1
|
Kim SA, Kim HG, Wijesinghe WCB, Min D, Yoon TY. Emerging Patterns in Membrane Protein Folding Pathways. Annu Rev Biophys 2025; 54:141-162. [PMID: 40327440 DOI: 10.1146/annurev-biophys-070524-100658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Studies of membrane protein folding have progressed from simple systems such as bacteriorhodopsin to complex structures such as ATP-binding cassette transporters and voltage-gated ion channels. Advances in techniques such as single-molecule force spectroscopy and in vivo force profiling now allow for the detailed examination of membrane protein folding pathways at amino acid resolutions. These proteins navigate rugged energy landscapes partly shaped by the absence of hydrophobic collapse and the viscous nature of the lipid bilayer, imposing biophysical limitations on folding speeds. Furthermore, many transmembrane (TM) helices display reduced hydrophobicity to support functional requirements, simultaneously increasing the energy barriers for membrane insertion, a manifestation of the evolutionary trade-off between functionality and foldability. These less hydrophobic TM helices typically insert and fold as helical hairpins, following the protein synthesis direction from the N terminus to the C terminus, with assistance from endoplasmic reticulum (ER) chaperones like the Sec61 translocon and the ER membrane protein complex. The folding pathways of multidomain membrane proteins are defined by allosteric networks that extend across various domains, where mutations and folding correctors affect seemingly distant domains. A common evolutionary strategy is likely to be domain specialization, where N-terminal domains enhance foldability and C-terminal domains enhance functionality. Thus, despite inherent biophysical constraints, evolution has finely tuned membrane protein sequences to optimize foldability, stability, and functionality.
Collapse
Affiliation(s)
- Sang Ah Kim
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea;
| | - Hyun Gyu Kim
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea;
| | - W C Bhashini Wijesinghe
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea;
| | - Duyoung Min
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea;
| | - Tae-Young Yoon
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea;
| |
Collapse
|
2
|
Gentile L. Morphological Influence on a Nonionic Bilayer Bending Rigidity and Compression Modulus. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39096503 DOI: 10.1021/acs.langmuir.4c02346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
The mechanical properties of multilamellar vesicles and their relevance to soft matter physics and material science are of significant interest. The bending rigidity, κ, and compression modulus, B, of three-dimensional (3D) finite nonspontaneous multilamellar vesicles, formed by a nonionic surfactant, are linked to nanoscale bilayer thickness, δ, estimated via small-angle X-ray scattering, and macroscopic elastic modulus measured through small-amplitude oscillatory shear experiments. κ and B significantly differ from the same system in the two-dimensional (2D) infinite nanostructured planar lamellar phase. Particularly, κ3D was found to be much smaller than κ2D, while an opposite behavior was seen for B. The 2D-to-3D morphology transition occurs under a transient mechanical field, resulting in rheopectic behavior. κ scales quadratically with δ, consistent with bilayer membrane theories, and linearly with vesicle radius in the densely packed state. These findings have implications for understanding and designing soft interfaces due to the influence of bending rigidity on transport properties.
Collapse
Affiliation(s)
- Luigi Gentile
- Department of Chemistry, University of Bari "Aldo Moro", Via Orabona 4, Bari 70126, Italy
- Center of Colloid and Surface Science (CSGI) Bari Unit, Via Orabona 4, Bari 70126, Italy
| |
Collapse
|
3
|
Berhanu S, Majumder S, Müntener T, Whitehouse J, Berner C, Bera AK, Kang A, Liang B, Khan N, Sankaran B, Tamm LK, Brockwell DJ, Hiller S, Radford SE, Baker D, Vorobieva AA. Sculpting conducting nanopore size and shape through de novo protein design. Science 2024; 385:282-288. [PMID: 39024453 PMCID: PMC11549965 DOI: 10.1126/science.adn3796] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/03/2024] [Indexed: 07/20/2024]
Abstract
Transmembrane β-barrels have considerable potential for a broad range of sensing applications. Current engineering approaches for nanopore sensors are limited to naturally occurring channels, which provide suboptimal starting points. By contrast, de novo protein design can in principle create an unlimited number of new nanopores with any desired properties. Here we describe a general approach to designing transmembrane β-barrel pores with different diameters and pore geometries. Nuclear magnetic resonance and crystallographic characterization show that the designs are stably folded with structures resembling those of the design models. The designs have distinct conductances that correlate with their pore diameter, ranging from 110 picosiemens (~0.5 nanometer pore diameter) to 430 picosiemens (~1.1 nanometer pore diameter). Our approach opens the door to the custom design of transmembrane nanopores for sensing and sequencing applications.
Collapse
Affiliation(s)
- Samuel Berhanu
- Department of Biochemistry, The University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Sagardip Majumder
- Department of Biochemistry, The University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - James Whitehouse
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT
| | - Carolin Berner
- Structural Biology Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- VUB-VIB Center for Structural Biology, Brussels, Belgium
| | - Asim K. Bera
- Department of Biochemistry, The University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alex Kang
- Department of Biochemistry, The University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Binyong Liang
- Department of Molecular Physiology and Biological Physics and Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
| | - Nasir Khan
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lukas K. Tamm
- Department of Molecular Physiology and Biological Physics and Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
| | - David J. Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT
| | | | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT
| | - David Baker
- Department of Biochemistry, The University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Anastassia A. Vorobieva
- Structural Biology Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- VUB-VIB Center for Structural Biology, Brussels, Belgium
- VIB Center for AI and Computational Biology, Belgium
| |
Collapse
|
4
|
Yao J, Hong H. Steric trapping strategy for studying the folding of helical membrane proteins. Methods 2024; 225:1-12. [PMID: 38428472 PMCID: PMC11107808 DOI: 10.1016/j.ymeth.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/11/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024] Open
Abstract
Elucidating the folding energy landscape of membrane proteins is essential to the understanding of the proteins' stabilizing forces, folding mechanisms, biogenesis, and quality control. This is not a trivial task because the reversible control of folding is inherently difficult in a lipid bilayer environment. Recently, novel methods have been developed, each of which has a unique strength in investigating specific aspects of membrane protein folding. Among such methods, steric trapping is a versatile strategy allowing a reversible control of membrane protein folding with minimal perturbation of native protein-water and protein-lipid interactions. In a nutshell, steric trapping exploits the coupling of spontaneous denaturation of a doubly biotinylated protein to the simultaneous binding of bulky monovalent streptavidin molecules. This strategy has been evolved to investigate key elements of membrane protein folding such as thermodynamic stability, spontaneous denaturation rates, conformational features of the denatured states, and cooperativity of stabilizing interactions. In this review, we describe the critical methodological advancement, limitation, and outlook of the steric trapping strategy.
Collapse
Affiliation(s)
- Jiaqi Yao
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Heedeok Hong
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
5
|
Berhanu S, Majumder S, Müntener T, Whitehouse J, Berner C, Bera AK, Kang A, Liang B, Khan GN, Sankaran B, Tamm LK, Brockwell DJ, Hiller S, Radford SE, Baker D, Vorobieva AA. Sculpting conducting nanopore size and shape through de novo protein design. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572500. [PMID: 38187764 PMCID: PMC10769293 DOI: 10.1101/2023.12.20.572500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Transmembrane β-barrels (TMBs) are widely used for single molecule DNA and RNA sequencing and have considerable potential for a broad range of sensing and sequencing applications. Current engineering approaches for nanopore sensors are limited to naturally occurring channels such as CsgG, which have evolved to carry out functions very different from sensing, and hence provide sub-optimal starting points. In contrast, de novo protein design can in principle create an unlimited number of new nanopores with any desired properties. Here we describe a general approach to the design of transmembrane β-barrel pores with different diameter and pore geometry. NMR and crystallographic characterization shows that the designs are stably folded with structures close to the design models. We report the first examples of de novo designed TMBs with 10, 12 and 14 stranded β-barrels. The designs have distinct conductances that correlate with their pore diameter, ranging from 110 pS (~0.5 nm pore diameter) to 430 pS (~1.1 nm pore diameter), and can be converted into sensitive small-molecule sensors with high signal to noise ratio. The capability to generate on demand β-barrel pores of defined geometry opens up fundamentally new opportunities for custom engineering of sequencing and sensing technologies.
Collapse
Affiliation(s)
- Samuel Berhanu
- Department of Biochemistry, The University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Sagardip Majumder
- Department of Biochemistry, The University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - James Whitehouse
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT
| | - Carolin Berner
- Structural Biology Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- VUB-VIB Center for Structural Biology, Brussels, Belgium
| | - Asim K. Bera
- Department of Biochemistry, The University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alex Kang
- Department of Biochemistry, The University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Binyong Liang
- Department of Molecular Physiology and Biological Physics and Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22903, USA
| | - G Nasir Khan
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lukas K. Tamm
- Department of Molecular Physiology and Biological Physics and Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22903, USA
| | - David J. Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT
| | | | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT
| | - David Baker
- Department of Biochemistry, The University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Anastassia A. Vorobieva
- Structural Biology Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- VUB-VIB Center for Structural Biology, Brussels, Belgium
- VIB Center for AI and Computational Biology, Belgium
| |
Collapse
|
6
|
Posey AE, Ross KA, Bagheri M, Lanum EN, Khan MA, Jennings CE, Harwig MC, Kennedy NW, Hilser VJ, Harden JL, Hill RB. The variable domain from dynamin-related protein 1 promotes liquid-liquid phase separation that enhances its interaction with cardiolipin-containing membranes. Protein Sci 2023; 32:e4787. [PMID: 37743569 PMCID: PMC10578129 DOI: 10.1002/pro.4787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Dynamins are an essential superfamily of mechanoenzymes that remodel membranes and often contain a "variable domain" important for regulation. For the mitochondrial fission dynamin, dynamin-related protein 1, a regulatory role for the variable domain (VD) is demonstrated by gain- and loss-of-function mutations, yet the basis for this is unclear. Here, the isolated VD is shown to be intrinsically disordered and undergo a cooperative transition in the stabilizing osmolyte trimethylamine N-oxide. However, the osmolyte-induced state is not folded and surprisingly appears as a condensed state. Other co-solutes including known molecular crowder Ficoll PM 70, also induce a condensed state. Fluorescence recovery after photobleaching experiments reveal this state to be liquid-like indicating the VD undergoes a liquid-liquid phase separation under crowding conditions. These crowding conditions also enhance binding to cardiolipin, a mitochondrial lipid, which appears to promote phase separation. Since dynamin-related protein 1 is found assembled into discrete punctate structures on the mitochondrial surface, the inference from the present work is that these structures might arise from a condensed state involving the VD that may enable rapid tuning of mechanoenzyme assembly necessary for fission.
