1
|
Zhang MH, Scotland BL, Jiao Y, Slaby EM, Truong N, Cottingham AL, Stephanie G, Szeto GL, Pearson RM. Lipid-Polymer Hybrid Nanoparticles Utilize B Cells and Dendritic Cells to Elicit Distinct Antigen-Specific CD4 + and CD8 + T Cell Responses. ACS APPLIED BIO MATERIALS 2024; 7:4818-4830. [PMID: 37219857 PMCID: PMC10665545 DOI: 10.1021/acsabm.3c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Antigen-presenting cells (APCs) are widely studied for treating immune-mediated diseases, and dendritic cells (DCs) are potent APCs that uptake and present antigens (Ags). However, DCs face several challenges that hinder their clinical translation due to their inability to control Ag dosing and low abundance in peripheral blood. B cells are a potential alternative to DCs, but their poor nonspecific Ag uptake capabilities compromise controllable priming of T cells. Here, we developed phospholipid-conjugated Ags (L-Ags) and lipid-polymer hybrid nanoparticles (L/P-Ag NPs) as delivery platforms to expand the range of accessible APCs for use in T cell priming. These delivery platforms were evaluated using DCs, CD40-activated B cells, and resting B cells to understand the impacts of various Ag delivery mechanisms for generation of Ag-specific T cell responses. L-Ag delivery (termed depoting) of MHC class I- and II-restricted Ags successfully loaded all APC types in a tunable manner and primed both Ag-specific CD8+ and CD4+ T cells, respectively. Incorporating L-Ags and polymer-conjugated Ags (P-Ag) into NPs can direct Ags to different uptake pathways to engineer the dynamics of presentation and shape T cell responses. DCs were capable of processing and presenting Ag delivered from both L- and P-Ag NPs, yet B cells could only utilize Ag delivered from L-Ag NPs, which led to differential cytokine secretion profiles in coculture studies. Altogether, we show that L-Ags and P-Ags can be rationally paired within a single NP to leverage distinct delivery mechanisms to access multiple Ag processing pathways in two APC types, offering a modular delivery platform for engineering Ag-specific immunotherapies.
Collapse
Affiliation(s)
- Michael H. Zhang
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250
- Co-first authors
| | - Brianna L. Scotland
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
- Co-first authors
| | - Yun Jiao
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Emily M. Slaby
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Nhu Truong
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Andrea L. Cottingham
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Georgina Stephanie
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Gregory L. Szeto
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250
- Allen Institute for Immunology, Seattle, WA 98109
| | - Ryan M. Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
2
|
Rani R, Nayak M, Nayak B. Exploring the reprogramming potential of B cells and comprehending its clinical and therapeutic perspective. Transpl Immunol 2023; 78:101804. [PMID: 36921730 DOI: 10.1016/j.trim.2023.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023]
Abstract
Initiating from multipotent progenitors, the lineages extrapolated from hematopoietic stem cells are determined by transcription factors specific to each of them. The commitment factors assist in the differentiation of progenitor cells into terminally differentiated cells. B lymphocytes constitute a population of cells that expresses clonally diverse cell surface immunoglobulin (Ig) receptors specific to antigenic epitopes. B cells are a significant facet of the adaptive immune system. The secreted antibodies corresponding to the B cell recognize the antigens via the B cell receptor (BCR). Following antigen recognition, the B cell is activated and thereafter undergoes clonal expansion and proliferation to become memory B cells. The essence of 'cellular reprogramming' has aided in reliably altering the cells to desired tissue type. The potential of reprogramming has been harnessed to decipher and find solutions for various genetically inherited diseases and degenerative disorders. B lymphocytes can be reprogrammed to their initial naive state from where they get differentiated into any lineage or cell type similar to a pluripotent stem cell which can be accomplished by the deletion of master regulators of the B cell lineage. B cells can be reprogrammed into pluripotent stem cells and also can undergo transdifferentiation at the midway of cell differentiation to other cell types. Mandated expression of C/EBP in specialized B cells corresponds to their fast and effective reprogramming into macrophages, reversing the cell fate of these lymphocytes and allowing them to differentiate freshly into other types of cells. The co-expression of C/EBPα and OKSM (Oct4, Sox2, Klf4, c-Myc) amplified the reprogramming efficiency of B lymphocytes. Various human somatic cells including the immune cells are compliant to reprogramming which paves a path for opportunities like autologous tissue grafts, blood transfusion, and cancer immunotherapy. The ability to reprogram B cells offers an unprecedented opportunity for developing a therapeutic approach for several human diseases. Here, we will focus on all the proteins and transcription factors responsible for the developmental commitment of B lymphocytes and how it is harnessed in various applications.
Collapse
Affiliation(s)
- Reetika Rani
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha. 769008, India
| | - Madhusmita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha. 769008, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha. 769008, India.
| |
Collapse
|
3
|
Yaping W, Zhe W, Zhuling C, Ruolei L, Pengyu F, Lili G, Cheng J, Bo Z, Liuyin L, Guangdong H, Yaoling W, Niuniu H, Rui L. The soldiers needed to be awakened: Tumor-infiltrating immune cells. Front Genet 2022; 13:988703. [PMID: 36246629 PMCID: PMC9558824 DOI: 10.3389/fgene.2022.988703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
In the tumor microenvironment, tumor-infiltrating immune cells (TIICs) are a key component. Different types of TIICs play distinct roles. CD8+ T cells and natural killer (NK) cells could secrete soluble factors to hinder tumor cell growth, whereas regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) release inhibitory factors to promote tumor growth and progression. In the meantime, a growing body of evidence illustrates that the balance between pro- and anti-tumor responses of TIICs is associated with the prognosis in the tumor microenvironment. Therefore, in order to boost anti-tumor response and improve the clinical outcome of tumor patients, a variety of anti-tumor strategies for targeting TIICs based on their respective functions have been developed and obtained good treatment benefits, including mainly immune checkpoint blockade (ICB), adoptive cell therapies (ACT), chimeric antigen receptor (CAR) T cells, and various monoclonal antibodies. In recent years, the tumor-specific features of immune cells are further investigated by various methods, such as using single-cell RNA sequencing (scRNA-seq), and the results indicate that these cells have diverse phenotypes in different types of tumors and emerge inconsistent therapeutic responses. Hence, we concluded the recent advances in tumor-infiltrating immune cells, including functions, prognostic values, and various immunotherapy strategies for each immune cell in different tumors.
