1
|
Simão S, Agostinho RR, Martínez-Ruiz A, Araújo IM. Regulation of Ras Signaling by S-Nitrosylation. Antioxidants (Basel) 2023; 12:1562. [PMID: 37627556 PMCID: PMC10451275 DOI: 10.3390/antiox12081562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Ras are a family of small GTPases that function as signal transduction mediators and are involved in cell proliferation, migration, differentiation and survival. The significance of Ras is further evidenced by the fact that Ras genes are among the most mutated oncogenes in different types of cancers. After translation, Ras proteins can be targets of post-translational modifications (PTM), which can alter the intracellular dynamics of the protein. In this review, we will focus on how S-nitrosylation of Ras affects the way these proteins interact with membranes, its cellular localization, and its activity. S-Nitrosylation occurs when a nitrosyl moiety of nitric oxide (NO) is covalently attached to a thiol group of a cysteine residue in a target protein. In Ras, the conserved Cys118 is the most surface-exposed Cys and the preferable residue for NO action, leading to the initiation of transduction events. Ras transduces the mitogen-activated protein kinases (MAPK), the phosphoinositide-3 kinase (PI3K) and the RalGEF cellular pathways. S-Nitrosylation of elements of the RalGEF cascade remains to be identified. On the contrary, it is well established that several components of the MAPK and PI3K pathways, as well as different proteins associated with these cascades, can be modified by S-nitrosylation. Overall, this review presents a better understanding of Ras S-nitrosylation, increasing the knowledge on the dynamics of these proteins in the presence of NO and the underlying implications in cellular signaling.
Collapse
Affiliation(s)
- Sónia Simão
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, 8005-139 Faro, Portugal;
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Rafaela Ribeiro Agostinho
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, 8005-139 Faro, Portugal;
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Antonio Martínez-Ruiz
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa, 28009 Madrid, Spain;
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Inês Maria Araújo
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, 8005-139 Faro, Portugal;
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
- Champalimaud Research Program, 1400-038 Lisbon, Portugal
| |
Collapse
|
2
|
Mancini M, Natoli S, Gardoni F, Di Luca M, Pisani A. Dopamine Transmission Imbalance in Neuroinflammation: Perspectives on Long-Term COVID-19. Int J Mol Sci 2023; 24:ijms24065618. [PMID: 36982693 PMCID: PMC10056044 DOI: 10.3390/ijms24065618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Dopamine (DA) is a key neurotransmitter in the basal ganglia, implicated in the control of movement and motivation. Alteration of DA levels is central in Parkinson’s disease (PD), a common neurodegenerative disorder characterized by motor and non-motor manifestations and deposition of alpha-synuclein (α-syn) aggregates. Previous studies have hypothesized a link between PD and viral infections. Indeed, different cases of parkinsonism have been reported following COVID-19. However, whether SARS-CoV-2 may trigger a neurodegenerative process is still a matter of debate. Interestingly, evidence of brain inflammation has been described in postmortem samples of patients infected by SARS-CoV-2, which suggests immune-mediated mechanisms triggering the neurological sequelae. In this review, we discuss the role of proinflammatory molecules such as cytokines, chemokines, and oxygen reactive species in modulating DA homeostasis. Moreover, we review the existing literature on the possible mechanistic interplay between SARS-CoV-2-mediated neuroinflammation and nigrostriatal DAergic impairment, and the cross-talk with aberrant α-syn metabolism.
Collapse
Affiliation(s)
- Maria Mancini
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Silvia Natoli
- Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
- IRCCS Maugeri Pavia, 27100 Pavia, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, 20133 Milan, Italy; (F.G.); (M.D.L.)
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, 20133 Milan, Italy; (F.G.); (M.D.L.)