Collapse
Affiliation(s)
- Ammon E. Posey
- Program in Molecular BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
- Present address:
Department of Biomedical EngineeringWashington UniversitySt. LouisMissouriUSA
| | - Kyle A. Ross
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Mehran Bagheri
- Department of PhysicsUniversity of OttawaOttawaOntarioUSA
| | - Elizabeth N. Lanum
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Misha A. Khan
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | | | - Megan C. Harwig
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Nolan W. Kennedy
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Vincent J. Hilser
- Program in Molecular BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - R. Blake Hill
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
7
|
Posey AE, Bagheri M, Ross KA, Lanum EN, Khan MA, Jennings CM, Harwig MC, Kennedy NW, Hilser VJ, Harden JL, Hill RB. The variable domain from the mitochondrial fission mechanoenzyme Drp1 promotes liquid-liquid phase separation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542732. [PMID: 37398258 PMCID: PMC10312466 DOI: 10.1101/2023.05.29.542732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Dynamins are an essential superfamily of mechanoenzymes that remodel membranes and often contain a "variable domain" (VD) important for regulation. For the mitochondrial fission dynamin, Drp1, a regulatory role for the VD is demonstrated by mutations that can elongate, or fragment, mitochondria. How the VD encodes inhibitory and stimulatory activity is unclear. Here, isolated VD is shown to be intrinsically disordered (ID) yet undergoes a cooperative transition in the stabilizing osmolyte TMAO. However, the TMAO stabilized state is not folded and surprisingly appears as a condensed state. Other co-solutes including known molecular crowder Ficoll PM 70, also induce a condensed state. Fluorescence recovery after photobleaching experiments reveal this state to be liquid-like indicating the VD undergoes a liquid-liquid phase separation under crowding conditions. These crowding conditions also enhance binding to cardiolipin, a mitochondrial lipid, raising the possibility that phase separation may enable rapid tuning of Drp1 assembly necessary for fission.
Collapse
|
8
|
Baserga F, Vorkas A, Crea F, Schubert L, Chen JL, Redlich A, La Greca M, Storm J, Oldemeyer S, Hoffmann K, Schlesinger R, Heberle J. Membrane Protein Activity Induces Specific Molecular Changes in Nanodiscs Monitored by FTIR Difference Spectroscopy. Front Mol Biosci 2022; 9:915328. [PMID: 35769914 PMCID: PMC9234331 DOI: 10.3389/fmolb.2022.915328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/18/2022] [Indexed: 12/03/2022] Open
Abstract
It is well known that lipids neighboring integral membrane proteins directly influence their function. The opposite effect is true as well, as membrane proteins undergo structural changes after activation and thus perturb the lipidic environment. Here, we studied the interaction between these molecular machines and the lipid bilayer by observing changes in the lipid vibrational bands via FTIR spectroscopy. Membrane proteins with different functionalities have been reconstituted into lipid nanodiscs: Microbial rhodopsins that act as light-activated ion pumps (the proton pumps NsXeR and UmRh1, and the chloride pump NmHR) or as sensors (NpSRII), as well as the electron-driven cytochrome c oxidase RsCcO. The effects of the structural changes on the surrounding lipid phase are compared to mechanically induced lateral tension exerted by the light-activatable lipid analogue AzoPC. With the help of isotopologues, we show that the ν(C = O) ester band of the glycerol backbone reports on changes in the lipids’ collective state induced by mechanical changes in the transmembrane proteins. The perturbation of the nanodisc lipids seems to involve their phase and/or packing state. 13C-labeling of the scaffold protein shows that its structure also responds to the mechanical expansion of the lipid bilayer.
Collapse
Affiliation(s)
- Federico Baserga
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Antreas Vorkas
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Fucsia Crea
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Luiz Schubert
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Jheng-Liang Chen
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Aoife Redlich
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | | | - Julian Storm
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Sabine Oldemeyer
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Kirsten Hoffmann
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Ramona Schlesinger
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
- *Correspondence: Ramona Schlesinger, ; Joachim Heberle,
| | - Joachim Heberle
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
- *Correspondence: Ramona Schlesinger, ; Joachim Heberle,
| |
Collapse
|
9
|
The Thermodynamic Stability of Membrane Proteins in Micelles and Lipid Bilayers Investigated with the Ferrichrom Receptor FhuA. J Membr Biol 2022; 255:485-502. [PMID: 35552784 PMCID: PMC9581862 DOI: 10.1007/s00232-022-00238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/05/2022] [Indexed: 12/03/2022]
Abstract
Extraction of integral membrane proteins into detergents for structural and functional studies often leads to a strong loss in protein stability. The impact of the lipid bilayer on the thermodynamic stability of an integral membrane protein in comparison to its solubilized form in detergent was examined and compared for FhuA from Escherichia coli and for a mutant, FhuAΔ5-160, lacking the N-terminal cork domain. Urea-induced unfolding was monitored by fluorescence spectroscopy to determine the effective free energies \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \Delta G{^\text{o}_{\rm u}} $$\end{document}ΔGuo of unfolding. To obtain enthalpic and entropic contributions of unfolding of FhuA, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \Delta G{^\text{o}_{\rm u}} $$\end{document}ΔGuo were determined at various temperatures. When solubilized in LDAO detergent, wt-FhuA and FhuAΔ5-160 unfolded in a single step. The 155-residue cork domain stabilized wt-FhuA by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \Delta\Delta G{^\text{o}_{\rm u}} $$\end{document}ΔΔGuo~ 40 kJ/mol. Reconstituted into lipid bilayers, wt-FhuA unfolded in two steps, while FhuAΔ5-160 unfolded in a single step, indicating an uncoupled unfolding of the cork domain. For FhuAΔ5-160 at 35 °C, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \Delta G{^\text{o}_{\rm u}} $$\end{document}ΔGuo increased from ~ 5 kJ/mol in LDAO micelles to about ~ 20 kJ/mol in lipid bilayers, while the temperature of unfolding increased from TM ~ 49 °C in LDAO micelles to TM ~ 75 °C in lipid bilayers. Enthalpies \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta H{_{\rm M}^\text{o}}$$\end{document}ΔHMowere much larger than free energies \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \Delta G{^\text{o}_{\rm u}} $$\end{document}ΔGuo, for FhuAΔ5-160 and for wt-FhuA, and compensated by a large gain of entropy upon unfolding. The gain in conformational entropy is expected to be similar for unfolding of FhuA from micelles or bilayers. The strongly increased TM and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta H{_{\rm M}^\text{o}}$$\end{document}ΔHMo observed for the lipid bilayer-reconstituted FhuA in comparison to the LDAO-solubilized forms, therefore, very likely arise from a much-increased solvation entropy of FhuA in bilayers.
Collapse
|
10
|
Taylor AE, Mellbye BL. Differential Responses of the Catalytic Efficiency of Ammonia and Nitrite Oxidation to Changes in Temperature. Front Microbiol 2022; 13:817986. [PMID: 35620102 PMCID: PMC9127996 DOI: 10.3389/fmicb.2022.817986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Microbially mediated nitrification plays an important role in the nitrogen (N) cycle, and rates of activity have been shown to change significantly with temperature. Despite this, the substrate affinities of nitrifying bacteria and archaea have not been comprehensively measured and are often assumed to be static in mathematical models of environmental systems. In this study, we measured the oxidation kinetics of ammonia- (NH3) oxidizing archaea (AOA), NH3-oxidizing bacteria (AOB), and two distinct groups of nitrite (NO2 -)-oxidizing bacteria (NOB), of the genera Nitrobacter and Nitrospira, by measuring the maximum rates of apparent activity (V max(app)), the apparent half-saturation constant (K m(app)), and the overall catalytic efficiency (V max(app) /K m(app)) over a range of temperatures. Changes in V max(app) and K m(app) with temperature were different between groups, with V max(app) and catalytic efficiency increasing with temperature in AOA, while V max(app) , K m(app), and catalytic efficiency increased in AOB. In Nitrobacter NOB, V max(app) and K m(app) increased, but catalytic efficiency decreased significantly with temperature. Nitrospira NOB were variable, but V max(app) increased while catalytic efficiency and K m(app) remained relatively unchanged. Michaelis-Menten (MM) and Haldane (H) kinetic models of NH3 oxidation and NO2 - oxidation based on the collected data correctly predict nitrification potential in some soil incubation experiments, but not others. Despite previous observations of coupled nitrification in many natural systems, our results demonstrate significant differences in response to temperature strategies between the different groups of nitrifiers; and indicate the need to further investigate the response of nitrifiers to environmental changes.
