mediated genome editing. Am J Physiol Renal Physiol 2014; 308:F366-76. [PMID: 25477473 DOI: 10.1152/ajprenal.00612.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sodium-coupled SLC12 cation chloride cotransporters play important roles in cell volume and chloride homeostasis, epithelial fluid secretion, and renal tubular salt reabsorption. These cotransporters are phosphorylated and activated indirectly by With-No-Lysine (WNK) kinases through their downstream effector kinases, Ste20- and SPS1-related proline alanine-rich kinase (SPAK) and oxidative stress-responsive kinase 1 (OSR1). Multiple WNK kinases can coexist within a single cell type, although their relative contributions to SPAK/OSR1 activation and salt transport remain incompletely understood. Deletion of specific WNKs from cells that natively express a functional WNK-SPAK/OSR1 network will help resolve these knowledge gaps. Here, we outline a simple method to selectively knock out full-length WNK1 expression from mammalian cells using RNA-guided clustered regularly interspaced short palindromic repeats/Cas9 endonucleases. Two clonal cell lines were generated by using a single-guide RNA (sgRNA) targeting exon 1 of the WNK1 gene, which produced indels that abolished WNK1 protein expression. Both cell lines exhibited reduced endogenous WNK4 protein abundance, indicating that WNK1 is required for WNK4 stability. Consistent with an on-target effect, the reduced WNK4 abundance was associated with increased expression of the KLHL3/cullin-3 E3 ubiquitin ligase complex and was rescued by exogenous WNK1 overexpression. Although the morphology of the knockout cells was indistinguishable from control, they exhibited low baseline SPAK/OSR1 activity and failed to trigger regulatory volume increase after hypertonic stress, confirming an essential role for WNK1 in cell volume regulation. Collectively, our data show how this new, powerful, and accessible gene-editing technology can be used to dissect and analyze WNK signaling networks.
Collapse
Affiliation(s)
- Ankita Roy
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Joshua H Goodman
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gulnaz Begum
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Bridget F Donnelly
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gabrielle Pittman
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Edward J Weinman
- Department of Medicine, University of Maryland Medical School, Baltimore, Maryland; and
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Arohan R Subramanya
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| |
Collapse
|
26
|
Guo XG, Ding J, Xu H, Xuan TM, Jin WQ, Yin X, Shang YP, Zhang FR, Zhu JH, Zheng LR. Comprehensive assessment of the association of WNK4 polymorphisms with hypertension: evidence from a meta-analysis. Sci Rep 2014; 4:6507. [PMID: 25266424 PMCID: PMC4195396 DOI: 10.1038/srep06507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 09/15/2014] [Indexed: 01/01/2023] Open
Abstract
The relationship between with-no-lysine [K] kinase 4 (WNK4) gene polymorphisms and hypertension has been widely investigated, However, the studies yielded contradictory results. To evaluate these inconclusive findings comprehensively, we therefore performed a meta-analysis. Ten articles encompassing 16 independent case-control studies with 6089 hypertensive cases and 4881 normotensive controls were selected for this meta-analysis. Four WNK4 gene polymorphisms were identified (G1155942T, G1156666A, T1155547C, and C6749T). The results showed statistically significant associations of G1155942T polymorphism (allelic genetic model: odds ration or OR = 1.62, 95% confidence interval or CI: 1.11–2.38, P = 0.01; dominant model: OR = 1.85, 95% CI: 1.07–3.19, P = 0.03) and C6749T polymorphism (allele contrast: OR = 2.04, 95% CI: 1.60–2.59, P<0.01; dominant model: OR = 2.04, 95%CI: 1.59–2.62, P<0.01; and homozygous model: OR = 5.01, 95% CI: 1.29–19.54, P = 0.02) with hypertension risk. However, neither C1155547T nor G1156666A was associated significantly with hypertension susceptibility. In conclusion, this meta-analysis suggested that WNK4 G1155942T and C6749T gene polymorphisms may contribute to the susceptibility and development of hypertension. Further well-designed studies with larger sample size are required to elucidate the association of WNK4 gene multiple polymorphisms with hypertension risk.
Collapse
Affiliation(s)
- Xiao-gang Guo
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jie Ding
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hui Xu
- 1] Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China [2] Xiuzhou District, Gaozhao Street Community Health Service Center, Jiaxing 314031, China
| | - Tian-ming Xuan
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Wei-quan Jin
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiang Yin
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yun-peng Shang
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Fu-rong Zhang
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jian-hua Zhu
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Liang-rong Zheng
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
27
|
Fujita T. Mechanism of salt-sensitive hypertension: focus on adrenal and sympathetic nervous systems. J Am Soc Nephrol 2014; 25:1148-55. [PMID: 24578129 DOI: 10.1681/asn.2013121258] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A central role for the kidney among the systems contributing to BP regulation and the development of hypertension has been proposed. Both the aldosterone/mineralocorticoid receptor pathway and the renal sympathetic nervous system have important roles in the regulation of renal excretory function and BP control, but the mechanisms underlying these processes have remained unclear. However, recent studies revealed the activation of two pathways in salt-sensitive hypertension. Notably, Rac1, a member of the Rho-family of small GTP binding proteins, was identified as a novel ligand-independent modulator of mineralocorticoid receptor activity. Furthermore, these studies point to crucial roles for the Rac1-mineralocorticoid receptor-NCC/ENaC and the renal β-adrenergic stimulant-glucocorticoid receptor-WNK4-NCC pathways in certain rodent models of salt-sensitive hypertension. The nuclear mineralocorticoid and glucocorticoid receptors may contribute to impaired renal excretory function and the resulting salt-sensitive hypertension by increasing sodium reabsorption at different tubular segments. This review provides an in-depth discussion of the evidence supporting these conclusions and considers the significance with regard to treating salt-sensitive hypertension and salt-induced cardiorenal injury.