Collapse
Affiliation(s)
- Wang Yaping
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wang Zhe
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Chu Zhuling
- Department of General Surgery, Eastern Theater Air Force Hospital of PLA, Nanjing, China
| | - Li Ruolei
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Fan Pengyu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Guo Lili
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ji Cheng
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhang Bo
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Liu Liuyin
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hou Guangdong
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wang Yaoling
- Department of Geriatrics, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hou Niuniu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Department of General Surgery, Eastern Theater Air Force Hospital of PLA, Nanjing, China
- *Correspondence: Hou Niuniu, ; Ling Rui,
| | - Ling Rui
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Hou Niuniu, ; Ling Rui,
| |
Collapse
|
4
|
Page A, Hubert J, Fusil F, Cosset FL. Exploiting B Cell Transfer for Cancer Therapy: Engineered B Cells to Eradicate Tumors. Int J Mol Sci 2021; 22:9991. [PMID: 34576154 PMCID: PMC8468294 DOI: 10.3390/ijms22189991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/22/2023] Open
Abstract
Nowadays, cancers still represent a significant health burden, accounting for around 10 million deaths per year, due to ageing populations and inefficient treatments for some refractory cancers. Immunotherapy strategies that modulate the patient's immune system have emerged as good treatment options. Among them, the adoptive transfer of B cells selected ex vivo showed promising results, with a reduction in tumor growth in several cancer mouse models, often associated with antitumoral immune responses. Aside from the benefits of their intrinsic properties, including antigen presentation, antibody secretion, homing and long-term persistence, B cells can be modified prior to reinfusion to increase their therapeutic role. For instance, B cells have been modified mainly to boost their immuno-stimulatory activation potential by forcing the expression of costimulatory ligands using defined culture conditions or gene insertion. Moreover, tumor-specific antigen presentation by infused B cells has been increased by ex vivo antigen loading (peptides, RNA, DNA, virus) or by the sorting/ engineering of B cells with a B cell receptor specific to tumor antigens. Editing of the BCR also rewires B cell specificity toward tumor antigens, and may trigger, upon antigen recognition, the secretion of antitumor antibodies by differentiated plasma cells that can then be recognized by other immune components or cells involved in tumor clearance by antibody-dependent cell cytotoxicity or complement-dependent cytotoxicity for example. With the expansion of gene editing methodologies, new strategies to reprogram immune cells with whole synthetic circuits are being explored: modified B cells can sense disease-specific biomarkers and, in response, trigger the expression of therapeutic molecules, such as molecules that counteract the tumoral immunosuppressive microenvironment. Such strategies remain in their infancy for implementation in B cells, but are likely to expand in the coming years.
Collapse
Affiliation(s)
| | | | | | - François-Loïc Cosset
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 Allée d’Italie, F-69007 Lyon, France; (A.P.); (J.H.); (F.F.)
| |
Collapse
|
5
|
The Role of B Cells in Regulation of Th Cell Differentiation in Coxsackievirus B3-Induced Acute Myocarditis. Inflammation 2021; 44:1949-1960. [PMID: 33961174 DOI: 10.1007/s10753-021-01472-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/28/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022]
Abstract
Viral myocarditis (VMC) is the major cause of sudden death in adolescents. To date, no effective treatment has been identified for VMC. Studies have shown that T helper (Th) cells such as Th1, Th2, Th17, and Th22 cells are involved in the pathogenesis of VMC. However, the role of B cells and their impact on Th cells in VMC is unclear. In this study, we investigated the role of B cells in Th cell differentiation in myocardial damage in an animal model of VMC. C57BL/6 mice were infected with Coxsackievirus B3 (CVB3) intraperitoneally or injected with phosphate-buffered saline as a control condition. At day 7, samples from these mice were analyzed by histology, ELISA, flow cytometry, and gene expression assays. We found that TNF-α-, IL-6-, and IL-17-producing B cell numbers were significantly increased, while IL-4-producing B cell population was significantly reduced in acute VMC. Furthermore, we performed B cell knockout (BKO), SCID, and SCID+B cells reconstitution experiments. We found that BKO alleviated the cardiac damage following CVB3 infection, may hamper the differentiation of Th1 and Th17 cells, may promote the differentiation of Th2 cells, and proved ineffective for the differentiation of Th22 cells. In contrast, SCID+B cells reconstitution experiment exacerbated the cardiac damage. Ex vivo studies further revealed that B cells promote the differentiation of Th1 and Th17 cells and inhibit the differentiation of Th2 cells. Our study shows that B cells are activated and have strong abilities of antigen presentation and producing cytokines in VMC; B cells not only play a pathogenic role in VMC independent of T cells but also promote Th1 and Th17 cell differentiation, and hamper Th2 cell differentiation in VMC.
Collapse
|
6
|
Oncogene-specific T cells fail to eradicate lymphoma-initiating B cells in mice. Blood 2018; 132:924-934. [PMID: 30002144 DOI: 10.1182/blood-2018-02-834036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/08/2018] [Indexed: 12/11/2022] Open
Abstract
To date, little is known about the interaction between (pre-)malignant B cells and T cells. We generated transgenic mice that allow B cell-specific induction of the oncogene SV40 large T-antigen (TAg) to analyze the role of oncogene-specific T cells during sporadic B-cell lymphoma development. Constitutive TAg expression in CD19-Cre × LoxP-Tag mice resulted in TAg-tolerant CD8+ T cells and development of B-cell lymphomas. In contrast, CD19-CreERT2 × LoxP-Tag mice retained TAg-competent CD8+ T cells at time of oncogene induction and TAg expression in few B cells of adult mice resulted in exceptionally rare lymphoma formation late in life. Increased lymphoma incidence in the absence of TAg-specific T cells suggested T cell-mediated inhibition of lymphoma progression. However, TAg-initiated B cells were not eliminated by T cells and detected long term. Our results demonstrate a failure of the immune system to eradicate lymphoma-initiating B cells, retaining the risk of lymphoma development.