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- IRCCS Mondino Foundation, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-380-247
| |
Collapse
|
3
|
Zafonte RD, Wang L, Arbelaez CA, Dennison R, Teng YD. Medical Gas Therapy for Tissue, Organ, and CNS Protection: A Systematic Review of Effects, Mechanisms, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104136. [PMID: 35243825 PMCID: PMC9069381 DOI: 10.1002/advs.202104136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/10/2022] [Indexed: 05/13/2023]
Abstract
Gaseous molecules have been increasingly explored for therapeutic development. Here, following an analytical background introduction, a systematic review of medical gas research is presented, focusing on tissue protections, mechanisms, data tangibility, and translational challenges. The pharmacological efficacies of carbon monoxide (CO) and xenon (Xe) are further examined with emphasis on intracellular messengers associated with cytoprotection and functional improvement for the CNS, heart, retina, liver, kidneys, lungs, etc. Overall, the outcome supports the hypothesis that readily deliverable "biological gas" (CO, H2 , H2 S, NO, O2 , O3 , and N2 O) or "noble gas" (He, Ar, and Xe) treatment may preserve cells against common pathologies by regulating oxidative, inflammatory, apoptotic, survival, and/or repair processes. Specifically, CO, in safe dosages, elicits neurorestoration via igniting sGC/cGMP/MAPK signaling and crosstalk between HO-CO, HIF-1α/VEGF, and NOS pathways. Xe rescues neurons through NMDA antagonism and PI3K/Akt/HIF-1α/ERK activation. Primary findings also reveal that the need to utilize cutting-edge molecular and genetic tactics to validate mechanistic targets and optimize outcome consistency remains urgent; the number of neurotherapeutic investigations is limited, without published results from large in vivo models. Lastly, the broad-spectrum, concurrent multimodal homeostatic actions of medical gases may represent a novel pharmaceutical approach to treating critical organ failure and neurotrauma.
Collapse
Affiliation(s)
- Ross D. Zafonte
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Neurotrauma Recovery Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
- Spaulding Research InstituteSpaulding Rehabilitation Hospital NetworkBostonMA02129USA
| | - Lei Wang
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Christian A. Arbelaez
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Rachel Dennison
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Yang D. Teng
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Neurotrauma Recovery Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
- Spaulding Research InstituteSpaulding Rehabilitation Hospital NetworkBostonMA02129USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| |
Collapse
|
4
|
Zhang DM, Lin YF. Functional modulation of sarcolemmal K ATP channels by atrial natriuretic peptide-elicited intracellular signaling in adult rabbit ventricular cardiomyocytes. Am J Physiol Cell Physiol 2020; 319:C194-C207. [PMID: 32432931 DOI: 10.1152/ajpcell.00409.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ATP-sensitive potassium (KATP) channels couple cell metabolic status to membrane excitability and are crucial for stress adaptation and cytoprotection in the heart. Atrial natriuretic peptide (ANP), a cardiac peptide important for cardiovascular homeostasis, also exhibits cytoprotective features including protection against myocardial ischemia-reperfusion injuries. However, how ANP modulates cardiac KATP channels is largely unknown. In the present study we sought to address this issue by investigating the role of ANP signaling in functional modulation of sarcolemmal KATP (sarcKATP) channels in ventricular myocytes freshly isolated from adult rabbit hearts. Single-channel recordings were performed in combination with pharmacological approaches in the cell-attached patch configuration. Bath application of ANP markedly potentiated sarcKATP channel activities induced by metabolic inhibition with sodium azide, whereas the KATP-stimulating effect of ANP was abrogated by selective inhibition of the natriuretic peptide receptor type A (NPR-A), cGMP-dependent protein kinase (PKG), reactive oxygen species (ROS), extracellular signal-regulated protein kinase (ERK)1/2, Ca2+/calmodulin-dependent protein kinase II (CaMKII), or the ryanodine receptor (RyR). Blockade of RyRs also nullified hydrogen peroxide (H2O2)-induced stimulation of sarcKATP channels in intact cells. Furthermore, single-channel kinetic analyses revealed that ANP enhanced the function of ventricular sarcKATP channels through destabilizing the long closures and facilitating the opening transitions, without affecting the single-channel conductance. In conclusion, here we report that ANP positively modulates the activity of ventricular sarcKATP channels via an intracellular signaling mechanism consisting of NPR-A, PKG, ROS, ERK1/2, CaMKII, and RyR2. This novel mechanism may regulate cardiac excitability and contribute to cytoprotection, in part, by opening myocardial KATP channels.