Collapse
Affiliation(s)
- Toshiro Fujita
- Department of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan; and CREST, Tokyo, Japan
| |
Collapse
|
28
|
Hong JH, Park S, Shcheynikov N, Muallem S. Mechanism and synergism in epithelial fluid and electrolyte secretion. Pflugers Arch 2013; 466:1487-99. [PMID: 24240699 DOI: 10.1007/s00424-013-1390-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 10/16/2013] [Accepted: 10/17/2013] [Indexed: 01/04/2023]
Abstract
A central function of epithelia is the control of the volume and electrolyte composition of bodily fluids through vectorial transport of electrolytes and the obligatory H2O. In exocrine glands, fluid and electrolyte secretion is carried out by both acinar and duct cells, with the portion of fluid secreted by each cell type varying among glands. All acinar cells secrete isotonic, plasma-like fluid, while the duct determines the final electrolyte composition of the fluid by absorbing most of the Cl(-) and secreting HCO3 (-). The key transporters mediating acinar fluid and electrolyte secretion are the basolateral Na(+)/K(+) /2Cl(-) cotransporter, the luminal Ca(2+)-activated Cl(-) channel ANO1 and basolateral and luminal Ca(2+)-activated K(+) channels. Ductal fluid and HCO3 (-) secretion are mediated by the basolateral membrane Na(+)-HCO3 (-) cotransporter NBCe1-B and the luminal membrane Cl(-)/HCO3 (-) exchanger slc26a6 and the Cl(-) channel CFTR. The function of the transporters is regulated by multiple inputs, which in the duct include major regulation by the WNK/SPAK pathway that inhibit secretion and the IRBIT/PP1 pathway that antagonize the effects of the WNK/SPAK pathway to both stimulate and coordinate the secretion. The function of these regulatory pathways in secretory glands acinar cells is yet to be examined. An important concept in biology is synergism among signaling pathways to generate the final physiological response that ensures regulation with high fidelity and guards against cell toxicity. While synergism is observed in all epithelial functions, the molecular mechanism mediating the synergism is not known. Recent work reveals a central role for IRBIT as a third messenger that integrates and synergizes the function of the Ca(2+) and cAMP signaling pathways in activation of epithelial fluid and electrolyte secretion. These concepts are discussed in this review using secretion by the pancreatic and salivary gland ducts as model systems.
Collapse
Affiliation(s)
- Jeong Hee Hong
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD, 20892, USA
| | | | | | | |
Collapse
|
29
|
Christensen EI, Wagner CA, Kaissling B. Uriniferous tubule: structural and functional organization. Compr Physiol 2013; 2:805-61. [PMID: 23961562 DOI: 10.1002/cphy.c100073] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The uriniferous tubule is divided into the proximal tubule, the intermediate (thin) tubule, the distal tubule and the collecting duct. The present chapter is based on the chapters by Maunsbach and Christensen on the proximal tubule, and by Kaissling and Kriz on the distal tubule and collecting duct in the 1992 edition of the Handbook of Physiology, Renal Physiology. It describes the fine structure (light and electron microscopy) of the entire mammalian uriniferous tubule, mainly in rats, mice, and rabbits. The structural data are complemented by recent data on the location of the major transport- and transport-regulating proteins, revealed by morphological means(immunohistochemistry, immunofluorescence, and/or mRNA in situ hybridization). The structural differences along the uriniferous tubule strictly coincide with the distribution of the major luminal and basolateral transport proteins and receptors and both together provide the basis for the subdivision of the uriniferous tubule into functional subunits. Data on structural adaptation to defined functional changes in vivo and to genetical alterations of specified proteins involved in transepithelial transport importantly deepen our comprehension of the correlation of structure and function in the kidney, of the role of each segment or cell type in the overall renal function,and our understanding of renal pathophysiology.
Collapse
|
30
|
Pathare G, Hoenderop JGJ, Bindels RJM, San-Cristobal P. A molecular update on pseudohypoaldosteronism type II. Am J Physiol Renal Physiol 2013; 305:F1513-20. [PMID: 24107425 DOI: 10.1152/ajprenal.00440.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The DCT (distal convoluted tubule) is the site of microregulation of water reabsorption and ion handling in the kidneys, which is mainly under the control of aldosterone. Aldosterone binds to and activates mineralocorticoid receptors, which ultimately lead to increased sodium reabsorption in the distal part of the nephron. Impairment of mineralocorticoid signal transduction results in resistance to aldosterone and mineralocorticoids, and, therefore, causes disturbances in electrolyte balance. Pseudohypoaldosteronism type II (PHAII) or familial hyperkalemic hypertension (FHHt) is a rare, autosomal dominant syndrome characterized by hypertension, hyperkalemia, metabolic acidosis, elevated or low aldosterone levels, and decreased plasma renin activity. PHAII is caused by mutations in the WNK isoforms (with no lysine kinase), which regulate the Na-Cl and Na-K-Cl cotransporters (NCC and NKCC2, respectively) and the renal outer medullary potassium (ROMK) channel in the DCT. This review focuses on new candidate genes such as KLHL3 and Cullin3, which are instrumental to unraveling novel signal transductions pathways involving NCC, to better understand the cause of PHAII along with the molecular mechanisms governing the pathophysiology of PHAII and its clinical manifestations.
Collapse
Affiliation(s)
- Ganesh Pathare
- 286, Dept. of Physiology, Radboud Univ. Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
31
|
Alper SL, Sharma AK. The SLC26 gene family of anion transporters and channels. Mol Aspects Med 2013; 34:494-515. [PMID: 23506885 DOI: 10.1016/j.mam.2012.07.009] [Citation(s) in RCA: 267] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/21/2012] [Indexed: 02/08/2023]
Abstract
The phylogenetically ancient SLC26 gene family encodes multifunctional anion exchangers and anion channels transporting a broad range of substrates, including Cl(-), HCO3(-), sulfate, oxalate, I(-), and formate. SLC26 polypeptides are characterized by N-terminal cytoplasmic domains, 10-14 hydrophobic transmembrane spans, and C-terminal cytoplasmic STAS domains, and appear to be homo-oligomeric. SLC26-related SulP proteins of marine bacteria likely transport HCO3(-) as part of oceanic carbon fixation. SulP genes present in antibiotic operons may provide sulfate for antibiotic biosynthetic pathways. SLC26-related Sultr proteins transport sulfate in unicellular eukaryotes and in plants. Mutations in three human SLC26 genes are associated with congenital or early onset Mendelian diseases: chondrodysplasias for SLC26A2, chloride diarrhea for SLC26A3, and deafness with enlargement of the vestibular aqueduct for SLC26A4. Additional disease phenotypes evident only in mouse knockout models include oxalate urolithiasis for Slc26a6 and Slc26a1, non-syndromic deafness for Slc26a5, gastric hypochlorhydria for Slc26a7 and Slc26a9, distal renal tubular acidosis for Slc26a7, and male infertility for Slc26a8. STAS domains are required for cell surface expression of SLC26 proteins, and contribute to regulation of the cystic fibrosis transmembrane regulator in complex, cell- and tissue-specific ways. The protein interactomes of SLC26 polypeptides are under active investigation.
