1
|
Kim J, Kim J, Ryu S. Elucidation of molecular function of phage protein responsible for optimization of host cell lysis. BMC Microbiol 2024; 24:532. [PMID: 39702038 DOI: 10.1186/s12866-024-03684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Bacteriophages (or phages) replicate by utilizing bacterial resources and destroy their host cells at the end of the replication cycle. Phages employ multiple proteins to optimize host cell lysis, thereby maximizing the production of phage particles. However, elucidating the entire lysis process is challenging due to the abundance of uncharacterized genes in the phage genome. RESULTS In this study, we identified a gene orf52 from BSPM4 phage genome that showed antibacterial activity in Salmonella. Investigation of physiological role of ORF52 in the phage replication revealed that ORF52 could modulate the holin function to fine-tune a cell lysis, providing replication advantages to phages under high phage population density. CONCLUSIONS We concluded that ORF52 may optimize phage replication by modulating the timing of phage-mediated cell lysis. This study provides a unique example of a phage protein involved in fine-tuning lysis timing.
Collapse
Affiliation(s)
- Jinwoo Kim
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Joonbeom Kim
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Dai L, Wu J, Chen R, Zhang R, Zhang Y, Wei W. Isolation and characterization of a novel bacteriophage against Vibrio alginolyticus from coastal waters and its environmental tolerance. Virology 2024; 600:110219. [PMID: 39278102 DOI: 10.1016/j.virol.2024.110219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/30/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
In response to the problems associated with drug resistance resulting from the use of antibiotics, phages have become desirable options for the treatment of Vibrio alginolyticus disease in aquaculture. In this study, we isolated a novel double-stranded DNA (dsDNA) phage named vB_ValC_WD615 infecting V. alginolyticus; this phage belongs to the family Podoviridae and has a short noncontractile tail (13 ± 1.5 nm) and an icosahedral head (60.2 ± 2 nm); its genome is 50,522 bp and encodes 69 open reading frames (ORFs) and no lysogenic genes were annotated in the genome. Physiological results indicate that vB_ValC_WD615 infects V. alginolyticus SC1 with a burst size of 335 PFU/cell and can maintain stable infectivity within temperature and pH conditions ranging from 4 to 45 °C and 3 to 11, respectively. The results suggest that the vB_ValC_WD615 isolated from coastal waters could be a potential candidate for phage therapy targeting V. alginolyticus.
Collapse
Affiliation(s)
- Lanfeng Dai
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Jie Wu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, PR China
| | - Ruo Chen
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, 3000, Denmark
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
| | - Youhong Zhang
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| | - Wei Wei
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| |
Collapse
|
3
|
Gangakhedkar R, Jain V. Elucidating the molecular properties and anti-mycobacterial activity of cysteine peptidase domain of D29 mycobacteriophage endolysin. J Virol 2024; 98:e0132824. [PMID: 39287392 PMCID: PMC11494882 DOI: 10.1128/jvi.01328-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Emergence of antibiotic resistance in pathogenic Mycobacterium tuberculosis (Mtb) has elevated tuberculosis to a serious global threat, necessitating alternate solutions for its eradication. D29 mycobacteriophage can infect and kill several mycobacterial species including Mtb. It encodes an endolysin LysA to hydrolyze host bacteria peptidoglycan for progeny release. We previously showed that out of the two catalytically active domains of LysA [N-terminal domain (NTD) and lysozyme-like domain], NTD, when ectopically expressed in Mycobacterium smegmatis (Msm), is able to kill the bacterium nearly as efficiently as full-length LysA. Here, we dissected the functioning of NTD to develop it as a phage-derived small molecule anti-mycobacterial therapeutic. We performed a large-scale site-directed mutagenesis of the conserved residues in NTD and examined its structure, stability, and function using molecular dynamic simulations coupled with biophysical and biochemical experiments. Our data show that NTD functions as a putative cysteine peptidase with a catalytic triad composed of Cys41, His112, and Glu137, acting as nucleophile, base, and acid, respectively, and showing characteristics similar to the NlpC/P60 family of cysteine peptidases. Additionally, our peptidoglycan hydrolysis assays suggested that NTD hydrolyzes only mycobacterial peptidoglycan and does not act on Gram-positive and Gram-negative bacterial peptidoglycans. More importantly, the combined activity of exogenously added NTD and sub-lethal doses of anti-mycobacterial drugs kills Msm in vitro and exhibits disruption of pre-formed mycobacterial biofilm. We additionally show that NTD treatment increases the permeability of antibiotics in Msm, which reduces the minimum inhibitory concentration of the antibiotics. Collectively, we present NTD as a promising phage-derived therapeutic against mycobacteria.IMPORTANCEMycobacteriophages are the viruses that use mycobacteria as host for their progeny production and, in the process, kill them. Mycobacteriophages are, therefore, considered as promising alternatives to antibiotics for killing pathogenic Mycobacterium tuberculosis. The endolysin LysA produced by mycobacteriophage D29 plays an important role in host cell lysis and virion release. Our work presented here highlights the functioning of LysA's N-terminal catalytic domain (NTD) in order to develop it as phage-derived small molecule therapeutics. We show that combined treatment of exogenously added NTD and sub-lethal doses of anti-mycobacterial drugs kills M. smegmatis, shows synergism by reducing the minimum inhibitory concentration of these antibiotics, and exhibits disruption of pre-formed mature biofilm. These outcomes and our detailed biochemical and biophysical dissection of the protein further pave the way toward engineering and development of NTD as a promising therapeutic against mycobacterial infections such as tuberculosis.
Collapse
Affiliation(s)
- Rutuja Gangakhedkar
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|
4
|
Zhang M, Xu X, Lv L, Luo J, Ahmed T, Alsakkaf WAA, Ali HM, Bi J, Yan C, Gu C, Shou L, Li B. Genomic Characterization of Phage ZP3 and Its Endolysin LysZP with Antimicrobial Potential against Xanthomonas oryzae pv. oryzae. Viruses 2024; 16:1450. [PMID: 39339926 PMCID: PMC11437452 DOI: 10.3390/v16091450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is a significant bacterial pathogen responsible for outbreaks of bacterial leaf blight in rice, posing a major threat to rice cultivation worldwide. Effective management of this pathogen is crucial for ensuring rice yield and food security. In this study, we identified and characterized a novel Xoo phage, ZP3, isolated from diseased rice leaves in Zhejiang, China, which may offer new insights into biocontrol strategies against Xoo and contribute to the development of innovative approaches to combat bacterial leaf blight. Transmission electron microscopy indicated that ZP3 had a short, non-contractile tail. Genome sequencing and bioinformatic analysis showed that ZP3 had a double-stranded DNA genome with a length of 44,713 bp, a G + C content of 52.2%, and 59 predicted genes, which was similar to other OP1-type Xoo phages belonging to the genus Xipdecavirus. ZP3's endolysin LysZP was further studied for its bacteriolytic action, and the N-terminal transmembrane domain of LysZP is suggested to be a signal-arrest-release sequence that mediates the translocation of LysZP to the periplasm. Our study contributes to the understanding of phage-Xoo interactions and suggests that phage ZP3 and its endolysin LysZP could be developed into biocontrol agents against this phytopathogen.
Collapse
Affiliation(s)
- Muchen Zhang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.X.); (L.L.); (T.A.)
- Food Quality Supervision, Inspection and Testing Center of the Ministry of Agriculture and Rural Affairs (Shanghai), Shanghai Center of Agricultural Products Quality Safety, Shanghai 201708, China
| | - Xinyan Xu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.X.); (L.L.); (T.A.)
| | - Luqiong Lv
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.X.); (L.L.); (T.A.)
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China;
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.X.); (L.L.); (T.A.)
- Department of Life Sciences, Western Caspian University, Baku AZ1001, Azerbaijan
- MEU Research Unit, Middle East University, Amman 11192, Jordan
| | - Waleed A. A. Alsakkaf
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (W.A.A.A.); (H.M.A.)
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (W.A.A.A.); (H.M.A.)
| | - Ji’an Bi
- Crop Institute, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China; (J.B.); (C.Y.)
| | - Chengqi Yan
- Crop Institute, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China; (J.B.); (C.Y.)
| | - Chunyan Gu
- Anhui Province Key Laboratory of Pesticide Resistance Management on Grain and Vegetable Pests, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Linfei Shou
- Station for the Plant Protection & Quarantine and Control of Agrochemicals Zhejiang Province, Hangzhou 310004, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.X.); (L.L.); (T.A.)
| |
Collapse
|
5
|
Thöneböhn S, Fischer D, Kreiling V, Kemmler A, Oberheim I, Hager F, Schmid NE, Thormann KM. Identifying components of the Shewanella phage LambdaSo lysis system. J Bacteriol 2024; 206:e0002224. [PMID: 38771038 PMCID: PMC11332162 DOI: 10.1128/jb.00022-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
Phage-induced lysis of Gram-negative bacterial hosts usually requires a set of phage lysis proteins, a holin, an endopeptidase, and a spanin system, to disrupt each of the three cell envelope layers. Genome annotations and previous studies identified a gene region in the Shewanella oneidensis prophage LambdaSo, which comprises potential holin- and endolysin-encoding genes but lacks an obvious spanin system. By a combination of candidate approaches, mutant screening, characterization, and microscopy, we found that LambdaSo uses a pinholin/signal-anchor-release (SAR) endolysin system to induce proton leakage and degradation of the cell wall. Between the corresponding genes, we found that two extensively nested open-reading frames encode a two-component spanin module Rz/Rz1. Unexpectedly, we identified another factor strictly required for LambdaSo-induced cell lysis, the phage protein Lcc6. Lcc6 is a transmembrane protein of 65 amino acid residues with hitherto unknown function, which acts at the level of holin in the cytoplasmic membrane to allow endolysin release. Thus, LambdaSo-mediated cell lysis requires at least four protein factors (pinholin, SAR endolysin, spanin, and Lcc6). The findings further extend the known repertoire of phage proteins involved in host lysis and phage egress. IMPORTANCE Lysis of bacteria can have multiple consequences, such as the release of host DNA to foster robust biofilm. Phage-induced lysis of Gram-negative cells requires the disruption of three layers, the outer and inner membranes and the cell wall. In most cases, the lysis systems of phages infecting Gram-negative cells comprise holins to disrupt or depolarize the membrane, thereby releasing or activating endolysins, which then degrade the cell wall. This, in turn, allows the spanins to become active and fuse outer and inner membranes, completing cell envelope disruption and allowing phage egress. Here, we show that the presence of these three components may not be sufficient to allow cell lysis, implicating that also in known phages, further factors may be required.
Collapse
Affiliation(s)
- Svenja Thöneböhn
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Dorian Fischer
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Vanessa Kreiling
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Alina Kemmler
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Isabella Oberheim
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Fabian Hager
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Nicole E. Schmid
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Kai M. Thormann
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| |
Collapse
|
6
|
Lu H, Ni SQ. Review on sterilization techniques, and the application potential of phage lyase and lyase immobilization in fighting drug-resistant bacteria. J Mater Chem B 2024; 12:3317-3335. [PMID: 38380677 DOI: 10.1039/d3tb02366d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Many human health problems and property losses caused by pathogenic contamination cannot be underestimated. Bactericidal techniques have been extensively studied to address this issue of public health and economy. Bacterial resistance develops as a result of the extensive use of single or multiple but persistent usage of sterilizing drugs, and the emergence of super-resistant bacteria brings new challenges. Therefore, it is crucial to control pathogen contamination by applying innovative and effective sterilization techniques. As organisms that exist in nature and can specifically kill bacteria, phages have become the focus as an alternative to antibacterial agents. Furthermore, phage-encoded lyases are proteins that play important roles in phage sterilization. The in vitro sterilization of phage lyase has been developed as a novel biosterilization technique to reduce bacterial resistance and is more environmentally friendly than conventional sterilization treatments. For the shortcomings of enzyme applications, this review discusses the enzyme immobilization methods and the application potential of immobilized lyases for sterilization. Although some techniques provide effective solutions, immobilized lyase sterilization technology has been proven to be a more effective innovation for efficient pathogen killing and reducing bacterial resistance. We hope that this review can provide new insights for the development of sterilization techniques.
