1
|
Suzuki T, Ogizawa A, Ishiguro K, Nagao A. Biogenesis and roles of tRNA queuosine modification and its glycosylated derivatives in human health and diseases. Cell Chem Biol 2024:S2451-9456(24)00462-8. [PMID: 39657672 DOI: 10.1016/j.chembiol.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/12/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024]
Abstract
Various types of post-transcriptional modifications contribute to physiological functions by regulating the abundance and function of RNAs. In particular, tRNAs have the widest variety and largest number of modifications, with crucial roles in protein synthesis. Queuosine (Q) is a characteristic tRNA modification with a 7-deazaguanosine core structure bearing a bulky side chain with a cyclopentene group. Q and its derivatives are found in the anticodon of specific tRNAs in both bacteria and eukaryotes. In metazoan tRNAs, Q is further glycosylated with galactose or mannose. The functions of these glycosylated Qs remained unknown for nearly half a century since their discovery. Recently, our group identified the glycosyltransferases responsible for these tRNA modifications and elucidated their biological roles. We, here, review the biochemical and physiological functions of Q and its glycosylated derivatives as well as their associations with human diseases, including cancer and inflammatory and neurological diseases.
Collapse
Affiliation(s)
- Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Atsuya Ogizawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kensuke Ishiguro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
2
|
Delgado S, Armijo Á, Bravo V, Orellana O, Salazar JC, Katz A. Impact of the chemical modification of tRNAs anticodon loop on the variability and evolution of codon usage in proteobacteria. Front Microbiol 2024; 15:1412318. [PMID: 39161601 PMCID: PMC11332805 DOI: 10.3389/fmicb.2024.1412318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/27/2024] [Indexed: 08/21/2024] Open
Abstract
Despite the highly conserved nature of the genetic code, the frequency of usage of each codon can vary significantly. The evolution of codon usage is shaped by two main evolutionary forces: mutational bias and selection pressures. These pressures can be driven by environmental factors, but also by the need for efficient translation, which depends heavily on the concentration of transfer RNAs (tRNAs) within the cell. The data presented here supports the proposal that tRNA modifications play a key role in shaping the overall preference of codon usage in proteobacteria. Interestingly, some codons, such as CGA and AGG (encoding arginine), exhibit a surprisingly low level of variation in their frequency of usage, even across genomes with differing GC content. These findings suggest that the evolution of GC content in proteobacterial genomes might be primarily driven by changes in the usage of a specific subset of codons, whose usage is itself influenced by tRNA modifications.
Collapse
Affiliation(s)
| | - Álvaro Armijo
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Verónica Bravo
- Programa Centro de Investigacion Biomédica y Aplicada, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Omar Orellana
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan Carlos Salazar
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Assaf Katz
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
3
|
de Crécy-Lagard V, Hutinet G, Cediel-Becerra JDD, Yuan Y, Zallot R, Chevrette MG, Ratnayake RMMN, Jaroch M, Quaiyum S, Bruner S. Biosynthesis and function of 7-deazaguanine derivatives in bacteria and phages. Microbiol Mol Biol Rev 2024; 88:e0019923. [PMID: 38421302 PMCID: PMC10966956 DOI: 10.1128/mmbr.00199-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
SUMMARYDeazaguanine modifications play multifaceted roles in the molecular biology of DNA and tRNA, shaping diverse yet essential biological processes, including the nuanced fine-tuning of translation efficiency and the intricate modulation of codon-anticodon interactions. Beyond their roles in translation, deazaguanine modifications contribute to cellular stress resistance, self-nonself discrimination mechanisms, and host evasion defenses, directly modulating the adaptability of living organisms. Deazaguanine moieties extend beyond nucleic acid modifications, manifesting in the structural diversity of biologically active natural products. Their roles in fundamental cellular processes and their presence in biologically active natural products underscore their versatility and pivotal contributions to the intricate web of molecular interactions within living organisms. Here, we discuss the current understanding of the biosynthesis and multifaceted functions of deazaguanines, shedding light on their diverse and dynamic roles in the molecular landscape of life.
Collapse
Affiliation(s)
- Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
- University of Florida Genetics Institute, Gainesville, Florida, USA
| | - Geoffrey Hutinet
- Department of Biology, Haverford College, Haverford, Pennsylvania, USA
| | | | - Yifeng Yuan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Rémi Zallot
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Marc G. Chevrette
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | | | - Marshall Jaroch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Samia Quaiyum
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Steven Bruner
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Lewis AM, Fallon T, Dittemore GA, Sheppard K. Evolution and variation in amide aminoacyl-tRNA synthesis. IUBMB Life 2024. [PMID: 38391119 DOI: 10.1002/iub.2811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
The amide proteogenic amino acids, asparagine and glutamine, are two of the twenty amino acids used in translation by all known life. The aminoacyl-tRNA synthetases for asparagine and glutamine, asparaginyl-tRNA synthetase and glutaminyl tRNA synthetase, evolved after the split in the last universal common ancestor of modern organisms. Before that split, life used two-step indirect pathways to synthesize asparagine and glutamine on their cognate tRNAs to form the aminoacyl-tRNA used in translation. These two-step pathways were retained throughout much of the bacterial and archaeal domains of life and eukaryotic organelles. The indirect routes use non-discriminating aminoacyl-tRNA synthetases (non-discriminating aspartyl-tRNA synthetase and non-discriminating glutamyl-tRNA synthetase) to misaminoacylate the tRNA. The misaminoacylated tRNA formed is then transamidated into the amide aminoacyl-tRNA used in protein synthesis by tRNA-dependent amidotransferases (GatCAB and GatDE). The enzymes and tRNAs involved assemble into complexes known as transamidosomes to help maintain translational fidelity. These pathways have evolved to meet the varied cellular needs across a diverse set of organisms, leading to significant variation. In certain bacteria, the indirect pathways may provide a means to adapt to cellular stress by reducing the fidelity of protein synthesis. The retention of these indirect pathways versus acquisition of asparaginyl-tRNA synthetase and glutaminyl tRNA synthetase in lineages likely involves a complex interplay of the competing uses of glutamine and asparagine beyond translation, energetic costs, co-evolution between enzymes and tRNA, and involvement in stress response that await further investigation.
Collapse
Affiliation(s)
- Alexander M Lewis
- Chemistry Department, Skidmore College, Saratoga Springs, New York, USA
| | - Trevor Fallon
- Chemistry Department, Skidmore College, Saratoga Springs, New York, USA
| | | | - Kelly Sheppard
- Chemistry Department, Skidmore College, Saratoga Springs, New York, USA
| |
Collapse
|
5
|
Pichler A, Hillmeier M, Heiss M, Peev E, Xefteris S, Steigenberger B, Thoma I, Müller M, Borsò M, Imhof A, Carell T. Synthesis and Structure Elucidation of Glutamyl-Queuosine. J Am Chem Soc 2023; 145:25528-25532. [PMID: 37967838 PMCID: PMC10690763 DOI: 10.1021/jacs.3c10075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023]
Abstract
Queuosine is one of the most complex hypermodified RNA nucleosides found in the Wobble position of tRNAs. In addition to Queuosine itself, several further modified derivatives are known, where the cyclopentene ring structure is additionally modified by a galactosyl-, a mannosyl-, or a glutamyl-residue. While sugar-modified Queuosine derivatives are found in the tRNAs of vertebrates, glutamylated Queuosine (gluQ) is only known in bacteria. The exact structure of gluQ, particularly with respect to how and where the glutamyl side chain is connected to the Queuosine cyclopentene side chain, is unknown. Here we report the first synthesis of gluQ and, using UHPLC-MS-coinjection and NMR studies, we show that the isolated natural gluQ is the α-allyl-connected gluQ compound.
Collapse
Affiliation(s)
- Alexander Pichler
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Markus Hillmeier
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Matthias Heiss
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Elsa Peev
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Stylianos Xefteris
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Barbara Steigenberger
- Mass
Spectrometry Core Facility, Max Planck Institute
of Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Planegg, Germany
| | - Ines Thoma
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Markus Müller
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Marco Borsò
- Department
of Molecular Biology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, Martinsried, 82152 Planegg, Germany
| | - Axel Imhof
- Department
of Molecular Biology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, Martinsried, 82152 Planegg, Germany
| | - Thomas Carell
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
6
|
Krahn N, Söll D, Vargas-Rodriguez O. Diversification of aminoacyl-tRNA synthetase activities via genomic duplication. Front Physiol 2022; 13:983245. [PMID: 36060688 PMCID: PMC9437257 DOI: 10.3389/fphys.2022.983245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Intricate evolutionary events enabled the emergence of the full set of aminoacyl-tRNA synthetase (aaRS) families that define the genetic code. The diversification of aaRSs has continued in organisms from all domains of life, yielding aaRSs with unique characteristics as well as aaRS-like proteins with innovative functions outside translation. Recent bioinformatic analyses have revealed the extensive occurrence and phylogenetic diversity of aaRS gene duplication involving every synthetase family. However, only a fraction of these duplicated genes has been characterized, leaving many with biological functions yet to be discovered. Here we discuss how genomic duplication is associated with the occurrence of novel aaRSs and aaRS-like proteins that provide adaptive advantages to their hosts. We illustrate the variety of activities that have evolved from the primordial aaRS catalytic sites. This precedent underscores the need to investigate currently unexplored aaRS genomic duplications as they may hold a key to the discovery of exciting biological processes, new drug targets, important bioactive molecules, and tools for synthetic biology applications.