Collapse
Affiliation(s)
- Anne E. Taylor
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, United States
| | - Brett L. Mellbye
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
11
|
Gaffney KA, Guo R, Bridges MD, Muhammednazaar S, Chen D, Kim M, Yang Z, Schilmiller AL, Faruk NF, Peng X, Jones AD, Kim KH, Sun L, Hubbell WL, Sosnick TR, Hong H. Lipid bilayer induces contraction of the denatured state ensemble of a helical-bundle membrane protein. Proc Natl Acad Sci U S A 2022; 119:e2109169119. [PMID: 34969836 PMCID: PMC8740594 DOI: 10.1073/pnas.2109169119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 12/19/2022] Open
Abstract
Defining the denatured state ensemble (DSE) and disordered proteins is essential to understanding folding, chaperone action, degradation, and translocation. As compared with water-soluble proteins, the DSE of membrane proteins is much less characterized. Here, we measure the DSE of the helical membrane protein GlpG of Escherichia coli (E. coli) in native-like lipid bilayers. The DSE was obtained using our steric trapping method, which couples denaturation of doubly biotinylated GlpG to binding of two streptavidin molecules. The helices and loops are probed using limited proteolysis and mass spectrometry, while the dimensions are determined using our paramagnetic biotin derivative and double electron-electron resonance spectroscopy. These data, along with our Upside simulations, identify the DSE as being highly dynamic, involving the topology changes and unfolding of some of the transmembrane (TM) helices. The DSE is expanded relative to the native state but only to 15 to 75% of the fully expanded condition. The degree of expansion depends on the local protein packing and the lipid composition. E. coli's lipid bilayer promotes the association of TM helices in the DSE and, probably in general, facilitates interhelical interactions. This tendency may be the outcome of a general lipophobic effect of proteins within the cell membranes.
Collapse
Affiliation(s)
- Kristen A Gaffney
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Ruiqiong Guo
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Michael D Bridges
- Jules Stein Eye Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | | | - Daoyang Chen
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Miyeon Kim
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108
| | - Anthony L Schilmiller
- Research Technology Support Facility Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, MI 48824
| | - Nabil F Faruk
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL 60637
| | - Xiangda Peng
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL 60637
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- Research Technology Support Facility Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, MI 48824
| | - Kelly H Kim
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Wayne L Hubbell
- Jules Stein Eye Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Tobin R Sosnick
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL 60637;
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637
| | - Heedeok Hong
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824;
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
12
|
Ip T, Li Q, Brooks N, Elani Y. Manufacture of Multilayered Artificial Cell Membranes through Sequential Bilayer Deposition on Emulsion Templates. Chembiochem 2021; 22:2275-2281. [PMID: 33617681 PMCID: PMC8360201 DOI: 10.1002/cbic.202100072] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 12/21/2022]
Abstract
Efforts to manufacture artificial cells that replicate the architectures, processes and behaviours of biological cells are rapidly increasing. Perhaps the most commonly reconstructed cellular structure is the membrane, through the use of unilamellar vesicles as models. However, many cellular membranes, including bacterial double membranes, nuclear envelopes, and organelle membranes, are multilamellar. Due to a lack of technologies available for their controlled construction, multilayered membranes are not part of the repertoire of cell-mimetic motifs used in bottom-up synthetic biology. To address this, we developed emulsion-based technologies that allow cell-sized multilayered vesicles to be produced layer-by-layer, with compositional control over each layer, thus enabling studies that would otherwise remain inaccessible. We discovered that bending rigidities scale with the number of layers and demonstrate inter-bilayer registration between coexisting liquid-liquid domains. These technologies will contribute to the exploitation of multilayered membrane structures, paving the way for incorporating protein complexes that span multiple bilayers.
Collapse
Affiliation(s)
- Tsoi Ip
- Department of ChemistryImperial College LondonMolecular Sciences Research Hub White CityLondonW12 0BZUK
| | - Qien Li
- Department of ChemistryImperial College LondonMolecular Sciences Research Hub White CityLondonW12 0BZUK
| | - Nick Brooks
- Department of ChemistryImperial College LondonMolecular Sciences Research Hub White CityLondonW12 0BZUK
| | - Yuval Elani
- Department of Chemical EngineeringImperial College London South KensingtonLondonSW7 2AZUK
| |
Collapse
|
13
|
Vorobieva AA, White P, Liang B, Horne JE, Bera AK, Chow CM, Gerben S, Marx S, Kang A, Stiving AQ, Harvey SR, Marx DC, Khan GN, Fleming KG, Wysocki VH, Brockwell DJ, Tamm LK, Radford SE, Baker D. De novo design of transmembrane β barrels. Science 2021; 371:eabc8182. [PMID: 33602829 PMCID: PMC8064278 DOI: 10.1126/science.abc8182] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
Transmembrane β-barrel proteins (TMBs) are of great interest for single-molecule analytical technologies because they can spontaneously fold and insert into membranes and form stable pores, but the range of pore properties that can be achieved by repurposing natural TMBs is limited. We leverage the power of de novo computational design coupled with a "hypothesis, design, and test" approach to determine TMB design principles, notably, the importance of negative design to slow β-sheet assembly. We design new eight-stranded TMBs, with no homology to known TMBs, that insert and fold reversibly into synthetic lipid membranes and have nuclear magnetic resonance and x-ray crystal structures very similar to the computational models. These advances should enable the custom design of pores for a wide range of applications.
Collapse
Affiliation(s)
- Anastassia A Vorobieva
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Paul White
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, USA
| | - Binyong Liang
- Department of Molecular Physiology and Biological Physics and Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22903, USA
| | - Jim E Horne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, USA
| | - Asim K Bera
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Cameron M Chow
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Stacey Gerben
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Sinduja Marx
- Department of Molecular Engineering and Sciences, University of Washington, Seattle, WA 98195, USA
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alyssa Q Stiving
- Department of Chemistry and Biochemistry, Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Sophie R Harvey
- Department of Chemistry and Biochemistry, Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Dagan C Marx
- TC Jenkins Department of Biophysics Johns Hopkins University, Baltimore, MD 21218, USA
| | - G Nasir Khan
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, USA
| | - Karen G Fleming
- TC Jenkins Department of Biophysics Johns Hopkins University, Baltimore, MD 21218, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, USA
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics and Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22903, USA
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
14
|
Abstract
The properties of natural lipid bilayers are vital to the regulation of many membrane proteins. Scaffolded nanodiscs provide an in vitro lipid bilayer platform to host membrane proteins in an environment that approximates native lipid bilayers. However, the properties of scaffold-enclosed bilayers may depart significantly from those of bulk cellular membranes. Therefore, to improve the usefulness of nanodiscs it is essential to understand the properties of lipids restricted by scaffolds. We used computational molecular dynamics and modeling approaches to understand the effects of nanodisc size, scaffold type (DNA or protein), and hydrophobic modification of DNA scaffolds on bilayer stability and degree to which the properties of enclosed bilayers approximate bulk bilayers. With respect to achieving bulk bilayer behavior, we found that charge neutralization of DNA scaffolds was more important than the total hydrophobic content of their modifications: bilayer properties were better for scaffolds having a large number of short alkyl chains than those having fewer long alkyl chains. Further, complete charge neutralization of DNA scaffolds enabled better lipid binding, and more stable bilayers, as shown by steered molecular dynamics simulations that measured the force required to dislodge scaffolds from lipid bilayer patches. Considered together, our simulations provide a guide to the design of DNA-scaffolded nanodiscs suitable for studying membrane proteins.
Collapse
Affiliation(s)
- Vishal Maingi
- Department of Bioengineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Paul W K Rothemund
- Departments of Bioengineering, Computing + Mathematical Sciences, and Computation & Neural Systems, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
15
|
Ardalan A, Sowlati-Hashjin S, Uwumarenogie SO, Fish M, Mitchell J, Karttunen M, Smith MD, Jelokhani-Niaraki M. Functional Oligomeric Forms of Uncoupling Protein 2: Strong Evidence for Asymmetry in Protein and Lipid Bilayer Systems. J Phys Chem B 2020; 125:169-183. [PMID: 33373220 DOI: 10.1021/acs.jpcb.0c09422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Stoichiometry of uncoupling proteins (UCPs) and their coexistence as functional monomeric and associated forms in lipid membranes remain intriguing open questions. In this study, tertiary and quaternary structures of UCP2 were analyzed experimentally and through molecular dynamics (MD) simulations. UCP2 was overexpressed in the inner membrane of Escherichia coli, then purified and reconstituted in lipid vesicles. Structure and proton transport function of UCP2 were characterized by circular dichroism (CD) spectroscopy and fluorescence methods. Findings suggest a tetrameric functional form for UCP2. MD simulations conclude that tetrameric UCP2 is a dimer of dimers, is more stable than its monomeric and dimeric forms, is asymmetrical and induces asymmetry in the membrane's lipid structure, and a biphasic on-off switch between the dimeric units is its possible mode of transport. MD simulations also show that the water density inside the UCP2 monomer is asymmetric, with the cytoplasmic side having a higher water density and a wider radius. In contrast, the structurally comparable adenosine 5'-diphosphate (ADP)/adenosine 5'-triphosphate (ATP) carrier (AAC1) did not form tetramers, implying that tetramerization cannot be generalized to all mitochondrial carriers.
Collapse
Affiliation(s)
- Afshan Ardalan
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
| | - Shahin Sowlati-Hashjin
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 3K7.,Center for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario, Canada N6K 3K7
| | - Stephanie O Uwumarenogie
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
| | - Michael Fish
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5.,Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
| | - Joel Mitchell
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
| | - Mikko Karttunen
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 3K7.,Center for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario, Canada N6K 3K7.,Department of Applied Mathematics, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Matthew D Smith
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
| | - Masoud Jelokhani-Niaraki
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
| |
Collapse
|
16
|
Corin K, Bowie JU. How bilayer properties influence membrane protein folding. Protein Sci 2020; 29:2348-2362. [PMID: 33058341 DOI: 10.1002/pro.3973] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 01/24/2023]
Abstract
The question of how proteins manage to organize into a unique three-dimensional structure has been a major field of study since the first protein structures were determined. For membrane proteins, the question is made more complex because, unlike water-soluble proteins, the solvent is not homogenous or even unique. Each cell and organelle has a distinct lipid composition that can change in response to environmental stimuli. Thus, the study of membrane protein folding requires not only understanding how the unfolded chain navigates its way to the folded state, but also how changes in bilayer properties can affect that search. Here we review what we know so far about the impact of lipid composition on bilayer physical properties and how those properties can affect folding. A better understanding of the lipid bilayer and its effects on membrane protein folding is not only important for a theoretical understanding of the folding process, but can also have a practical impact on our ability to work with and design membrane proteins.