Collapse
|
7
|
Colluru VT, McNeel DG. B lymphocytes as direct antigen-presenting cells for anti-tumor DNA vaccines. Oncotarget 2018; 7:67901-67918. [PMID: 27661128 PMCID: PMC5356528 DOI: 10.18632/oncotarget.12178] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/16/2016] [Indexed: 01/21/2023] Open
Abstract
In spite of remarkable preclinical efficacy, DNA vaccination has demonstrated low immunogenicity in humans. While efforts have focused on increasing cross-presentation of DNA-encoded antigens, efforts to increase DNA vaccine immunogenicity by targeting direct presentation have remained mostly unexplored. In these studies, we compared the ability of different APCs to present antigen to T cells after simple co-culture with plasmid DNA. We found that human primary peripheral B lymphocytes, and not monocytes or in vitro derived dendritic cells (DCs), were able to efficiently encode antigen mRNA and expand cognate tumor antigen-specific CD8 T cells ex vivo. Similarly, murine B lymphocytes co-cultured with plasmid DNA, and not DCs, were able to prime antigen-specific T cells in vivo. Moreover, B lymphocyte-mediated presentation of plasmid antigen led to greater Th1-biased immunity and was sufficient to elicit an anti-tumor effect in vivo. Surprisingly, increasing plasmid presentation by B cells, and not cross presentation of peptides by DCs, further augmented traditional plasmid vaccination. Together, these data suggest that targeting plasmid DNA to B lymphocytes, for example through transfer of ex vivo plasmidloaded B cells, may be novel means to achieve greater T cell immunity from DNA vaccines.
Collapse
Affiliation(s)
- Viswa Teja Colluru
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Douglas G McNeel
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
8
|
Sun L, Guo H, Jiang R, Lu L, Liu T, Zhang Z, He X. Artificial antigen-presenting cells expressing AFP(158-166) peptide and interleukin-15 activate AFP-specific cytotoxic T lymphocytes. Oncotarget 2017; 7:17579-90. [PMID: 27007051 PMCID: PMC4951234 DOI: 10.18632/oncotarget.8198] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/14/2016] [Indexed: 12/19/2022] Open
Abstract
Professional antigen-presenting cells (APCs) are potent generators of tumor antigen-specific cytotoxic T lymphocytes (CTLs) for adoptive immunotherapy; however, generation of APCs is cumbersome, expensive, and subject to the tumor microenvironment. Artificial APCs (aAPCs) have been developed as a cost-effective alternative to APCs. We developed a cellular aAPC that efficiently generated alpha-fetoprotein (AFP)-specific CTLs. We genetically modified the human B cell lymphoma cell line BJAB with a lentiviral vector to establish an aAPC called BA15. The expression of AFP158-166-HLA-A*02:01 complex, CD80, CD86, and interleukin (IL)-15 in BA15 cells was assessed. The efficiency of BA15 at generating AFP-specific CTLs and the specific cytotoxicity of CTLs against AFP+ cells were also determined. BA15 cells expressed high levels of AFP158-166 peptide, HLA-A2, CD80, CD86, and IL-15. BA15 cells also exhibited higher efficiency in generating AFP-specific CTLs than did dendritic cells. These CTLs had greater cytotoxicity against AFP+ hepatocellular carcinoma cells than did CTLs obtained from dendritic cells in vitro and in vivo. Our novel aAPC system could provide a robust platform for the generation of functional AFP-specific CTLs for adoptive immunotherapy of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Longhao Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Guo
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Ruoyu Jiang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Lu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Tong Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhixiang Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xianghui He
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
9
|
Abstract
DNA vaccines offer many advantages over other anti-tumor vaccine approaches due to their simplicity, ease of manufacturing, and safety. Results from several clinical trials in patients with cancer have demonstrated that DNA vaccines are safe and can elicit immune responses. However, to date few DNA vaccines have progressed beyond phase I clinical trial evaluation. Studies into the mechanism of action of DNA vaccines in terms of antigen-presenting cell types able to directly present or cross-present DNA-encoded antigens, and the activation of innate immune responses due to DNA itself, have suggested opportunities to increase the immunogenicity of these vaccines. In addition, studies into the mechanisms of tumor resistance to anti-tumor vaccination have suggested combination approaches that can increase the anti-tumor effect of DNA vaccines. This review focuses on these mechanisms of action and mechanisms of resistance using DNA vaccines, and how this information is being used to improve the anti-tumor effect of DNA vaccines. These approaches are then specifically discussed in the context of human prostate cancer, a disease for which DNA vaccines have been and continue to be explored as treatments.
Collapse
Affiliation(s)
- Christopher D Zahm
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Viswa Teja Colluru
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Douglas G McNeel
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, United States.
| |
Collapse
|
10
|
Szeto GL, Van Egeren D, Worku H, Sharei A, Alejandro B, Park C, Frew K, Brefo M, Mao S, Heimann M, Langer R, Jensen K, Irvine DJ. Microfluidic squeezing for intracellular antigen loading in polyclonal B-cells as cellular vaccines. Sci Rep 2015; 5:10276. [PMID: 25999171 PMCID: PMC4441198 DOI: 10.1038/srep10276] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/08/2015] [Indexed: 12/02/2022] Open
Abstract
B-cells are promising candidate autologous antigen-presenting cells (APCs) to prime antigen-specific T-cells both in vitro and in vivo. However to date, a significant barrier to utilizing B-cells as APCs is their low capacity for non-specific antigen uptake compared to “professional” APCs such as dendritic cells. Here we utilize a microfluidic device that employs many parallel channels to pass single cells through narrow constrictions in high throughput. This microscale “cell squeezing” process creates transient pores in the plasma membrane, enabling intracellular delivery of whole proteins from the surrounding medium into B-cells via mechano-poration. We demonstrate that both resting and activated B-cells process and present antigens delivered via mechano-poration exclusively to antigen-specific CD8+T-cells, and not CD4+T-cells. Squeezed B-cells primed and expanded large numbers of effector CD8+T-cells in vitro that produced effector cytokines critical to cytolytic function, including granzyme B and interferon-γ. Finally, antigen-loaded B-cells were also able to prime antigen-specific CD8+T-cells in vivo when adoptively transferred into mice. Altogether, these data demonstrate crucial proof-of-concept for mechano-poration as an enabling technology for B-cell antigen loading, priming of antigen-specific CD8+T-cells, and decoupling of antigen uptake from B-cell activation.