Collapse
Affiliation(s)
- Seth L Alper
- Renal Division and Division of Molecular and Vascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | |
Collapse
|
32
|
Zhang Y, Viennois E, Xiao B, Baker MT, Yang S, Okoro I, Yan Y. Knockout of Ste20-like proline/alanine-rich kinase (SPAK) attenuates intestinal inflammation in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1617-28. [PMID: 23499375 DOI: 10.1016/j.ajpath.2013.01.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 01/08/2023]
Abstract
Inflammatory bowel diseases are characterized by epithelial barrier disruption and alterations in immune regulation. Ste20-like proline/alanine-rich kinase (SPAK) plays a role in intestinal inflammation, but the underlying mechanisms need to be defined. Herein, SPAK knockout (KO) C57BL/6 mice exhibited significant increases in intestinal transepithelial resistance, a marked decrease in paracellular permeability to fluorescence isothiocyanate-dextran, and altered apical side tight junction sodium ion selectivity, compared with wild-type mice. Furthermore, the expression of junction protein, claudin-2, decreased. In contrast, expressions of occludin, E-cadherin, β-catenin, and claudin-5 increased significantly, whereas no obvious change of claudin-1, claudin-4, zonula occludens protein 1, and zonula occludens protein 2 expressions was observed. In murine models of colitis induced by dextran sulfate sodium and trinitrobenzene sulfuric acid, KO mice were more tolerant than wild-type mice, as demonstrated by colonoscopy features, histological characteristics, and myeloperoxidase activities. Consistent with these findings, KO mice showed increased IL-10 levels and decreased proinflammatory cytokine secretion, ameliorated bacterial translocation on treatment with dextran sulfate sodium, and regulation of with no lysine (WNK) kinase activity. Together, these features may reduce epithelial permeability. In conclusion, SPAK deficiency increases intestinal innate immune homeostasis, which is important for control or attenuation of pathological responses in inflammatory bowel diseases.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Park S, Hong JH, Ohana E, Muallem S. The WNK/SPAK and IRBIT/PP1 pathways in epithelial fluid and electrolyte transport. Physiology (Bethesda) 2013; 27:291-9. [PMID: 23026752 DOI: 10.1152/physiol.00028.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fluid and electrolyte homeostasis is a fundamental physiological function required for survival and is associated with a plethora of diseases when aberrant. Systemic fluid and electrolyte composition is regulated by the kidney, and all secretory epithelia generate biological fluids with defined electrolyte composition by vectorial transport of ions and the obligatory water. A major regulatory pathway that immerged in the last several years is regulation of ion transporters by the WNK/SPAK kinases and IRBIT/PP1 pathways. The IRBIT/PP1 pathway functions to reverse the effects of the WNK/SPAK kinases pathway, as was demonstrated for NBCe1-B and CFTR. Since many transporters involved in fluid and electrolyte homeostasis are affected by PP1 and/or calcineurin, it is possible that WNK/SPAK and IRBIT/PP1 form a common regulatory pathway to tune the activity of fluid and electrolyte transport in response to physiological demands.
Collapse
Affiliation(s)
- Seonghee Park
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
34
|
Shekarabi M, Lafrenière RG, Gaudet R, Laganière J, Marcinkiewicz MM, Dion PA, Rouleau GA. Comparative analysis of the expression profile of Wnk1 and Wnk1/Hsn2 splice variants in developing and adult mouse tissues. PLoS One 2013; 8:e57807. [PMID: 23451271 PMCID: PMC3581481 DOI: 10.1371/journal.pone.0057807] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/26/2013] [Indexed: 11/18/2022] Open
Abstract
The With No lysine (K) family of serine/threonine kinase (WNK) defines a small family of kinases with significant roles in ion homeostasis. WNK1 has been shown to have different isoforms due to what seems to be largely tissue specific splicing. Here, we used two distinct in situ hybridization riboprobes on developing and adult mouse tissues to make a comparative analysis of Wnk1 and its sensory associated splice isoform, Wnk1/Hsn2. The hybridization signals in developing mouse tissues, which were prepared at embryonic day e10.5 and e12.5, revealed a homogenous expression profile with both probes. At e15.5 and in the newborn mouse, the two probes revealed different expression profiles with prominent signals in nervous system tissues and also other tissues such as kidney, thymus and testis. In adult mouse tissues, the two expression profiles appeared even more restricted to the nervous tissues, kidney, thymus and testis, with no detectable signal in the other tissues. Throughout the nervous system, sensory tissues, as well as in Cornu Ammonis 1 (CA1), CA2 and CA3 areas of the hippocampus, were strongly labeled with both probes. Hybridization signals were also strongly detected in Schwann and supporting satellite cells. Our results show that the expression profiles of Wnk1 isoforms change during the development, and that the expression of the Wnk1 splice variant containing the Hsn2 exon is prominent during developing and in adult mouse tissues, suggesting its important role in the development and maintenance of the nervous system.