Collapse
Affiliation(s)
- Karolina Corin
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA-DOE Institute, University of California, Los Angeles, California, USA
| | - James U Bowie
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA-DOE Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
17
|
Horne JE, Brockwell DJ, Radford SE. Role of the lipid bilayer in outer membrane protein folding in Gram-negative bacteria. J Biol Chem 2020; 295:10340-10367. [PMID: 32499369 PMCID: PMC7383365 DOI: 10.1074/jbc.rev120.011473] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/03/2020] [Indexed: 01/09/2023] Open
Abstract
β-Barrel outer membrane proteins (OMPs) represent the major proteinaceous component of the outer membrane (OM) of Gram-negative bacteria. These proteins perform key roles in cell structure and morphology, nutrient acquisition, colonization and invasion, and protection against external toxic threats such as antibiotics. To become functional, OMPs must fold and insert into a crowded and asymmetric OM that lacks much freely accessible lipid. This feat is accomplished in the absence of an external energy source and is thought to be driven by the high thermodynamic stability of folded OMPs in the OM. With such a stable fold, the challenge that bacteria face in assembling OMPs into the OM is how to overcome the initial energy barrier of membrane insertion. In this review, we highlight the roles of the lipid environment and the OM in modulating the OMP-folding landscape and discuss the factors that guide folding in vitro and in vivo We particularly focus on the composition, architecture, and physical properties of the OM and how an understanding of the folding properties of OMPs in vitro can help explain the challenges they encounter during folding in vivo Current models of OMP biogenesis in the cellular environment are still in flux, but the stakes for improving the accuracy of these models are high. OMP folding is an essential process in all Gram-negative bacteria, and considering the looming crisis of widespread microbial drug resistance it is an attractive target. To bring down this vital OMP-supported barrier to antibiotics, we must first understand how bacterial cells build it.
Collapse
Affiliation(s)
- Jim E Horne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
18
|
Role of Lipopolysaccharide in Protecting OmpT from Autoproteolysis during In Vitro Refolding. Biomolecules 2020; 10:biom10060922. [PMID: 32570704 PMCID: PMC7356225 DOI: 10.3390/biom10060922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/06/2020] [Accepted: 06/14/2020] [Indexed: 01/02/2023] Open
Abstract
Outer membrane protease (OmpT) is a 33.5 kDa aspartyl protease that cleaves at dibasic sites and is thought to function as a defense mechanism for E. coli against cationic antimicrobial peptides secreted by the host immune system. Despite carrying three dibasic sites in its own sequence, there is no report of OmpT autoproteolysis in vivo. However, recombinant OmpT expressed in vitro as inclusion bodies has been reported to undergo autoproteolysis during the refolding step, thus resulting in an inactive protease. In this study, we monitor and compare levels of in vitro autoproteolysis of folded and unfolded OmpT and examine the role of lipopolysaccharide (LPS) in autoproteolysis. SDS-PAGE data indicate that it is only the unfolded OmpT that undergoes autoproteolysis while the folded OmpT remains protected and resistant to autoproteolysis. This selective susceptibility to autoproteolysis is intriguing. Previous studies suggest that LPS, a co-factor necessary for OmpT activity, may play a protective role in preventing autoproteolysis. However, data presented here confirm that LPS plays no such protective role in the case of unfolded OmpT. Furthermore, OmpT mutants designed to prevent LPS from binding to its putative LPS-binding motif still exhibited excellent protease activity, suggesting that the putative LPS-binding motif is of less importance for OmpT's activity than previously proposed.
Collapse
|
19
|
Galván-Hernández A, Kobayashi N, Hernández-Cobos J, Antillón A, Nakabayashi S, Ortega-Blake I. Morphology and dynamics of domains in ergosterol or cholesterol containing membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183101. [DOI: 10.1016/j.bbamem.2019.183101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/02/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022]
|
20
|
Huysmans GHM, Marx DC, Radford SE, Fleming KG. Determining the Free Energies of Outer Membrane Proteins in Lipid Bilayers. Methods Mol Biol 2020; 2168:217-232. [PMID: 33582994 DOI: 10.1007/978-1-0716-0724-4_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The thermodynamic stabilities of membrane proteins are of fundamental interest to provide a biophysical description of their structure-function relationships because energy determines conformational populations. In addition, structure-energy relationships can be exploited in membrane protein design and in synthetic biology. To determine the thermodynamic stability of a membrane protein, it is not sufficient to be able to unfold and refold the molecule: establishing path independence of this reaction is essential. Here we describe the procedures required to measure and verify path independence for the folding of outer membrane proteins in large unilamellar vesicles.
Collapse
Affiliation(s)
- Gerard H M Huysmans
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
| | - Dagan C Marx
- T C Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Karen G Fleming
- T C Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
21
|
Asamoto DK, Kang G, Kim JE. Folding of the β-Barrel Membrane Protein OmpA into Nanodiscs. Biophys J 2019; 118:403-414. [PMID: 31843264 DOI: 10.1016/j.bpj.2019.11.3381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/08/2019] [Accepted: 11/20/2019] [Indexed: 01/19/2023] Open
Abstract
Nanodiscs (NDs) are an excellent alternative to small unilamellar vesicles (SUVs) for studies of membrane protein structure, but it has not yet been shown that membrane proteins are able to spontaneously fold and insert into a solution of freely diffusing NDs. In this article, we present SDS-PAGE differential mobility studies combined with fluorescence, circular dichroism, and ultraviolet resonance Raman spectroscopy to confirm the spontaneous folding of outer membrane protein A (OmpA) into preformed NDs. Folded OmpA in NDs was incubated with Arg-C protease, resulting in the digestion of OmpA to membrane-protected fragments with an apparent molecular mass of ∼26 kDa (major component) and ∼24 kDa (minor component). The OmpA folding yields were greater than 88% in both NDs and SUVs. An OmpA adsorbed intermediate on NDs could be isolated at low temperature and induced to fold via an increase in temperature, analogous to the temperature-jump experiments on SUVs. The circular dichroism spectra of OmpA in NDs and SUVs were similar and indicated β-barrel secondary structure. Further evidence of OmpA folding into NDs was provided by ultraviolet resonance Raman spectroscopy, which revealed the intense 785 cm-1 structural marker for folded OmpA in NDs. The primary difference between folding in NDs and SUVs was the kinetics; the rate of folding was two- to threefold slower in NDs compared to in SUVs, and this decreased rate can tentatively be attributed to the properties of NDs. These data indicate that NDs may be an excellent alternative to SUVs for folding experiments and offer benefits of optical clarity, sample homogeneity, control of ND:protein ratios, and greater stability.
Collapse
Affiliation(s)
- DeeAnn K Asamoto
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Guipeun Kang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Judy E Kim
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California.
| |
Collapse
|
22
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
23
|
Kieber M, Ono T, Oliver RC, Nyenhuis SB, Tieleman DP, Columbus L. The Fluidity of Phosphocholine and Maltoside Micelles and the Effect of CHAPS. Biophys J 2019; 116:1682-1691. [PMID: 31023535 DOI: 10.1016/j.bpj.2019.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 03/13/2019] [Accepted: 03/20/2019] [Indexed: 11/17/2022] Open
Abstract
The dynamics of phosphocholine and maltoside micelles, detergents frequently used for membrane protein structure determination, were investigated using electron paramagnetic resonance of spin probes doped into the micelles. Specifically, phosphocholines are frequently used detergents in NMR studies, and maltosides are frequently used in x-ray crystallography structure determination. Beyond the structural and electrostatic differences, this study aimed to determine whether there are differences in the local chain dynamics (i.e., fluidity). The nitroxide probe rotational dynamics in longer chain detergents is more restricted than in shorter chain detergents, and maltoside micelles are more restricted than phosphocholine micelles. Furthermore, the micelle microviscosity can be modulated with mixtures, as demonstrated with mixtures of 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate with n-dodecylphosphocholine, n-tetradecylphosphocholine, n-decyl-β-D-maltoside, or n-dodecyl-β-D-maltoside. These results indicate that observed differences in membrane protein stability in these detergents could be due to fluidity in addition to the already determined structural differences.
Collapse
Affiliation(s)
- Marissa Kieber
- Department of Chemistry, University of Virginia, Charlottesville, Virginia
| | - Tomihiro Ono
- Department of Chemistry, University of Virginia, Charlottesville, Virginia
| | - Ryan C Oliver
- Department of Chemistry, University of Virginia, Charlottesville, Virginia
| | - Sarah B Nyenhuis
- Department of Chemistry, University of Virginia, Charlottesville, Virginia
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
24
|
Kanwa N, Patnaik A, De SK, Ahamed M, Chakraborty A. Effect of Surface Ligand and Temperature on Lipid Vesicle-Gold Nanoparticle Interaction: A Spectroscopic Investigation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1008-1020. [PMID: 30601000 DOI: 10.1021/acs.langmuir.8b03673] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We herein investigate the interactions of differently functionalized anionic and cationic gold nanoparticles (AuNPs) with zwitterionic phosphocholine (PC) as well as inverse phosphocholine (iPC) lipid bilayers via spectroscopic measures. In this study, we used PC lipids with varying phase-transition temperatures, i.e., DMPC ( Tm = 24 °C), DOPC ( Tm = -20 °C), and iPC lipid DOCP ( Tm = -20 °C) to study their interactions with AuNPs functionalized with anionic ligands citrate, 3-mercaptopropionic acid, glutathione, and cationic ligand cysteamine. We studied the interactions by steady-state and time-resolved spectroscopic studies using membrane-sensitive probes 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and 8-anilino-1 naphthalenesulfonate (ANS), as well as by confocal laser scanning microscopy (CLSM) imaging and dynamic light scattering (DLS) measurements. We observe that AuNPs bring in stability to the lipid vesicle, and the extent of interaction differs with the different surface ligands on the AuNPs. We observe that AuNPs functionalized with citrate effectively increase the phase-transition temperature of the vesicles by interacting with them. Our study reveals that the extent of interaction depends on the bulkiness of the ligands attached to the AuNPs. The bulkier ligands exert less van der Waals force, resulting in a weaker interaction. Moreover, we find that the interactions are more strongly pronounced when the vesicles are near the phase-transition temperature of the lipid. The CLSM imaging and DLS measurements demonstrate the surface modifications in the vesicles as a result of these interactions.