Collapse
Affiliation(s)
- Han Lu
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
7
|
Zheng T, Zhang C. Engineering strategies and challenges of endolysin as an antibacterial agent against Gram-negative bacteria. Microb Biotechnol 2024; 17:e14465. [PMID: 38593316 PMCID: PMC11003714 DOI: 10.1111/1751-7915.14465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/09/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Bacteriophage endolysin is a novel antibacterial agent that has attracted much attention in the prevention and control of drug-resistant bacteria due to its unique mechanism of hydrolysing peptidoglycans. Although endolysin exhibits excellent bactericidal effects on Gram-positive bacteria, the presence of the outer membrane of Gram-negative bacteria makes it difficult to lyse them extracellularly, thus limiting their application field. To enhance the extracellular activity of endolysin and facilitate its crossing through the outer membrane of Gram-negative bacteria, researchers have adopted physical, chemical, and molecular methods. This review summarizes the characterization of endolysin targeting Gram-negative bacteria, strategies for endolysin modification, and the challenges and future of engineering endolysin against Gram-negative bacteria in clinical applications, to promote the application of endolysin in the prevention and control of Gram-negative bacteria.
Collapse
Affiliation(s)
- Tianyu Zheng
- Bathurst Future Agri‐Tech InstituteQingdao Agricultural UniversityQingdaoChina
| | - Can Zhang
- College of Veterinary MedicineQingdao Agricultural UniversityQingdaoChina
| |
Collapse
|
8
|
Nair G, Jain V. An intramolecular cross-talk in D29 mycobacteriophage endolysin governs the lytic cycle and phage-host population dynamics. SCIENCE ADVANCES 2024; 10:eadh9812. [PMID: 38335296 PMCID: PMC10857449 DOI: 10.1126/sciadv.adh9812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
D29 mycobacteriophage encodes LysA endolysin, which mediates mycobacterial host cell lysis by targeting its peptidoglycan layer, thus projecting itself as a potential therapeutic. However, the regulatory mechanism of LysA during the phage lytic cycle remains ill defined. Here, we show that during D29 lytic cycle, structural and functional regulation of LysA not only orchestrates host cell lysis but also is critical for maintaining phage-host population dynamics by governing various phases of lytic cycle. We report that LysA exists in two conformations, of which only one is active, and the protein undergoes a host peptidoglycan-dependent conformational switch to become active for carrying out endogenous host cell lysis. D29 maintains a pool of inactive LysA, allowing complete assembly of phage progeny, thus helping avoid premature host lysis. In addition, we show that the switch reverses after lysis, thus preventing exogenous targeting of bystanders, which otherwise negatively affects phage propagation in the environment.
Collapse
Affiliation(s)
- Gokul Nair
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462066, Madhya Pradesh, India
| | | |
Collapse
|
9
|
Xu L, Mo K, Ran D, Ma J, Zhang L, Sun Y, Long Q, Jiang G, Zhao X, Zou X. An endolysin gene from Candidatus Liberibacter asiaticus confers dual resistance to huanglongbing and citrus canker. HORTICULTURE RESEARCH 2023; 10:uhad159. [PMID: 37719271 PMCID: PMC10500150 DOI: 10.1093/hr/uhad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/27/2023] [Indexed: 09/19/2023]
Abstract
The most damaging citrus diseases are Huanglongbing (HLB) and citrus canker, which are caused by Candidatus Liberibacter asiaticus (CaLas) and Xanthomonas citri pv. citri (Xcc), respectively. Endolysins from bacteriophages are a possible option for disease resistance in plant breeding. Here, we report improvement of citrus resistance to HLB and citrus canker using the LasLYS1 and LasLYS2 endolysins from CaLas. LasLYS2 demonstrated bactericidal efficacy against several Rhizobiaceae bacteria and Xcc, according to inhibition zone analyses. The two genes, driven by a strong promoter from Cauliflower mosaic virus, 35S, were integrated into Carrizo citrange via Agrobacterium-mediated transformation. More than 2 years of greenhouse testing indicated that LasLYS2 provided substantial and long-lasting resistance to HLB, allowing transgenic plants to retain low CaLas titers and no obvious symptoms while also clearing CaLas from infected plants in the long term. LasLYS2 transgenic plants with improved HLB resistance also showed resistance to Xcc, indicating that LasLYS2 had dual resistance to HLB and citrus canker. A microbiome study of transgenic plants revealed that the endolysins repressed Xanthomonadaceae and Rhizobiaceae populations in roots while increasing Burkholderiaceae and Rhodanobacteraceae populations, which might boost the citrus defense response, according to transcriptome analysis. We also found that Lyz domain 2 is the key bactericidal motif of LasLYS1 and LasLYS2. Four endolysins with potential resistance to HLB and citrus canker were found based on the structures of LasLYS1 and LasLYS2. Overall, the work shed light on the mechanisms of resistance of CaLas-derived endolysins, providing insights for designing endolysins to develop broad-spectrum disease resistance in citrus.
Collapse
Affiliation(s)
- Lanzhen Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, China
| | - Kaiqing Mo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, China
| | - Danlu Ran
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, China
| | - Juanjuan Ma
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, China
| | - Lehuan Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, China
| | - Yijia Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, China
| | - Qin Long
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, China
| | - Guojin Jiang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, China
| | - Xiaochun Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, China
| | - Xiuping Zou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, China
| |
Collapse
|
10
|
Sattar S, Bailie M, Yaqoob A, Khanum S, Fatima K, Altaf AURB, Ahmed I, Shah STA, Munawar J, Zehra QA, Daud S, Arshad A, Imdad K, Javed S, Tariq A, Bostan N, Altermann E. Characterization of two novel lytic bacteriophages having lysis potential against MDR avian pathogenic Escherichia coli strains of zoonotic potential. Sci Rep 2023; 13:10043. [PMID: 37340022 DOI: 10.1038/s41598-023-37176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/17/2023] [Indexed: 06/22/2023] Open
Abstract
Avian pathogenic E. coli (APEC) is associated with local and systemic infections in poultry, ducks, turkeys, and many other avian species, leading to heavy economical losses. These APEC strains are presumed to possess zoonotic potential due to common virulence markers that can cause urinary tract infections in humans. The prophylactic use of antibiotics in the poultry sector has led to the rapid emergence of Multiple Drug Resistant (MDR) APEC strains that act as reservoirs and put human populations at risk. This calls for consideration of alternative strategies to decrease the bacterial load. Here, we report isolation, preliminary characterization, and genome analysis of two novel lytic phage species (Escherichia phage SKA49 and Escherichia phage SKA64) against MDR strain of APEC, QZJM25. Both phages were able to keep QZJM25 growth significantly less than the untreated bacterial control for approximately 18 h. The host range was tested against Escherichia coli strains of poultry and human UTI infections. SKA49 had a broader host range in contrast to SKA64. Both phages were stable at 37 °C only. Their genome analysis indicated their safety as no recombination, integration and host virulence genes were identified. Both these phages can be good candidates for control of APEC strains based on their lysis potential.
Collapse
Affiliation(s)
- Sadia Sattar
- Molecular Virology Labs, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan.
| | - Marc Bailie
- AgResearch, Palmerston North, 4410, New Zealand
| | - Akasha Yaqoob
- Molecular Virology Labs, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | | | - Kaniz Fatima
- Molecular Virology Labs, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | - Anees Ur Rehman Bin Altaf
- Molecular Virology Labs, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | - Ibrar Ahmed
- Alpha Genomics Private Limited, Islamabad, 45710, Pakistan
| | - Syed Tahir Abbas Shah
- Functional Genomics Lab, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | - Javeria Munawar
- Molecular Virology Labs, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | - Quaratul Ain Zehra
- Molecular Virology Labs, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | - Sajeela Daud
- Molecular Virology Labs, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | - Ayesha Arshad
- Molecular Virology Labs, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | - Kaleem Imdad
- Microbiology and Immunology Lab, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | - Sundus Javed
- Microbiology and Immunology Lab, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | - Amira Tariq
- Microbiology and Immunology Lab, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | - Nazish Bostan
- Molecular Virology Labs, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | - Eric Altermann
- School of Veterinary Science Massey University Centre for Bioparticle Applications, Massey University, Palmerston North, 4472, New Zealand
| |
Collapse
|
11
|
Serian D, Churin Y, Hammerl JA, Rohde M, Jung A, Müller A, Yue M, Kehrenberg C. Characterization of Temperate LPS-Binding Bordetella avium Phages That Lack Superinfection Immunity. Microbiol Spectr 2023; 11:e0370222. [PMID: 37125905 PMCID: PMC10269795 DOI: 10.1128/spectrum.03702-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
Bordetella avium causes a highly infectious upper respiratory tract disease in turkeys and other poultry with high economic losses. Considering the antimicrobial resistance crisis, bacteriophages (phages) may be an alternative approach for treating bacterial infections such as bordetellosis. Here, we describe seven B. avium phages, isolated from drinking water and feces from chicken and turkey farms. They showed strong bacteriolytic activity with a broad host range and used lipopolysaccharides (LPS) as a host receptor for their adsorption. All phages are myoviruses based on their structure observed by transmission electron microscopy. Genome sequence analyses revealed genome assembly sizes ranging from 39,087 to 43,144 bp. Their permutated genomes were organized colinearly, with a conserved module order, and were packed according to a predicted headful packing strategy. Notably, they contained genes encoding putative markers of lysogeny, indicative of temperate phages, despite their lytic phenotype. Further investigation revealed that the phages could indeed undergo a lysogenic life cycle with varying frequency. However, the lysogenic bacteria were still susceptible to superinfection with the same phages. This lack of stable superinfection immunity after lysogenization appears to be a characteristic feature of B. avium phages, which is favorable in terms of a potential therapeutic use of phages for the treatment of avian bordetellosis. IMPORTANCE To maintain the effectiveness of antibiotics over the long term, alternatives to treat infectious diseases are urgently needed. Therefore, phages have recently come back into focus as they can specifically infect and lyse bacteria and are naturally occurring. However, there is little information on phages that can infect pathogenic bacteria from animals, such as the causative agent of bordetellosis of poultry, B. avium. Therefore, in this study, B. avium phages were isolated and comprehensively characterized, including whole-genome analysis. Although phenotypically the phages were thought to undergo a lytic cycle, we demonstrated that they undergo a lysogenic phase, but that infection does not confer stable host superinfection immunity. These findings provide important information that could be relevant for potential biocontrol of avian bordetellosis by using phage therapy.
Collapse
Affiliation(s)
- Dorothee Serian
- Institute for Veterinary Food Science, Justus Liebig University Giessen, Giessen, Germany
| | - Yury Churin
- Institute for Veterinary Food Science, Justus Liebig University Giessen, Giessen, Germany
| | - Jens André Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research GmbH, Braunschweig, Germany
| | - Arne Jung
- Clinic for Poultry, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Anja Müller
- Institute for Veterinary Food Science, Justus Liebig University Giessen, Giessen, Germany
| | - Min Yue
- Institute of Preventive Veterinary Science and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
12
|
Pollenz RS, Bland J, Pope WH. Bioinformatic characterization of endolysins and holin-like membrane proteins in the lysis cassette of phages that infect Gordonia rubripertincta. PLoS One 2022; 17:e0276603. [PMID: 36395171 PMCID: PMC9671378 DOI: 10.1371/journal.pone.0276603] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022] Open
Abstract
Holins are bacteriophage-encoded transmembrane proteins that function to control the timing of bacterial lysis event, assist with the destabilization of the membrane proton motive force and in some models, generate large "pores" in the cell membrane to allow the exit of the phage-encoded endolysin so they can access the peptidoglycan components of the cell wall. The lysis mechanism has been rigorously evaluated through biochemical and genetic studies in very few phages, and the results indicate that phages utilize endolysins, holins and accessory proteins to the outer membrane to achieve cell lysis through several distinct operational models. This observation suggests the possibility that phages may evolve novel variations of how the lysis proteins functionally interact in an effort to improve fitness or evade host defenses. To begin to address this hypothesis, the current study utilized a comprehensive bioinformatic approach to systematically identify the proteins encoded by the genes within the lysis cassettes in 16 genetically diverse phages that infect the Gram-positive Gordonia rubripertincta NRLL B-16540 strain. The results show that there is a high level of diversity of the various lysis genes and 16 different genome organizations of the putative lysis cassette, many which have never been described. Thirty-four different genes encoding holin-like proteins were identified as well as a potential holin-major capsid fusion protein. The holin-like proteins contained between 1-4 transmembrane helices, were not shared to a high degree amongst the different phages and are present in the lysis cassette in a wide range of combinations of up to 4 genes in which none are duplicated. Detailed evaluation of the transmembrane domains and predicted membrane topologies of the holin-like proteins show that many have novel structures that have not been previously characterized. These results provide compelling support that there are novel operational lysis models yet to be discovered.