Collapse
Affiliation(s)
- Masoud Shekarabi
- Center of Excellence in Neuroscience of the Université de Montréal (CENUM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), University of Montreal, Montreal, Quebec, Canada
| | - Ron G. Lafrenière
- Center of Excellence in Neuroscience of the Université de Montréal (CENUM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), University of Montreal, Montreal, Quebec, Canada
| | - Rébecca Gaudet
- Center of Excellence in Neuroscience of the Université de Montréal (CENUM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), University of Montreal, Montreal, Quebec, Canada
| | - Janet Laganière
- Center of Excellence in Neuroscience of the Université de Montréal (CENUM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), University of Montreal, Montreal, Quebec, Canada
| | | | - Patrick A. Dion
- Center of Excellence in Neuroscience of the Université de Montréal (CENUM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), University of Montreal, Montreal, Quebec, Canada
- Department of Pathology and Cellular Biology, University of Montreal, Montreal, Québec, Canada
| | - Guy A. Rouleau
- Center of Excellence in Neuroscience of the Université de Montréal (CENUM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), University of Montreal, Montreal, Quebec, Canada
- Department of Pathology and Cellular Biology, University of Montreal, Montreal, Québec, Canada
- CHU Sainte-Justine Research Center and Department of Paediatrics and Biochemistry, University of Montreal, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Québec, Canada
- * E-mail:
| |
Collapse
|
35
|
Gagnon KB, Delpire E. Molecular physiology of SPAK and OSR1: two Ste20-related protein kinases regulating ion transport. Physiol Rev 2013; 92:1577-617. [PMID: 23073627 DOI: 10.1152/physrev.00009.2012] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
SPAK (Ste20-related proline alanine rich kinase) and OSR1 (oxidative stress responsive kinase) are members of the germinal center kinase VI subfamily of the mammalian Ste20 (Sterile20)-related protein kinase family. Although there are 30 enzymes in this protein kinase family, their conservation across the fungi, plant, and animal kingdom confirms their evolutionary importance. Already, a large volume of work has accumulated on the tissue distribution, binding partners, signaling cascades, and physiological roles of mammalian SPAK and OSR1 in multiple organ systems. After reviewing this basic information, we will examine newer studies that demonstrate the pathophysiological consequences to SPAK and/or OSR1 disruption, discuss the development and analysis of genetically engineered mouse models, and address the possible role these serine/threonine kinases might have in cancer proliferation and migration.
Collapse
Affiliation(s)
- Kenneth B Gagnon
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2520, USA
| | | |
Collapse
|
36
|
Gandolfi B, Gruffydd-Jones TJ, Malik R, Cortes A, Jones BR, Helps CR, Prinzenberg EM, Erhardt G, Lyons LA. First WNK4-hypokalemia animal model identified by genome-wide association in Burmese cats. PLoS One 2012; 7:e53173. [PMID: 23285264 PMCID: PMC3532348 DOI: 10.1371/journal.pone.0053173] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 11/26/2012] [Indexed: 11/18/2022] Open
Abstract
Burmese is an old and popular cat breed, however, several health concerns, such as hypokalemia and a craniofacial defect, are prevalent, endangering the general health of the breed. Hypokalemia, a subnormal serum potassium ion concentration ([K+]), most often occurs as a secondary problem but can occur as a primary problem, such as hypokalaemic periodic paralysis in humans, and as feline hypokalaemic periodic polymyopathy primarily in Burmese. The most characteristic clinical sign of hypokalemia in Burmese is a skeletal muscle weakness that is frequently episodic in nature, either generalized, or sometimes localized to the cervical and thoracic limb girdle muscles. Burmese hypokalemia is suspected to be a single locus autosomal recessive trait. A genome wide case-control study using the illumina Infinium Feline 63K iSelect DNA array was performed using 35 cases and 25 controls from the Burmese breed that identified a locus on chromosome E1 associated with hypokalemia. Within approximately 1.2 Mb of the highest associated SNP, two candidate genes were identified, KCNH4 and WNK4. Direct sequencing of the genes revealed a nonsense mutation, producing a premature stop codon within WNK4 (c.2899C>T), leading to a truncated protein that lacks the C-terminal coiled-coil domain and the highly conserved Akt1/SGK phosphorylation site. All cases were homozygous for the mutation. Although the exact mechanism causing hypokalemia has not been determined, extrapolation from the homologous human and mouse genes suggests the mechanism may involve a potassium-losing nephropathy. A genetic test to screen for the genetic defect within the active breeding population has been developed, which should lead to eradication of the mutation and improved general health within the breed. Moreover, the identified mutation may help clarify the role of the protein in K+ regulation and the cat represents the first animal model for WNK4-associated hypokalemia.
Collapse
Affiliation(s)
- Barbara Gandolfi
- Department of Population Health and Reproduction, University of California Davis, Davis, California, United States of America
| | | | - Richard Malik
- Centre for Veterinary Education, University of Sydney, Sydney, Australia
| | - Alejandro Cortes
- Department of Population Health and Reproduction, University of California Davis, Davis, California, United States of America
| | - Boyd R. Jones
- Institute of Veterinary, Animal & Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - Chris R. Helps
- Molecular Diagnostic Unit, University of Bristol, Langford, Bristol, United Kingdom
| | - Eva M. Prinzenberg
- Institute of Animal Breeding & Genetics, Justus Liebig University, Giessen, Germany
| | - George Erhardt
- Institute of Animal Breeding & Genetics, Justus Liebig University, Giessen, Germany
| | - Leslie A. Lyons
- Department of Population Health and Reproduction, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
37
|
Nieves-González A, Clausen C, Layton AT, Layton HE, Moore LC. Transport efficiency and workload distribution in a mathematical model of the thick ascending limb. Am J Physiol Renal Physiol 2012; 304:F653-64. [PMID: 23097466 DOI: 10.1152/ajprenal.00101.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The thick ascending limb (TAL) is a major NaCl reabsorbing site in the nephron. Efficient reabsorption along that segment is thought to be a consequence of the establishment of a strong transepithelial potential that drives paracellular Na(+) uptake. We used a multicell mathematical model of the TAL to estimate the efficiency of Na(+) transport along the TAL and to examine factors that determine transport efficiency, given the condition that TAL outflow must be adequately dilute. The TAL model consists of a series of epithelial cell models that represent all major solutes and transport pathways. Model equations describe luminal flows, based on mass conservation and electroneutrality constraints. Empirical descriptions of cell volume regulation (CVR) and pH control were implemented, together with the tubuloglomerular feedback (TGF) system. Transport efficiency was calculated as the ratio of total net Na(+) transport (i.e., paracellular and transcellular transport) to transcellular Na(+) transport. Model predictions suggest that 1) the transepithelial Na(+) concentration gradient is a major determinant of transport efficiency; 2) CVR in individual cells influences the distribution of net Na(+) transport along the TAL; 3) CVR responses in conjunction with TGF maintain luminal Na(+) concentration well above static head levels in the cortical TAL, thereby preventing large decreases in transport efficiency; and 4) under the condition that the distribution of Na(+) transport along the TAL is quasi-uniform, the tubular fluid axial Cl(-) concentration gradient near the macula densa is sufficiently steep to yield a TGF gain consistent with experimental data.