Collapse
Affiliation(s)
- Nishu Kanwa
- Discipline of Chemistry , Indian Institute of Technology Indore , Indore 453552 , Madhya Pradesh , India
| | - Ananya Patnaik
- Discipline of Chemistry , Indian Institute of Technology Indore , Indore 453552 , Madhya Pradesh , India
| | - Soumya Kanti De
- Discipline of Chemistry , Indian Institute of Technology Indore , Indore 453552 , Madhya Pradesh , India
| | - Mirajuddin Ahamed
- Discipline of Chemistry , Indian Institute of Technology Indore , Indore 453552 , Madhya Pradesh , India
| | - Anjan Chakraborty
- Discipline of Chemistry , Indian Institute of Technology Indore , Indore 453552 , Madhya Pradesh , India
| |
Collapse
|
25
|
Srivastava SR, Zadafiya P, Mahalakshmi R. Hydrophobic Mismatch Modulates Stability and Plasticity of Human Mitochondrial VDAC2. Biophys J 2018; 115:2386-2394. [PMID: 30503532 PMCID: PMC6301912 DOI: 10.1016/j.bpj.2018.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/15/2018] [Accepted: 11/01/2018] [Indexed: 01/13/2023] Open
Abstract
The human mitochondrial outer membrane protein voltage-dependent anion channel isoform 2 (hVDAC2) is a β-barrel metabolite flux channel that is indispensable for cell survival. It is well established that physical forces imposed on a transmembrane protein by its surrounding lipid environment decide protein structure and stability. Yet, how the mitochondrial membrane and protein-lipid interplay together regulate hVDAC2 stability is unknown. Here, we combine experimental biophysical investigations of protein stability with all-atom molecular dynamics simulations to study the effect of the most abundant mitochondrial phosphocholine (PC) lipids on hVDAC2. We demonstrate experimentally that increasing the PC lipid acyl chain length from diC14:0 to diC18:0-PC has a nonlinear effect on the β-barrel. We show that protein stability is highest in diC16:0-PC, which exhibits a negative mismatch with the hVDAC2 barrel. Our simulations also reveal that structural rigidity of hVDAC2 is highest under optimal negative mismatch provided by diC16:0-PC bilayers. Further, we validate our observations by altering the physical properties of PC membranes indirectly using cholesterol. We propose that VDAC plasticity and stability in the mitochondrial outer membrane are modulated by physical properties of the bilayer.
Collapse
Affiliation(s)
- Shashank Ranjan Srivastava
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Punit Zadafiya
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India.
| |
Collapse
|
26
|
Methods of reconstitution to investigate membrane protein function. Methods 2018; 147:126-141. [DOI: 10.1016/j.ymeth.2018.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/13/2018] [Indexed: 02/06/2023] Open
|
27
|
McKay MJ, Afrose F, Koeppe RE, Greathouse DV. Helix formation and stability in membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2108-2117. [PMID: 29447916 DOI: 10.1016/j.bbamem.2018.02.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 01/05/2023]
Abstract
In this article we review current understanding of basic principles for the folding of membrane proteins, focusing on the more abundant alpha-helical class. Membrane proteins, vital to many biological functions and implicated in numerous diseases, fold into their active conformations in the complex environment of the cell bilayer membrane. While many membrane proteins rely on the translocon and chaperone proteins to fold correctly, others can achieve their functional form in the absence of any translation apparatus or other aides. Nevertheless, the spontaneous folding process is not well understood at the molecular level. Recent findings suggest that helix fraying and loop formation may be important for overall structure, dynamics and regulation of function. Several types of membrane helices with ionizable amino acids change their topology with pH. Additionally we note that some peptides, including many that are rich in arginine, and a particular analogue of gramicidin, are able passively to translocate across cell membranes. The findings indicate that a final protein structure in a lipid-bilayer membrane is sequence-based, with lipids contributing to stability and regulation. While much progress has been made toward understanding the folding process for alpha-helical membrane proteins, it remains a work in progress. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo.
Collapse
Affiliation(s)
- Matthew J McKay
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Fahmida Afrose
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Roger E Koeppe
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Denise V Greathouse
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
28
|
Krainer G, Hartmann A, Anandamurugan A, Gracia P, Keller S, Schlierf M. Ultrafast Protein Folding in Membrane-Mimetic Environments. J Mol Biol 2018; 430:554-564. [DOI: 10.1016/j.jmb.2017.10.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/12/2017] [Accepted: 10/27/2017] [Indexed: 01/06/2023]
|
29
|
Schiffrin B, Brockwell DJ, Radford SE. Outer membrane protein folding from an energy landscape perspective. BMC Biol 2017; 15:123. [PMID: 29268734 PMCID: PMC5740924 DOI: 10.1186/s12915-017-0464-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The cell envelope is essential for the survival of Gram-negative bacteria. This specialised membrane is densely packed with outer membrane proteins (OMPs), which perform a variety of functions. How OMPs fold into this crowded environment remains an open question. Here, we review current knowledge about OMP folding mechanisms in vitro and discuss how the need to fold to a stable native state has shaped their folding energy landscapes. We also highlight the role of chaperones and the β-barrel assembly machinery (BAM) in assisting OMP folding in vivo and discuss proposed mechanisms by which this fascinating machinery may catalyse OMP folding.
Collapse
Affiliation(s)
- Bob Schiffrin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
30
|
Dutagaci B, Feig M. Determination of Hydrophobic Lengths of Membrane Proteins with the HDGB Implicit Membrane Model. J Chem Inf Model 2017; 57:3032-3042. [PMID: 29155578 DOI: 10.1021/acs.jcim.7b00510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A protocol for predicting the hydrophobic length of membrane proteins using the heterogeneous dielectric generalized Born (HDGB) implicit membrane model is presented. The method involves optimal positioning in the membrane and identification of lipid-facing and inward-facing residues, followed by energy optimization of the implicit membrane model to obtain the hydrophobic length from the optimal membrane width. The latest HDGB version 3 (HDGBv3) and HDGB van der Waals (HDGBvdW) models were applied to a test set containing 15 proteins (seven β-barrel and eight α-helical proteins), for which matching membrane widths are available from experiment, and an additional set contains ten α-helical and ten β-barrel proteins without any experimental data. The results with the HDGB model compare favorably with predictions from methods used in the Orientations of Proteins in Membranes (OPM) and Protein Data Bank of Transmembrane Proteins (PDB-TM) databases.
Collapse
Affiliation(s)
- Bercem Dutagaci
- Department of Biochemistry and Molecular Biology, Michigan State University , 603 Wilson Road, Room BCH, 218, East Lansing, Michigan 48824, United States
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University , 603 Wilson Road, Room BCH, 218, East Lansing, Michigan 48824, United States
| |
Collapse
|
31
|
The folding, stability and function of lactose permease differ in their dependence on bilayer lipid composition. Sci Rep 2017; 7:13056. [PMID: 29026149 PMCID: PMC5638818 DOI: 10.1038/s41598-017-13290-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/19/2017] [Indexed: 11/22/2022] Open
Abstract
Lipids play key roles in Biology. Mechanical properties of the lipid bilayer influence their neighbouring membrane proteins, however it is unknown whether different membrane protein properties have the same dependence on membrane mechanics, or whether mechanics are tuned to specific protein processes of the protein. We study the influence of lipid lateral pressure and electrostatic effects on the in vitro reconstitution, folding, stability and function of a representative of the ubiquitous major facilitator transporter superfamily, lactose permease. Increasing the outward chain lateral pressure in the bilayer, through addition of lamellar phosphatidylethanolamine lipids, lowers lactose permease folding and reconstitution yields but stabilises the folded state. The presence of phosphatidylethanolamine is however required for correct folding and function. An increase in headgroup negative charge through the addition of phosphatidylglycerol lipids favours protein reconstitution but is detrimental to topology and function. Overall the in vitro folding, reconstitution, topology, stability and function of lactose permease are found to have different dependences on bilayer composition. A regime of lipid composition is found where all properties are favoured, even if suboptimal. This lays ground rules for rational control of membrane proteins in nanotechnology and synthetic biology by manipulating global bilayer properties to tune membrane protein behaviour.
Collapse
|
32
|
Chaturvedi D, Mahalakshmi R. Transmembrane β-barrels: Evolution, folding and energetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2467-2482. [PMID: 28943271 DOI: 10.1016/j.bbamem.2017.09.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/23/2022]
Abstract
The biogenesis of transmembrane β-barrels (outer membrane proteins, or OMPs) is an elaborate multistep orchestration of the nascent polypeptide with translocases, barrel assembly machinery, and helper chaperone proteins. Several theories exist that describe the mechanism of chaperone-assisted OMP assembly in vivo and unassisted (spontaneous) folding in vitro. Structurally, OMPs of bacterial origin possess even-numbered strands, while mitochondrial β-barrels are even- and odd-stranded. Several underlying similarities between prokaryotic and eukaryotic β-barrels and their folding machinery are known; yet, the link in their evolutionary origin is unclear. While OMPs exhibit diversity in sequence and function, they share similar biophysical attributes and structure. Similarly, it is important to understand the intricate OMP assembly mechanism, particularly in eukaryotic β-barrels that have evolved to perform more complex functions. Here, we deliberate known facets of β-barrel evolution, folding, and stability, and attempt to highlight outstanding questions in β-barrel biogenesis and proteostasis.