Collapse
Affiliation(s)
- Gregory Lee Szeto
- 1] Department of Materials Science &Engineering, MIT [2] Department of Biological Engineering, MIT [3] David. H. Koch Institute for Integrative Cancer Research, MIT [4] The Ragon Institute of Harvard, MIT, and MGH
| | | | | | - Armon Sharei
- 1] David. H. Koch Institute for Integrative Cancer Research, MIT [2] Department of Chemical Engineering, MIT [3] The Ragon Institute of Harvard, MIT, and MGH
| | | | - Clara Park
- Department of Biological Engineering, MIT
| | | | - Mavis Brefo
- Department of Materials Science &Engineering, MIT
| | | | - Megan Heimann
- David. H. Koch Institute for Integrative Cancer Research, MIT
| | - Robert Langer
- 1] David. H. Koch Institute for Integrative Cancer Research, MIT [2] Department of Chemical Engineering, MIT
| | | | - Darrell J Irvine
- 1] Department of Materials Science &Engineering, MIT [2] Department of Biological Engineering, MIT [3] David. H. Koch Institute for Integrative Cancer Research, MIT [4] The Ragon Institute of Harvard, MIT, and MGH [5] Howard Hughes Medical Institute
| |
Collapse
|
11
|
Synthesis and delivery of short, noncoding RNA by B lymphocytes. Proc Natl Acad Sci U S A 2013; 110:20182-7. [PMID: 24277816 DOI: 10.1073/pnas.1311145110] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evolutionarily conserved short (20-30 nucleotides) noncoding RNAs (microRNAs) are powerful regulators of gene expression in a variety of physiological and pathological processes. As such, means to efficiently modulate microRNA function constitute an important therapeutic opportunity. Here we demonstrate that primary B lymphocytes can be genetically programmed with nonviral plasmid DNA for the biogenesis and delivery of antisense sequences (anti-microRNA) against microRNA-150 (miR-150). Within 18 h of transfection with an anti-miR-150 construct, primary B lymphocytes secrete ∼3,000 copies of anti-miR-150 molecules per cell. Anti-miR-150 molecules released by B lymphocytes were internalized by CD8 T lymphocytes during cross-priming in vitro and in vivo, resulting in marked down-regulation of endogenous miR-150. However, such internalization was not observed in the absence of cross-priming. These results suggest that shuttling anti-miR-150 molecules from B lymphocytes to T cells requires the activation of receiver T cells via the antigen receptor. Finally, anti-miR-150 synthesized in B cells were secreted both as free and extracellular vesicle-associated fractions, but only extracellular vesicle-associated anti-miR-150 were apparently taken up by CD8 T cells. Collectively, these data indicate that primary B lymphocytes represent an efficient platform for the synthesis and delivery of short, noncoding RNA, paving the way for an approach to immunogenomic therapies.
Collapse
|
12
|
Näslund TI, Gehrmann U, Gabrielsson S. Cancer immunotherapy with exosomes requires B-cell activation. Oncoimmunology 2013; 2:e24533. [PMID: 23894715 PMCID: PMC3716750 DOI: 10.4161/onci.24533] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 04/03/2013] [Indexed: 11/19/2022] Open
Abstract
Exosomes derived from dendritic cells (dexosomes) induce potent antitumor immune responses in mice. We have shown that the efficacy of dexosome-elicited antitumor immunity relies on the presence of both T- and B-cell dexosome-associated epitopes. Hence, the inclusion of B-cell epitopes in anticancer vaccines is crucial for the success of this immunotherapeutic intervention.
Collapse
Affiliation(s)
- Tanja I Näslund
- Karolinska Institutet; Department of Medicine; Translational Immunology Unit L2:04; Karolinska University Hospital Solna; Stockholm, Sweden
| | | | | |
Collapse
|
13
|
Li A, Xiong S, Lin Y, Liu R, Chu Y. A high-affinity T-helper epitope enhances peptide-pulsed dendritic cell-based vaccine. DNA Cell Biol 2011; 30:883-92. [PMID: 21612399 DOI: 10.1089/dna.2011.1222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The NV epitope, a dominant helper determinant from the circumsporozoite antigen of Plasmodium falciparum, is strongly immunogenic and can provide help for cytotoxic T-lymphocyte (CTL) activation. In this study, we evaluated whether the addition of NV peptide can augment the efficacy of peptide-pulsed dendritic cell (DC) immunization in vivo. Using B16 melanoma as tumor model, we demonstrated that DCs pulsed with both NV and gp100 (a melanoma-specific antigen) peptide enhanced immune priming and protection from tumor challenge in vivo. Further, we showed the mechanisms of the NV epitope that help CTL activation; MHC-II-restricted NV peptide induced dramatically more effective helper cells, with a higher level of CD40L expression and IFN-γ production, which, in turn, more effectively conditioned DCs for CTL activation. The improved helper cells also induced greater IL-12 production by DCs, accounting for the reciprocal T-helper polarization to Th1, and increased the expression of costimulatory molecules. Collectively, these findings demonstrate that NV peptide in addition to tumor antigen-pulsed DC immunizations augment helper cell activation, which in turn promotes maturation of DC, and enhance in vivo antitumor activity.