Collapse
|
38
|
Nieves-González A, Clausen C, Marcano M, Layton AT, Layton HE, Moore LC. Fluid dilution and efficiency of Na(+) transport in a mathematical model of a thick ascending limb cell. Am J Physiol Renal Physiol 2012; 304:F634-52. [PMID: 23097469 DOI: 10.1152/ajprenal.00100.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thick ascending limb (TAL) cells are capable of reducing tubular fluid Na(+) concentration to as low as ~25 mM, and yet they are thought to transport Na(+) efficiently owing to passive paracellular Na(+) absorption. Transport efficiency in the TAL is of particular importance in the outer medulla where O(2) availability is limited by low blood flow. We used a mathematical model of a TAL cell to estimate the efficiency of Na(+) transport and to examine how tubular dilution and cell volume regulation influence transport efficiency. The TAL cell model represents 13 major solutes and the associated transporters and channels; model equations are based on mass conservation and electroneutrality constraints. We analyzed TAL transport in cells with conditions relevant to the inner stripe of the outer medulla, the cortico-medullary junction, and the distal cortical TAL. At each location Na(+) transport efficiency was computed as functions of changes in luminal NaCl concentration ([NaCl]), [K(+)], [NH(4)(+)], junctional Na(+) permeability, and apical K(+) permeability. Na(+) transport efficiency was calculated as the ratio of total net Na(+) transport to transcellular Na(+) transport. Transport efficiency is predicted to be highest at the cortico-medullary boundary where the transepithelial Na(+) gradient is the smallest. Transport efficiency is lowest in the cortex where luminal [NaCl] approaches static head.
Collapse
|
39
|
Na T, Wu G, Zhang W, Dong WJ, Peng JB. Disease-causing R1185C mutation of WNK4 disrupts a regulatory mechanism involving calmodulin binding and SGK1 phosphorylation sites. Am J Physiol Renal Physiol 2012; 304:F8-F18. [PMID: 23054253 DOI: 10.1152/ajprenal.00284.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The R1185C mutation in WNK4 is associated with pseudohypoaldosteronism type II (PHAII). Unlike other PHAII-causing mutations in the acidic motif, the R1185C mutation is located in the COOH-terminal region of WNK4. The goal of the study is to determine what properties of WNK4 are disrupted by the R1185C mutation. We found that the R1185C mutation is situated in the middle of a calmodulin (CaM) binding site and the mutation reduces the binding of WNK4 to Ca(2+)/CaM. The R1185C mutation is also close to serum- and glucocorticoid-induced protein kinase (SGK1) phosphorylation sites S1190 and S1217. In addition, we identified a novel SGK1 phosphorylation site (S1201) in WNK4, and phosphorylation at this site is reduced by Ca(2+)/CaM. In the wild-type WNK4, the level of phosphorylation at S1190 is the lowest and that at S1217 is the highest. In the R1185C mutant, phosphorylation at S1190 is eliminated and that at S1201 becomes the strongest. The R1185C mutation enhances the positive effect of WNK4 on the Na(+)-K(+)-2Cl(-) cotransporter 2 (NKCC2) as tested in Xenopus laevis oocytes. Deletion of the CaM binding site or phospho-mimicking at two or three of the SGK1 sites enhances the WNK4 effects on NKCC2. These results indicate that the R1185C mutation disrupts an inhibitory domain as part of the suppression mechanism of WNK4, leading to an elevated WNK4 activity at baseline. The presence of CaM binding and SGK1 phosphorylation sites in or close to the inhibitory domain suggests that WNK4 activity is subject to the regulation by intracellular Ca(2+) and phosphorylation.
Collapse
Affiliation(s)
- Tao Na
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006, USA
| | | | | | | | | |
Collapse
|
40
|
Hirata T, Cabrero P, Berkholz DS, Bondeson DP, Ritman EL, Thompson JR, Dow JAT, Romero MF. In vivo Drosophilia genetic model for calcium oxalate nephrolithiasis. Am J Physiol Renal Physiol 2012; 303:F1555-62. [PMID: 22993075 DOI: 10.1152/ajprenal.00074.2012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nephrolithiasis is a major public health problem with a complex and varied etiology. Most stones are composed of calcium oxalate (CaOx), with dietary excess a risk factor. Because of complexity of mammalian system, the details of stone formation remain to be understood. Here we have developed a nephrolithiasis model using the genetic model Drosophila melanogaster, which has a simple, transparent kidney tubule. Drosophilia reliably develops CaOx stones upon dietary oxalate supplementation, and the nucleation and growth of microliths can be viewed in real time. The Slc26 anion transporter dPrestin (Slc26a5/6) is strongly expressed in Drosophilia kidney, and biophysical analysis shows that it is a potent oxalate transporter. When dPrestin is knocked down by RNAi in fly kidney, formation of microliths is reduced, identifying dPrestin as a key player in oxalate excretion. CaOx stone formation is an ancient conserved process across >400 My of divergent evolution (fly and human), and from this study we can conclude that the fly is a good genetic model of nephrolithiasis.
Collapse
Affiliation(s)
- Taku Hirata
- Dept. Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Cornelius RJ, Wen D, Hatcher LI, Sansom SC. Bicarbonate promotes BK-α/β4-mediated K excretion in the renal distal nephron. Am J Physiol Renal Physiol 2012; 303:F1563-71. [PMID: 22993067 DOI: 10.1152/ajprenal.00490.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ca-activated K channels (BK), which are stimulated by high distal nephron flow, are utilized during high-K conditions to remove excess K. Because BK predominantly reside with BK-β4 in acid/base-transporting intercalated cells (IC), we determined whether BK-β4 knockout mice (β4KO) exhibit deficient K excretion when consuming a high-K alkaline diet (HK-alk) vs. high-K chloride diet (HK-Cl). When wild type (WT) were placed on HK-alk, but not HK-Cl, renal BK-β4 expression increased (Western blot). When WT and β4KO were placed on HK-Cl, plasma K concentration ([K]) was elevated compared with control K diets; however, K excretion was not different between WT and β4KO. When HK-alk was consumed, the plasma [K] was lower and K clearance was greater in WT compared with β4KO. The urine was alkaline in mice on HK-alk; however, urinary pH was not different between WT and β4KO. Immunohistochemical analysis of pendrin and V-ATPase revealed the same increases in β-IC, comparing WT and β4KO on HK-alk. We found an amiloride-sensitive reduction in Na excretion in β4KO, compared with WT, on HK-alk, indicating enhanced Na reabsorption as a compensatory mechanism to secrete K. Treating mice with an alkaline, Na-deficient, high-K diet (LNaHK) to minimize Na reabsorption exaggerated the defective K handling of β4KO. When WT on LNaHK were given NH(4)Cl in the drinking water, K excretion was reduced to the magnitude of β4KO on LNaHK. These results show that WT, but not β4KO, efficiently excretes K on HK-alk but not on HK-Cl and suggest that BK-α/β4-mediated K secretion is promoted by bicarbonaturia.