Collapse
Affiliation(s)
- Natalie Krahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
7
|
Kesh K, Mendez R, Mateo-Victoriano B, Garrido VT, Durden B, Gupta VK, Oliveras Reyes A, Merchant N, Datta J, Banerjee S, Banerjee S. Obesity enriches for tumor protective microbial metabolites and treatment refractory cells to confer therapy resistance in PDAC. Gut Microbes 2022; 14:2096328. [PMID: 35816618 PMCID: PMC9275504 DOI: 10.1080/19490976.2022.2096328] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity causes chronic inflammation and changes in gut microbiome. However, how this contributes to poor survival and therapy resistance in patients with pancreatic cancer remain undetermined. Our current study shows that high fat diet-fed obese pancreatic tumor bearing mice do not respond to standard of care therapy with gemcitabine and paclitaxel when compared to corresponding control diet-fed mice. C57BL6 mice were put on control and high fat diet for 1 month following with pancreatic tumors were implanted in both groups. Microbiome of lean (control) and obese (high fat diet fed) mice was analyzed. Fecal matter transplant from control mice to obese mice sensitized tumors to chemotherapy and demonstrated extensive cell death. Analysis of gut microbiome showed an enrichment of queuosine (Q) producing bacteria in obese mice and an enrichment of S-adenosyl methionine (SAM) producing bacteria in control diet-fed mice. Further, supplementation of obese animals with SAM sensitized pancreatic tumors to chemotherapy. Treatment of pancreatic cancer cells with Q increased PRDX1 involved in oxidative stress protection. In parallel, tumors in obese mice showed increase in CD133+ treatment refractory tumor populations compared to control animals. These observations indicated that microbial metabolite Q accumulation in high fat diet-fed mice protected tumors from chemotherapy induced oxidative stress by upregulating PRDX1. This protection could be reversed by treatment with SAM. We conclude that relative concentration of SAM and queuosine in fecal samples of pancreatic cancer patients can be developed as a potential biomarker and therapeutic target in chemotherapy refractory pancreatic cancer.
Collapse
Affiliation(s)
- Kousik Kesh
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Roberto Mendez
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | | | - Vanessa T Garrido
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Brittany Durden
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Vineet K Gupta
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | | | - Nipun Merchant
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Jashodeep Datta
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Santanu Banerjee
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
- Miami Integrative Metabolomics Research Center, University of Miami, Miami, FL, USA
| | - Sulagna Banerjee
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| |
Collapse
|
8
|
de Crécy-Lagard V, Ross RL, Jaroch M, Marchand V, Eisenhart C, Brégeon D, Motorin Y, Limbach PA. Survey and Validation of tRNA Modifications and Their Corresponding Genes in Bacillus subtilis sp Subtilis Strain 168. Biomolecules 2020; 10:E977. [PMID: 32629984 PMCID: PMC7408541 DOI: 10.3390/biom10070977] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/14/2022] Open
Abstract
Extensive knowledge of both the nature and position of tRNA modifications in all cellular tRNAs has been limited to two bacteria, Escherichia coli and Mycoplasma capricolum. Bacillus subtilis sp subtilis strain 168 is the model Gram-positive bacteria and the list of the genes involved in tRNA modifications in this organism is far from complete. Mass spectrometry analysis of bulk tRNA extracted from B. subtilis, combined with next generation sequencing technologies and comparative genomic analyses, led to the identification of 41 tRNA modification genes with associated confidence scores. Many differences were found in this model Gram-positive bacteria when compared to E. coli. In general, B. subtilis tRNAs are less modified than those in E. coli, even if some modifications, such as m1A22 or ms2t6A, are only found in the model Gram-positive bacteria. Many examples of non-orthologous displacements and of variations in the most complex pathways are described. Paralog issues make uncertain direct annotation transfer from E. coli to B. subtilis based on homology only without further experimental validation. This difficulty was shown with the identification of the B. subtilis enzyme that introduces ψ at positions 31/32 of the tRNAs. This work presents the most up to date list of tRNA modification genes in B. subtilis, identifies the gaps in knowledge, and lays the foundation for further work to decipher the physiological role of tRNA modifications in this important model organism and other bacteria.
Collapse
Affiliation(s)
- Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA;
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Robert L. Ross
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Marshall Jaroch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA;
| | - Virginie Marchand
- UMR7365 IMoPA CNRS-UL and UMS2008 CNRS-UL-INSERM, Université de Lorraine, Biopôle UL, 54000 Nancy, France; (V.M.); (Y.M.)
| | - Christina Eisenhart
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (C.E.); (P.A.L.)
| | - Damien Brégeon
- IBPS, Biology of Aging and Adaptation, Sorbonne University, 7 Quai Saint Bernard, CEDEX 05, F-75252 Paris, France;
| | - Yuri Motorin
- UMR7365 IMoPA CNRS-UL and UMS2008 CNRS-UL-INSERM, Université de Lorraine, Biopôle UL, 54000 Nancy, France; (V.M.); (Y.M.)
| | - Patrick A. Limbach
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (C.E.); (P.A.L.)
| |
Collapse
|
9
|
Florentz C, Giegé R. History of tRNA research in strasbourg. IUBMB Life 2019; 71:1066-1087. [PMID: 31185141 DOI: 10.1002/iub.2079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/06/2019] [Indexed: 01/03/2023]
Abstract
The tRNA molecules, in addition to translating the genetic code into protein and defining the second genetic code via their aminoacylation by aminoacyl-tRNA synthetases, act in many other cellular functions and dysfunctions. This article, illustrated by personal souvenirs, covers the history of ~60 years tRNA research in Strasbourg. Typical examples point up how the work in Strasbourg was a two-way street, influenced by and at the same time influencing investigators outside of France. All along, research in Strasbourg has nurtured the structural and functional diversity of tRNA. It produced massive sequence and crystallographic data on tRNA and its partners, thereby leading to a deeper physicochemical understanding of tRNA architecture, dynamics, and identity. Moreover, it emphasized the role of nucleoside modifications and in the last two decades, highlighted tRNA idiosyncrasies in plants and organelles, together with cellular and health-focused aspects. The tRNA field benefited from a rich local academic heritage and a strong support by both university and CNRS. Its broad interlinks to the worldwide community of tRNA researchers opens to an exciting future. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1066-1087, 2019.
Collapse
Affiliation(s)
- Catherine Florentz
- Architecture et Réactivité de l'ARN, UPR 9002, Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, F-67084, 15 rue René Descartes, Strasbourg, France.,Direction de la Recherche et de la Valorisation, Université de Strasbourg, F-67084, 4 rue Blaise Pascal, Strasbourg, France
| | - Richard Giegé
- Architecture et Réactivité de l'ARN, UPR 9002, Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, F-67084, 15 rue René Descartes, Strasbourg, France
| |
Collapse
|
10
|
Bon Ramos A, Bao L, Turner B, de Crécy-Lagard V, Iwata-Reuyl D. QueF-Like, a Non-Homologous Archaeosine Synthase from the Crenarchaeota. Biomolecules 2017; 7:biom7020036. [PMID: 28383498 PMCID: PMC5485725 DOI: 10.3390/biom7020036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 12/17/2022] Open
Abstract
Archaeosine (G+) is a structurally complex modified nucleoside ubiquitous to the Archaea, where it is found in the D-loop of virtually all archaeal transfer RNA (tRNA). Its unique structure, which includes a formamidine group that carries a formal positive charge, and location in the tRNA, led to the proposal that it serves a key role in stabilizing tRNA structure. Although G+ is limited to the Archaea, it is structurally related to the bacterial modified nucleoside queuosine, and the two share homologous enzymes for the early steps of their biosynthesis. In the Euryarchaeota, the last step of the archaeosine biosynthetic pathway involves the amidation of a nitrile group on an archaeosine precursor to give formamidine, a reaction catalyzed by the enzyme Archaeosine Synthase (ArcS). Most Crenarchaeota lack ArcS, but possess two proteins that inversely distribute with ArcS and each other, and are implicated in G+ biosynthesis. Here, we describe biochemical studies of one of these, the protein QueF-like (QueF-L) from Pyrobaculum calidifontis, that demonstrate the catalytic activity of QueF-L, establish where in the pathway QueF-L acts, and identify the source of ammonia in the reaction.
Collapse
Affiliation(s)
- Adriana Bon Ramos
- Department of Chemistry, Portland State University, Portland, OR 97207, USA.
| | - Lide Bao
- Department of Chemistry, Portland State University, Portland, OR 97207, USA.
| | - Ben Turner
- Department of Chemistry, Portland State University, Portland, OR 97207, USA.
| | - Valérie de Crécy-Lagard
- The Department of Microbiology and Cell Science Department, University of Florida, Gainesville, FL 32611, USA.
| | - Dirk Iwata-Reuyl
- Department of Chemistry, Portland State University, Portland, OR 97207, USA.
| |
Collapse
|
11
|
Cross-Talk between Dnmt2-Dependent tRNA Methylation and Queuosine Modification. Biomolecules 2017; 7:biom7010014. [PMID: 28208632 PMCID: PMC5372726 DOI: 10.3390/biom7010014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 12/22/2022] Open
Abstract
Enzymes of the Dnmt2 family of methyltransferases have yielded a number of unexpected discoveries. The first surprise came more than ten years ago when it was realized that, rather than being DNA methyltransferases, Dnmt2 enzymes actually are transfer RNA (tRNA) methyltransferases for cytosine-5 methylation, foremost C38 (m5C38) of tRNAAsp. The second unanticipated finding was our recent discovery of a nutritional regulation of Dnmt2 in the fission yeast Schizosaccharomyces pombe. Significantly, the presence of the nucleotide queuosine in tRNAAsp strongly stimulates Dnmt2 activity both in vivo and in vitro in S. pombe. Queuine, the respective base, is a hypermodified guanine analog that is synthesized from guanosine-5’-triphosphate (GTP) by bacteria. Interestingly, most eukaryotes have queuosine in their tRNA. However, they cannot synthesize it themselves, but rather salvage it from food or from gut microbes. The queuine obtained from these sources comes from the breakdown of tRNAs, where the queuine ultimately was synthesized by bacteria. Queuine thus has been termed a micronutrient. This review summarizes the current knowledge of Dnmt2 methylation and queuosine modification with respect to translation as well as the organismal consequences of the absence of these modifications. Models for the functional cooperation between these modifications and its wider implications are discussed.