Collapse
Affiliation(s)
- Ang Li
- Key Laboratory of Molecular Medicine of Ministry of Education, Department of Immunology of Shanghai Medical College and Institute for Immunobiology, Fudan University, Shanghai, P.R. China
| | | | | | | | | |
Collapse
|
14
|
Principles of memory CD8 T-cells generation in relation to protective immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 684:108-25. [PMID: 20795544 DOI: 10.1007/978-1-4419-6451-9_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Memory T-cell responses are of vital importance in understanding the host's response against pathogens and cancer cells and to begin establishing the correlation of protection against disease. In this review, we discuss our own data in the general context of current knowledge to sketch tentative working principles for the induction of protective T-cell responses by vaccination. We draw attention to quantitative and qualitative aspects of the initial contact with antigen, as well as to the kinetics of events leading to the generation of memory T cells thereafter. Our arguments are based on the current distinction of memory T cells into two lineages: effector memory T cells (T(EM)) and central memory T cells (T(CM)). Our provisional conclusion is that protective T-cell responses correlate positively with the T cells of the central memory phenotype. In proposing a set of working principles to enable protective memory T cells by vaccination we address vaccination both in the context of the immunologically-inexperienced and immunologically-experienced individual, respectively. Finally, we draw attention to the interplay between systemic and local immunity as important factors in determining the success of memory T-cell responses in protecting the individual. We believe that considerations on the immunodynamics of memory induction and maintenance, memory lineage differentiation and their relation to protection may help design strategies to control disease caused by pathogens and cancer.
Collapse
|
15
|
Wheeler M, Cortez-Gonzalez X, Frazzi R, Zanetti M. Ex VivoProgramming of Antigen-Presenting B Lymphocytes: Considerations on DNA Uptake and Cell Activation. Int Rev Immunol 2009; 25:83-97. [PMID: 16818366 DOI: 10.1080/08830180600743131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Plasmids used in DNA vaccination not only serve as a source of antigen, but also have an important adjuvant effect. This review focuses on recent advancements made in understanding how cells internalize DNA, and how internalized DNA activates immune response pathways. We also comment on the role of B cells in both of these processes.
Collapse
Affiliation(s)
- Matthew Wheeler
- The Department of Medicine and Cancer Center and Biomedical Science Program, University of California, San Diego, La Jolla, California 92093-0837, USA
| | | | | | | |
Collapse
|
16
|
Guo S, Xu J, Denning W, Hel Z. Induction of protective cytotoxic T-cell responses by a B-cell-based cellular vaccine requires stable expression of antigen. Gene Ther 2009; 16:1300-13. [PMID: 19641529 PMCID: PMC2783822 DOI: 10.1038/gt.2009.93] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
B cell-based cellular vaccines represent a promising approach to active immunotherapy of cancer complementing the use of dendritic cells, especially in pediatric patients and patients with low bone marrow reserves. B cells can be easily prepared in large numbers and readily home to secondary lymphoid organs, the primary site of induction of cytotoxic T lymphocyte (CTL) responses. However, most B cell-based vaccines tested so far failed to induce functional and protective CTLs in in vivo models. Here we demonstrate that B cells activated via the Toll like receptor-9 (TLR-9) and CD40 up-regulate surface expression of MHC and costimulatory molecules, produce IL-12, and exhibit potent antigen-presenting properties in vitro. Importantly, while administration of peptide-coated or transiently transfected B cells fails to induce immune responses, therapeutic immunization with low numbers of genetically modified B cells stably expressing antigen results in an induction of functional CTLs and protection against the growth of tumor in an animal model. Following activation, B cells partially loose their ability to home to organized lymphoid tissue due to the shedding of CD62L; however, this property can be restored by expression of protease-resistant mutant of CD62L. In summary, the data presented in this report suggest that genetically modified activated B cells represent a promising candidate for a cancer vaccine eliciting functional systemic CTLs.
Collapse
Affiliation(s)
- S Guo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA
| | | | | | | |
Collapse
|
17
|
Park MY, Kim HS, Woo SJ, Kim CH, Park JS, Sohn HJ, Kim HJ, Oh ST, Kim TG. Efficient antitumor immunity in a murine colorectal cancer model induced by CEA RNA-electroporated B cells. Eur J Immunol 2008; 38:2106-17. [DOI: 10.1002/eji.200737960] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Wheeler MC, Rizzi M, Sasik R, Almanza G, Hardiman G, Zanetti M. KDEL-Retained Antigen in B Lymphocytes Induces a Proinflammatory Response: A Possible Role for Endoplasmic Reticulum Stress in Adaptive T Cell Immunity. THE JOURNAL OF IMMUNOLOGY 2008; 181:256-64. [DOI: 10.4049/jimmunol.181.1.256] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Robson N, Donachie A, Mowat A. Simultaneous presentation and cross-presentation of immune-stimulating complex-associated cognate antigen by antigen-specific B cells. Eur J Immunol 2008; 38:1238-46. [DOI: 10.1002/eji.200737758] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Castiglioni P, Hall DS, Jacovetty EL, Ingulli E, Zanetti M. Protection against Influenza A Virus by Memory CD8 T Cells Requires Reactivation by Bone Marrow-Derived Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:4956-64. [DOI: 10.4049/jimmunol.180.7.4956] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Affiliation(s)
- Tord Berglundh
- Department of Periodontology, The Sahlgrenska Academy at Göteborg University, Göteborg, Sweden
| | | | | |
Collapse
|
22
|
Ferrera F, Hahn BH, Rizzi M, Anderson M, Fitzgerald J, Millo E, Indiveri F, Shi FD, Filaci G, La Cava A. Protection against renal disease in (NZB x NZW)F(1) lupus-prone mice after somatic B cell gene vaccination with anti-DNA immunoglobulin consensus peptide. ACTA ACUST UNITED AC 2007; 56:1945-53. [PMID: 17530718 DOI: 10.1002/art.22700] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Ig molecules contain epitopes that can induce T cell-mediated immune responses. B cells can process and present such epitopes and activate T cells. The purpose of the present study was to test our hypothesis that T cells that recognize an Ig consensus sequence presented by B cells will modulate lupus-like disease in mice. METHODS (NZB x NZW)F(1) (NZB/NZW) lupus mice received somatic B cell gene transfer of a DNA plasmid encoding a consensus sequence of T cell determinants of murine anti-DNA IgG or control plasmids. Treated animals were monitored for the production of antibody, the development of renal disease, and the phenotype, number, and function of T cells. RESULTS Treatment of mice with Ig consensus plasmid induced transforming growth factor beta-producing CD8+,CD28- T cells that suppressed the antigen-specific stimulation of CD4+ T cells in a cell-contact-independent manner, reduced antibody production, retarded the development of nephritis, and improved survival. Significantly, adoptive transfer of CD8+,CD28- T cells from protected mice into hypergammaglobulinemic NZB/NZW mice effectively protected the transferred mice from the development of renal disease. CONCLUSION Gene expression of anti-DNA Ig consensus sequence induces immunoregulatory T cells that delay the development of lupus nephritis by suppressing hypergammaglobulinemia and renal disease.