Collapse
Affiliation(s)
- Richard S. Pollenz
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida, United States of America
| | - Jackson Bland
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida, United States of America
| | - Welkin H. Pope
- Science Department, Chatham University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
13
|
Cui JQ, Liu WH, Zang YX, Zhang C, Zou L, Sun HZ, Pan Q, Ren HY. Characterization and complete genome analysis of a bacteriophage vB_EcoM_DE7 infecting donkey-derived Escherichia coli. Virus Res 2022; 321:198913. [PMID: 36064043 DOI: 10.1016/j.virusres.2022.198913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 12/24/2022]
Abstract
A lytic bacteriophage vB_EcoM_DE7 (hereafter designated DE7) that could infect donkey-derived Escherichia coli was isolated. The bacteriophage was examined by transmission electron microscopy, and the result showed that DE7 belonged to the family Myoviridae. The microbiological characterization revealed that DE7 was stable over a broad range of pHs (3 ∼10) at 40-50 °C. The latent period was 10 min, and the burst size was 43 PFUs/infected cell. The whole-genome sequencing showed that DE7 was a dsDNA virus and had a genome of 86,130 bp. The genome contained 124 predicted open reading frames (ORFs), 35 of which had known functions, including DNA replication and modification, transcriptional regulation, structural and packaging proteins, and host cell lysis. Twenty tRNA genes were identified, but no genes associated with bacterial pathogenicity, lysogeny and drug resistance were identified. BLASTN analysis revealed that phage DE7 had a high sequence identity (96%) with Salmonella phage vB_SPuM_SP116, but it could not lyse any Salmonella strain tested in this study. DE7 was classified as a Felix O1-like virus based on its general characterization and genomic information. Since phage DE7 exhibited high efficacy in lysing E. coli and lacked genes associated with bacterial virulence, antimicrobial resistance and lysogeny, it could be potentially used to control foal diarrhoea caused by E. coli.
Collapse
Affiliation(s)
- Jia-Qi Cui
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Wen-Hua Liu
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Ya-Xin Zang
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Can Zhang
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Ling Zou
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hu-Zhi Sun
- Qingdao Phagepharm Bio-tech Co, Ltd, Qingdao, Shandong, China
| | - Qiang Pan
- Qingdao Phagepharm Bio-tech Co, Ltd, Qingdao, Shandong, China
| | - Hui-Ying Ren
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China.
| |
Collapse
|
14
|
Oechslin F, Zhu X, Dion MB, Shi R, Moineau S. Phage endolysins are adapted to specific hosts and are evolutionarily dynamic. PLoS Biol 2022; 20:e3001740. [PMID: 35913996 PMCID: PMC9371310 DOI: 10.1371/journal.pbio.3001740] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/11/2022] [Accepted: 07/01/2022] [Indexed: 01/21/2023] Open
Abstract
Endolysins are produced by (bacterio)phages to rapidly degrade the bacterial cell wall and release new viral particles. Despite sharing a common function, endolysins present in phages that infect a specific bacterial species can be highly diverse and vary in types, number, and organization of their catalytic and cell wall binding domains. While much is now known about the biochemistry of phage endolysins, far less is known about the implication of their diversity on phage–host adaptation and evolution. Using CRISPR-Cas9 genome editing, we could genetically exchange a subset of different endolysin genes into distinct lactococcal phage genomes. Regardless of the type and biochemical properties of these endolysins, fitness costs associated to their genetic exchange were marginal if both recipient and donor phages were infecting the same bacterial strain, but gradually increased when taking place between phage that infect different strains or bacterial species. From an evolutionary perspective, we observed that endolysins could be naturally exchanged by homologous recombination between phages coinfecting a same bacterial strain. Furthermore, phage endolysins could adapt to their new phage/host environment by acquiring adaptative mutations. These observations highlight the remarkable ability of phage lytic systems to recombine and adapt and, therefore, explain their large diversity and mosaicism. It also indicates that evolution should be considered to act on functional modules rather than on bacteriophages themselves. Furthermore, the extensive degree of evolvability observed for phage endolysins offers new perspectives for their engineering as antimicrobial agents. Endolysins are produced by bacteriophages to degrade the host cell wall and release new particles, but the implications of their diversity on phage-host adaptation and evolution is unknown. This study uses CRISPR-Cas9 genome editing to reveal novel insights into bacteriophage endolysin diversity and phage-bacteria interactions as well as into endolysin adaptation towards a new bacterial host.
Collapse
Affiliation(s)
- Frank Oechslin
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Canada
- * E-mail:
| | - Xiaojun Zhu
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Canada
| | - Moira B. Dion
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Canada
| | - Rong Shi
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Canada
| | - Sylvain Moineau
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Canada
- Félix d’Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec City, Canada
| |
Collapse
|
15
|
Abstract
Bacteriophage Mu is a paradigm coliphage studied mainly because of its use of transposition for genome replication. However, in extensive nonsense mutant screens, only one lysis gene has been identified, the endolysin gp22. This is surprising because in Gram-negative hosts, lysis by Caudovirales phages has been shown to require proteins which disrupt all three layers of the cell envelope. Usually this involves a holin, an endolysin, and a spanin targeting the cytoplasmic membrane, peptidoglycan (PG), and outer membrane (OM), respectively, with the holin determining the timing of lysis initiation. Here, we demonstrate that gp22 is a signal-anchor-release (SAR) endolysin and identify gp23 and gp23.1 as two-component spanin subunits. However, we find that Mu lacks a holin and instead encodes a membrane-tethered cytoplasmic protein, gp25, which is required for the release of the SAR endolysin. Mutational analysis showed that this dependence on gp25 is conferred by lysine residues at positions 6 and 7 of the short cytoplasmic domain of gp22. gp25, which we designate as a releasin, also facilitates the release of SAR endolysins from other phages. Moreover, the entire length of gp25, including its N-terminal transmembrane domain, belongs to a protein family, DUF2730, found in many Mu-like phages, including those with cytoplasmic endolysins. These results are discussed in terms of models for the evolution and mechanism of releasin function and a rationale for Mu lysis without holin control. IMPORTANCE Host cell lysis is the terminal event of the bacteriophage infection cycle. In Gram-negative hosts, lysis requires proteins that disrupt each of the three cell envelope components, only one of which has been identified in Mu: the endolysin gp22. We show that gp22 can be characterized as a SAR endolysin, a muralytic enzyme that activates upon release from the membrane to degrade the cell wall. Furthermore, we identify genes 23 and 23.1 as spanin subunits used for outer membrane disruption. Significantly, we demonstrate that Mu is the first known Caudovirales phage to lack a holin, a protein that disrupts the inner membrane and is traditionally known to release endolysins. In its stead, we report the discovery of a lysis protein, termed the releasin, which Mu uses for SAR endolysin release. This is an example of a system where the dynamic membrane localization of one protein is controlled by a secondary protein.
Collapse
|
16
|
Abstract
The recovery of DNA from viromes is a major obstacle in the use of long-read sequencing to study their genomes. For this reason, the use of cellular metagenomes (>0.2-μm size range) emerges as an interesting complementary tool, since they contain large amounts of naturally amplified viral genomes from prelytic replication. We have applied second-generation (Illumina NextSeq; short reads) and third-generation (PacBio Sequel II; long reads) sequencing to compare the diversity and features of the viral community in a marine sample obtained from offshore waters of the western Mediterranean. We found that a major wedge of the expected marine viral diversity was directly recovered by the raw PacBio circular consensus sequencing (CCS) reads. More than 30,000 sequences were detected only in this data set, with no homologues in the long- and short-read assembly, and ca. 26,000 had no homologues in the large data set of the Global Ocean Virome 2 (GOV2), highlighting the information gap created by the assembly bias. At the level of complete viral genomes, the performance was similar in both approaches. However, the hybrid long- and short-read assembly provided the longest average length of the sequences and improved the host assignment. Although no novel major clades of viruses were found, there was an increase in the intraclade genomic diversity recovered by long reads that produced an enriched assessment of the real diversity and allowed the discovery of novel genes with biotechnological potential (e.g., endolysin genes). IMPORTANCE We explored the vast genetic diversity of environmental viruses by using a combination of cellular metagenome (as opposed to virome) sequencing using high-fidelity long-read sequences (in this case, PacBio CCS). This approach resulted in the recovery of a representative sample of the viral population, and it performed better (more phage contigs, larger average contig size) than Illumina sequencing applied to the same sample. By this approach, the many biases of assembly are avoided, as the CCS reads recovers (typically around 5 kb) complete genes and even operons, resulting in a better discovery of the viral gene diversity based on viral marker proteins. Thus, biotechnologically promising genes, such as endolysin genes, can be very efficiently searched with this approach. In addition, hybrid assembly produces more complete and longer contigs, which is particularly important for studying little-known viral groups such as the nucleocytoplasmic large DNA viruses (NCLDV).
Collapse
|
17
|
Getting Outside the Cell: Versatile Holin Strategies Used by Distinct Phages to Leave Their Bacillus thuringiensis Host. J Virol 2022; 96:e0069622. [PMID: 35758660 PMCID: PMC9327680 DOI: 10.1128/jvi.00696-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Holins are small transmembrane proteins involved in the final stage of the lytic cycle of double-stranded DNA (dsDNA) phages. They cooperate with endolysins to achieve bacterial lysis, thereby releasing the phage progeny into the extracellular environment. Besides their role as membrane permeabilizers, allowing endolysin transfer and/or activation, holins also regulate the lysis timing. In this work, we provide functional characterization of the holins encoded by three phages targeting the Bacillus cereus group. The siphovirus Deep-Purple has a lysis cassette in which holP30 and holP33 encode two proteins displaying holin properties, including a transmembrane domain. The holin genes were expressed in Escherichia coli and induced bacterial lysis, with HolP30 being more toxic than HolP33. In Bacillus thuringiensis, the simultaneous expression of both holins was necessary to observe lysis, suggesting that they may interact to form functional pores. The myoviruses Deep-Blue and Vp4 both encode a single candidate holin (HolB and HolV, respectively) with two transmembrane domains, whose genes are not located near the endolysin genes. Their function as holin proteins was confirmed as their expression in E. coli impaired cell growth and viability. The HolV expression in B. thuringiensis also led to bacterial lysis, which was enhanced by coexpressing the holin with its cognate endolysin. Despite similar organizations and predicted topologies, truncated mutants of the HolB and HolV proteins showed different toxicity levels, suggesting that differences in amino acid composition influence their lysis properties. IMPORTANCE The phage life cycle ends with the host cell lysis, thereby releasing new virions into the environment for the next round of bacterial infection. Nowadays, there is renewed interest in phages as biocontrol agents, primarily due to their ability to cause bacterial death through lysis. While endolysins, which mediate peptidoglycan degradation, have been fairly well described, the pore-forming proteins, referred to as holins, have been extensively characterized in only a few model phages, mainly infecting Gram-negative bacteria. In this work, we characterized the holins encoded by a siphovirus and two myoviruses targeting members of the Gram-positive Bacillus cereus group, which comprises closely related species, including the well-known Bacillus anthracis, B. cereus sensu stricto, and Bacillus thuringiensis. Overall, this paper provides the first experimental characterization of holins encoded by B. cereus phages and reveals versatile lysis mechanisms used by these phages.