Collapse
Affiliation(s)
- Dai-Min Zhang
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Yu-Fung Lin
- Department of Physiology and Membrane Biology, University of California, Davis, California.,Department of Anesthesiology and Pain Medicine, University of California, Davis, California
| |
Collapse
|
5
|
Hoiland RL, Fisher JA, Ainslie PN. Regulation of the Cerebral Circulation by Arterial Carbon Dioxide. Compr Physiol 2019; 9:1101-1154. [DOI: 10.1002/cphy.c180021] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Su CK, Chen YY, Ho CM. Nitric Oxide Orchestrates a Power-Law Modulation of Sympathetic Firing Behaviors in Neonatal Rat Spinal Cords. Front Physiol 2018; 9:163. [PMID: 29559921 PMCID: PMC5845561 DOI: 10.3389/fphys.2018.00163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/19/2018] [Indexed: 11/13/2022] Open
Abstract
Nitric oxide (NO) is a diffusible gas and has multifarious effects on both pre- and postsynaptic events. As a consequence of complex excitatory and inhibitory integrations, NO effects on neuronal activities are heterogeneous. Using in vitro preparations of neonatal rats that retain the splanchnic sympathetic nerves and the thoracic spinal cord as an experimental model, we report here that either enhancement or attenuation of NO production in the neonatal rat spinal cords could increase, decrease, or not change the spontaneous firing behaviors recorded from splanchnic sympathetic single fibers. To elucidate the mathematical features of NO-mediated heterogeneous responses, the ratios of changes in firing were plotted against their original firing rates. In log-log plots, a linear data distribution demonstrated that NO-mediated heterogeneity in sympathetic firing responses was well described by a power function. Selective antagonists were applied to test if glycinergic, GABAergic, glutamatergic, and cholinergic neurotransmission in the spinal cord are involved in NO-mediated power-law firing modulations (plFM). NO-mediated plFM diminished in the presence of mecamylamine (an open-channel blocker of nicotinic cholinergic receptors), indicating that endogenous nicotinic receptor activities were essential for plFM. Applications of strychnine (a glycine receptor blocker), gabazine (a GABAA receptor blocker), or kynurenate (a broad-spectrum ionotropic glutamate receptor blocker) also caused plFM. However, strychnine- or kynurenate-induced plFM was diminished by L-NAME (an NO synthase inhibitor) pretreatments, indicating that the involvements of glycine or ionotropic glutamate receptor activities in plFM were secondary to NO signaling. To recapitulate the arithmetic natures of the plFM, the plFM were simulated by firing changes in two components: a step increment and a fractional reduction of their basal firing activities. Ionotropic glutamate receptor activities were found to participate in plFM by both components. In contrast, GABAA receptor activities are involved in the component of fractional reduction only. These findings suggest that NO orchestrates a repertoire of excitatory and inhibitory neurotransmissions, incurs a shunting effect on postsynaptic membrane properties, and thus, alters sympathetic firing in a manner of plFM. We propose that the plFM mediated by NO forms a basic scheme of differential controls for heterogeneous sympathetic regulation of visceral functions.
Collapse
Affiliation(s)
- Chun-Kuei Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Yin Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chiu-Ming Ho
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
7
|
Sarkar O, Li Y, Anand-Srivastava MB. Nitric oxide attenuates overexpression of Giα proteins in vascular smooth muscle cells from SHR: Role of ROS and ROS-mediated signaling. PLoS One 2017; 12:e0179301. [PMID: 28692698 PMCID: PMC5503203 DOI: 10.1371/journal.pone.0179301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/26/2017] [Indexed: 11/18/2022] Open
Abstract
Vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) exhibit decreased levels of nitric oxide (NO) that may be responsible for the overexpression of Giα proteins that has been shown as a contributing factor for the pathogenesis of hypertension in SHR. The present study was undertaken to investigate if increasing the intracellular levels of NO by NO donor S-Nitroso-N-acetyl-DL-penicillamine (SNAP) could attenuate the enhanced expression of Giα proteins in VSMC from SHR and explore the underlying mechanisms responsible for this response. The expression of Giα proteins and phosphorylation of ERK1/2, growth factor receptors and c-Src was determined by Western blotting using specific antibodies. Treatment of VSMC from SHR with SNAP for 24 hrs decreased the enhanced expression of Giα-2 and Giα-3 proteins and hyperproliferation that was not reversed by 1H (1, 2, 4) oxadiazole (4, 3-a) quinoxalin-1-one (ODQ), an inhibitor of soluble guanylyl cyclase, however, PD98059, a MEK inhibitor restored the SNAP-induced decreased expression of Giα proteins towards control levels. In addition, the increased production of superoxide anion, NAD(P)H oxidase activity, overexpression of AT1 receptor, Nox4, p22phox and p47phox proteins, enhanced levels of TBARS and protein carbonyl, increased phosphorylation of PDGF-R, EGF-R, c-Src and ERK1/2 in VSMC from SHR were all decreased to control levels by SNAP treatment. These results suggest that NO decreased the enhanced expression of Giα-2/3 proteins and hyperproliferation of VSMC from SHR by cGMP-independent mechanism and involves ROS and ROS-mediated transactivation of EGF-R/PDGF-R and MAP kinase signaling pathways.