Collapse
Affiliation(s)
- Francesca Ferrera
- David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cortez-Gonzalez X, Zanetti M. Telomerase immunity from bench to bedside: round one. J Transl Med 2007; 5:12. [PMID: 17324292 PMCID: PMC1839079 DOI: 10.1186/1479-5876-5-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Accepted: 02/26/2007] [Indexed: 11/10/2022] Open
Abstract
Telomerase, a reverse transcriptase primarily devoted to the elongation of telomeres in mammalian cells, is also the first bona fide common tumor antigen. In fact, telomerase is over-expressed in > 85% of tumor cells irrespective of origin and histological type. In the past seven years, there has been considerable interest in assessing telomerase as substrate for vaccination in cancer patients to induce CD8 T cell responses. Because the activation of T cells is restricted by the MHC molecules on antigen presenting cells or tumor cells, the identification of telomerase peptides immunogenic for humans is tightly linked with HLA types. To date, a handful of peptides have been identified through a variety of screening procedures, including bioinformatics prediction, in vivo immunization of HLA transgenic mice, in vitro immunization of PBMC from normal donors and cancer patients, and processing in human tumor cells. Currently, there exist putative peptides for five major HLA types (A2, A1, A3, A24 and B7). Due to the complexity of the HLA system, trials have been performed focusing on the most prevalent HLA type, HLA-A2. Here, we summarize this collective effort and highlight results obtained in Phase 1 trials including a Phase 1 trial performed at the UCSD Cancer Center.
Collapse
Affiliation(s)
- Xochtil Cortez-Gonzalez
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0837, USA.
| | | |
Collapse
|
24
|
Lund FE, Hollifield M, Schuer K, Lines JL, Randall TD, Garvy BA. B cells are required for generation of protective effector and memory CD4 cells in response to Pneumocystis lung infection. THE JOURNAL OF IMMUNOLOGY 2006; 176:6147-54. [PMID: 16670323 DOI: 10.4049/jimmunol.176.10.6147] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B cell-deficient mice are susceptible to infection by Pneumocystis carinii f. sp. muris (PC). To determine whether this susceptibility is due to a requirement for B cells to prime T cells, we compared CD4 T cell responses to PC in bone marrow chimeric mice that express MHC class II (MHCII) on all APCs (wild-type (WT) chimeras) and in bone marrow chimeric mice that express MHCII on all APCs except B cells (MHCII(-/-) chimeras). Although PC was rapidly cleared by WT chimeric mice, PC levels remained high in chimeric mice that lacked MHCII on B cells. In addition, although T cells were primed in the draining lymph nodes of MHCII(-/-) chimeric mice, the number of activated CD4 T cells infiltrating the lungs of these mice was reduced relative to the number in the lungs of WT chimeras. We also adoptively transferred purified CD4 T cells from the draining lymph nodes of PC-infected normal or B cell-deficient mice into SCID mice. Mice that received CD4 cells from normal mice were able to mount a response to infection in the lungs and clear PC. However, mice that received CD4 cells from B cell-deficient mice had a delayed T cell response in the lungs and failed to control the infection. These data indicate that B cells play a vital role in generation of CD4(+) memory T cells in response to PC infection in the lungs.
Collapse
|
25
|
Cortez-Gonzalez X, Pellicciotta I, Gerloni M, Wheeler MC, Castiglioni P, Lenert P, Zanetti M. TLR9-independent activation of B lymphocytes by bacterial DNA. DNA Cell Biol 2006; 25:253-61. [PMID: 16716115 DOI: 10.1089/dna.2006.25.253] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The intracellular Toll-like receptor 9 (TLR9) is unique in its ability to recognize single-stranded DNA unmethylated at CpG motifs. Work from this laboratory showed that plasmid DNA is spontaneously internalized in B lymphocytes. This event is followed by the upregulation of costimulatory molecules and the acquisition of antigen presenting function by these cells. However, it is not known whether this phenomenon depends on TLR9. Because of the relevant role played by DNA-based drugs in immunotherapy and vaccination, and the central role of TLR9 signaling by CpG motifs, we decided to investigate whether signaling through TLR9 is a prerequisite for spontaneous transgenesis of lymphocytes. Here we found that transgene expression and upregulation of CD40 and CD86 costimulatory molecules was not inhibited by chloroquine treatment. Spontaneous transgenesis also occurred in B lymphocytes from TLR9-/- mice, and the injection of TLR9-/- transgenic B lymphocytes in C57Bl/6 mice induced both CD4 and CD8 T cell responses comparable to those induced by wild-type B lymphocytes. Collectively, these results suggest that plasmid DNA activates mammalian B lymphocytes through a TLR9 independent pathway.
Collapse
Affiliation(s)
- Xochitl Cortez-Gonzalez
- The Laboratory of Immunology, Department of Medicine and Cancer Center, University of California, San Diego, La Jolla, California 92093-0837, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Rodríguez-Pinto D. B cells as antigen presenting cells. Cell Immunol 2006; 238:67-75. [PMID: 16574086 DOI: 10.1016/j.cellimm.2006.02.005] [Citation(s) in RCA: 217] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2005] [Revised: 02/18/2006] [Accepted: 02/21/2006] [Indexed: 01/09/2023]
Abstract
Several characteristics confer on B cells the ability to present antigen efficiently: (1) they can find T cells in secondary lymphoid organs shortly after antigen entrance, (2) BCR-mediated endocytosis allows them to concentrate small amounts of specific antigen, and (3) BCR signaling and HLA-DO expression direct their antigen processing machinery to favor presentation of antigens internalized through the BCR. When presenting antigen in a resting state, B cells can induce T cell tolerance. On the other hand, activation by antigen and T cell help converts them into APC capable of promoting immune responses. Presentation of self antigens by B cells is important in the development of autoimmune diseases, while presentation of tumor antigens is being used in vaccine strategies to generate immunity. Thus, detailed understanding of the antigen presenting function of B cells can lead to their use for the generation or inhibition of immune responses.