Collapse
Affiliation(s)
- Ryan J Cornelius
- Dept. of Cellular and Integrative Physiology, Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | | | | | | |
Collapse
|
42
|
Anagnostopoulou P, Riederer B, Duerr J, Michel S, Binia A, Agrawal R, Liu X, Kalitzki K, Xiao F, Chen M, Schatterny J, Hartmann D, Thum T, Kabesch M, Soleimani M, Seidler U, Mall MA. SLC26A9-mediated chloride secretion prevents mucus obstruction in airway inflammation. J Clin Invest 2012; 122:3629-34. [PMID: 22945630 DOI: 10.1172/jci60429] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 07/12/2012] [Indexed: 11/17/2022] Open
Abstract
Asthma is a chronic condition with unknown pathogenesis, and recent evidence suggests that enhanced airway epithelial chloride (Cl-) secretion plays a role in the disease. However, the molecular mechanism underlying Cl- secretion and its relevance in asthma pathophysiology remain unknown. To determine the role of the solute carrier family 26, member 9 (SLC26A9) Cl- channel in asthma, we induced Th2-mediated inflammation via IL-13 treatment in wild-type and Slc26a9-deficient mice and compared the effects on airway ion transport, morphology, and mucus content. We found that IL-13 treatment increased Cl- secretion in the airways of wild-type but not Slc26a9-deficient mice. While IL-13-induced mucus overproduction was similar in both strains, treated Slc26a9-deficient mice exhibited airway mucus obstruction, which did not occur in wild-type controls. In a study involving healthy children and asthmatics, a polymorphism in the 3' UTR of SLC26A9 that reduced protein expression in vitro was associated with asthma. Our data demonstrate that the SLC26A9 Cl- channel is activated in airway inflammation and suggest that SLC26A9-mediated Cl- secretion is essential for preventing airway obstruction in allergic airway disease. These results indicate that SLC26A9 may serve as a therapeutic target for airway diseases associated with mucus plugging.
Collapse
Affiliation(s)
- Pinelopi Anagnostopoulou
- Department of Translational Pulmonology, Translational Lung Research Center, Member of the German Center for Lung Research, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cruz-Rangel S, Gamba G, Ramos-Mandujano G, Pasantes-Morales H. Influence of WNK3 on intracellular chloride concentration and volume regulation in HEK293 cells. Pflugers Arch 2012; 464:317-30. [PMID: 22864523 DOI: 10.1007/s00424-012-1137-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/06/2012] [Accepted: 07/07/2012] [Indexed: 01/17/2023]
Abstract
The involvement of WNK3 (with no lysine [K] kinase) in cell volume regulation evoked by anisotonic conditions was investigated in two modified stable lines of HEK293 cells: WNK3+, overexpressing WNK3 and WNK3-KD expressing a kinase inactive by a punctual mutation (D294A) at the catalytic site. This different WNK3 functional expression modified intracellular Cl(-) concentration with the following profile: WNK3+ > control > WNK3-KD cells. Stimulated with 15% hypotonic solutions, WNK3+ cells showed less efficient RVD (13.1%), lower Cl(-) efflux and decreased (94.5%) KCC activity. WNK3-KD cells showed 30.1% more efficient RVD, larger Cl(-) efflux and 5-fold higher KCC activity, increased since the isotonic condition. Volume-sensitive Cl(-) currents were similar in controls, WNK3+ cells, and WNK3-KD cells. Taurine efflux was not evoked at H15%. These results show a WNK3 influence on RVD in HEK293 cells via increasing KCC activity. Hypertonic medium induced cell shrinkage and RVI. In both WNK3+ and WNK3-KD cells, RVI and NKCC activity were increased, in WNK3+ cells presumably by enhanced NKCC phosphorylation, and in WNK3-KD cells via the [Cl(-)](i) reduction induced by the higher KCC activity in characteristic of these cells. These results support the role of WNK3 in modulation of intracellular Cl(-) concentration, in RVD, and indirectly on RVI, via its effects on KCC and NKCC activity. WNK3 in HEK293 cells is expressed as puncta at the intercellular junctions and diffusely at the cytosol, while the inactive kinase was found concentrated at the Golgi area. Cells with inactive WNK3 exhibited a marked change of cell phenotype.
Collapse
Affiliation(s)
- Silvia Cruz-Rangel
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, 04510, Mexico, DF, Mexico
| | | | | | | |
Collapse
|
44
|
Hirata T, Czapar A, Brin LR, Haritonova A, Bondeson DP, Linser PJ, Cabrero P, Dow JAT, Romero MF. Ion and solute transport by Prestin in Drosophila and Anopheles. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:563-569. [PMID: 22321763 PMCID: PMC3482613 DOI: 10.1016/j.jinsphys.2012.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 01/11/2012] [Accepted: 01/14/2012] [Indexed: 05/31/2023]
Abstract
The gut and Malpighian tubules of insects are the primary sites of active solute and water transport for controlling hemolymph and urine composition, pH, and osmolarity. These processes depend on ATPase (pumps), channels and solute carriers (Slc proteins). Maturation of genomic databases enables us to identify the putative molecular players for these processes. Anion transporters of the Slc4 family, AE1 and NDAE1, have been reported as HCO(3)(-) transporters, but are only part of the story. Here we report Dipteran (Drosophila melanogaster (d) and Anopheles gambiae (Ag)) anion exchangers, belonging to the Slc26 family, which are multi-functional anion exchangers. One Drosophila and two Ag homologues of mammalian Slc26a5 (Prestin) and Slc26a6 (aka, PAT1, CFEX) were identified and designated dPrestin, AgPrestinA and AgPrestinB. dPrestin and AgPrestinB show electrogenic anion exchange (Cl(-)/nHCO(3)(-), Cl(-)/SO(4)(2-) and Cl(-)/oxalate(2-)) in an oocyte expression system. Since these transporters are the only Dipteran Slc26 proteins whose transport is similar to mammalian Slc26a6, we submit that Dipteran Prestin are functional and even molecular orthologues of mammalian Slc26a6. OSR1 kinase increases dPrestin ion transport, implying another set of physiological processes controlled by WNK/SPAK signaling in epithelia. All of these mRNAs are highly expressed in the gut and Malpighian tubules. Dipteran Prestin proteins appear suited for central roles in bicarbonate, sulfate and oxalate metabolism including generating the high pH conditions measured in the Dipteran midgut lumen. Finally, we present and discuss Drosophila genetic models that integrate these processes.