Collapse
Affiliation(s)
- Deepti Chaturvedi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.
| |
Collapse
|
33
|
González Flecha FL. Kinetic stability of membrane proteins. Biophys Rev 2017; 9:563-572. [PMID: 28921106 DOI: 10.1007/s12551-017-0324-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/29/2017] [Indexed: 12/25/2022] Open
Abstract
Although membrane proteins constitute an important class of biomolecules involved in key cellular processes, study of the thermodynamic and kinetic stability of their structures is far behind that of soluble proteins. It is known that many membrane proteins become unstable when removed by detergent extraction from the lipid environment. In addition, most of them undergo irreversible denaturation, even under mild experimental conditions. This process was found to be associated with partial unfolding of the polypeptide chain exposing hydrophobic regions to water, and it was proposed that the formation of kinetically trapped conformations could be involved. In this review, we will describe some of the efforts toward understanding the irreversible inactivation of membrane proteins. Furthermore, its modulation by phospholipids, ligands, and temperature will be herein discussed.
Collapse
Affiliation(s)
- F Luis González Flecha
- Universidad de Buenos Aires, CONICET, Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, Buenos Aires, Argentina.
| |
Collapse
|
34
|
Musatov A, Sedlák E. Role of cardiolipin in stability of integral membrane proteins. Biochimie 2017; 142:102-111. [PMID: 28842204 DOI: 10.1016/j.biochi.2017.08.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/21/2017] [Indexed: 01/13/2023]
Abstract
Cardiolipin (CL) is a unique phospholipid with a dimeric structure having four acyl chains and two phosphate groups found almost exclusively in certain membranes of bacteria and of mitochondria of eukaryotes. CL interacts with numerous proteins and has been implicated in function and stabilization of several integral membrane proteins (IMPs). While both functional and stabilization roles of CL in IMPs has been generally acknowledged, there are, in fact, only limited number of quantitative analysis that support this function of CL. This is likely caused by relatively complex determination of parameters characterizing stability of IMPs and particularly intricate assessment of role of specific phospholipids such as CL in IMPs stability. This review aims to summarize quantitative findings regarding stabilization role of CL in IMPs reported up to now.
Collapse
Affiliation(s)
- Andrej Musatov
- Department of Biophysics, Institute of Experimental Physics Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia.
| | - Erik Sedlák
- Centre for Interdisciplinary Biosciences, P.J. Šafárik University, Jesenná 5, 040 01 Košice, Slovakia.
| |
Collapse
|
35
|
Trantidou T, Friddin M, Elani Y, Brooks NJ, Law RV, Seddon JM, Ces O. Engineering Compartmentalized Biomimetic Micro- and Nanocontainers. ACS NANO 2017; 11:6549-6565. [PMID: 28658575 DOI: 10.1021/acsnano.7b03245] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Compartmentalization of biological content and function is a key architectural feature in biology, where membrane bound micro- and nanocompartments are used for performing a host of highly specialized and tightly regulated biological functions. The benefit of compartmentalization as a design principle is behind its ubiquity in cells and has led to it being a central engineering theme in construction of artificial cell-like systems. In this review, we discuss the attractions of designing compartmentalized membrane-bound constructs and review a range of biomimetic membrane architectures that span length scales, focusing on lipid-based structures but also addressing polymer-based and hybrid approaches. These include nested vesicles, multicompartment vesicles, large-scale vesicle networks, as well as droplet interface bilayers, and double-emulsion multiphase systems (multisomes). We outline key examples of how such structures have been functionalized with biological and synthetic machinery, for example, to manufacture and deliver drugs and metabolic compounds, to replicate intracellular signaling cascades, and to demonstrate collective behaviors as minimal tissue constructs. Particular emphasis is placed on the applications of these architectures and the state-of-the-art microfluidic engineering required to fabricate, functionalize, and precisely assemble them. Finally, we outline the future directions of these technologies and highlight how they could be applied to engineer the next generation of cell models, therapeutic agents, and microreactors, together with the diverse applications in the emerging field of bottom-up synthetic biology.
Collapse
Affiliation(s)
- Tatiana Trantidou
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Mark Friddin
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Yuval Elani
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Nicholas J Brooks
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Robert V Law
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - John M Seddon
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Oscar Ces
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
36
|
Lee J, Patel DS, Kucharska I, Tamm LK, Im W. Refinement of OprH-LPS Interactions by Molecular Simulations. Biophys J 2017; 112:346-355. [PMID: 28122220 DOI: 10.1016/j.bpj.2016.12.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/27/2016] [Accepted: 12/05/2016] [Indexed: 12/16/2022] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is composed of lipopolysaccharide (LPS) in the outer leaflet and phospholipids in the inner leaflet. The outer membrane protein H (OprH) of Pseudomonas aeruginosa provides an increased stability to the OMs by directly interacting with LPS. Here we report the influence of various P. aeruginosa and, for comparison, Escherichia coli LPS environments on the physical properties of the OMs and OprH using all-atom molecular dynamics simulations. The simulations reveal that although the P. aeruginosa OMs are thinner hydrophobic bilayers than the E. coli OMs, which is expected from the difference in the acyl chain length of their lipid A, this effect is almost imperceptible around OprH due to a dynamically adjusted hydrophobic match between OprH and the OM. The structure and dynamics of the extracellular loops of OprH show distinct behaviors in different LPS environments. Including the O-antigen greatly reduces the flexibility of the OprH loops and increases the interactions between these loops and LPS. Furthermore, our study shows that the interactions between OprH and LPS mainly depend on the secondary structure of OprH and the chemical structure of LPS, resulting in distinctive patterns in different LPS environments.
Collapse
Affiliation(s)
- Joonseong Lee
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania; Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania
| | - Dhilon S Patel
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania; Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania
| | - Iga Kucharska
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Lukas K Tamm
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania; Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania.
| |
Collapse
|
37
|
Iyer BR, Zadafiya P, Vetal PV, Mahalakshmi R. Energetics of side-chain partitioning of β-signal residues in unassisted folding of a transmembrane β-barrel protein. J Biol Chem 2017; 292:12351-12365. [PMID: 28592485 PMCID: PMC5519381 DOI: 10.1074/jbc.m117.789446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/02/2017] [Indexed: 01/07/2023] Open
Abstract
The free energy of water-to-interface amino acid partitioning is a major contributing factor in membrane protein folding and stability. The interface residues at the C terminus of transmembrane β-barrels form the β-signal motif required for assisted β-barrel assembly in vivo but are believed to be less important for β-barrel assembly in vitro. Here, we experimentally measured the thermodynamic contribution of all 20 amino acids at the β-signal motif to the unassisted folding of the model β-barrel protein PagP. We obtained the partitioning free energy for all 20 amino acids at the lipid-facing interface (ΔΔG0w,i(φ)) and the protein-facing interface (ΔΔG0w,i(π)) residues and found that hydrophobic amino acids are most favorably transferred to the lipid-facing interface, whereas charged and polar groups display the highest partitioning energy. Furthermore, the change in non-polar surface area correlated directly with the partitioning free energy for the lipid-facing residue and inversely with the protein-facing residue. We also demonstrate that the interface residues of the β-signal motif are vital for in vitro barrel assembly, because they exhibit a side chain–specific energetic contribution determined by the change in nonpolar accessible surface. We further establish that folding cooperativity and hydrophobic collapse are balanced at the membrane interface for optimal stability of the PagP β-barrel scaffold. We conclude that the PagP C-terminal β-signal motif influences the folding cooperativity and stability of the folded β-barrel and that the thermodynamic contributions of the lipid- and protein-facing residues in the transmembrane protein β-signal motif depend on the nature of the amino acid side chain.
Collapse
Affiliation(s)
- Bharat Ramasubramanian Iyer
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhauri, Bhopal 462066, India
| | - Punit Zadafiya
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhauri, Bhopal 462066, India
| | - Pallavi Vijay Vetal
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhauri, Bhopal 462066, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhauri, Bhopal 462066, India.
| |
Collapse
|
38
|
Affiliation(s)
- Michael F. Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
- Department of Physics, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
39
|
Multiple, simultaneous, independent gradients for a versatile multidimensional liquid chromatography. Part II: Application 2: Computer controlled pH gradients in the presence of urea provide improved separation of proteins: Stability influenced anion and cation exchange chromatography. J Chromatogr A 2017; 1495:22-30. [DOI: 10.1016/j.chroma.2017.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 11/21/2022]
|
40
|
Engineering a Novel Porin OmpGF Via Strand Replacement from Computational Analysis of Sequence Motif. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1180-1189. [PMID: 28341438 DOI: 10.1016/j.bbamem.2017.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/20/2017] [Accepted: 03/18/2017] [Indexed: 12/12/2022]
Abstract
β-Barrelmembrane proteins (βMPs) form barrel-shaped pores in the outer membrane of Gram-negative bacteria, mitochondria, and chloroplasts. Because of the robustness of their barrel structures, βMPs have great potential as nanosensors for single-molecule detection. However, natural βMPs currently employed have inflexible biophysical properties and are limited in their pore geometry, hindering their applications in sensing molecules of different sizes and properties. Computational engineering has the promise to generate βMPs with desired properties. Here we report a method for engineering novel βMPs based on the discovery of sequence motifs that predominantly interact with the cell membrane and appear in more than 75% of transmembrane strands. By replacing β1-β6 strands of the protein OmpF that lack these motifs with β1-β6 strands of OmpG enriched with these motifs and computational verification of increased stability of its transmembrane section, we engineered a novel βMP called OmpGF. OmpGF is predicted to form a monomer with a stable transmembrane region. Experimental validations showed that OmpGF could refold in vitro with a predominant β-sheet structure, as confirmed by circular dichroism. Evidence of OmpGF membrane insertion was provided by intrinsic tryptophan fluorescence spectroscopy, and its pore-forming property was determined by a dye-leakage assay. Furthermore, single-channel conductance measurements confirmed that OmpGF function as a monomer and exhibits increased conductance than OmpG and OmpF. These results demonstrated that a novel and functional βMP can be successfully engineered through strand replacement based on sequence motif analysis and stability calculation.