Collapse
Affiliation(s)
- Daniel Rodríguez-Pinto
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208020, New Haven, CT 06520, USA.
| |
Collapse
|
27
|
Abstract
This article discusses forms of cell cooperation involving CD4 T cells and their impact on adaptive immunity. In particular, evidence will be presented in favor of cooperation among CD4 T cells of different specificity, its molecular basis and functional significance. Th-Th cooperation, or help for helpers, will be discussed in relation to the induction of anti-tumor responses and, in converse, the generation of autoimmunity. A model is proposed where Th-Th cooperation may represent the structure/function substrate for the control of self/non-self discrimination and peripheral tolerance in vivo.
Collapse
Affiliation(s)
- Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0837, USA.
| |
Collapse
|
28
|
Chu Y, Xia M, Lin Y, Li A, Wang Y, Liu R, Xiong S. Th2-dominated antitumor immunity induced by DNA immunization with the genes coding for a basal core peptide PDTRP and GM-CSF. Cancer Gene Ther 2005; 13:510-9. [PMID: 16341143 DOI: 10.1038/sj.cgt.7700913] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our previous study showed that DNA vaccination with a plasmid vector encoding a core peptide of mucin1 (PDTRP) provided modest protection against challenge with tumor cells that expressed mucin1 protein. We report here that a DNA vaccine comprising a modified PDTRP plasmid and GM-CSF coding sequence at the C-terminus induced better protection against tumor challenge. The increased protection was directly correlated with a stronger PDTRP-specific immune response induced by the GM-CSF fusion plasmid. The plasmid encoding GM-CSF and the target PDTRP antigen induced a greater PDTRP-specific Th proliferation, antibodies, and cytotoxicity. Interestingly, the modified plasmid vaccine predominantly enhanced the type 2 immune responses manifested by an increased IgG1 to IgG2a antibody ratio and a greater induction of GATA-3 and IL-4 mRNA than that of T-bet and IFN-gamma mRNA in spleen cells from vaccinated mice. In addition, protection against tumor challenge in vaccinated mice showed that there was no significant change in mice survival after in vivo CD8+CTL depletion, indicating that antitumor immunity augmented by plasmid encoding GM-CSF and target PDTRP gene vaccine was dominated by Th2 immune response.
Collapse
Affiliation(s)
- Y Chu
- Department of Immunology, Key Laboratory of Molecular Medicine of Ministry of Education, Shanghai Medical College of Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Gerloni M, Castiglioni P, Zanetti M. The Cooperation between Two CD4 T Cells Induces Tumor Protective Immunity in MUC.1 Transgenic Mice. THE JOURNAL OF IMMUNOLOGY 2005; 175:6551-9. [PMID: 16272309 DOI: 10.4049/jimmunol.175.10.6551] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immunity and tumor protection in mice transgenic for human MUC.1, a glycoprotein expressed in the majority of cancers of epithelial origin in humans, were induced by vaccination with B lymphocytes genetically programmed to activate MUC.1-specific CD4 T cells. Their activation required a functional cooperation between two Th cells, one specific for a self (MUC.1) and the other for a nonself T cell determinant. The immunological switch provided by Th-Th cooperation was sufficient to induce MUC.1-specific CD4 and CD8 T cell responses in MUC.1-transgenic mice, and protect them permanently from tumor growth. CD4 T cells specific for MUC.1 lacked cytolytic function, but produced IFN-gamma upon restimulation with Ag. We conclude that immunity against tumor self-Ags and tumor protection can be regulated exploiting an inherent property of the immune system.
Collapse
Affiliation(s)
- Mara Gerloni
- Laboratory of Immunology, Department of Medicine and Cancer Center, University of California-San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
30
|
Castiglioni P, Gerloni M, Cortez-Gonzalez X, Zanetti M. CD8 T cell priming by B lymphocytes is CD4 help dependent. Eur J Immunol 2005; 35:1360-70. [PMID: 15816014 DOI: 10.1002/eji.200425530] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
While it is generally accepted that B lymphocytes can present antigen and activate CD4 T cells, priming of CD8 T cells by B lymphocytes remains controversial. Recently, we showed that mice injected with genetically programmed B lymphocytes generate antigen specific CD4 and CD8 T cell responses in vivo that could also be induced in mice lacking functional dendritic cells. To gain further insights into the requirements for T cell priming by antigen-presenting B lymphocytes, in vitro experiments were performed using ovalbumin (OVA) and OVA-specific TCR-transgenic CD4 and CD8 T cells. We found that while B lymphocytes can directly prime CD4 T cells, the activation of CD8 T cells requires T cell help. Transfer experiments show that help can either be contact dependent or be mediated by soluble factors in the supernatants of activated OVA-specific CD4 T cells. Furthermore, the effect of activated CD4 T cells can be replaced by soluble recombinant IL-4. Collectively, the data show the existence of different requirements for priming of CD4 and CD8 T cells and point to the previously unappreciated fact that the induction of CD8 T cell responses by B lymphocytes requires T cell help.
Collapse
Affiliation(s)
- Paola Castiglioni
- The Department of Medicine and Cancer Center, University of California in San Diego, La Jolla, USA
| | | | | | | |
Collapse
|
31
|
Rodríguez-Pinto D, Moreno J. B cells can prime naive CD4+ T cells in vivo in the absence of other professional antigen-presenting cells in a CD154-CD40-dependent manner. Eur J Immunol 2005; 35:1097-105. [PMID: 15756646 DOI: 10.1002/eji.200425732] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The role of B cells as APC is well established. However, their ability to prime naive T cells in vivo has been difficult to examine because of the presence of dendritic cells. The current studies were undertaken to examine this issue in a model of adoptive transfer of antigen-specific B cells and T cells into histoincompatible Rag2(-/-) mice. By means of this system, we were able to demonstrate that antigen-specific B cells are competent APC for naive CD4(+) T cells specific for the same antigen. In vivo antigen presentation resulted in expansion of both CD4(+) T cells and B cells. The antigen-presenting function of the transferred B cells was dependent on the CD154-CD40 interaction, as transfer of CD154-deficient antigen-specific CD4(+) T cells or CD40-deficient B cells failed to induce T and B cell expansion in response to immunization. These results indicate that antigen-specific B cells have the capacity to induce primary T cell responses in the absence of other competent APC.