Collapse
|
12
|
Katz A, Elgamal S, Rajkovic A, Ibba M. Non-canonical roles of tRNAs and tRNA mimics in bacterial cell biology. Mol Microbiol 2016; 101:545-58. [PMID: 27169680 DOI: 10.1111/mmi.13419] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 12/27/2022]
Abstract
Transfer RNAs (tRNAs) are the macromolecules that transfer activated amino acids from aminoacyl-tRNA synthetases to the ribosome, where they are used for the mRNA guided synthesis of proteins. Transfer RNAs are ancient molecules, perhaps even predating the existence of the translation machinery. Albeit old, these molecules are tremendously conserved, a characteristic that is well illustrated by the fact that some bacterial tRNAs are efficient and specific substrates of eukaryotic aminoacyl-tRNA synthetases and ribosomes. Considering their ancient origin and high structural conservation, it is not surprising that tRNAs have been hijacked during evolution for functions outside of translation. These roles beyond translation include synthetic, regulatory and information functions within the cell. Here we provide an overview of the non-canonical roles of tRNAs and their mimics in bacteria, and discuss some of the common themes that arise when comparing these different functions.
Collapse
Affiliation(s)
- Assaf Katz
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile
| | - Sara Elgamal
- Department of Microbiology and The Center for RNA Biology, Ohio State University, Columbus, Ohio, 43210, USA
| | - Andrei Rajkovic
- Department of Microbiology and The Center for RNA Biology, Ohio State University, Columbus, Ohio, 43210, USA
| | - Michael Ibba
- Department of Microbiology and The Center for RNA Biology, Ohio State University, Columbus, Ohio, 43210, USA
| |
Collapse
|
13
|
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are modular enzymes globally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation. Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g., in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show huge structural plasticity related to function and limited idiosyncrasies that are kingdom or even species specific (e.g., the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS). Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably between distant groups such as Gram-positive and Gram-negative Bacteria. The review focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation, and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulated in last two decades is reviewed, showing how the field moved from essentially reductionist biology towards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRS paralogs (e.g., during cell wall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointed throughout the review and distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
Affiliation(s)
- Richard Giegé
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France
| | - Mathias Springer
- Université Paris Diderot, Sorbonne Cité, UPR9073 CNRS, IBPC, 75005 Paris, France
| |
Collapse
|
14
|
Ravishankar S, Ambady A, Swetha RG, Anbarasu A, Ramaiah S, Sambandamurthy VK. Essentiality Assessment of Cysteinyl and Lysyl-tRNA Synthetases of Mycobacterium smegmatis. PLoS One 2016; 11:e0147188. [PMID: 26794499 PMCID: PMC4721953 DOI: 10.1371/journal.pone.0147188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/30/2015] [Indexed: 12/02/2022] Open
Abstract
Discovery of mupirocin, an antibiotic that targets isoleucyl-tRNA synthetase, established aminoacyl-tRNA synthetase as an attractive target for the discovery of novel antibacterial agents. Despite a high degree of similarity between the bacterial and human aminoacyl-tRNA synthetases, the selectivity observed with mupirocin triggered the possibility of targeting other aminoacyl-tRNA synthetases as potential drug targets. These enzymes catalyse the condensation of a specific amino acid to its cognate tRNA in an energy-dependent reaction. Therefore, each organism is expected to encode at least twenty aminoacyl-tRNA synthetases, one for each amino acid. However, a bioinformatics search for genes encoding aminoacyl-tRNA synthetases from Mycobacterium smegmatis returned multiple genes for glutamyl (GluRS), cysteinyl (CysRS), prolyl (ProRS) and lysyl (LysRS) tRNA synthetases. The pathogenic mycobacteria, namely, Mycobacterium tuberculosis and Mycobacterium leprae, were also found to possess two genes each for CysRS and LysRS. A similar search indicated the presence of additional genes for LysRS in gram negative bacteria as well. Herein, we describe sequence and structural analysis of the additional aminoacyl-tRNA synthetase genes found in M. smegmatis. Characterization of conditional expression strains of Cysteinyl and Lysyl-tRNA synthetases generated in M. smegmatis revealed that the canonical aminoacyl-tRNA synthetase are essential, while the additional ones are not essential for the growth of M. smegmatis.
Collapse
Affiliation(s)
- Sudha Ravishankar
- AstraZeneca India Pvt Ltd, Bellary Road, Hebbal, Bengaluru, 560024, India
| | - Anisha Ambady
- AstraZeneca India Pvt Ltd, Bellary Road, Hebbal, Bengaluru, 560024, India
| | - Rayapadi G. Swetha
- School of Biosciences & Technology, VIT University, Vellore, 632014, India
| | - Anand Anbarasu
- School of Biosciences & Technology, VIT University, Vellore, 632014, India
| | - Sudha Ramaiah
- School of Biosciences & Technology, VIT University, Vellore, 632014, India
| | | |
Collapse
|
15
|
Rubio MÁ, Napolitano M, Ochoa de Alda JAG, Santamaría-Gómez J, Patterson CJ, Foster AW, Bru-Martínez R, Robinson NJ, Luque I. Trans-oligomerization of duplicated aminoacyl-tRNA synthetases maintains genetic code fidelity under stress. Nucleic Acids Res 2015; 43:9905-17. [PMID: 26464444 PMCID: PMC4787780 DOI: 10.1093/nar/gkv1020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/28/2015] [Indexed: 12/23/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) play a key role in deciphering the genetic message by producing charged tRNAs and are equipped with proofreading mechanisms to ensure correct pairing of tRNAs with their cognate amino acid. Duplicated aaRSs are very frequent in Nature, with 25,913 cases observed in 26,837 genomes. The oligomeric nature of many aaRSs raises the question of how the functioning and oligomerization of duplicated enzymes is organized. We characterized this issue in a model prokaryotic organism that expresses two different threonyl-tRNA synthetases, responsible for Thr-tRNA(Thr) synthesis: one accurate and constitutively expressed (T1) and another (T2) with impaired proofreading activity that also generates mischarged Ser-tRNA(Thr). Low zinc promotes dissociation of dimeric T1 into monomers deprived of aminoacylation activity and simultaneous induction of T2, which is active for aminoacylation under low zinc. T2 either forms homodimers or heterodimerizes with T1 subunits that provide essential proofreading activity in trans. These findings evidence that in organisms with duplicated genes, cells can orchestrate the assemblage of aaRSs oligomers that meet the necessities of the cell in each situation. We propose that controlled oligomerization of duplicated aaRSs is an adaptive mechanism that can potentially be expanded to the plethora of organisms with duplicated oligomeric aaRSs.
Collapse
Affiliation(s)
- Miguel Ángel Rubio
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Avda Américo Vespucio 49, E-41092 Seville, Spain
| | - Mauro Napolitano
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Avda Américo Vespucio 49, E-41092 Seville, Spain
| | - Jesús A G Ochoa de Alda
- Facultad de Formación del Profesorado. Universidad de Extremadura, Avda de la Universidad s/n. E-10003, Cáceres, Spain
| | - Javier Santamaría-Gómez
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Avda Américo Vespucio 49, E-41092 Seville, Spain
| | | | | | - Roque Bru-Martínez
- Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, E-03080, Spain
| | | | - Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Avda Américo Vespucio 49, E-41092 Seville, Spain
| |
Collapse
|
16
|
Abstract
Transfer RNA (tRNA) from all organisms on this planet contains modified nucleosides, which are derivatives of the four major nucleosides. tRNA from Escherichia coli/Salmonella enterica contains 31 different modified nucleosides, which are all, except for one (Queuosine[Q]), synthesized on an oligonucleotide precursor, which through specific enzymes later matures into tRNA. The corresponding structural genes for these enzymes are found in mono- and polycistronic operons, the latter of which have a complex transcription and translation pattern. The syntheses of some of them (e.g.,several methylated derivatives) are catalyzed by one enzyme, which is position and base specific, but synthesis of some have a very complex biosynthetic pathway involving several enzymes (e.g., 2-thiouridines, N6-threonyladenosine [t6A],and Q). Several of the modified nucleosides are essential for viability (e.g.,lysidin, t6A, 1-methylguanosine), whereas deficiency in others induces severe growth defects. However, some have no or only a small effect on growth at laboratory conditions. Modified nucleosides that are present in the anticodon loop or stem have a fundamental influence on the efficiency of charging the tRNA, reading cognate codons, and preventing missense and frameshift errors. Those, which are present in the body of the tRNA, have a primarily stabilizing effect on the tRNA. Thus, the ubiquitouspresence of these modified nucleosides plays a pivotal role in the function of the tRNA by their influence on the stability and activity of the tRNA.