Collapse
|
41
|
Andersen KK, Vad B, Omer S, Otzen DE. Concatemers of Outer Membrane Protein A Take Detours in the Folding Landscape. Biochemistry 2016; 55:7123-7140. [PMID: 27973779 DOI: 10.1021/acs.biochem.6b01153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Outer membrane protein A (OmpA) is the most abundant protein in the outer membrane of Escherichia coli. The N-terminal domain forms an eight-stranded membrane-embedded β-barrel that is widely used as a model protein for in vitro folding into the membrane and into surfactant micelles. Under conditions that include a low surfactant concentration, OmpA can form stable higher-order structures by intermolecular association. Other β-barrel membrane proteins also associate to form noncovalently linked trimers in vivo. This inspired us to test how topological constraints imposed by intramolecular links between individual OmpA molecules affect this process. Here we report on the properties of concatemers consisting of two and three copies of the transmembrane part of OmpA. Both concatemers could be folded to a native state in surfactant micelles according to spectroscopy and electrophoretic band shifts. This native state had the same thermodynamic stability against chemical denaturation as the original OmpA. Above 1.5 M GdmCl, concatemerization increased both refolding and unfolding rates, which we attribute to entropic effects. However, below 1.5 M GdmCl, folding kinetics were 2-3 orders of magnitude slower and more complex, involving a greater degree of parallel folding steps and species that could be classified as off-pathway. Only OmpA2 could quantitatively be folded into vesicles (though to an extent lower than that of OmpA), while OmpA3 formed three species with different levels of folding. Thus, close spatial and sequential proximity of OmpA domains on the same polypeptide chain have a strong tendency to trap the protein in different misfolded states.
Collapse
Affiliation(s)
- Kell K Andersen
- iNANO and Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Brian Vad
- iNANO and Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Sahar Omer
- iNANO and Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Daniel E Otzen
- iNANO and Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| |
Collapse
|
42
|
Danoff EJ, Fleming KG. Novel Kinetic Intermediates Populated along the Folding Pathway of the Transmembrane β-Barrel OmpA. Biochemistry 2016; 56:47-60. [PMID: 28001375 DOI: 10.1021/acs.biochem.6b00809] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We examined the folding of the β-barrel membrane protein OmpA from Escherichia coli. Although previous studies identified several intermediate states followed by a concerted translocation mechanism across the bilayer, some aspects of the pathway were still unclear, including the extent of secondary structure formation in the intermediate states and how the mechanism gave rise to multiple exponential phases in the folding kinetics. We addressed these questions by investigating the folding kinetics of the OmpA transmembrane β-barrel domain over a range of bilayer thicknesses, allowing us to observe different regions of the folding pathway. The fastest folding into the thinnest bilayers provided information about the later stages of the process, and the slowest folding into thicker bilayers revealed early kinetic steps. Folding was monitored using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and circular dichroism spectroscopy, which provide complementary information about tertiary and secondary structure formation. We globally fit the folding data to kinetic schemes and found that the same core pathway was followed under all lipid conditions. We propose a multistep folding mechanism for OmpA that includes unstructured surface-adsorbed states converting through a partially inserted state with substantial β-sheet structure to the final natively inserted barrel. Kinetic models show that all steps of the main folding pathway are accelerated by membrane defects that occur as a result of thinning the bilayer or incubation of lipids at the phase transition temperature. In addition to suppressing off-pathway states, β-barrel assembly machinery-catalyzed folding in vivo could accelerate any or all of these main folding steps to ensure efficient outer membrane protein biogenesis in vivo.
Collapse
Affiliation(s)
- Emily J Danoff
- T. C. Jenkins Department of Biophysics, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Karen G Fleming
- T. C. Jenkins Department of Biophysics, Johns Hopkins University , Baltimore, Maryland 21218, United States
| |
Collapse
|
43
|
Beaugrand M, Arnold AA, Juneau A, Gambaro AB, Warschawski DE, Williamson PTF, Marcotte I. Magnetically Oriented Bicelles with Monoalkylphosphocholines: Versatile Membrane Mimetics for Nuclear Magnetic Resonance Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13244-13251. [PMID: 27951690 DOI: 10.1021/acs.langmuir.6b03099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bicelles (bilayered micelles) are model membranes used in the study of peptide structure and membrane interactions. They are traditionally made of long- and short-chain phospholipids, usually dimyristoylphosphatidylcholine (D14PC) and dihexanoyl-PC (D6PC). They are attractive membrane mimetics because their composition and planar surface are similar to the native membrane environment. In this work, to improve the solubilization of membrane proteins and allow their study in bicellar systems, D6PC was replaced by detergents from the monoalkylphosphocholine (MAPCHO) family, of which dodecylphosphocholine (12PC) is known for its ability to solubilize membrane proteins. More specifically 12PC, tetradecyl- (14PC), and hexadecyl-PC (16PC) have been employed. To verify the possibility of making bicelles with different hydrophobic thicknesses to better accommodate membrane proteins, D14PC was also replaced by phospholipids with different alkyl chain lengths: dilauroyl-PC (D12PC), dipalmitoyl-PC (D16PC), distearoyl-PC (D18PC), and diarachidoyl-PC (D20PC). Results obtained by 31P solid-state nuclear magnetic resonance (NMR) and isothermal titration calorimetry (ITC) at several lipid-to-detergent molar ratios (q) and temperatures indicate that these new MAPCHO bicelles can be formed under a variety of conditions. The quality of their alignment is similar to that of classical bicelles, and the low critical micelle concentration (CMC) of the surfactants and their miscibility with phospholipids are likely to be advantageous for the reconstitution of membrane proteins.
Collapse
Affiliation(s)
- Maïwenn Beaugrand
- Département de Chimie, Université du Québec à Montréal , P.O. Box 8888, Downtown Station, Montreal H3C 3P8, Canada
| | - Alexandre A Arnold
- Département de Chimie, Université du Québec à Montréal , P.O. Box 8888, Downtown Station, Montreal H3C 3P8, Canada
| | - Antoine Juneau
- Département de Chimie, Université du Québec à Montréal , P.O. Box 8888, Downtown Station, Montreal H3C 3P8, Canada
| | - Aline Balieiro Gambaro
- Département de Chimie, Université du Québec à Montréal , P.O. Box 8888, Downtown Station, Montreal H3C 3P8, Canada
| | - Dror E Warschawski
- Département de Chimie, Université du Québec à Montréal , P.O. Box 8888, Downtown Station, Montreal H3C 3P8, Canada
- UMR 7099, CNRS - Université Paris Diderot, IBPC, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Philip T F Williamson
- Centre for Biological Sciences/Institute of Life Sciences, Highfield Campus, University of Southampton , Southampton SO17 1BJ, United Kingdom
| | - Isabelle Marcotte
- Département de Chimie, Université du Québec à Montréal , P.O. Box 8888, Downtown Station, Montreal H3C 3P8, Canada
| |
Collapse
|
44
|
McDonald SK, Fleming KG. Negative Charge Neutralization in the Loops and Turns of Outer Membrane Phospholipase A Impacts Folding Hysteresis at Neutral pH. Biochemistry 2016; 55:6133-6137. [PMID: 27731977 DOI: 10.1021/acs.biochem.6b00652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hysteresis in equilibrium protein folding titrations is an experimental barrier that must be overcome to extract meaningful thermodynamic quantities. Traditional approaches to solving this problem involve testing a spectrum of solution conditions to find ones that achieve path independence. Through this procedure, a specific pH of 3.8 was required to achieve path independence for the water-to-bilayer equilibrium folding of outer membrane protein OmpLA. We hypothesized that the neutralization of negatively charged side chains (Asp and Glu) at pH 3.8 could be the physical basis for path-independent folding at this pH. To test this idea, we engineered variants of OmpLA with Asp → Asn and Glu → Gln mutations to neutralize the negative charges within various regions of the protein and tested for reversible folding at neutral pH. Although not fully resolved, our results show that these mutations in the periplasmic turns and extracellular loops are responsible for 60% of the hysteresis in wild-type folding. Overall, our study suggests that negative charges impact the folding hysteresis in outer membrane proteins and their neutralization may aid in protein engineering applications.
Collapse
Affiliation(s)
- Sarah K McDonald
- T. C. Jenkins Department of Biophysics, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Karen G Fleming
- T. C. Jenkins Department of Biophysics, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
45
|
Botsios S, Tittman S, Manuelidis L. Rapid chemical decontamination of infectious CJD and scrapie particles parallels treatments known to disrupt microbes and biofilms. Virulence 2016; 6:787-801. [PMID: 26556670 DOI: 10.1080/21505594.2015.1098804] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neurodegenerative human CJD and sheep scrapie are diseases caused by several different transmissible encephalopathy (TSE) agents. These infectious agents provoke innate immune responses in the brain, including late-onset abnormal prion protein (PrP-res) amyloid. Agent particles that lack detectable PrP sequences by deep proteomic analysis are highly infectious. Yet these agents, and their unusual resistance to denaturation, are often evaluated by PrP amyloid disruption. To reexamine the intrinsic resistance of TSE agents to denaturation, a paradigm for less resistant viruses and microbes, we developed a rapid and reproducible high yield agent isolation procedure from cultured cells that minimized PrP amyloid and other cellular proteins. Monotypic neuronal GT1 cells infected with the FU-CJD or 22L scrapie agents do not have complex brain changes that can camouflage infectious particles and prevent their disruption, and there are only 2 reports on infectious titers of any human CJD strain treated with chemical denaturants. Infectious titers of both CJD and scrapie were reduced by >4 logs with Thiourea-urea, a treatment not previously tested. A mere 5 min exposure to 4M GdnHCl at 22°C reduced infectivity by >5 logs. Infectious 22L particles were significantly more sensitive to denaturation than FU-CJD particles. A protocol using sonication with these chemical treatments may effectively decontaminate complicated instruments, such as duodenoscopes that harbor additional virulent microbes and biofilms associated with recent iatrogenic infections.