Collapse
|
18
|
Meng LH, Ke F, Zhang QY, Zhao Z. Functional Analysis of the Endopeptidase and Holin From Planktothrix agardhii Cyanophage PaV-LD. Front Microbiol 2022; 13:849492. [PMID: 35572663 PMCID: PMC9096620 DOI: 10.3389/fmicb.2022.849492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
A cyanophage PaV-LD, previously isolated from harmful filamentous cyanobacterium Planktothrix agardhii, was sequenced, and co-expression of its two ORFs in tandem, ORF123 and ORF124, inhibited growth on the model cyanobacterium Synechocystis sp. PCC6803 cells. However, the mechanism of action of ORF123 and ORF124 alone remains to be elucidated. In this study, we aimed to study the individual function of ORF123 or ORF124 from PaV-LD. Our data showed that the ORF123 encoded an endopeptidase, which harbored an M23 family peptidase domain and a transmembrane region. The expression of the endopeptidase in Escherichia coli alone revealed that the protein exhibited remarkable bacteriostatic activity, as evidenced by observation of growth inhibition, membrane damage, and leakage of the intracellular enzyme. Similarly, the holin, a membrane-associated protein encoded by the ORF124, showed weak bacteriostatic activity on E. coli. Moreover, deletion mutations indicated that the transmembrane domains of endopeptidase and holin were indispensable for their bacteriostatic activity. Meanwhile, the bacteriostatic functions of endopeptidase and holin on cyanobacteria cells were confirmed by expressing them in the cyanobacterium Synechocystis sp. PCC6803. Collectively, our study revealed the individual role of endopeptidase or holin and their synergistic bacteriolytic effect, which would contribute to a better understanding of the lytic mechanism of cyanophage PaV-LD.
Collapse
Affiliation(s)
- Li-Hui Meng
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Fei Ke
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qi-Ya Zhang
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhe Zhao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| |
Collapse
|
19
|
Gontijo MTP, Teles MP, Vidigal PMP, Brocchi M. Expanding the Database of Signal-Anchor-Release Domain Endolysins Through Metagenomics. Probiotics Antimicrob Proteins 2022; 14:603-612. [PMID: 35525881 DOI: 10.1007/s12602-022-09948-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
Endolysins are bacteriophage-derived lytic enzymes with antimicrobial activity. The action of endolysins against Gram-negative bacteria remains a challenge due to the physical protection of the outer membrane. However, recent research has demonstrated that signal-anchor-release (SAR) endolysins permeate the outer membrane of Gram-negative bacteria. This study investigates 2628 putative endolysin genes identified in 183,298 bacteriophage genomes. Previously, bioinformatic approaches resulted in a database of 66 SAR endolysins. This manuscript almost doubles the list with 53 additional SAR endolysin candidates. Forty-eight of the putative SAR endolysins described in this study contained one muramidase catalytic domain, and five included additional cell wall-binding domains at the C-terminus. For the moment, SAR domains are found in four protein families: glycoside hydrolase family 19 (GH19), glycoside hydrolase family 24 (GH24), glycoside hydrolase family 25 (GH25), and glycoside hydrolase family 108 (GH108). These SAR lysis are clustered in eight groups based on biochemical properties and domain presence/absence. Therefore, in this study, we expand the arsenal of endolysin candidates that might act against Gram-negative bacteria and develop a consult database for antimicrobial proteins derived from bacteriophages.
Collapse
Affiliation(s)
- Marco Túlio Pardini Gontijo
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Rua Monteiro Lobato 255, Campinas, São Paulo, 13083-862, Brazil.
| | - Mateus Pereira Teles
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Rua Monteiro Lobato 255, Campinas, São Paulo, 13083-862, Brazil.,Faculdade de Farmácia, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Rua Cândido Portinari 200, Campinas, São Paulo, 13083-862, Brazil
| | - Pedro Marcus Pereira Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Universidade Federal de Viçosa (UFV), Vila Gianetti, Casa 21, Campus da UFV, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Marcelo Brocchi
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Rua Monteiro Lobato 255, Campinas, São Paulo, 13083-862, Brazil
| |
Collapse
|
20
|
Functional Dissection of P1 Bacteriophage Holin-like Proteins Reveals the Biological Sense of P1 Lytic System Complexity. Int J Mol Sci 2022; 23:ijms23084231. [PMID: 35457047 PMCID: PMC9025707 DOI: 10.3390/ijms23084231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
P1 is a model temperate myovirus. It infects different Enterobacteriaceae and can develop lytically or form lysogens. Only some P1 adaptation strategies to propagate in different hosts are known. An atypical feature of P1 is the number and organization of cell lysis-associated genes. In addition to SAR-endolysin Lyz, holin LydA, and antiholin LydB, P1 encodes other predicted holins, LydC and LydD. LydD is encoded by the same operon as Lyz, LydA and LydB are encoded by an unlinked operon, and LydC is encoded by an operon preceding the lydA gene. By analyzing the phenotypes of P1 mutants in known or predicted holin genes, we show that all the products of these genes cooperate with the P1 SAR-endolysin in cell lysis and that LydD is a pinholin. The contributions of holins/pinholins to cell lysis by P1 appear to vary depending on the host of P1 and the bacterial growth conditions. The pattern of morphological transitions characteristic of SAR-endolysin–pinholin action dominates during lysis by wild-type P1, but in the case of lydC lydD mutant it changes to that characteristic of classical endolysin-pinholin action. We postulate that the complex lytic system facilitates P1 adaptation to various hosts and their growth conditions.
Collapse
|
21
|
Cernooka E, Rumnieks J, Zrelovs N, Tars K, Kazaks A. Diversity of the lysozyme fold: structure of the catalytic domain from an unusual endolysin encoded by phage Enc34. Sci Rep 2022; 12:5005. [PMID: 35322067 PMCID: PMC8943055 DOI: 10.1038/s41598-022-08765-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/10/2022] [Indexed: 12/02/2022] Open
Abstract
Endolysins are bacteriophage-encoded peptidoglycan-degrading enzymes with potential applications for treatment of multidrug-resistant bacterial infections. Hafnia phage Enc34 encodes an unusual endolysin with an N-terminal enzymatically active domain and a C-terminal transmembrane domain. The catalytic domain of the endolysin belongs to the conserved protein family PHA02564 which has no recognizable sequence similarity to other known endolysin types. Turbidity reduction assays indicate that the Enc34 enzyme is active against peptidoglycan from a variety of Gram-negative bacteria including the opportunistic pathogen Pseudomonas aeruginosa PAO1. The crystal structure of the catalytic domain of the Enc34 endolysin shows a distinctive all-helical architecture that distantly resembles the α-lobe of the lysozyme fold. Conserved catalytically important residues suggest a shared evolutionary history between the Enc34 endolysin and GH73 and GH23 family glycoside hydrolases and propose a molecular signature for substrate cleavage for a large group of peptidoglycan-degrading enzymes.
Collapse
Affiliation(s)
- Elina Cernooka
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga, 1067, Latvia
| | - Janis Rumnieks
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga, 1067, Latvia
| | - Nikita Zrelovs
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga, 1067, Latvia
| | - Kaspars Tars
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga, 1067, Latvia.,Faculty of Biology, University of Latvia, Jelgavas 1, Riga, 1004, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga, 1067, Latvia.
| |
Collapse
|
22
|
Identification and Characterization of a New Type of Holin-Endolysin Lysis Cassette in Acidovorax oryzae Phage AP1. Viruses 2022; 14:v14020167. [PMID: 35215761 PMCID: PMC8879335 DOI: 10.3390/v14020167] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 01/21/2023] Open
Abstract
Phages utilize lysis systems to allow the release of newly assembled viral particles that kill the bacterial host. This is also the case for phage AP1, which infects the rice pathogen Acidovorax oryzae. However, how lysis occurs on a molecular level is currently unknown. We performed in silico bioinformatics analyses, which indicated that the lysis cassette contains a holin (HolAP) and endolysin (LysAP), which are encoded by two adjacent genes. Recombinant expression of LysAP caused Escherichia coli lysis, while HolAP arrested growth. Co-expression of both proteins resulted in enhanced lysis activity compared to the individual proteins alone. Interestingly, LysAP contains a C-terminal region transmembrane domain, which is different from most known endolysins where a N-terminal hydrophobic region is found, with the potential to insert into the membrane. We show that the C-terminal transmembrane domain is crucial for protein localization and bacterial lysis in phage AP1. Our study characterizes the new phage lysis cassette and the mechanism to induce cell disruption, giving new insight in the understanding of phage life cycles.
Collapse
|
23
|
Marques AT, Tanoeiro L, Duarte A, Gonçalves L, Vítor JMB, Vale FF. Genomic Analysis of Prophages from Klebsiella pneumoniae Clinical Isolates. Microorganisms 2021; 9:2252. [PMID: 34835377 PMCID: PMC8617712 DOI: 10.3390/microorganisms9112252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
Klebsiella pneumoniae is an increasing threat to public health and represents one of the most concerning pathogens involved in life-threatening infections. The resistant and virulence determinants are coded by mobile genetic elements which can easily spread between bacteria populations and co-evolve with its genomic host. In this study, we present the full genomic sequences, insertion sites and phylogenetic analysis of 150 prophages found in 40 K. pneumoniae clinical isolates obtained from an outbreak in a Portuguese hospital. All strains harbored at least one prophage and we identified 104 intact prophages (69.3%). The prophage size ranges from 29.7 to 50.6 kbp, coding between 32 and 78 putative genes. The prophage GC content is 51.2%, lower than the average GC content of 57.1% in K. pneumoniae. Complete prophages were classified into three families in the order Caudolovirales: Myoviridae (59.6%), Siphoviridae (38.5%) and Podoviridae (1.9%). In addition, an alignment and phylogenetic analysis revealed nine distinct clusters. Evidence of recombination was detected within the genome of some prophages but, in most cases, proteins involved in viral structure, transcription, replication and regulation (lysogenic/lysis) were maintained. These results support the knowledge that prophages are diverse and widely disseminated in K. pneumoniae genomes, contributing to the evolution of this species and conferring additional phenotypes. Moreover, we identified K. pneumoniae prophages in a set of endolysin genes, which were found to code for proteins with lysozyme activity, cleaving the β-1,4 linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in the peptidoglycan network and thus representing genes with the potential for lysin phage therapy.
Collapse
Affiliation(s)
- Andreia T. Marques
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (L.T.); (J.M.B.V.)
| | - Luís Tanoeiro
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (L.T.); (J.M.B.V.)
| | - Aida Duarte
- Faculty of Pharmacy, Universidade de Lisboa, Av. Gama Pinto, 1649-003 Lisboa, Portugal;
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, 2829-511 Monte da Caparica, Portugal
| | - Luisa Gonçalves
- Clinical Pathology Unit, Hospital SAMS, Cidade de Gabela, 1849-017 Lisboa, Portugal;
| | - Jorge M. B. Vítor
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (L.T.); (J.M.B.V.)
| | - Filipa F. Vale
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (L.T.); (J.M.B.V.)
| |
Collapse
|
24
|
Exploring the diversity of bacteriophage specific to Oenococcus oeni and Lactobacillus spp and their role in wine production. Appl Microbiol Biotechnol 2021; 105:8575-8592. [PMID: 34694447 DOI: 10.1007/s00253-021-11509-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 12/19/2022]
Abstract
The widespread existence of bacteriophage has been of great interest to the biological research community and ongoing investigations continue to explore their diversity and role. They have also attracted attention and in-depth research in connection to fermented food processing, in particular from the dairy and wine industries. Bacteriophage, mostly oenophage, may in fact be a 'double edged sword' for winemakers: whilst they have been implicated as a causal agent of difficulties with malolactic fermentation (although not proven), they are also beginning to be considered as alternatives to using sulphur dioxide to prevent wine spoilage. Investigation and characterisation of oenophage of Oenococcus oeni, the main species used in winemaking, are still limited compared to lactococcal bacteriophage of Lactococcus lactis and Lactiplantibacillus plantarum (formally Lactobacillus plantarum), the drivers of most fermented dairy products. Interestingly, these strains are also being used or considered for use in winemaking. In this review, the genetic diversity and life cycle of phage, together with the debate on the consequent impact of phage predation in wine, and potential control strategies are discussed. KEY POINTS: • Bacteriophage detected in wine are diverse. • Many lysogenic bacteriophage are found in wine bacteria. • Phage impact on winemaking can depend on the stage of the winemaking process. • Bacteriophage as potential antimicrobial agents against spoilage organisms.