Collapse
Affiliation(s)
- Taku Hirata
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
- Mayo Clinic O’Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Anna Czapar
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Lauren R. Brin
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
- Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Alyona Haritonova
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Daniel P. Bondeson
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
- Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
- Mayo Clinic O’Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Paul J. Linser
- University of Florida Whitney Laboratory, 9505 Ocean Shore Blvd., St. Augustine FL, 32086
| | - Pablo Cabrero
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Julian A. T. Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, KSA
| | - Michael F. Romero
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
- Mayo Clinic O’Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| |
Collapse
|
45
|
Lee MG, Ohana E, Park HW, Yang D, Muallem S. Molecular mechanism of pancreatic and salivary gland fluid and HCO3 secretion. Physiol Rev 2012; 92:39-74. [PMID: 22298651 DOI: 10.1152/physrev.00011.2011] [Citation(s) in RCA: 283] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fluid and HCO(3)(-) secretion is a vital function of all epithelia and is required for the survival of the tissue. Aberrant fluid and HCO(3)(-) secretion is associated with many epithelial diseases, such as cystic fibrosis, pancreatitis, Sjögren's syndrome, and other epithelial inflammatory and autoimmune diseases. Significant progress has been made over the last 20 years in our understanding of epithelial fluid and HCO(3)(-) secretion, in particular by secretory glands. Fluid and HCO(3)(-) secretion by secretory glands is a two-step process. Acinar cells secrete isotonic fluid in which the major salt is NaCl. Subsequently, the duct modifies the volume and electrolyte composition of the fluid to absorb the Cl(-) and secrete HCO(3)(-). The relative volume secreted by acinar and duct cells and modification of electrolyte composition of the secreted fluids varies among secretory glands to meet their physiological functions. In the pancreas, acinar cells secrete a small amount of NaCl-rich fluid, while the duct absorbs the Cl(-) and secretes HCO(3)(-) and the bulk of the fluid in the pancreatic juice. Fluid secretion appears to be driven by active HCO(3)(-) secretion. In the salivary glands, acinar cells secrete the bulk of the fluid in the saliva that is driven by active Cl(-) secretion and contains high concentrations of Na(+) and Cl(-). The salivary glands duct absorbs both the Na(+) and Cl(-) and secretes K(+) and HCO(3)(-). In this review, we focus on the molecular mechanism of fluid and HCO(3)(-) secretion by the pancreas and salivary glands, to highlight the similarities of the fundamental mechanisms of acinar and duct cell functions, and to point out the differences to meet gland-specific secretions.
Collapse
Affiliation(s)
- Min Goo Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
46
|
Pacheco-Alvarez D, Vázquez N, Castañeda-Bueno M, de-Los-Heros P, Cortes-González C, Moreno E, Meade P, Bobadilla NA, Gamba G. WNK3-SPAK interaction is required for the modulation of NCC and other members of the SLC12 family. Cell Physiol Biochem 2012; 29:291-302. [PMID: 22415098 DOI: 10.1159/000337610] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2011] [Indexed: 11/19/2022] Open
Abstract
The serine/threonine with no lysine kinase 3 (WNK3) modulates the activity of the electroneutral cation-coupled chloride cotransporters (CCC) to promote Cl(-) influx and prevent Cl(-) efflux, thus fitting the profile for a putative "Cl(-)-sensing kinase". The Ste20-type kinases, SPAK/OSR1, become phosphorylated in response to reduction in intracellular chloride concentration and regulate the activity of NKCC1. Several studies have now shown that WNKs function upstream of SPAK/OSR1. This study was designed to analyze the role of WNK3-SPAK interaction in the regulation of CCCs with particular emphasis on NCC. In this study we used the functional expression system of Xenopus laevis oocytes to show that different SPAK binding sites in WNK3 ((241, 872, 1336)RFxV) are required for the kinase to have effects on CCCs. WNK3-F1337A no longer activated NKCC2, but the effects on NCC, NKCC1, and KCC4 were preserved. In contrast, the effects of WNK3 on these cotransporters were prevented in WNK3-F242A. The elimination of F873 had no consequence on WNK3 effects. WNK3 promoted NCC phosphorylation at threonine 58, even in the absence of the unique SPAK binding site of NCC, but this effect was abolished in the mutant WNK3-F242A. Thus, our data support the hypothesis that the effects of WNK3 upon NCC and other CCCs require the interaction and activation of the SPAK kinase. The effect is dependent on one of the three binding sites for SPAK that are present in WNK3, but not on the SPAK binding sites on the CCCs, which suggests that WNK3 is capable of binding both SPAK and CCCs to promote their phosphorylation.