Collapse
|
17
|
Ray S, Banerjee V, Blaise M, Banerjee B, Das KP, Kern D, Banerjee R. Critical role of zinc ion on E. coli glutamyl-queuosine-tRNA(Asp) synthetase (Glu-Q-RS) structure and function. Protein J 2014; 33:143-9. [PMID: 24505021 DOI: 10.1007/s10930-014-9546-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glutamyl-queuosine-tRNA(Asp) synthetase (Glu-Q-RS) and glutamyl-tRNA synthetase (GluRS), differ widely by their function although they share close structural resemblance within their catalytic core of GluRS. In particular both Escherichia coli GluRS and Glu-Q-RS contain a single zinc-binding site in their putative tRNA acceptor stem-binding domain. It has been shown that the zinc is crucial for correct positioning of the tRNA(Glu) acceptor-end in the active site of E. coli GluRS. To address the role of zinc ion in Glu-Q-RS, the C101S/C103S Glu-Q-RS variant is constructed. Energy dispersive X-ray fluorescence show that the zinc ion still remained coordinated but the variant became structurally labile and acquired aggregation capacity. The extent of aggregation of the protein is significantly decreased in presence of the small substrates and more particularly by adenosine triphosphate. Addition of zinc increased significantly the solubility of the variant. The aminoacylation assay reveals a decrease in activity of the variant even after addition of zinc as compared to the wild-type, although the secondary structure of the protein is not altered as shown by the Fourier transform infrared spectroscopy study.
Collapse
Affiliation(s)
- Sutapa Ray
- Department of Biotechnology and Dr. BC Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019, India
| | | | | | | | | | | | | |
Collapse
|
18
|
Ray S, Blaise M, Roy B, Ghosh S, Kern D, Banerjee R. Fusion with anticodon binding domain of GluRS is not sufficient to alter the substrate specificity of a chimeric Glu-Q-RS. Protein J 2014; 33:48-60. [PMID: 24374508 DOI: 10.1007/s10930-013-9537-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glutamyl-queuosine-tRNA(Asp) synthetase (Glu-Q-RS) is a paralog of glutamyl-tRNA synthetase (GluRS) and is found in more than forty species of proteobacteria, cyanobacteria, and actinobacteria. Glu-Q-RS shows striking structural similarity with N-terminal catalytic domain of GluRS (NGluRS) but it lacks the C-terminal anticodon binding domain (CGluRS). In spite of structural similarities, Glu-Q-RS and NGluRS differ in their functional properties. Glu-Q-RS glutamylates the Q34 nucleotide of the anticodon of tRNA(Asp) whereas NGluRS constitutes the catalytic domain of GluRS catalyzing the transfer of Glu on the acceptor end of tRNA(Glu). Since NGluRS is able to catalyze aminoacylation of only tRNA(Glu) the glutamylation capacity of tRNA(Asp) by Glu-Q-RS is surprising. To understand the substrate specificity of Glu-Q-RS we undertook a systemic approach by investigating the biophysical and biochemical properties of the NGluRS (1-301), CGluRS (314-471) and Glu-Q-RS-CGluRS, (1-298 of Glu-Q-RS fused to 314-471 from GluRS). Circular dichroism, fluorescence spectroscopy and differential scanning calorimetry analyses revealed absence of N-terminal domain (1-298 of Glu-Q-RS) and C-terminal domain (314-471 from GluRS) communication in chimera, in contrast to the native full length GluRS. The chimeric Glu-Q-RS is still able to aminoacylate tRNA(Asp) but has also the capacity to bind tRNA(Glu). However the chimeric protein is unable to aminoacylate tRNA(Glu) probably as a consequence of the lack of domain-domain communication.
Collapse
Affiliation(s)
- Sutapa Ray
- Department of Biotechnology and Dr. B C Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019, India
| | | | | | | | | | | |
Collapse
|
19
|
Björk GR, Hagervall TG. Transfer RNA Modification: Presence, Synthesis, and Function. EcoSal Plus 2014; 6. [PMID: 26442937 DOI: 10.1128/ecosalplus.esp-0007-2013] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Indexed: 06/05/2023]
Abstract
Transfer RNA (tRNA) from all organisms on this planet contains modified nucleosides, which are derivatives of the four major nucleosides. tRNA from Escherichia coli/Salmonella enterica serovar Typhimurium contains 33 different modified nucleosides, which are all, except one (Queuosine [Q]), synthesized on an oligonucleotide precursor, which by specific enzymes later matures into tRNA. The structural genes for these enzymes are found in mono- and polycistronic operons, the latter of which have a complex transcription and translation pattern. The synthesis of the tRNA-modifying enzymes is not regulated similarly, and it is not coordinated to that of their substrate, the tRNA. The synthesis of some of them (e.g., several methylated derivatives) is catalyzed by one enzyme, which is position and base specific, whereas synthesis of some has a very complex biosynthetic pathway involving several enzymes (e.g., 2-thiouridines, N 6-cyclicthreonyladenosine [ct6A], and Q). Several of the modified nucleosides are essential for viability (e.g., lysidin, ct6A, 1-methylguanosine), whereas the deficiency of others induces severe growth defects. However, some have no or only a small effect on growth at laboratory conditions. Modified nucleosides that are present in the anticodon loop or stem have a fundamental influence on the efficiency of charging the tRNA, reading cognate codons, and preventing missense and frameshift errors. Those that are present in the body of the tRNA primarily have a stabilizing effect on the tRNA. Thus, the ubiquitous presence of these modified nucleosides plays a pivotal role in the function of the tRNA by their influence on the stability and activity of the tRNA.
Collapse
Affiliation(s)
- Glenn R Björk
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| | - Tord G Hagervall
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| |
Collapse
|
20
|
Katz A, Solden L, Zou SB, Navarre WW, Ibba M. Molecular evolution of protein-RNA mimicry as a mechanism for translational control. Nucleic Acids Res 2013; 42:3261-71. [PMID: 24335280 PMCID: PMC3950694 DOI: 10.1093/nar/gkt1296] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Elongation factor P (EF-P) is a conserved ribosome-binding protein that structurally mimics tRNA to enable the synthesis of peptides containing motifs that otherwise would induce translational stalling, including polyproline. In many bacteria, EF-P function requires post-translational modification with (R)-β-lysine by the lysyl-tRNA synthetase paralog PoxA. To investigate how recognition of EF-P by PoxA evolved from tRNA recognition by aminoacyl-tRNA synthetases, we compared the roles of EF-P/PoxA polar contacts with analogous interactions in a closely related tRNA/synthetase complex. PoxA was found to recognize EF-P solely via identity elements in the acceptor loop, the domain of the protein that interacts with the ribosome peptidyl transferase center and mimics the 3'-acceptor stem of tRNA. Although the EF-P acceptor loop residues required for PoxA recognition are highly conserved, their conservation was found to be independent of the phylogenetic distribution of PoxA. This suggests EF-P first evolved tRNA mimicry to optimize interactions with the ribosome, with PoxA-catalyzed aminoacylation evolving later as a secondary mechanism to further improve ribosome binding and translation control.
Collapse
Affiliation(s)
- Assaf Katz
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA, Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada and Ohio State Biochemistry Program, Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
21
|
Gerber HD, Klebe G. Concise and efficient syntheses of preQ1 base, Q base, and (ent)-Q base. Org Biomol Chem 2013; 10:8660-8. [PMID: 23032613 DOI: 10.1039/c2ob26387d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To thoroughly study the functional role of prokaryotic t-RNA-guanine-transglycosylases which are essential in the pathogenesis of shigellosis, novel efficient, high-yielding synthetic approaches for preQ(1) base, Q base, as well as for (ent)-Q base mainly employing cheap and readily available starting materials have been developed. Q base as well as (ent)-Q base are accessible starting from preQ(1) base via nucleophilic substitution reactions with appropriately decorated halocyclopentenyl synthons, prior to that prepared from naturally occurring carbohydrates.
Collapse
Affiliation(s)
- Hans-Dieter Gerber
- Institut für Pharmazeutische Chemie der Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | | |
Collapse
|
22
|
Abstract
Aminoacyl-tRNAsynthetases (aaRSs) are modular enzymesglobally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation.Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g.,in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show hugestructural plasticity related to function andlimited idiosyncrasies that are kingdom or even speciesspecific (e.g.,the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS).Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably betweendistant groups such as Gram-positive and Gram-negative Bacteria.Thereview focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation,and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulatedin last two decades is reviewed,showing how thefield moved from essentially reductionist biologytowards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRSparalogs (e.g., during cellwall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointedthroughout the reviewand distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
|
23
|
Caballero VC, Toledo VP, Maturana C, Fisher CR, Payne SM, Salazar JC. Expression of Shigella flexneri gluQ-rs gene is linked to dksA and controlled by a transcriptional terminator. BMC Microbiol 2012; 12:226. [PMID: 23035718 PMCID: PMC3542578 DOI: 10.1186/1471-2180-12-226] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/11/2012] [Indexed: 12/01/2022] Open
Abstract
Background Glutamyl queuosine-tRNAAsp synthetase (GluQ-RS) is a paralog of the catalytic domain of glutamyl-tRNA synthetase and catalyzes the formation of glutamyl-queuosine on the wobble position of tRNAAsp. Here we analyze the transcription of its gene in Shigella flexneri, where it is found downstream of dksA, which encodes a transcriptional regulator involved in stress responses. Results The genomic organization, dksA-gluQ-rs, is conserved in more than 40 bacterial species. RT-PCR assays show co-transcription of both genes without a significant change in transcript levels during growth of S. flexneri. However, mRNA levels of the intergenic region changed during growth, increasing at stationary phase, indicating an additional level of control over the expression of gluQ-rs gene. Transcriptional fusions with lacZ as a reporter gene only produced β-galactosidase activity when the constructs included the dksA promoter, indicating that gluQ-rs do not have a separate promoter. Using bioinformatics, we identified a putative transcriptional terminator between dksA and gluQ-rs. Deletion or alteration of the predicted terminator resulted in increased expression of the lacZ reporter compared with cells containing the wild type terminator sequence. Analysis of the phenotype of a gluQ-rs mutant suggested that it may play a role in some stress responses, since growth of the mutant was impaired in the presence of osmolytes. Conclusions The results presented here, show that the expression of gluQ-rs depends on the dksA promoter, and strongly suggest the presence and the functionality of a transcriptional terminator regulating its expression. Also, the results indicate a link between glutamyl-queuosine synthesis and stress response in Shigella flexneri.