Collapse
|
25
|
Wu Z, Zhang Y, Xu X, Ahmed T, Yang Y, Loh B, Leptihn S, Yan C, Chen J, Li B. The Holin-Endolysin Lysis System of the OP2-Like Phage X2 Infecting Xanthomonas oryzae pv. oryzae. Viruses 2021; 13:v13101949. [PMID: 34696380 PMCID: PMC8541568 DOI: 10.3390/v13101949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/01/2023] Open
Abstract
Most endolysins of dsDNA phages are exported by a holin-dependent mechanism, while in some cases endolysins are exported via a holin-independent mechanism. However, it is still unclear whether the same endolysins can be exported by both holin-dependent and holin-independent mechanisms. This study investigated the lysis system of OP2-like phage X2 infecting Xanthomonas oryzae pv. oryzae, causing devastating bacterial leaf blight disease in rice. Based on bioinformatics and protein biochemistry methods, we show that phage X2 employs the classic "holin-endolysin" lysis system. The endolysin acts on the cell envelope and exhibits antibacterial effects in vitro, while the holin facilitates the release of the protein into the periplasm. We also characterized the role of the transmembrane domain (TMD) in the translocation of the endolysin across the inner membrane. We found that the TMD facilitated the translocation of the endolysin via the Sec secretion system. The holin increases the efficiency of protein release, leading to faster and more efficient lysis. Interestingly, in E. coli, the expression of either holin or endolysin with TMDs resulted in the formation of long rod shaped cells. We conclude that the TMD of X2-Lys plays a dual role: One is the transmembrane transport while the other is the inhibition of cell division, resulting in larger cells and thus in a higher number of released viruses per cell.
Collapse
Affiliation(s)
- Zhifeng Wu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.W.); (Y.Z.); (X.X.); (T.A.)
| | - Yang Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.W.); (Y.Z.); (X.X.); (T.A.)
| | - Xinyang Xu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.W.); (Y.Z.); (X.X.); (T.A.)
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.W.); (Y.Z.); (X.X.); (T.A.)
| | - Yong Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.Y.)
| | - Belinda Loh
- University of Edinburgh Institute, Zhejiang University, Hangzhou 314400, China; (B.L.); (S.L.)
| | - Sebastian Leptihn
- University of Edinburgh Institute, Zhejiang University, Hangzhou 314400, China; (B.L.); (S.L.)
| | - Chenqi Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.Y.)
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.Y.)
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Correspondence: (J.C.); (B.L.); Tel.: +86-571-8898-2412 (B.L.)
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.W.); (Y.Z.); (X.X.); (T.A.)
- Correspondence: (J.C.); (B.L.); Tel.: +86-571-8898-2412 (B.L.)
| |
Collapse
|
26
|
Zhang J, Xu H, Yang H, Li J, Xiao S, Hu S, Yan F, Xia L, Zhang Y. Screening of a Plesiomonas shigelloides phage and study of the activity of its lysis system. Virus Res 2021; 306:198581. [PMID: 34560184 DOI: 10.1016/j.virusres.2021.198581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Plesiomonas shigelloides is an important fish pathogen that causes significant losses in aquaculture. Phage therapy is a new approach to overcome the problem of multidrug-resistant bacteria. Herein, a virulent phage of P. shigelloides was isolated from the intestines of grass carp. This phage belongs to the Siphoviridae family and was designated PSP01. The optimal multiplicity of infection of PSP01 was 1 with a latent period of 30 min and a lytic period of 140 min. Good activity was observed over a wide range of temperatures (-20 °C-50 °C), pH values (3-12), and NaCl concentrations (0.1-3.5%). The phage PSP01 lysis cassette is composed of 3 genes, HolPSP, LysPSP-1 and LysPSP-2. Expression of HolPSP or LysPSP-2 in Escherichia coli resulted in bacterial lysis, and a synergistic effect was observed when the HolPSP and LysPSP-1 proteins were co-expressed. In-frame deletion uncovered an important role of the transmembrane domain (TMD) in HolPSP and the signal peptide (SP) in LysPSP-2 for bacterial lysis function. The protective effects of phage PSP01 were investigated by intraperitoneal injection into grass carp infected with P. shigelloides, showing a 33.3% increase in the survival rate of the infected grass carp. Pathological analysis of the spleens from the infected grass carp revealed alleviation of the pathological symptoms. In conclusion, isolation and bacterial lysis investigations of phage PSP01 provide a new tool for the control of fish pathogens and possesses potential for aquaculture applications.
Collapse
Affiliation(s)
- Jingdan Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fishes, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Huizhong Xu
- State Key Laboratory of Developmental Biology of Freshwater Fishes, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Hu Yang
- State Key Laboratory of Developmental Biology of Freshwater Fishes, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Jia Li
- State Key Laboratory of Developmental Biology of Freshwater Fishes, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Shuai Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fishes, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Shengbiao Hu
- State Key Laboratory of Developmental Biology of Freshwater Fishes, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Fu Yan
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Liqiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fishes, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China.
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
27
|
Mehner-Breitfeld D, Schwarzkopf JMF, Young R, Kondabagil K, Brüser T. The Phage T4 Antiholin RI Has a Cleavable Signal Peptide, Not a SAR Domain. Front Microbiol 2021; 12:712460. [PMID: 34456892 PMCID: PMC8385771 DOI: 10.3389/fmicb.2021.712460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022] Open
Abstract
Holin/endolysin-mediated lysis of phage T4 of Escherichia coli is tightly regulated by the antiholins RI and RIII. While regulation by the cytoplasmic RIII plays a minor role, the periplasmic antiholin RI binds tightly to the holin T and is believed to directly sense periplasmic phage DNA from superinfections as a trigger for the inhibition of lysis. RI has been reported to contain a non-cleavable signal peptide that anchors the protein to the membrane. Lysis is believed to be induced at some stage by a membrane depolarization that causes a release of RI into the periplasm without cleavage of the signal anchor. For the current model of phage lysis induction, it is thus a fundamental assumption that the N-terminal trans-membrane domain (TMD) of RI is such a signal anchor release (SAR) domain. Here we show that, in contrast to previous reports, this domain of RI is a cleavable signal peptide. RI is processed and released into the periplasm as a mature protein, and inactivation of its signal peptidase cleavage site blocks processing and membrane release. The signal peptide of RI can also mediate the normal translocation of a well-characterized Sec substrate, PhoA, into the periplasm. This simplifies the current view of phage lysis regulation and suggests a fundamentally different interpretation of the recently published structure of the soluble domains of the RI–T complex.
Collapse
Affiliation(s)
| | | | - Ry Young
- Department of Biochemistry & Biophysics, Center of Phage Technology, Texas A&M University, College Station, TX, United States
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Thomas Brüser
- Institute of Microbiology, Leibniz Universität Hannover, Hanover, Germany
| |
Collapse
|
28
|
Xu H, Bao X, Hong W, Wang A, Wang K, Dong H, Hou J, Govinden R, Deng B, Chenia HY. Biological Characterization and Evolution of Bacteriophage T7-△holin During the Serial Passage Process. Front Microbiol 2021; 12:705310. [PMID: 34408735 PMCID: PMC8365609 DOI: 10.3389/fmicb.2021.705310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/28/2021] [Indexed: 11/21/2022] Open
Abstract
Bacteriophage T7 gene 17.5 coding for the only known holin is one of the components of its lysis system, but the holin activity in T7 is more complex than a single gene, and evidence points to the existence of additional T7 genes with holin activity. In this study, a T7 phage with a gene 17.5 deletion (T7-△holin) was rescued and its biological characteristics and effect on cell lysis were determined. Furthermore, the genomic evolution of mutant phage T7-△holin during serial passage was assessed by whole-genome sequencing analysis. It was observed that deletion of gene 17.5 from phage T7 delays lysis time and enlarges the phage burst size; however, this biological characteristic recovered to normal lysis levels during serial passage. Scanning electron microscopy showed that the two opposite ends of E. coli BL21 cells swell post-T7-△holin infection rather than drilling holes on cell membrane when compared with T7 wild-type infection. No visible progeny phage particle accumulation was observed inside the E. coli BL21 cells by transmission electron microscopy. Following serial passage of T7-△holin from the 1st to 20th generations, the mRNA levels of gene 3.5 and gene 19.5 were upregulated and several mutation sites were discovered, especially two missense mutations in gene 19.5, which indicate a potential contribution to the evolution of the T7-△holin. Although the burst size of T7-△holin increased, high titer cultivation of T7-△holin was not achieved by optimizing the culture process. Accordingly, these results suggest that gene 19.5 is a potential lysis-related component that needs to be studied further and that the T7-△holin strain with its gene 17.5 deletion is not adequate to establish the high-titer phage cultivation process.
Collapse
Affiliation(s)
- Hai Xu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China.,Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Science, Nanjing, China.,School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| | - Xi Bao
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Weiming Hong
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Anping Wang
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Kaimin Wang
- Animal, Plant and Food Test Center of Nanjing Customs, Nanjing, China
| | - Hongyan Dong
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Jibo Hou
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Roshini Govinden
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| | - Bihua Deng
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Science, Nanjing, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hafizah Y Chenia
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
29
|
Li X, Zhang C, Wei F, Yu F, Zhao Z. Bactericidal activity of a holin-endolysin system derived from Vibrio alginolyticus phage HH109. Microb Pathog 2021; 159:105135. [PMID: 34390766 DOI: 10.1016/j.micpath.2021.105135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 11/26/2022]
Abstract
Vibrio alginolyticus is a common opportunistic pathogen that can cause vibriosis of marine aquatic animals. The application of phages or particularly associated protein products for the treatment of vibriosis has shown prominent advantages compared with the treatment with traditional antibiotics. In this study, the function of a holin-endolysin system from V. alginolyticus phage HH109 was characterized by examining the effect of their overexpression on Escherichia coli and V. alginolyticus. Our data revealed that the endolysin of the phage HH109 has stronger bactericidal activity than the holin, as evidenced by observing more cell death and severe structural damage of cells in the endolysin-expressing E. coli. Furthermore, the two proteins displayed the synergistic effect when the holA and lysin were co-expressed in E. coli, although no interaction between them was detected using the bacterial two-hybrid assay. Transmission electron microscopy observation revealed disruptions of cell envelopes accompanied by leakage of intracellular contents. Similarly, the bactericidal activity of the holin and endolysin against V. alginolyticus was also examined whatever the host is sensitive or resistant to phage HH109. Together, our study contributes to a better understanding of the mechanism of phage HH109 destroying the bacterial cell wall to lyse their host and may offer alternative applications potentially for vibriosis treatment.