Collapse
|
47
|
Kostakis ID, Cholidou KG, Perrea D. Syndromes of impaired ion handling in the distal nephron: pseudohypoaldosteronism and familial hyperkalemic hypertension. Hormones (Athens) 2012; 11:31-53. [PMID: 22450343 DOI: 10.1007/bf03401536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The distal nephron, which is the site of the micro-regulation of water absorption and ion handling in the kidneys, is under the control of aldosterone. Impairment of the mineralocorticoid signal transduction pathway results in resistance to the action of aldosterone and of mineralocorticoids in general. Herein, we review two syndromes in which ion handling in the distal nephron is impaired: pseudohypoaldosteronism (PHA) and familial hyperkalemic hypertension (FHH). PHA is a rare inherited syndrome characterized by mineralocorticoid resistance, which leads to salt loss, hypotension, hyperkalemia and metabolic acidosis. There are two types of this syndrome: a renal (autosomal dominant) type due to mutations of the mineralocorticoid receptor (MR), and a systemic (autosomal recessive) type due to mutations of the epithelial sodium channel (ENaC). There is also a transient form of PHA, which may be due to urinary tract infections, obstructive uropathy or several medications. FHH is a rare autosomal dominant syndrome, characterized by salt retention, hypertension, hyperkalemia and metabolic acidosis. In FHH, mutations of WNK (with-no-lysine kinase) 4 and 1 alter the activity of several ion transportation systems in the distal nephron. The study of the pathophysiology of PHA and FHH greatly elucidated our understanding of the renin-angiotensin-aldosterone system function and ion handling in the distal nephron. The physiological role of the distal nephron and the pathophysiology of diseases in which the renal tubule is implicated may hence be better understood and, based on this understanding, new drugs can be developed.
Collapse
Affiliation(s)
- Ioannis D Kostakis
- Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, National and Kapodistrian University, Medical School, Athens, Greece
| | | | | |
Collapse
|
48
|
Rinehart J, Vázquez N, Kahle KT, Hodson CA, Ring AM, Gulcicek EE, Louvi A, Bobadilla NA, Gamba G, Lifton RP. WNK2 kinase is a novel regulator of essential neuronal cation-chloride cotransporters. J Biol Chem 2011; 286:30171-80. [PMID: 21733846 PMCID: PMC3191056 DOI: 10.1074/jbc.m111.222893] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 07/04/2011] [Indexed: 11/06/2022] Open
Abstract
NKCC1 and KCC2, related cation-chloride cotransporters (CCC), regulate cell volume and γ-aminobutyric acid (GABA)-ergic neurotranmission by modulating the intracellular concentration of chloride [Cl(-)]. These CCCs are oppositely regulated by serine-threonine phosphorylation, which activates NKCC1 but inhibits KCC2. The kinase(s) that performs this function in the nervous system are not known with certainty. WNK1 and WNK4, members of the WNK (with no lysine [K]) kinase family, either directly or via the downstream SPAK/OSR1 Ste20-type kinases, regulate the furosemide-sensitive NKCC2 and the thiazide-sensitive NCC, kidney-specific CCCs. What role the novel WNK2 kinase plays in this regulatory cascade, if any, is unknown. Here, we show that WNK2, unlike other WNKs, is not expressed in kidney; rather, it is a neuron-enriched kinase primarily expressed in neocortical pyramidal cells, thalamic relay cells, and cerebellar granule and Purkinje cells in both the developing and adult brain. Bumetanide-sensitive and Cl(-)-dependent (86)Rb(+) uptake assays in Xenopus laevis oocytes revealed that WNK2 promotes Cl(-) accumulation by reciprocally activating NKCC1 and inhibiting KCC2 in a kinase-dependent manner, effectively bypassing normal tonicity requirements for cotransporter regulation. TiO(2) enrichment and tandem mass spectrometry studies demonstrate WNK2 forms a protein complex in the mammalian brain with SPAK, a known phosphoregulator of NKCC1. In this complex, SPAK is phosphorylated at Ser-383, a consensus WNK recognition site. These findings suggest a role for WNK2 in the regulation of CCCs in the mammalian brain, with implications for both cell volume regulation and/or GABAergic signaling.
Collapse
Affiliation(s)
- Jesse Rinehart
- From the Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Norma Vázquez
- the Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14000, Mexico
| | - Kristopher T. Kahle
- the Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, and
| | - Caleb A. Hodson
- From the Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Aaron M. Ring
- From the Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Erol E. Gulcicek
- the Keck Biotechnology Resource Laboratory, Yale University, New Haven, Connecticut 06510
| | - Angeliki Louvi
- From the Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Norma A. Bobadilla
- the Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14000, Mexico
| | - Gerardo Gamba
- the Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14000, Mexico
| | - Richard P. Lifton
- From the Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510
| |
Collapse
|
49
|
Arroyo JP, Ronzaud C, Lagnaz D, Staub O, Gamba G. Aldosterone paradox: differential regulation of ion transport in distal nephron. Physiology (Bethesda) 2011; 26:115-23. [PMID: 21487030 DOI: 10.1152/physiol.00049.2010] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The mechanisms through which aldosterone promotes apparently opposite effects like salt reabsorption and K(+) secretion remain poorly understood. The identification, localization, and physiological analysis of ion transport systems in distal nephron have revealed an intricate network of interactions between several players, revealing the complex mechanism behind the aldosterone paradox. We review the mechanisms involved in differential regulation of ion transport that allow the fine tuning of salt and K(+) balance.
Collapse
Affiliation(s)
- Juan Pablo Arroyo
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | | | | |
Collapse
|
50
|
Antagonistic regulation of cystic fibrosis transmembrane conductance regulator cell surface expression by protein kinases WNK4 and spleen tyrosine kinase. Mol Cell Biol 2011; 31:4076-86. [PMID: 21807898 DOI: 10.1128/mcb.05152-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the WNK (with-no-lysine [K]) subfamily of protein kinases regulate various ion channels involved in sodium, potassium, and chloride homeostasis by either inducing their phosphorylation or regulating the number of channel proteins expressed at the cell surface. Here, we describe findings demonstrating that the cell surface expression of the cystic fibrosis transmembrane conductance regulator (CFTR) is also regulated by WNK4 in mammalian cells. This effect of WNK4 is independent of the presence of kinase and involves interaction with and inhibition of spleen tyrosine kinase (Syk), which phosphorylates Tyr512 in the first nucleotide-binding domain 1 (NBD1) of CFTR. Transfection of catalytically active Syk into CFTR-expressing baby hamster kidney cells reduces the cell surface expression of CFTR, whereas that of WNK4 promotes it. This is shown by biotinylation of cell surface proteins, immunofluorescence microscopy, and functional efflux assays. Mutation of Tyr512 to either glutamic acid or phenylalanine is sufficient to alter CFTR surface levels. In human airway epithelial cells, downregulation of endogenous Syk and WNK4 confirms their roles as physiologic regulators of CFTR surface expression. Together, our results show that Tyr512 phosphorylation is a novel signal regulating the prevalence of CFTR at the cell surface and that WNK4 and Syk perform an antagonistic role in this process.
Collapse
|