Collapse
Affiliation(s)
- Valeria C Caballero
- Program of Microbiology and Mycology, Institute of Biomedical Science-ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
24
|
Sauguet L, Moutiez M, Li Y, Belin P, Seguin J, Le Du MH, Thai R, Masson C, Fonvielle M, Pernodet JL, Charbonnier JB, Gondry M. Cyclodipeptide synthases, a family of class-I aminoacyl-tRNA synthetase-like enzymes involved in non-ribosomal peptide synthesis. Nucleic Acids Res 2011; 39:4475-89. [PMID: 21296757 PMCID: PMC3105412 DOI: 10.1093/nar/gkr027] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cyclodipeptide synthases (CDPSs) belong to a newly defined family of enzymes that use aminoacyl-tRNAs (aa-tRNAs) as substrates to synthesize the two peptide bonds of various cyclodipeptides, which are the precursors of many natural products with noteworthy biological activities. Here, we describe the crystal structure of AlbC, a CDPS from Streptomyces noursei. The AlbC structure consists of a monomer containing a Rossmann-fold domain. Strikingly, it is highly similar to the catalytic domain of class-I aminoacyl-tRNA synthetases (aaRSs), especially class-Ic TyrRSs and TrpRSs. AlbC contains a deep pocket, highly conserved among CDPSs. Site-directed mutagenesis studies indicate that this pocket accommodates the aminoacyl moiety of the aa-tRNA substrate in a way similar to that used by TyrRSs to recognize their tyrosine substrates. These studies also suggest that the tRNA moiety of the aa-tRNA interacts with AlbC via at least one patch of basic residues, which is conserved among CDPSs but not present in class-Ic aaRSs. AlbC catalyses its two-substrate reaction via a ping-pong mechanism with a covalent intermediate in which l-Phe is shown to be transferred from Phe-tRNAPhe to an active serine. These findings provide insight into the molecular bases of the interactions between CDPSs and their aa-tRNAs substrates, and the catalytic mechanism used by CDPSs to achieve the non-ribosomal synthesis of cyclodipeptides.
Collapse
Affiliation(s)
- Ludovic Sauguet
- CEA, IBITECS, Service d'Ingénierie Moléculaire des Protéines, F-91191 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Casina VC, Lobashevsky AA, McKinney WE, Brown CL, Alexander RW. Role for a conserved structural motif in assembly of a class I aminoacyl-tRNA synthetase active site. Biochemistry 2011; 50:763-9. [PMID: 21175197 DOI: 10.1021/bi101375d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The catalytic domains of class I aminoacyl-tRNA synthetases are built around a conserved Rossmann nucleotide binding fold, with additional polypeptide domains responsible for tRNA binding or hydrolytic editing of misacylated substrates. Structural comparisons identified a conserved motif bridging the catalytic and anticodon binding domains of class Ia and Ib enzymes. This stem contact fold (SCF) has been proposed to globally orient each enzyme's cognate tRNA by interacting with the inner corner of the L-shaped tRNA. Despite the structural similarity of the SCF among class Ia/Ib enzymes, the sequence conservation is low. We replaced amino acids of the MetRS SCF with portions of the structurally similar glutaminyl-tRNA synthetase (GlnRS) motif or with alanine residues. Chimeric variants retained significant tRNA methionylation activity, indicating that structural integrity of the helix-turn-strand-helix motif contributes more to tRNA aminoacylation than does amino acid identity. In contrast, chimeras were significantly reduced in methionyl adenylate synthesis, suggesting a role for the SCF in formation of a structured active site domain. A highly conserved aspartic acid within the MetRS SCF is proposed to make an electrostatic interaction with an active site lysine; these residues were replaced with alanines or conservative substitutions. Both methionyl adenylate formation and methionine transfer were impaired, and activity was not significantly recovered by making the compensatory double substitution.
Collapse
Affiliation(s)
- Veronica C Casina
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109-7486, United States
| | | | | | | | | |
Collapse
|
26
|
Yanagisawa T, Sumida T, Ishii R, Takemoto C, Yokoyama S. A paralog of lysyl-tRNA synthetase aminoacylates a conserved lysine residue in translation elongation factor P. Nat Struct Mol Biol 2010; 17:1136-43. [DOI: 10.1038/nsmb.1889] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 07/09/2010] [Indexed: 11/10/2022]
|
27
|
PoxA, yjeK, and elongation factor P coordinately modulate virulence and drug resistance in Salmonella enterica. Mol Cell 2010; 39:209-21. [PMID: 20670890 DOI: 10.1016/j.molcel.2010.06.021] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 03/03/2010] [Accepted: 05/14/2010] [Indexed: 11/21/2022]
Abstract
We report an interaction between poxA, encoding a paralog of lysyl tRNA-synthetase, and the closely linked yjeK gene, encoding a putative 2,3-beta-lysine aminomutase, that is critical for virulence and stress resistance in Salmonella enterica. Salmonella poxA and yjeK mutants share extensive phenotypic pleiotropy, including attenuated virulence in mice, an increased ability to respire under nutrient-limiting conditions, hypersusceptibility to a variety of diverse growth inhibitors, and altered expression of multiple proteins, including several encoded on the SPI-1 pathogenicity island. PoxA mediates posttranslational modification of bacterial elongation factor P (EF-P), analogous to the modification of the eukaryotic EF-P homolog, eIF5A, with hypusine. The modification of EF-P is a mechanism of regulation whereby PoxA acts as an aminoacyl-tRNA synthetase that attaches an amino acid to a protein resembling tRNA rather than to a tRNA.
Collapse
|
28
|
Nureki O, O'Donoghue P, Watanabe N, Ohmori A, Oshikane H, Araiso Y, Sheppard K, Söll D, Ishitani R. Structure of an archaeal non-discriminating glutamyl-tRNA synthetase: a missing link in the evolution of Gln-tRNAGln formation. Nucleic Acids Res 2010; 38:7286-97. [PMID: 20601684 PMCID: PMC2978374 DOI: 10.1093/nar/gkq605] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The molecular basis of the genetic code relies on the specific ligation of amino acids to their cognate tRNA molecules. However, two pathways exist for the formation of Gln-tRNAGln. The evolutionarily older indirect route utilizes a non-discriminating glutamyl-tRNA synthetase (ND-GluRS) that can form both Glu-tRNAGlu and Glu-tRNAGln. The Glu-tRNAGln is then converted to Gln-tRNAGln by an amidotransferase. Since the well-characterized bacterial ND-GluRS enzymes recognize tRNAGlu and tRNAGln with an unrelated α-helical cage domain in contrast to the β-barrel anticodon-binding domain in archaeal and eukaryotic GluRSs, the mode of tRNAGlu/tRNAGln discrimination in archaea and eukaryotes was unknown. Here, we present the crystal structure of the Methanothermobacter thermautotrophicus ND-GluRS, which is the evolutionary predecessor of both the glutaminyl-tRNA synthetase (GlnRS) and the eukaryotic discriminating GluRS. Comparison with the previously solved structure of the Escherichia coli GlnRS-tRNAGln complex reveals the structural determinants responsible for specific tRNAGln recognition by GlnRS compared to promiscuous recognition of both tRNAs by the ND-GluRS. The structure also shows the amino acid recognition pocket of GluRS is more variable than that found in GlnRS. Phylogenetic analysis is used to reconstruct the key events in the evolution from indirect to direct genetic encoding of glutamine.
Collapse
Affiliation(s)
- Osamu Nureki
- Department of Basic Medical Sciences, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Novoa EM, Castro de Moura M, Orozco M, Ribas de Pouplana L. A genomics method to identify pathogenicity-related proteins. Application to aminoacyl-tRNA synthetase-like proteins. FEBS Lett 2010; 584:460-6. [PMID: 19913539 DOI: 10.1016/j.febslet.2009.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 11/03/2009] [Accepted: 11/08/2009] [Indexed: 02/05/2023]
Abstract
During their extended evolution genes coding for aminoacyl-tRNA synthetases (ARS) have experienced numerous instances of duplication, insertion and deletion of domains. The ARS-related proteins that have resulted from these genetic events are generally known as aminoacyl-tRNA synthetase-like proteins (ARS-like). This heterogeneous group of polypeptides carries out an equally varied number of functions that need not be related to gene translation. Several of these proteins remain uncharacterized. At least 16 different ARS-like proteins have been identified to date, but their functions remain incompletely understood. Here we review the individual phylogenetic distribution of these proteins in bacteria, and apply a new genomics method to determine their potential implication in pathogenicity.