Collapse
Affiliation(s)
- Sotirios Botsios
- a Yale Medical School; Section of Neuropathology (Surgery) ; New Haven , CT USA
| | - Sarah Tittman
- a Yale Medical School; Section of Neuropathology (Surgery) ; New Haven , CT USA
| | - Laura Manuelidis
- a Yale Medical School; Section of Neuropathology (Surgery) ; New Haven , CT USA
| |
Collapse
|
46
|
Horne JE, Radford SE. A growing toolbox of techniques for studying β-barrel outer membrane protein folding and biogenesis. Biochem Soc Trans 2016; 44:802-9. [PMID: 27284045 PMCID: PMC4900752 DOI: 10.1042/bst20160020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 01/21/2023]
Abstract
Great strides into understanding protein folding have been made since the seminal work of Anfinsen over 40 years ago, but progress in the study of membrane protein folding has lagged behind that of their water soluble counterparts. Researchers in these fields continue to turn to more advanced techniques such as NMR, mass spectrometry, molecular dynamics (MD) and single molecule methods to interrogate how proteins fold. Our understanding of β-barrel outer membrane protein (OMP) folding has benefited from these advances in the last decade. This class of proteins must traverse the periplasm and then insert into an asymmetric lipid membrane in the absence of a chemical energy source. In this review we discuss old, new and emerging techniques used to examine the process of OMP folding and biogenesis in vitro and describe some of the insights and new questions these techniques have revealed.
Collapse
Affiliation(s)
- Jim E Horne
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, The University of Leeds, Leeds LS2 9JT, U.K
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, The University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
47
|
Lin M, Gessmann D, Naveed H, Liang J. Outer Membrane Protein Folding and Topology from a Computational Transfer Free Energy Scale. J Am Chem Soc 2016; 138:2592-601. [PMID: 26860422 DOI: 10.1021/jacs.5b10307] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Knowledge of the transfer free energy of amino acids from aqueous solution to a lipid bilayer is essential for understanding membrane protein folding and for predicting membrane protein structure. Here we report a computational approach that can calculate the folding free energy of the transmembrane region of outer membrane β-barrel proteins (OMPs) by combining an empirical energy function with a reduced discrete state space model. We quantitatively analyzed the transfer free energies of 20 amino acid residues at the center of the lipid bilayer of OmpLA. Our results are in excellent agreement with the experimentally derived hydrophobicity scales. We further exhaustively calculated the transfer free energies of 20 amino acids at all positions in the TM region of OmpLA. We found that the asymmetry of the Gram-negative bacterial outer membrane as well as the TM residues of an OMP determine its functional fold in vivo. Our results suggest that the folding process of an OMP is driven by the lipid-facing residues in its hydrophobic core, and its NC-IN topology is determined by the differential stabilities of OMPs in the asymmetrical outer membrane. The folding free energy is further reduced by lipid A and assisted by general depth-dependent cooperativities that exist between polar and ionizable residues. Moreover, context-dependency of transfer free energies at specific positions in OmpLA predict regions important for protein function as well as structural anomalies. Our computational approach is fast, efficient and applicable to any OMP.
Collapse
Affiliation(s)
- Meishan Lin
- Department of Bioengineering, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | - Dennis Gessmann
- Department of Bioengineering, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | - Hammad Naveed
- Department of Bioengineering, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | - Jie Liang
- Department of Bioengineering, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| |
Collapse
|
48
|
Rokitskaya TI, Kotova EA, Naberezhnykh GA, Khomenko VA, Gorbach VI, Firsov AM, Zelepuga EA, Antonenko YN, Novikova OD. Single channel activity of OmpF-like porin from Yersinia pseudotuberculosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:883-91. [PMID: 26854962 DOI: 10.1016/j.bbamem.2016.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/28/2016] [Accepted: 02/04/2016] [Indexed: 11/16/2022]
Abstract
To gain a mechanistic insight in the functioning of the OmpF-like porin from Yersinia pseudotuberculosis (YOmpF), we compared the effect of pH variation on the ion channel activity of the protein in planar lipid bilayers and its binding to lipid membranes. The behavior of YOmpF channels upon acidification was similar to that previously described for Escherichia coli OmpF. In particular, a decrease in pH of the bathing solution resulted in a substantial reduction of YOmpF single channel conductance, accompanied by the emergence of subconductance states. Similar subconductance substates were elicited by the addition of lysophosphatidylcholine. This observation, made with porin channels for the first time, pointed to the relevance of lipid-protein interactions, in particular, the lipid curvature stress, to the appearance of subconductance states at acidic pH. Binding of YOmpF to membranes displayed rather modest dependence on pH, whereas the channel-forming potency of the protein tremendously decreased upon acidification.
Collapse
Affiliation(s)
- Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1/40, Moscow 119991, Russia
| | - Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1/40, Moscow 119991, Russia
| | - Gennadiy A Naberezhnykh
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok 690022, Russia
| | - Valentina A Khomenko
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok 690022, Russia
| | - Vladimir I Gorbach
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok 690022, Russia
| | - Alexander M Firsov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1/40, Moscow 119991, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory 1/73, Moscow 119991, Russia
| | - Elena A Zelepuga
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok 690022, Russia
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1/40, Moscow 119991, Russia.
| | - Olga D Novikova
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok 690022, Russia.
| |
Collapse
|
49
|
Vorobyov I, Kim I, Chu ZT, Warshel A. Refining the treatment of membrane proteins by coarse-grained models. Proteins 2015; 84:92-117. [PMID: 26531155 DOI: 10.1002/prot.24958] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 01/19/2023]
Abstract
Obtaining a quantitative description of the membrane proteins stability is crucial for understanding many biological processes. However the advance in this direction has remained a major challenge for both experimental studies and molecular modeling. One of the possible directions is the use of coarse-grained models but such models must be carefully calibrated and validated. Here we use a recent progress in benchmark studies on the energetics of amino acid residue and peptide membrane insertion and membrane protein stability in refining our previously developed coarse-grained model (Vicatos et al., Proteins 2014;82:1168). Our refined model parameters were fitted and/or tested to reproduce water/membrane partitioning energetics of amino acid side chains and a couple of model peptides. This new model provides a reasonable agreement with experiment for absolute folding free energies of several β-barrel membrane proteins as well as effects of point mutations on a relative stability for one of those proteins, OmpLA. The consideration and ranking of different rotameric states for a mutated residue was found to be essential to achieve satisfactory agreement with the reference data.
Collapse
Affiliation(s)
- Igor Vorobyov
- Department of Chemistry, University of Southern California, Los Angeles, California, 90089-1062
| | - Ilsoo Kim
- Department of Chemistry, University of Southern California, Los Angeles, California, 90089-1062
| | - Zhen T Chu
- Department of Chemistry, University of Southern California, Los Angeles, California, 90089-1062
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California, 90089-1062
| |
Collapse
|
50
|
Leftin A, Molugu TR, Job C, Beyer K, Brown MF. Area per lipid and cholesterol interactions in membranes from separated local-field (13)C NMR spectroscopy. Biophys J 2015; 107:2274-86. [PMID: 25418296 DOI: 10.1016/j.bpj.2014.07.044] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/24/2014] [Accepted: 07/15/2014] [Indexed: 10/24/2022] Open
Abstract
Investigations of lipid membranes using NMR spectroscopy generally require isotopic labeling, often precluding structural studies of complex lipid systems. Solid-state (13)C magic-angle spinning NMR spectroscopy at natural isotopic abundance gives site-specific structural information that can aid in the characterization of complex biomembranes. Using the separated local-field experiment DROSS, we resolved (13)C-(1)H residual dipolar couplings that were interpreted with a statistical mean-torque model. Liquid-disordered and liquid-ordered phases were characterized according to membrane thickness and average cross-sectional area per lipid. Knowledge of such structural parameters is vital for molecular dynamics simulations, and provides information about the balance of forces in membrane lipid bilayers. Experiments were conducted with both phosphatidylcholine (dimyristoylphosphatidylcholine (DMPC) and palmitoyloleoylphosphatidylcholine (POPC)) and egg-yolk sphingomyelin (EYSM) lipids, and allowed us to extract segmental order parameters from the (13)C-(1)H residual dipolar couplings. Order parameters were used to calculate membrane structural quantities, including the area per lipid and bilayer thickness. Relative to POPC, EYSM is more ordered in the ld phase and experiences less structural perturbation upon adding 50% cholesterol to form the lo phase. The loss of configurational entropy is smaller for EYSM than for POPC, thus favoring its interaction with cholesterol in raftlike lipid systems. Our studies show that solid-state (13)C NMR spectroscopy is applicable to investigations of complex lipids and makes it possible to obtain structural parameters for biomembrane systems where isotope labeling may be prohibitive.
Collapse
Affiliation(s)
- Avigdor Leftin
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Trivikram R Molugu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Constantin Job
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Klaus Beyer
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona; Department of Physics, University of Arizona, Tucson, Arizona.
| |
Collapse
|