Collapse
Affiliation(s)
- Xixi Li
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Ce Zhang
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Fucheng Wei
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Fei Yu
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Zhe Zhao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, China.
| |
Collapse
|
30
|
The resident TP712 prophage of Lactococcus lactis MG1363 provides extra holin functions to the new P335 phage CAP for effective host lysis. Appl Environ Microbiol 2021; 87:e0109221. [PMID: 34260308 DOI: 10.1128/aem.01092-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prophages are widely present in Lactococcus lactis, a lactic acid bacterium (LAB) that plays a key role in dairy fermentations. L. lactis MG1363 is a laboratory strain used worldwide as a model LAB. Initially regarded as plasmid- and prophage-free, MG1363 carries two complete prophages TP712 and MG-3. Only TP712 seems to be inducible but unable to lyse the host. Several so-called TP712 lysogens able to lyse upon prophage induction were reported in the past, but the reason for their lytic phenotype remained unknown. In this work, we describe CAP, a new P335 prophage detected in the "lytic TP712 lysogens", which had remained unnoticed. CAP is able to excise after mitomycin C treatment, along with TP712, and able to infect L. lactis MG1363-like strains but not the lytic TP712 lysogens. Both phages cooperate for efficient host lysis. While the expression in trans of the CAP lytic genes was sufficient to trigger cell lysis, this process was boosted when the resident TP712 prophage was concomitantly induced. Introduction of mutations into the TP712 lytic genes revealed that its holin but not its endolysin plays a major role. Accordingly, it is shown that the lytic activity of the recombinant CAP endolysin relies on membrane depolarization. Revisiting the seminal work to generate the extensively used L. lactis MG1363 strain led us to conclude that the CAP phage was originally present in its ancestor L. lactis NCDO712 and our results solved long-standing mysteries around the MG1363 resident prophage TP712 reported in the "pre-sequencing" era. Importance Prophages are bacterial viruses that integrate in the chromosome of bacteria until an environmental trigger induces their lytic cycle ending with lysis of the host. Prophages present in dairy starters can compromise milk fermentation and represent a serious threat in dairy plants. In this work, we have discovered that two temperate phages TP712 and CAP infecting the laboratory strain Lactococcus lactis MG1363 join forces to lyse the host. Based on the in vitro lytic activity of the LysCAP endolysin, in combination with mutated versions of TP712 lacking either its holin or endolysin, we conclude that this cooperation relies on the combined activity of the holins of both phages that boost the activity of LysCAP. The presence of an additional prophage explains the lytic phenotype of the formerly thought to be single TP712 lysogens that had remained a mystery for many years.
Collapse
|
31
|
Decoding the molecular properties of mycobacteriophage D29 Holin provides insights into Holin engineering. J Virol 2021; 95:JVI.02173-20. [PMID: 33627396 PMCID: PMC8139666 DOI: 10.1128/jvi.02173-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Holins are bacteriophage-encoded small transmembrane proteins that determine the phage infection cycle duration by forming non-specific holes in the host cell membrane at a specific time post-infection. Thus, Holins are also termed as "Protein clocks". Holins have one or more transmembrane domains, and a charged C-terminal region, which, although conserved among Holins, has not yet been examined in detail. Here, we characterize the molecular properties of mycobacteriophage D29 Holin C-terminal region, and investigate the significance of the charged residues and coiled coil (CC) domain present therein. We show that the CC domain is indispensable for Holin-mediated efficient bacterial cell lysis. We further demonstrate that out of the positively- and negatively-charged residues present in the C-terminal region, substituting the former, and not the latter, with serine, renders Holin non-toxic. Moreover, the basic residues present between the 59th and the 79th amino acids are the most crucial for Holin-mediated toxicity. We also constructed an engineered Holin, HolHC, by duplicating the C-terminal region. The HolHC protein shows higher toxicity in both Escherichia coli and Mycobacterium smegmatis, and causes rapid killing of both bacteria upon expression, as compared to the wild-type. A similar oligomerization property of HolHC as the wild-type Holin allows us to propose that the C-terminal region of D29 Holin determines the timing, and not the extent, of oligomerization and, thereby, hole formation. Such knowledge-based engineering of mycobacteriophage Holin will help in developing novel phage-based therapeutics to kill pathogenic mycobacteria, including M. tuberculosis ImportanceHolins are bacteriophage-encoded small membrane perforators that play an important role in determining the timing of host cell lysis towards the end of the phage infection cycle. Holin's ability to precisely time the hole formation in the cell membrane ensuing cell lysis is both interesting and intriguing. Here, we examined the molecular properties of the mycobacteriophage D29 Holin C-terminal region that harbours several polar charged residues and a coiled-coil domain. Our data allowed us to engineer Holin with an ability to rapidly kill bacteria and show higher toxicity than the wild-type protein. Due to their ability to kill host bacteria by membrane disruption, it becomes important to explore the molecular properties of Holins that allow them to function in a timely and efficient manner. Understanding these details can help us modulate Holin activity and engineer bacteriophages with superior lytic properties to kill pathogenic bacteria, curtail infections, and combat antimicrobial resistance.
Collapse
|
32
|
Grabowski Ł, Łepek K, Stasiłojć M, Kosznik-Kwaśnicka K, Zdrojewska K, Maciąg-Dorszyńska M, Węgrzyn G, Węgrzyn A. Bacteriophage-encoded enzymes destroying bacterial cell membranes and walls, and their potential use as antimicrobial agents. Microbiol Res 2021; 248:126746. [PMID: 33773329 DOI: 10.1016/j.micres.2021.126746] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 01/22/2023]
Abstract
Appearance of pathogenic bacteria resistant to most, if not all, known antibiotics is currently one of the most significant medical problems. Therefore, development of novel antibacterial therapies is crucial for efficient treatment of bacterial infections in the near future. One possible option is to employ enzymes, encoded by bacteriophages, which cause destruction of bacterial cell membranes and walls. Bacteriophages use such enzymes to destroy bacterial host cells at the final stage of their lytic development, in order to ensure effective liberation of progeny virions. Nevertheless, to use such bacteriophage-encoded proteins in medicine and/or biotechnology, it is crucial to understand details of their biological functions and biochemical properties. Therefore, in this review article, we will present and discuss our current knowledge on the processes of bacteriophage-mediated bacterial cell lysis, with special emphasis on enzymes involved in them. Regulation of timing of the lysis is also discussed. Finally, possibilities of the practical use of these enzymes as antibacterial agents will be underlined and perspectives of this aspect will be presented.
Collapse
Affiliation(s)
- Łukasz Grabowski
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| | - Krzysztof Łepek
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Małgorzata Stasiłojć
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Katarzyna Kosznik-Kwaśnicka
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| | - Karolina Zdrojewska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Monika Maciąg-Dorszyńska
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Alicja Węgrzyn
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| |
Collapse
|
33
|
Abdelrahman F, Easwaran M, Daramola OI, Ragab S, Lynch S, Oduselu TJ, Khan FM, Ayobami A, Adnan F, Torrents E, Sanmukh S, El-Shibiny A. Phage-Encoded Endolysins. Antibiotics (Basel) 2021; 10:124. [PMID: 33525684 PMCID: PMC7912344 DOI: 10.3390/antibiotics10020124] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/16/2021] [Accepted: 01/26/2021] [Indexed: 12/17/2022] Open
Abstract
Due to the global emergence of antibiotic resistance, there has been an increase in research surrounding endolysins as an alternative therapeutic. Endolysins are phage-encoded enzymes, utilized by mature phage virions to hydrolyze the cell wall from within. There is significant evidence that proves the ability of endolysins to degrade the peptidoglycan externally without the assistance of phage. Thus, their incorporation in therapeutic strategies has opened new options for therapeutic application against bacterial infections in the human and veterinary sectors, as well as within the agricultural and biotechnology sectors. While endolysins show promising results within the laboratory, it is important to document their resistance, safety, and immunogenicity for in-vivo application. This review aims to provide new insights into the synergy between endolysins and antibiotics, as well as the formulation of endolysins. Thus, it provides crucial information for clinical trials involving endolysins.
Collapse
Affiliation(s)
- Fatma Abdelrahman
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Maheswaran Easwaran
- Department of Biomedical Engineering, Sethu Institute of Technology, Tamil Nadu 626115, India
| | - Oluwasegun I Daramola
- Department of Biomedical Laboratory Science, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria
| | - Samar Ragab
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Stephanie Lynch
- School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia
| | - Tolulope J Oduselu
- Department of Biomedical Laboratory Science, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria
| | - Fazal Mehmood Khan
- Center for Biosafety Mega-Science, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- International College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Akomolafe Ayobami
- Department of Biomedical Laboratory Science, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria
| | - Fazal Adnan
- Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 24090, Pakistan
| | - Eduard Torrents
- Bacterial Infections: Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Swapnil Sanmukh
- Bacterial Infections: Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza 12578, Egypt
| |
Collapse
|
34
|
Gontijo MTP, Vidigal PMP, Lopez MES, Brocchi M. Bacteriophages that infect Gram-negative bacteria as source of signal-arrest-release motif lysins. Res Microbiol 2020; 172:103794. [PMID: 33347948 DOI: 10.1016/j.resmic.2020.103794] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 01/23/2023]
Abstract
Treatment of infections caused by multidrug-resistant (MDR) Gram-negative bacteria is challenging, a potential solution for which is the use of bacteriophage-derived lytic enzymes. However, the exogenous action of bacteriophage lysins against Gram-negative bacteria is hindered due to the presence of an impermeable outer membrane in these bacteria. Nevertheless, recent research has demonstrated that some lysins are capable of permeating the outer membrane of Gram-negative bacteria with the help of signal peptides. In the present study, we investigated the genomes of 309 bacteriophages that infect Gram-negative pathogens of clinical interest in order to determine the evolutionary markers of signal peptide-containing lysins. Complete genomes displayed 265 putative lysins, of which 17 (6.41%) contained signal-arrest-release motifs and 41 (15.47%) contained cleavable signal peptides. There was no apparent relationship between host specificity and lysin diversity. Nevertheless, the evolution of lysin genes might not be independent of the rest of the bacteriophage genome once pan-genome clustering and lysin diversity appear to be correlated. In addition, signal peptide- and signal-arrest-release-containing lysins were monophyletically distributed in the protein cladogram, suggesting that the natural selection of holin-independent lysins is divergent. Our study screened 58 (21.89%) out of 265 potential candidates for in vitro experimentation against MDR bacteria.
Collapse
Affiliation(s)
- Marco Túlio Pardini Gontijo
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato 255, Campinas, São Paulo, 13083-862, Brazil.
| | - Pedro Marcus Pereira Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Universidade Federal de Viçosa (UFV), Vila Gianetti, Casa 21, Campus da UFV, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - Maryoris Elisa Soto Lopez
- Departamento de Ingeniería de Alimentos, Universidad de Córdoba (UNICORDOBA), Carrera 6 77-305, Montería, 230002, Colombia.
| | - Marcelo Brocchi
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato 255, Campinas, São Paulo, 13083-862, Brazil.
| |
Collapse
|
35
|
Steger LME, Kohlmeyer A, Wadhwani P, Bürck J, Strandberg E, Reichert J, Grage SL, Afonin S, Kempfer M, Görner AC, Koch J, Walther TH, Ulrich AS. Structural and functional characterization of the pore-forming domain of pinholin S 2168. Proc Natl Acad Sci U S A 2020; 117:29637-29646. [PMID: 33154156 PMCID: PMC7703622 DOI: 10.1073/pnas.2007979117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pinholin S2168 triggers the lytic cycle of bacteriophage φ21 in infected Escherichia coli Activated transmembrane dimers oligomerize into small holes and uncouple the proton gradient. Transmembrane domain 1 (TMD1) regulates this activity, while TMD2 is postulated to form the actual "pinholes." Focusing on the TMD2 fragment, we used synchrotron radiation-based circular dichroism to confirm its α-helical conformation and transmembrane alignment. Solid-state 15N-NMR in oriented DMPC bilayers yielded a helix tilt angle of τ = 14°, a high order parameter (Smol = 0.9), and revealed the azimuthal angle. The resulting rotational orientation places an extended glycine zipper motif (G40xxxS44xxxG48) together with a patch of H-bonding residues (T51, T54, N55) sideways along TMD2, available for helix-helix interactions. Using fluorescence vesicle leakage assays, we demonstrate that TMD2 forms stable holes with an estimated diameter of 2 nm, as long as the glycine zipper motif remains intact. Based on our experimental data, we suggest structural models for the oligomeric pinhole (right-handed heptameric TMD2 bundle), for the active dimer (right-handed Gly-zipped TMD2/TMD2 dimer), and for the full-length pinholin protein before being triggered (Gly-zipped TMD2/TMD1-TMD1/TMD2 dimer in a line).