Collapse
Affiliation(s)
- Eva Maria Novoa
- Institute for Research in Biomedicine (IRB), c/ Baldiri Reixac 15-21, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
30
|
Bailly M, de Crécy-Lagard V. Predicting the pathway involved in post-translational modification of elongation factor P in a subset of bacterial species. Biol Direct 2010; 5:3. [PMID: 20070887 PMCID: PMC2821294 DOI: 10.1186/1745-6150-5-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 01/13/2010] [Indexed: 11/10/2022] Open
Abstract
Background The bacterial elongation factor P (EF-P) is strictly conserved in bacteria and essential for protein synthesis. It is homologous to the eukaryotic translation initiation factor 5A (eIF5A). A highly conserved eIF5A lysine is modified into an unusual amino acid derived from spermidine, hypusine. Hypusine is absolutely required for eIF5A's role in translation in Saccharomyces cerevisiae. The homologous lysine of EF-P is also modified to a spermidine derivative in Escherichia coli. However, the biosynthesis pathway of this modification in the bacterial EF-P is yet to be elucidated. Presentation of the Hypothesis Here we propose a potential mechanism for the post-translational modification of EF-P. By using comparative genomic methods based on physical clustering and phylogenetic pattern analysis, we identified two protein families of unknown function, encoded by yjeA and yjeK genes in E. coli, as candidates for this missing pathway. Based on the analysis of the structural and biochemical properties of both protein families, we propose two potential mechanisms for the modification of EF-P. Testing the hypothesis This hypothesis could be tested genetically by constructing a bacterial strain with a tagged efp gene. The tag would allow the purification of EF-P by affinity chromatography and the analysis of the purified protein by mass spectrometry. yjeA or yjeK could then be deleted in the efp tagged strain and the EF-P protein purified from each mutant analyzed by mass spectrometry for the presence or the absence of the modification. This hypothesis can also be tested by purifying the different components (YjeK, YjeA and EF-P) and reconstituting the pathway in vitro. Implication of the hypothesis The requirement for a fully modified EF-P for protein synthesis in certain bacteria implies the presence of specific post-translational modification mechanism in these organisms. All of the 725 bacterial genomes analyzed, possess an efp gene but only 200 (28%) possess both yjeA and yjeK genes. In the other organisms, EF-P may be modified by another pathway or the translation machinery must have adapted to the lack of EF-P modification. Our hypotheses, if confirmed, will lead to the discovery of a new post-translational modification pathway. Reviewers This article was reviewed by Céline Brochier-Armanet, Igor B. Zhulin and Mikhail Gelfand. For the full reviews, please go to the Reviewers' reports section.
Collapse
Affiliation(s)
- Marc Bailly
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
31
|
Ritschel T, Atmanene C, Reuter K, Van Dorsselaer A, Sanglier-Cianferani S, Klebe G. An Integrative Approach Combining Noncovalent Mass Spectrometry, Enzyme Kinetics and X-ray Crystallography to Decipher Tgt Protein-Protein and Protein-RNA Interaction. J Mol Biol 2009; 393:833-47. [DOI: 10.1016/j.jmb.2009.07.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 07/06/2009] [Accepted: 07/14/2009] [Indexed: 11/29/2022]
|
32
|
Dubois DY, Blais SP, Huot JL, Lapointe J. A C-truncated glutamyl-tRNA synthetase specific for tRNA(Glu) is stimulated by its free complementary distal domain: mechanistic and evolutionary implications. Biochemistry 2009; 48:6012-21. [PMID: 19496540 DOI: 10.1021/bi801690f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Faithful translation of the genetic code is mainly based on the specificity of tRNA aminoacylation catalyzed by aminoacyl-tRNA synthetases. These enzymes are comprised of a catalytic core and several appended domains. Bacterial glutamyl-tRNA synthetases (GluRS) contain five structural domains, the two distal ones interacting with the anticodon arm of tRNA(Glu). Thermus thermophilus GluRS requires the presence of tRNA(Glu) to bind ATP in the proper site for glutamate activation. In order to test the role of these two distal domains in this mechanism, we characterized the in vitro properties of the C-truncated Escherichia coli GluRSs N(1-313) and N(1-362), containing domains 1-3 and 1-4, respectively, and of their N-truncated complements GluRSs C(314-471) (containing domains 4 and 5) and C(363-471) (free domain 5). These C-truncated GluRSs are soluble, aminoacylate specifically tRNA(Glu), and require the presence of tRNA(Glu) to catalyze the activation of glutamate, as does full-length GluRS(1-471). The k(cat) of tRNA glutamylation catalyzed by N(1-362) is about 2000-fold lower than that catalyzed by the full-length E. coli GluRS(1-471). The addition of free domain 5 (C(363-471)) to N(1-362) strongly stimulates this k(cat) value, indicating that covalent connectivity between N(1-362) and domain 5 is not required for GluRS activity; the hyperbolic relationship between domain 5 concentration and this stimulation indicates that these proteins and tRNA(Glu) form a productive complex with a K(d) of about 100 microM. The K(d) values of tRNA(Glu) interactions with the full-length GluRS and with the truncated GluRSs N(1-362) and free domain 5 are 0.48, 0.11, and about 1.2 microM, respectively; no interaction was detected between these two complementary truncated GluRSs. These results suggest that in the presence of these truncated GluRSs, tRNA(Glu) is positioned for efficient aminoacylation by the two following steps: first, it interacts with GluRS N(1-362) via its acceptor-TPsiC stem loop domain and then with free domain 5 via its anticodon-Dstem-biloop domain, which appeared later during evolution. On the other hand, tRNA glutamylation catalyzed by N(1-313) is not stimulated by its complement C(314-471), revealing the importance of the covalent connectivity between domains 3 and 4 for GluRS aminoacylation activity. The K(m) values of N(1-313) and N(1-362) for each of their substrates are similar to those of full-length GluRS. These C-truncated GluRSs recognize only tRNA(Glu). These results confirm the modular nature of GluRS and support the model of a "recent" fusion of domains 4 and 5 to a proto-GluRS containing the catalytic domain and able to recognize its tRNA substrate(s).
Collapse
Affiliation(s)
- Daniel Y Dubois
- Regroupement quebecois de Recherche sur la Fonction, la Structure et l'Ingenierie des Proteines (PROTEO), Departement de Biochimie et de Microbiologie, Universite Laval, Quebec, Quebec, Canada G1K 7P4
| | | | | | | |
Collapse
|
33
|
Luque I, Riera-Alberola ML, Andújar A, Ochoa de Alda JAG. Intraphylum diversity and complex evolution of cyanobacterial aminoacyl-tRNA synthetases. Mol Biol Evol 2008; 25:2369-89. [PMID: 18775898 DOI: 10.1093/molbev/msn197] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A comparative genomic analysis of 35 cyanobacterial strains has revealed that the gene complement of aminoacyl-tRNA synthetases (AARSs) and routes for aminoacyl-tRNA synthesis may differ among the species of this phylum. Several genes encoding AARS paralogues were identified in some genomes. In-depth phylogenetic analysis was done for each of these proteins to gain insight into their evolutionary history. GluRS, HisRS, ArgRS, ThrRS, CysRS, and Glu-Q-RS showed evidence of a complex evolutionary course as indicated by a number of inconsistencies with our reference tree for cyanobacterial phylogeny. In addition to sequence data, support for evolutionary hypotheses involving horizontal gene transfer or gene duplication events was obtained from other observations including biased sequence conservation, the presence of indels (insertions or deletions), or vestigial traces of ancestral redundant genes. We present evidences for a novel protein domain with two putative transmembrane helices recruited independently by distinct AARS in particular cyanobacteria.
Collapse
Affiliation(s)
- Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avda Américo Vespucio, Seville, Spain.
| | | | | | | |
Collapse
|
34
|
Crystal structure of glutamyl-queuosine tRNAAsp synthetase complexed with L-glutamate: structural elements mediating tRNA-independent activation of glutamate and glutamylation of tRNAAsp anticodon. J Mol Biol 2008; 381:1224-37. [PMID: 18602926 DOI: 10.1016/j.jmb.2008.06.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 06/13/2008] [Accepted: 06/19/2008] [Indexed: 11/24/2022]
Abstract
Glutamyl-queuosine tRNA(Asp) synthetase (Glu-Q-RS) from Escherichia coli is a paralog of the catalytic core of glutamyl-tRNA synthetase (GluRS) that catalyzes glutamylation of queuosine in the wobble position of tRNA(Asp). Despite important structural similarities, Glu-Q-RS and GluRS diverge strongly by their functional properties. The only feature common to both enzymes consists in the activation of Glu to form Glu-AMP, the intermediate of transfer RNA (tRNA) aminoacylation. However, both enzymes differ by the mechanism of selection of the cognate amino acid and by the mechanism of its activation. Whereas GluRS selects l-Glu and activates it only in the presence of the cognate tRNA(Glu), Glu-Q-RS forms Glu-AMP in the absence of tRNA. Moreover, while GluRS transfers the activated Glu to the 3' accepting end of the cognate tRNA(Glu), Glu-Q-RS transfers the activated Glu to Q34 located in the anticodon loop of the noncognate tRNA(Asp). In order to gain insight into the structural elements leading to distinct mechanisms of amino acid activation, we solved the three-dimensional structure of Glu-Q-RS complexed to Glu and compared it to the structure of the GluRS.Glu complex. Comparison of the catalytic site of Glu-Q-RS with that of GluRS, combined with binding experiments of amino acids, shows that a restricted number of residues determine distinct catalytic properties of amino acid recognition and activation by the two enzymes. Furthermore, to explore the structural basis of the distinct aminoacylation properties of the two enzymes and to understand why Glu-Q-RS glutamylates only tRNA(Asp) among the tRNAs possessing queuosine in position 34, we performed a tRNA mutational analysis to search for the elements of tRNA(Asp) that determine recognition by Glu-Q-RS. The analyses made on tRNA(Asp) and tRNA(Asn) show that the presence of a C in position 38 is crucial for glutamylation of Q34. The results are discussed in the context of the evolution and adaptation of the tRNA glutamylation system.