Collapse
Affiliation(s)
- Daniel Rodríguez-Pinto
- Research Unit on Autoimmune Diseases, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México D.F., México
| | | |
Collapse
|
32
|
Dupont J, Latouche JB, Ma C, Sadelain M. Artificial Antigen-Presenting Cells Transduced with Telomerase Efficiently Expand Epitope-Specific, Human Leukocyte Antigen–Restricted Cytotoxic T Cells. Cancer Res 2005; 65:5417-27. [PMID: 15958591 DOI: 10.1158/0008-5472.can-04-2991] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human telomerase reverse transcriptase (hTERT) is overexpressed in most human tumors, making it a potential target for cancer immunotherapy. hTERT-derived CTL epitopes have been identified previously, including p865 (RLVDDFLLV) and p540 (ILAKFLHWL), which are restricted by the human leukocyte antigen (HLA) class I A*0201 allele. However, it remains a major challenge to efficiently and consistently expand hTERT-specific CTLs from donor peripheral blood T lymphocytes. To bypass the need for generating conventional antigen-presenting cells (APC) on an autologous basis, we investigated the potential ability of fibroblast-derived artificial APCs (AAPC) to activate and expand HLA-A*0201-restricted CTLs. We show here that AAPCs stably expressing HLA-A*0201, human beta(2)-microglobulin, B7.1, intercellular adhesion molecule-1, and LFA-3, together with either p540 and p865 minigenes or the full-length hTERT, effectively stimulate tumoricidal, hTERT-specific CTLs. hTERT-expressing AAPCs stimulated both p540 and p865 CTLs as shown by peptide-specific cytolysis and tetramer staining, indicating that hTERT is processed by the AAPCs and that the two peptides are presented as codominant epitopes. The level of cytotoxic activity against a panel of tumors comprising hematologic and epithelial malignancies varied, correlating overall with the level of HLA-A2 and hTERT expression by the target cell. Starting from 100 mL blood, approximately 100 million hTERT-specific CTLs could be generated over the course of five sequential stimulations, representing an expansion of approximately 1 x 10(5). Our data show that AAPCs process hTERT antigen and efficiently stimulate hTERT-specific CTLs from human peripheral blood T lymphocytes and suggest that sufficient expansion could be achieved to be clinically useful for adoptive cell therapy.
Collapse
Affiliation(s)
- Jakob Dupont
- Department of Medicine, Memorial Sloan-Kettering Cancer Center and the Joan and Sanford Weill Medical College of Cornell University and Immunology Program, Sloan-Kettering Institute, New York, New York 10021, USA.
| | | | | | | |
Collapse
|
33
|
Castiglioni P, Gerloni M, Zanetti M. Genetically programmed B lymphocytes are highly efficient in inducing anti-virus protective immunity mediated by central memory CD8 T cells. Vaccine 2005; 23:699-708. [PMID: 15542193 DOI: 10.1016/j.vaccine.2004.06.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Accepted: 06/01/2004] [Indexed: 10/26/2022]
Abstract
The hallmarks of specific T cell immunity include proliferative expansion, acquisition of effector function and memory T cell formation. Here, we used priming with B lymphocytes transgenic for the dominant epitope (NP366-374) of the influenza virus nucleoprotein, to study the characteristics of the CD8 T cell memory response in C57Bl/6 mice and elucidate which subset of CD8 T cells memory mediates protection from disease. We found that (i) the size of the memory CTL response is independent of the priming dose and is similar to that induced by the live virus, (ii) priming with a low dose (3 x 10(2)cells/inoculum) of transgenic B lymphocytes confers a protective memory CTL response, and (iii) protection from disease is mediated by central memory (T(CM)) CD8 T cells.
Collapse
Affiliation(s)
- Paola Castiglioni
- The Department of Medicine and Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0837, USA
| | | | | |
Collapse
|
34
|
Zanetti M, Castiglioni P, Rizzi M, Wheeler M, Gerloni M. B lymphocytes as antigen-presenting cell-based genetic vaccines. Immunol Rev 2004; 199:264-78. [PMID: 15233740 DOI: 10.1111/j.0105-2896.2004.00152.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inoculation of plasmid DNA is a simple way to immunize, but it is characterized by low immunogenicity, which has hampered the development of effective DNA vaccines for human use. Here, we discuss how poor immunogenicity can be solved and present our proposal: genetically programmed B lymphocytes as antigen-presenting cell (APC) vaccines. First, we demonstrate that mature B lymphocytes take up plasmid DNA spontaneously, i.e., in the absence of any facilitating molecule or event, spontaneous lymphocyte transgenesis. Second, we demonstrate that transgenic B lymphocytes are easily and reproducibly turned into functional APCs with dual characteristics: upregulation of costimulatory molecules and endogenous synthesis of antigen. Used as immunogens in mice, transgenic B lymphocytes induce robust and long-lasting T-cell immunity after single intravenous injection. Surprisingly, immunity and protection against lethal virus challenge can be obtained with a single intravenous injection of 3 x 10(2) transgenic lymphocytes. The new approach is discussed relative to the advantage of targeting secondary lymphoid organs with genetically programmed B lymphocytes and the advantage offered with respect to low antigen dose. We suggest that these properties reflect on simple characteristics, such as time synchronization and initial localization to secondary lymphoid organs of APCs endowed with protracted synthesis and presentation of antigen to T cells.
Collapse
Affiliation(s)
- Maurizio Zanetti
- The Department of Medicine and Cancer Center, University of California, San Diego, La Jolla, CA 92093-0837, USA.
| | | | | | | | | |
Collapse
|
35
|
Grube M, Melenhorst J, Barrett A. An APC for every occasion: induction and expansion of human Ag-specific CD4 and CD8 T cells using cellular and non-cellular APC. Cytotherapy 2004. [DOI: 10.1080/14653240410005230-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|