Collapse
Affiliation(s)
- Lena M E Steger
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Annika Kohlmeyer
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Parvesh Wadhwani
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Erik Strandberg
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Johannes Reichert
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Stephan L Grage
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Marin Kempfer
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Anne C Görner
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Julia Koch
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Torsten H Walther
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany;
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany;
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
36
|
Krieger IV, Kuznetsov V, Chang JY, Zhang J, Moussa SH, Young RF, Sacchettini JC. The Structural Basis of T4 Phage Lysis Control: DNA as the Signal for Lysis Inhibition. J Mol Biol 2020; 432:4623-4636. [PMID: 32562709 DOI: 10.1016/j.jmb.2020.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 02/05/2023]
Abstract
Optimal phage propagation depends on the regulation of the lysis of the infected host cell. In T4 phage infection, lysis occurs when the holin protein (T) forms lesions in the host membrane. However, the lethal function of T can be blocked by an antiholin (RI) during lysis inhibition (LIN). LIN sets if the infected cell undergoes superinfection, then the lysis is delayed until host/phage ratio becomes more favorable for the release of progeny. It has been thought that a signal derived from the superinfection is required to activate RI. Here we report structures that suggest a radically different model in which RI binds to T irrespective of superinfection, causing it to accumulate in a membrane as heterotetrameric 2RI-2T complex. Moreover, we show the complex binds non-specifically to DNA, suggesting that the gDNA from the superinfecting phage serves as the LIN signal and that stabilization of the complex by DNA binding is what defines LIN. Finally, we show that soluble domain of free RI crystallizes in a domain-swapped homotetramer, which likely works as a sink for RI molecules released from the RI-T complex to ensure efficient lysis. These results constitute the first structural basis and a new model not only for the historic LIN phenomenon but also for the temporal regulation of phage lysis in general.
Collapse
Affiliation(s)
- Inna V Krieger
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Vladimir Kuznetsov
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Jeng-Yih Chang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Department of Biochemistry and Biophysics
| | - Junjie Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Department of Biochemistry and Biophysics
| | - Samir H Moussa
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Department of Biochemistry and Biophysics
| | - Ryland F Young
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Department of Biochemistry and Biophysics
| | - James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
37
|
Adamczyk-Popławska M, Tracz-Gaszewska Z, Lasota P, Kwiatek A, Piekarowicz A. Haemophilus influenzae HP1 Bacteriophage Encodes a Lytic Cassette with a Pinholin and a Signal-Arrest-Release Endolysin. Int J Mol Sci 2020; 21:E4013. [PMID: 32512736 PMCID: PMC7312051 DOI: 10.3390/ijms21114013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 01/01/2023] Open
Abstract
HP1 is a temperate bacteriophage, belonging to the Myoviridae family and infecting Haemophilus influenzae Rd. By in silico analysis and molecular cloning, we characterized lys and hol gene products, present in the previously proposed lytic module of HP1 phage. The amino acid sequence of the lys gene product revealed the presence of signal-arrest-release (SAR) and muraminidase domains, characteristic for some endolysins. HP1 endolysin was able to induce lysis on its own when cloned and expressed in Escherichia coli, but the new phage release from infected H. influenzae cells was suppressed by inhibition of the secretion (sec) pathway. Protein encoded by hol gene is a transmembrane protein, with unusual C-out and N-in topology, when overexpressed/activated. Its overexpression in E. coli did not allow the formation of large pores (lack of leakage of β-galactosidase), but caused cell death (decrease in viable cell count) without lysis (turbidity remained constant). These data suggest that lys gene encodes a SAR-endolysin and that the hol gene product is a pinholin. HP1 SAR-endolysin is responsible for cell lysis and HP1 pinholin seems to regulate the cell lysis and the phage progeny release from H. influenzae cells, as new phage release from the natural host was inhibited by deletion of the hol gene.
Collapse
Affiliation(s)
- Monika Adamczyk-Popławska
- Warsaw University, Faculty of Biology, Institute of Microbiology, Department of Molecular Virology, Miecznikowa 1, 02-096 Warsaw, Poland; (Z.T.-G.); (P.L.); (A.K.); (A.P.)
| | | | | | | | | |
Collapse
|
38
|
Bai J, Lee S, Ryu S. Identification and in vitro Characterization of a Novel Phage Endolysin that Targets Gram-Negative Bacteria. Microorganisms 2020; 8:microorganisms8030447. [PMID: 32245284 PMCID: PMC7143992 DOI: 10.3390/microorganisms8030447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/22/2022] Open
Abstract
Most double-stranded (ds) DNA phages utilize holin proteins to secrete endolysin for host peptidoglycan lysis. In contrast, several holin-independent endolysins with secretion sequences or signal-arrest-release (SAR) sequences are secreted via the Sec pathway. In this study, we characterized a novel lysis protein (M4Lys) encoded by the dsDNA phage BSPM4, whose lysis function is not dependent on either holin or the Sec pathway in vitro. In silico analysis of M4Lys revealed that it contains a putative virion protein domain and an unusual C-terminal transmembrane domain (TMD). Turbidity reduction assays and liquid chromatography-mass spectrometry using purified peptidoglycan showed that the virion protein domain of M4Lys has peptidoglycan lysis activity. In vitro overproduction of M4Lys in Escherichia coli revealed that M4Lys alone caused rapid cell lysis. Treatment of E. coli with a Sec inhibitor did not inhibit the lysis activity of M4Lys, indicating that the Sec pathway is not involved in M4Lys-mediated cell lysis. Truncation of the TMD eliminated the cell lysis phenomenon, while production of the TMD alone did not induce the cell lysis. All these findings demonstrate that M4Lys is a novel endolysin that has a unique mosaic structure distinct from other canonical endolysins and the TMD plays a critical role in M4Lys-mediated in vitro cell lysis.
Collapse
Affiliation(s)
- Jaewoo Bai
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea;
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Division of Applied Food System, Major in Food Science & Technology, Seoul Women’s University, Seoul 01797, Korea
| | - Sangmi Lee
- Department of Food and Nutrition, Chungbuk National University, Cheongju, Chungbuk 28644, Korea;
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea;
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
- Correspondence:
| |
Collapse
|
39
|
Complete Genome Sequence of Citrobacter freundii Siphophage Sazh. Microbiol Resour Announc 2019; 8:8/50/e01317-19. [PMID: 31831614 PMCID: PMC6908799 DOI: 10.1128/mra.01317-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As an opportunistic pathogen, Citrobacter freundii is involved in a wide spectrum of nosocomial infections. C. freundii phages may prove useful as therapeutics for treating infections caused by multidrug-resistant C. freundii strains. Here, we report the complete genome sequence of C. freundii siphophage Sazh, which is closely related to Enterobacteria phages T1 and TLS. As an opportunistic pathogen, Citrobacter freundii is involved in a wide spectrum of nosocomial infections. C. freundii phages may prove useful as therapeutics for treating infections caused by multidrug-resistant C. freundii strains. Here, we report the complete genome sequence of C. freundii siphophage Sazh, which is closely related to Enterobacteria phages T1 and TLS.
Collapse
|
40
|
Valero‐Rello A. Diversity, specificity and molecular evolution of the lytic arsenal of
Pseudomonas
phages:
in silico
perspective. Environ Microbiol 2019; 21:4136-4150. [DOI: 10.1111/1462-2920.14767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 01/21/2023]
|
41
|
Cao Y, Li S, Wang D, Zhao J, Xu L, Liu H, Lu T, Mou Z. Genomic characterization of a novel virulent phage infecting the Aeromonas hydrophila isolated from rainbow trout (Oncorhynchus mykiss). Virus Res 2019; 273:197764. [PMID: 31550486 DOI: 10.1016/j.virusres.2019.197764] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022]
Abstract
The virulent bacteriophage MJG that specifically infects Aeromonas hydrophila was isolated from a water sample from a river in Harbin, China. The genome of phage MJG was a double-stranded linear DNA with 45,057 bp, possessing 50.11% GC content. No virulence or resistance genes were found in the phage genome. Morphological observation, genomic characterization, and phylogenetic analysis indicated that MJG was closely related to phages belonging to the genus Sp6virus in the Podoviridae family. This phage is a novel member within Sp6virus that could infect and lyse A. hydrophila. This study could serve as a genomic reference of A. hydrophila phages and provide a potential agent for phage therapy.
Collapse
Affiliation(s)
- Yongsheng Cao
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China; Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, 130 Jinzhu West Road, Lhasa, 850002, Tibet, China.
| | - Shaowu Li
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Di Wang
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Jingzhuang Zhao
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Liming Xu
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Hongbai Liu
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Tongyan Lu
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Zhenbo Mou
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, 130 Jinzhu West Road, Lhasa, 850002, Tibet, China.
| |
Collapse
|
42
|
Escobedo S, Campelo AB, Wegmann U, García P, Rodríguez A, Martínez B. Insight into the Lytic Functions of the Lactococcal Prophage TP712. Viruses 2019; 11:v11100881. [PMID: 31546996 PMCID: PMC6832245 DOI: 10.3390/v11100881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 01/16/2023] Open
Abstract
The lytic cassette of Lactococcus lactis prophage TP712 contains a putative membrane protein of unknown function (Orf54), a holin (Orf55), and a modular endolysin with a N-terminal glycoside hydrolase (GH_25) catalytic domain and two C-terminal LysM domains (Orf56, LysTP712). In this work, we aimed to study the mode of action of the endolysin LysTP712. Inducible expression of the holin-endolysin genes seriously impaired growth. The growth of lactococcal cells overproducing the endolysin LysTP712 alone was only inhibited upon the dissipation of the proton motive force by the pore-forming bacteriocin nisin. Processing of a 26-residues signal peptide is required for LysTP712 activation, since a truncated version without the signal peptide did not impair growth after membrane depolarization. Moreover, only the mature enzyme displayed lytic activity in zymograms, while no lytic bands were observed after treatment with the Sec inhibitor sodium azide. LysTP712 might belong to the growing family of multimeric endolysins. A C-terminal fragment was detected during the purification of LysTP712. It is likely to be synthesized from an alternative internal translational start site located upstream of the cell wall binding domain in the lysin gene. Fractions containing this fragment exhibited enhanced activity against lactococcal cells. However, under our experimental conditions, improved in vitro inhibitory activity of the enzyme was not observed upon the supplementation of additional cell wall binding domains in. Finally, our data pointed out that changes in the lactococcal cell wall, such as the degree of peptidoglycan O-acetylation, might hinder the activity of LysTP712. LysTP712 is the first secretory endolysin from a lactococcal phage described so far. The results also revealed how the activity of LysTP712 might be counteracted by modifications of the bacterial peptidoglycan, providing guidelines to exploit the biotechnological potential of phage endolysins within industrially relevant lactococci and, by extension, other bacteria.