Collapse
|
35
|
Stengl B, Meyer EA, Heine A, Brenk R, Diederich F, Klebe G. Crystal Structures of tRNA-guanine Transglycosylase (TGT) in Complex with Novel and Potent Inhibitors Unravel Pronounced Induced-fit Adaptations and Suggest Dimer Formation Upon Substrate Binding. J Mol Biol 2007; 370:492-511. [PMID: 17524419 DOI: 10.1016/j.jmb.2007.04.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 03/30/2007] [Accepted: 04/03/2007] [Indexed: 11/30/2022]
Abstract
The bacterial tRNA-guanine transglycosylase (TGT) is a tRNA modifying enzyme catalyzing the exchange of guanine 34 by the modified base preQ1. The enzyme is involved in the infection pathway of Shigella, causing bacterial dysentery. As no crystal structure of the Shigella enzyme is available the homologous Zymomonas mobilis TGT was used for structure-based drug design resulting in new, potent, lin-benzoguanine-based inhibitors. Thorough kinetic studies show size-dependent inhibition of these compounds resulting in either a competitive or non-competitive blocking of the base exchange reaction in the low micromolar range. Four crystal structures of TGT-inhibitor complexes were determined with a resolution of 1.58-2.1 A. These structures give insight into the structural flexibility of TGT necessary to perform catalysis. In three of the structures molecular rearrangements are observed that match with conformational changes also noticed upon tRNA substrate binding. Several water molecules are involved in these rearrangement processes. Two of them demonstrate the structural and catalytic importance of water molecules during TGT base exchange reaction. In the fourth crystal structure the inhibitor unexpectedly interferes with protein contact formation and crystal packing. In all presently known TGT crystal structures the enzyme forms tightly associated homodimers internally related by crystallographic symmetry. Upon binding of the fourth inhibitor the dimer interface, however, becomes partially disordered. This result prompted further analyses to investigate the relevance of dimer formation for the functional protein. Consultation of the available TGT structures and sequences from different species revealed structural and functional conservation across the contacting residues. This suggests that bacterial and eukaryotic TGT could possibly act as homodimers in catalysis. It is hypothesized that one unit of the dimer performs the catalytic reaction whereas the second is required to recognize and properly orient the bound tRNA for the catalytic reaction.
Collapse
Affiliation(s)
- Bernhard Stengl
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
36
|
RajBhandary UL, Köhrer C. Early days of tRNA research: discovery, function, purification and sequence analysis. J Biosci 2007; 31:439-51. [PMID: 17206064 DOI: 10.1007/bf02705183] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Uttam L RajBhandary
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
37
|
Jackman JE, Phizicky EM. tRNAHis guanylyltransferase adds G-1 to the 5' end of tRNAHis by recognition of the anticodon, one of several features unexpectedly shared with tRNA synthetases. RNA (NEW YORK, N.Y.) 2006; 12:1007-14. [PMID: 16625026 PMCID: PMC1464847 DOI: 10.1261/rna.54706] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
All eukaryotic tRNA(His) molecules are unique among tRNA species because they require addition of a guanine nucleotide at the -1 position by tRNA(His) guanylyltransferase, encoded in yeast by THG1. This G(-1) residue is both necessary and sufficient for aminoacylation of tRNA by histidyl-tRNA synthetase in vitro and is required for aminoacylation in vivo. Although Thg1 is presumed to be highly specific for tRNA(His) to prevent misacylation of tRNAs, the source of this specificity is unknown. We show here that Thg1 is >10,000-fold more selective for its cognate substrate tRNA(His) than for the noncognate substrate tRNA(Phe). We also demonstrate that the GUG anticodon of tRNA(His) is a crucial Thg1 identity element, since alteration of this anticodon in tRNA(His) completely abrogates Thg1 activity, and the simple introduction of this GUG anticodon to any of three noncognate tRNAs results in significant Thg1 activity. For tRNA(Phe), k(cat)/K(M) is improved by at least 200-fold. Thg1 is the only protein other than aminoacyl-tRNA synthetases that is known to use the anticodon as an identity element to discriminate among tRNA species while acting at a remote site on the tRNA, an unexpected link given the lack of any identifiable sequence similarity between these two families of proteins. Moreover, Thg1 and tRNA synthetases share two other features: They act in close proximity to one another at the top of the tRNA aminoacyl-acceptor stem, and the chemistry of their respective reactions is strikingly similar.
Collapse
Affiliation(s)
- Jane E Jackman
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, New York 14642, USA
| | | |
Collapse
|
38
|
Sabina J, Söll D. The RNA-binding PUA domain of archaeal tRNA-guanine transglycosylase is not required for archaeosine formation. J Biol Chem 2006; 281:6993-7001. [PMID: 16407303 DOI: 10.1074/jbc.m512841200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial tRNA-guanine transglycosylase (TGT) replaces the G in position 34 of tRNA with preQ(1), the precursor to the modified nucleoside queuosine. Archaeal TGT, in contrast, substitutes preQ(0) for the G in position 15 of tRNA as the first step in archaeosine formation. The archaeal enzyme is about 60% larger than the bacterial protein; a carboxyl-terminal extension of 230 amino acids contains the PUA domain known to contact the four 3'-terminal nucleotides of tRNA. Here we show that the C-terminal extension of the enzyme is not required for the selection of G15 as the site of base exchange; truncated forms of Pyrococcus furiosus TGT retain their specificity for guanine exchange at position 15. Deletion of the PUA domain causes a 4-fold drop in the observed k(cat) (2.8 x 10(-3) s(-1)) and results in a 75-fold increased K(m) for tRNA(Asp)(1.2 x 10(-5) m) compared with full-length TGT. Mutations in tRNA(Asp) altering or abolishing interactions with the PUA domain can compete with wild-type tRNA(Asp) for binding to full-length and truncated TGT enzymes. Whereas the C-terminal domains do not appear to play a role in selection of the modification site, their relevance for enzyme function and their role in vivo remains to be discovered.
Collapse
Affiliation(s)
- Jeffrey Sabina
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | |
Collapse
|
39
|
Blaise M, Becker HD, Lapointe J, Cambillau C, Giegé R, Kern D. Glu-Q-tRNAAsp synthetase coded by the yadB gene, a new paralog of aminoacyl-tRNA synthetase that glutamylates tRNAAsp anticodon. Biochimie 2005; 87:847-61. [PMID: 16164993 DOI: 10.1016/j.biochi.2005.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2004] [Revised: 02/18/2005] [Accepted: 03/17/2005] [Indexed: 10/25/2022]
Abstract
Analysis of the completed genome sequences revealed presence in various bacteria of an open reading frame (ORF) encoding a polypeptide chain presenting important similarities with the catalytic domain of glutamyl-tRNA synthetases but deprived of the C-terminal anticodon-binding domain. This paralog of glutamyl-tRNA synthetases, the YadB protein, activates glutamate in the absence of tRNA and transfers the activated glutamate not on tRNA(Glu) but instead on tRNA(Asp). It has been shown that tRNA(Asp) is able to accept two amino acids: aspartate charged by aspartyl-tRNA synthetase and glutamate charged by YadB. The functional properties of YadB contrast with those of the canonical glutamyl-tRNA synthetases, which activate Glu only in presence of the cognate tRNA before aminoacylation of the 3'-end of tRNA. Biochemical approaches and mass spectrometry investigations revealed that YadB transfers the activated glutamate on the cyclopenthene-diol ring of the modified nucleoside queuosine posttranscriptionally inserted at the wobble position of the anticodon-loop to form glutamyl-queuosine. Unstability of the ester bond between the glutamate residue and the cyclopenthene-diol (half-life 7.5 min) explains why until now this modification escaped detection. Among Escherichia coli tRNAs containing queuosine in the wobble position, only tRNA(Asp) is substrate of YadB. Sequence comparison reveals a structural mimicry between the anticodon-stem and loop of tRNA(Asp) and the amino acid acceptor-stem of tRNA(Glu). YadB, renamed glutamyl-Q-tRNA(Asp) synthetase, constitutes the first enzyme structurally related to aminoacyl-tRNA synthetases which catalyzes a hypermodification in tRNA, and whose function seems to be conserved among prokaryotes. The discovery of glutamyl-Q-tRNA(Asp) synthetase breaks down the current paradigm according to which the catalytic domain of aminoacyl-tRNA synthetases recognizes the amino acid acceptor-stem of tRNA and aminoacylates the 3'-terminal ribose. The evolutionary significance of the existence of an aminoacyl-tRNA synthetase paralog dedicated to the hypermodification of a tRNA anticodon will be discussed.
Collapse
Affiliation(s)
- Mickael Blaise
- Département Machineries Traductionnelles, UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15, rue René Descartes, 67084 Strasbourg cedex, France
| | | | | | | | | | | |
Collapse
|
40
|
Ikeuchi Y, Soma A, Ote T, Kato JI, Sekine Y, Suzuki T. Molecular Mechanism of Lysidine Synthesis that Determines tRNA Identity and Codon Recognition. Mol Cell 2005; 19:235-46. [PMID: 16039592 DOI: 10.1016/j.molcel.2005.06.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 05/02/2005] [Accepted: 06/03/2005] [Indexed: 10/25/2022]
Abstract
Lysidine (2-lysyl cytidine) is a lysine-containing cytidine derivative commonly found at the wobble position of bacterial AUA codon-specific tRNA(Ile). This modification determines both codon and amino acid specificities of tRNA(Ile). We previously identified tRNA(Ile)-lysidine synthetase (tilS) that synthesizes lysidine, for which it utilizes ATP and lysine as substrates. Here, we show that lysidine synthesis consists of two consecutive reactions that involve an adenylated tRNA intermediate. A mutation study revealed that Escherichia coli TilS discriminates tRNA(Ile) from the structurally similar tRNA(Met) having the same anticodon loop by recognizing the anticodon loop, the anticodon stem, and the acceptor stem. TilS was shown to bind to the anticodon region and 3' side of the acceptor stem, which cover the recognition sites. These findings reveal a dedicated mechanism embedded in tRNA(Ile) that controls its recognition and discrimination by TilS, and indicate the significance of this enzyme in the proper deciphering of genetic information.
Collapse
Affiliation(s)
- Yoshiho Ikeuchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Biosynthesis and function of tRNA wobble modifications. FINE-TUNING OF RNA FUNCTIONS BY MODIFICATION AND EDITING 2005. [DOI: 10.1007/b106361] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Abstract
The chemical modification of nucleic acids is a ubiquitous phenomenon. Aminoacylation of tRNAs by aminoacyl-tRNA synthetases (ARSs) is a reaction essentially devoted to protein synthesis but it is used also as an emergency mechanism to recycle stalled ribosomes, and it is required for genome replication in some RNA viruses. In several aminoacyl-tRNA synthetases a correction mechanism known as editing is present to prevent aminoacylation errors. Genome data reveal a growing number of open reading frames encoding ARS-like proteins. This strongly suggests the existence of a widespread and nonconventional machinery for aminoacylation and editing. Here we review the different biological functions of aminoacylation and editing; also we propose an evolutionary scenario for the origin of these two reactions, and hypothesize an extant role for RNA charging and editing outside the genetic code.
Collapse
Affiliation(s)
- Renaud Geslain
- Catalan Institute for Research and Advanced Studies (ICREA) and Barcelona Institute for Biomedical Research, Barcelona Science Park, C/Samitier 1-5, Barcelona 08015, Catalonia, Spain
| | | |
Collapse
|
43
|
Buddha MR, Keery KM, Crane BR. An unusual tryptophanyl tRNA synthetase interacts with nitric oxide synthase in Deinococcus radiodurans. Proc Natl Acad Sci U S A 2004; 101:15881-6. [PMID: 15520379 PMCID: PMC528745 DOI: 10.1073/pnas.0405483101] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Indexed: 11/18/2022] Open
Abstract
In mammals, nitric oxide synthases (NOSs) produce nitric oxide for signaling and defense functions; in Streptomyces, NOS proteins nitrate a tryptophanyl moiety in synthesis of a phytotoxin. We have discovered that the NOS protein from the radiation-resistant bacterium Deinococcus radiodurans (deiNOS) associates with an unusual tryptophanyl tRNA synthetase (TrpRS). D. radiodurans contains genes for two TrpRSs: the first has approximately 40% sequence identity to typical TrpRSs, whereas the second, identified as the NOS-interacting protein (TrpRS II), has only approximately 29% identity. TrpRS II is induced after radiation damage and contains an N-terminal extension similar to those of proteins involved in stress responses. Recombinantly expressed TrpRS II binds tryptophan (Trp), ATP, and D. radiodurans tRNA(Trp) and catalyzes the formation of 5' adenyl-Trp and tRNA(Trp), with approximately five times less activity than TrpRS I. Upon coexpression in Escherichia coli, TrpRS II binds to, copurifies with, and dramatically enhances the solubility of deiNOS. Dimeric TrpRS II binds dimeric deiNOS with a stoichiometry of 1:1 and a dissociation constant of 6-30 muM. Upon forming a complex, deiNOS quenches the fluorescence of an ATP analog bound to TrpRS II, and increases its affinity for substrate l-arginine. Remarkably, TrpRS II also activates the NOS activity of deiNOS. These findings reveal a link between bacterial NOS and Trp metabolism in a second organism and may indicate yet another novel biological function for bacterial NOS.
Collapse
Affiliation(s)
- Madhavan R Buddha
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
44
|
Blaise M, Becker HD, Keith G, Cambillau C, Lapointe J, Giegé R, Kern D. A minimalist glutamyl-tRNA synthetase dedicated to aminoacylation of the tRNAAsp QUC anticodon. Nucleic Acids Res 2004; 32:2768-75. [PMID: 15150343 PMCID: PMC419609 DOI: 10.1093/nar/gkh608] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Escherichia coli encodes YadB, a protein displaying 34% identity with the catalytic core of glutamyl-tRNA synthetase but lacking the anticodon-binding domain. We show that YadB is a tRNA modifying enzyme that evidently glutamylates the queuosine residue, a modified nucleoside at the wobble position of the tRNA(Asp) QUC anticodon. This conclusion is supported by a variety of biochemical data and by the inability of the enzyme to glutamylate tRNA(Asp) isolated from an E.coli tRNA-guanosine transglycosylase minus strain deprived of the capacity to exchange guanosine 34 with queuosine. Structural mimicry between the tRNA(Asp) anticodon stem and the tRNA(Glu) amino acid acceptor stem in prokaryotes encoding YadB proteins indicates that the function of these tRNA modifying enzymes, which we rename glutamyl-Q tRNA(Asp) synthetases, is conserved among prokaryotes.
Collapse
MESH Headings
- Acylation
- Anticodon/chemistry
- Anticodon/genetics
- Anticodon/metabolism
- Base Sequence
- Biological Evolution
- Conserved Sequence
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Glutamate-tRNA Ligase/chemistry
- Glutamate-tRNA Ligase/genetics
- Glutamate-tRNA Ligase/metabolism
- Molecular Mimicry
- Nucleoside Q/genetics
- Nucleoside Q/metabolism
- Periodic Acid/pharmacology
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer, Asp/chemistry
- RNA, Transfer, Asp/genetics
- RNA, Transfer, Asp/metabolism
- RNA, Transfer, Glu/chemistry
- RNA, Transfer, Glu/genetics
- RNA, Transfer, Glu/metabolism
Collapse
Affiliation(s)
- Mickaël Blaise
- Département Mécanismes et Macromolécules de la Synthèse Protéique et Cristallogenèse, UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15 Rue René Descartes, F-67084 Strasbourg Cedex, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Ibba M, Francklyn C. Turning tRNA upside down: When aminoacylation is not a prerequisite to protein synthesis. Proc Natl Acad Sci U S A 2004; 101:7493-4. [PMID: 15138304 PMCID: PMC419631 DOI: 10.1073/pnas.0402276101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Michael Ibba
- Department of Microbiology, Ohio State University, Columbus, OH 43210-1292, USA.
| | | |
Collapse
|
46
|
Affiliation(s)
- Michael Ibba
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210-1292, USA.
| | | |
Collapse
|
47
|
Salazar JC, Ambrogelly A, Crain PF, McCloskey JA, Söll D. A truncated aminoacyl-tRNA synthetase modifies RNA. Proc Natl Acad Sci U S A 2004; 101:7536-41. [PMID: 15096612 PMCID: PMC419641 DOI: 10.1073/pnas.0401982101] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aminoacyl-tRNA synthetases are modular enzymes composed of a central active site domain to which additional functional domains were appended in the course of evolution. Analysis of bacterial genome sequences revealed the presence of many shorter aminoacyl-tRNA synthetase paralogs. Here we report the characterization of a well conserved glutamyl-tRNA synthetase (GluRS) paralog (YadB in Escherichia coli) that is present in the genomes of >40 species of proteobacteria, cyanobacteria, and actinobacteria. The E. coli yadB gene encodes a truncated GluRS that lacks the C-terminal third of the protein and, consequently, the anticodon binding domain. Generation of a yadB disruption showed the gene to be dispensable for E. coli growth in rich and minimal media. Unlike GluRS, the YadB protein was able to activate glutamate in presence of ATP in a tRNA-independent fashion and to transfer glutamate onto tRNA(Asp). Neither tRNA(Glu) nor tRNA(Gln) were substrates. In contrast to canonical aminoacyl-tRNA, glutamate was not esterified to the 3'-terminal adenosine of tRNA(Asp). Instead, it was attached to the 2-amino-5-(4,5-dihydroxy-2-cyclopenten-1-yl) moiety of queuosine, the modified nucleoside occupying the first anticodon position of tRNA(Asp). Glutamyl-queuosine, like canonical Glu-tRNA, was hydrolyzed by mild alkaline treatment. Analysis of tRNA isolated under acidic conditions showed that this novel modification is present in normal E. coli tRNA; presumably it previously escaped detection as the standard conditions of tRNA isolation include an alkaline deacylation step that also causes hydrolysis of glutamyl-queuosine. Thus, this aminoacyl-tRNA synthetase fragment contributes to standard nucleotide modification of tRNA.
Collapse
Affiliation(s)
- Juan C Salazar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | | | |
Collapse
|