Collapse
Affiliation(s)
- Susana Escobedo
- Dairy Safe group, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), 28014 Madrid, Spain
| | - Ana Belén Campelo
- Dairy Safe group, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), 28014 Madrid, Spain
| | - Udo Wegmann
- School of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, UK
| | - Pilar García
- Dairy Safe group, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), 28014 Madrid, Spain
| | - Ana Rodríguez
- Dairy Safe group, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), 28014 Madrid, Spain
| | - Beatriz Martínez
- Dairy Safe group, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), 28014 Madrid, Spain.
| |
Collapse
|
43
|
Ahammad T, Drew DL, Sahu ID, Serafin RA, Clowes KR, Lorigan GA. Continuous Wave Electron Paramagnetic Resonance Spectroscopy Reveals the Structural Topology and Dynamic Properties of Active Pinholin S 2168 in a Lipid Bilayer. J Phys Chem B 2019; 123:8048-8056. [PMID: 31478671 DOI: 10.1021/acs.jpcb.9b06480] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pinholin S2168 is an essential part of the phage Φ21 lytic protein system to release the virus progeny at the end of the infection cycle. It is known as the simplest natural timing system for its precise control of hole formation in the inner cytoplasmic membrane. Pinholin S2168 is a 68 amino acid integral membrane protein consisting of two transmembrane domains (TMDs) called TMD1 and TMD2. Despite its biological importance, structural and dynamic information of the S2168 protein in a membrane environment is not well understood. Systematic site-directed spin labeling and continuous wave electron paramagnetic resonance (CW-EPR) spectroscopic studies of pinholin S2168 in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) proteoliposomes are used to reveal the structural topology and dynamic properties in a native-like environment. CW-EPR spectral line-shape analysis of the R1 side chain for 39 residue positions of S2168 indicates that the TMDs have more restricted mobility when compared to the N- and C-termini. CW-EPR power saturation data indicate that TMD1 partially externalizes from the lipid bilayer and interacts with the membrane surface, whereas TMD2 remains buried in the lipid bilayer in the active conformation of pinholin S2168. A tentative structural topology model of pinholin S2168 is also suggested based on EPR spectroscopic data reported in this study.
Collapse
Affiliation(s)
- Tanbir Ahammad
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Daniel L Drew
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Rachel A Serafin
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Katherine R Clowes
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| |
Collapse
|
44
|
Abstract
The formation of disulfide bonds is critical to the folding of many extracytoplasmic proteins in all domains of life. With the discovery in the early 1990s that disulfide bond formation is catalyzed by enzymes, the field of oxidative folding of proteins was born. Escherichia coli played a central role as a model organism for the elucidation of the disulfide bond-forming machinery. Since then, many of the enzymatic players and their mechanisms of forming, breaking, and shuffling disulfide bonds have become understood in greater detail. This article summarizes the discoveries of the past 3 decades, focusing on disulfide bond formation in the periplasm of the model prokaryotic host E. coli.
Collapse
Affiliation(s)
| | - Dana Boyd
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
45
|
Abstract
Antibiotic resistance is arguably the biggest current threat to global health. An increasing number of infections are becoming harder or almost impossible to treat, carrying high morbidity, mortality, and financial cost. The therapeutic use of bacteriophages, viruses that infect and kill bacteria, is well suited to be part of the multidimensional strategies to combat antibiotic resistance. Although phage therapy was first implemented almost a century ago, it was brought to a standstill after the successful introduction of antibiotics. Now, with the rise of antibiotic resistance, phage therapy is experiencing a well-deserved rebirth. Among the admittedly vast literature recently published on this topic, this review aims to provide a forward-looking perspective on phage therapy and its role in modern society. We cover the key points of the antibiotic resistance crisis and then explain the biological and evolutionary principles that support the use of phages, their interaction with the immune system, and a comparison with antibiotic therapy. By going through up-to-date reports and, whenever possible, human clinical trials, we examine the versatility of phage therapy. We discuss conventional approaches as well as novel strategies, including the use of phage-antibiotic combinations, phage-derived enzymes, exploitation of phage resistance mechanisms, and phage bioengineering. Finally, we discuss the benefits of phage therapy beyond the clinical perspective, including opportunities for scientific outreach and effective education, interdisciplinary collaboration, cultural and economic growth, and even innovative use of social media, making the case that phage therapy is more than just an alternative to antibiotics.
Collapse
|
46
|
Drew DL, Ahammad T, Serafin RA, Butcher BJ, Clowes KR, Drake Z, Sahu ID, McCarrick RM, Lorigan GA. Solid phase synthesis and spectroscopic characterization of the active and inactive forms of bacteriophage S 21 pinholin protein. Anal Biochem 2018; 567:14-20. [PMID: 30528914 DOI: 10.1016/j.ab.2018.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 01/06/2023]
Abstract
The mechanism for the lysis pathway of double-stranded DNA bacteriophages involves a small hole-forming class of membrane proteins, the holins. This study focuses on a poorly characterized class of holins, the pinholin, of which the S21 protein of phage ϕ21 is the prototype. Here we report the first in vitro synthesis of the wildtype form of the S21 pinholin, S2168, and negative-dominant mutant form, S21IRS, both prepared using solid phase peptide synthesis and studied using biophysical techniques. Both forms of the pinholin were labeled with a nitroxide spin label and successfully incorporated into both bicelles and multilamellar vesicles which are membrane mimetic systems. Circular dichroism revealed the two forms were both >80% alpha helical, in agreement with the predictions based on the literature. The molar ellipticity ratio [θ]222/[θ]208 for both forms of the pinholin was 1.4, suggesting a coiled-coil tertiary structure in the bilayer consistent with the proposed oligomerization step in models for the mechanism of hole formation. 31P solid-state NMR spectroscopic data on pinholin indicate a strong interaction of both forms of the pinholin with the membrane headgroups. The 31P NMR data has an axially symmetric line shape which is consistent with lamellar phase proteoliposomes lipid mimetics.
Collapse
Affiliation(s)
- Daniel L Drew
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Tanbir Ahammad
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Rachel A Serafin
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Brandon J Butcher
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Katherine R Clowes
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Zachary Drake
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA.
| |
Collapse
|
47
|
Abstract
The first steps in phage lysis involve a temporally controlled permeabilization of the cytoplasmic membrane followed by enzymatic degradation of the peptidoglycan. For Caudovirales of Gram-negative hosts, there are two different systems: the holin-endolysin and pinholin-SAR endolysin pathways. In the former, lysis is initiated when the holin forms micron-scale holes in the inner membrane, releasing active endolysin into the periplasm to degrade the peptidoglycan. In the latter, lysis begins when the pinholin causes depolarization of the membrane, which activates the secreted SAR endolysin. Historically, the disruption of the first two barriers of the cell envelope was thought to be necessary and sufficient for lysis of Gram-negative hosts. However, recently a third functional class of lysis proteins, the spanins, has been shown to be required for outer membrane disruption. Spanins are so named because they form a protein bridge that connects both membranes. Most phages produce a two-component spanin complex, composed of an outer membrane lipoprotein (o-spanin) and an inner membrane protein (i-spanin) with a predominantly coiled-coil periplasmic domain. Some phages have a different type of spanin which spans the periplasm as a single molecule, by virtue of an N-terminal lipoprotein signal and a C-terminal transmembrane domain. Evidence is reviewed supporting a model in which the spanins function by fusing the inner membrane and outer membrane. Moreover, it is proposed that spanin function is inhibited by the meshwork of the peptidoglycan, thus coupling the spanin step to the first two steps mediated by the holin and endolysin.
Collapse
Affiliation(s)
- Jesse Cahill
- Department of Biochemistry & Biophysics, Center of Phage Technology, Texas A&M University, College Station, TX, United States.
| | - Ry Young
- Department of Biochemistry & Biophysics, Center of Phage Technology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
48
|
Catalão MJ, Pimentel M. Mycobacteriophage Lysis Enzymes: Targeting the Mycobacterial Cell Envelope. Viruses 2018; 10:E428. [PMID: 30110929 PMCID: PMC6116114 DOI: 10.3390/v10080428] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/07/2018] [Accepted: 08/12/2018] [Indexed: 01/18/2023] Open
Abstract
Mycobacteriophages are viruses that specifically infect mycobacteria, which ultimately culminate in host cell death. Dedicated enzymes targeting the complex mycobacterial cell envelope arrangement have been identified in mycobacteriophage genomes, thus being potential candidates as antibacterial agents. These comprise lipolytic enzymes that target the mycolic acid-containing outer membrane and peptidoglycan hydrolases responsive to the atypical mycobacterial peptidoglycan layer. In the recent years, a remarkable progress has been made, particularly on the comprehension of the mechanisms of bacteriophage lysis proteins activity and regulation. Notwithstanding, information about mycobacteriophages lysis strategies is limited and is mainly represented by the studies performed with mycobacteriophage Ms6. Since mycobacteriophages target a specific group of bacteria, which include Mycobacterium tuberculosis responsible for one of the leading causes of death worldwide, exploitation of the use of these lytic enzymes demands a special attention, as they may be an alternative to tackle multidrug resistant tuberculosis. This review focuses on the current knowledge of the function of lysis proteins encoded by mycobacteriophages and their potential applications, which may contribute to increasing the effectiveness of antimycobacterial therapy.
Collapse
Affiliation(s)
- Maria João Catalão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| | - Madalena Pimentel
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| |
Collapse
|
49
|
Enzymes and Mechanisms Employed by Tailed Bacteriophages to Breach the Bacterial Cell Barriers. Viruses 2018; 10:v10080396. [PMID: 30060520 PMCID: PMC6116005 DOI: 10.3390/v10080396] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 01/07/2023] Open
Abstract
Monoderm bacteria possess a cell envelope made of a cytoplasmic membrane and a cell wall, whereas diderm bacteria have and extra lipid layer, the outer membrane, covering the cell wall. Both cell types can also produce extracellular protective coats composed of polymeric substances like, for example, polysaccharidic capsules. Many of these structures form a tight physical barrier impenetrable by phage virus particles. Tailed phages evolved strategies/functions to overcome the different layers of the bacterial cell envelope, first to deliver the genetic material to the host cell cytoplasm for virus multiplication, and then to release the virion offspring at the end of the reproductive cycle. There is however a major difference between these two crucial steps of the phage infection cycle: virus entry cannot compromise cell viability, whereas effective virion progeny release requires host cell lysis. Here we present an overview of the viral structures, key protein players and mechanisms underlying phage DNA entry to bacteria, and then escape of the newly-formed virus particles from infected hosts. Understanding the biological context and mode of action of the phage-derived enzymes that compromise the bacterial cell envelope may provide valuable information for their application as antimicrobials.
Collapse
|
50
|
Buttimer C, Born Y, Lucid A, Loessner MJ, Fieseler L, Coffey A. Erwinia amylovora phage vB_EamM_Y3 represents another lineage of hairy Myoviridae. Res Microbiol 2018; 169:505-514. [PMID: 29777834 DOI: 10.1016/j.resmic.2018.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/23/2018] [Indexed: 10/16/2022]
Abstract
To date, a small number of jumbo myoviruses have been reported to possess atypical whisker-like structures along the surface of their contractile tails. Erwinia amylovora phage vB_EamM_Y3 is another example. It possesses a genome of 261,365 kbp with 333 predicted ORFs. Using a combination of BLASTP, Interproscan and HHpred, about 21% of its putative proteins could be assigned functions involved in nucleotide metabolism, DNA replication, virion structure and cell wall degradation. The phage was found to have a signal-arrest-release (SAR) endolysin (Y3_301) possessing a soluble lytic transglycosylase domain. Like other SAR endolysins, inducible expression of Y3_301 caused Escherichia coli lysis, which is dependent on the presence of an N-terminal signal sequence. Phylogenetic analysis showed that its closest relatives are other jumbo phages including Pseudomonas aeruginosa phage PaBG and P. putida phage Lu11, sharing 105 and 87 homologous proteins respectively. Like these phages, Y3 also shares a distant relationship to Ralstonia solanacearum phage ΦRSL1 (sharing 55 homologous proteins). As these phages are unrelated to the Rak2-like group of hairy phages, Y3 along with Lu11 represent a second lineage of hairy myoviruses.
Collapse
Affiliation(s)
- Colin Buttimer
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland.
| | - Yannick Born
- Institute of Food, Nutrition, and Health, ETH Zurich, Zürich, Switzerland; Agroscope, Research Division Plant Protection, Wädenswil, Switzerland.
| | - Alan Lucid
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Martin J Loessner
- Institute of Food, Nutrition, and Health, ETH Zurich, Zürich, Switzerland.
| | - Lars Fieseler
- Institute of Food, Nutrition, and Health, ETH Zurich, Zürich, Switzerland.
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland; APC Microbiome Institute, University College, Cork, Ireland.
| |
Collapse
|