Collapse
MESH Headings
- Animals
- Cell Proliferation/drug effects
- Cyclic GMP/analogs & derivatives
- Cyclic GMP/pharmacology
- DNA/biosynthesis
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Flavonoids/pharmacology
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Male
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/metabolism
- NADPH Oxidases/metabolism
- Nitric Oxide/pharmacology
- Nitric Oxide Donors/pharmacology
- Nitroprusside/pharmacology
- Oxadiazoles/pharmacology
- Oxidative Stress/drug effects
- Phosphorylation/drug effects
- Protein Carbonylation/drug effects
- Rats, Inbred SHR
- Rats, Inbred WKY
- Reactive Oxygen Species/metabolism
- Receptor, Angiotensin, Type 1/metabolism
- S-Nitroso-N-Acetylpenicillamine/pharmacology
- Signal Transduction/drug effects
- Superoxides/metabolism
- Thiobarbituric Acid Reactive Substances/metabolism
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Oli Sarkar
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montréal, Montréal, Canada
| | - Yuan Li
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montréal, Montréal, Canada
| | - Madhu B. Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montréal, Montréal, Canada
- * E-mail:
| |
Collapse
|
8
|
Zerumbone Alleviates Neuropathic Pain through the Involvement of l-Arginine-Nitric Oxide-cGMP-K⁺ ATP Channel Pathways in Chronic Constriction Injury in Mice Model. Molecules 2017; 22:molecules22040555. [PMID: 28358309 PMCID: PMC6154097 DOI: 10.3390/molecules22040555] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/22/2017] [Accepted: 03/28/2017] [Indexed: 12/27/2022] Open
Abstract
The present study investigates the involvement of the l-arginine-Nitric Oxide-cGMP-K+ ATP pathways responsible for the action of anti-allodynic and antihyperalgesic activities of zerumbone in chronic constriction injury (CCI) induced neuropathic pain in mice. The role of l-arginine-NO-cGMP-K+ was assessed by the von Frey and the Randall-Selitto tests. Both allodynia and hyperalgesia assessments were carried out on the 14th day post CCI, 30 min after treatments were given for each respective pathway. Anti-allodynic and antihyperalgesic effects of zerumbone (10 mg/kg, i.p) were significantly reversed by the pre-treatment of l-arginine (10 mg/kg), 1H [1,2,4]Oxadiazole[4,3a]quinoxalin-1-one (ODQ), a soluble guanosyl cyclase blocker (2 mg/kg i.p.) and glibenclamide (ATP-sensitive potassium channel blocker) (10 mg/kg i.p.) (p < 0.05). Taken together, these results indicate that systemic administration of zerumbone produces significant anti-allodynic and antihyperalgesic activities in neuropathic pain in mice possibly due to involvement of the l-arginine-NO-cGMP-PKG-K+ ATP channel pathways in CCI model.
Collapse
|
9
|
Penna C, Angotti C, Pagliaro P. Protein S-nitrosylation in preconditioning and postconditioning. Exp Biol Med (Maywood) 2015; 239:647-62. [PMID: 24668550 DOI: 10.1177/1535370214522935] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The coronary artery disease is a leading cause of death and morbidity worldwide. This disease has a complex pathophysiology that includes multiple mechanisms. Among these is the oxidative/nitrosative stress. Paradoxically, oxidative/nitrosative signaling plays a major role in cardioprotection against ischemia/reperfusion injury. In this context, the gas transmitter nitric oxide may act through several mechanisms, such as guanylyl cyclase activation and via S-nitrosylation of proteins. The latter is a covalent modification of a protein cysteine thiol by a nitric oxide-group that generates an S-nitrosothiol. Here, we report data showing that nitric oxide and S-nitrosylation of proteins play a pivotal role not only in preconditioning but also in postconditioning cardioprotection.
Collapse
|
10
|
Dopamine midbrain neurons in health and Parkinson’s disease: Emerging roles of voltage-gated calcium channels and ATP-sensitive potassium channels. Neuroscience 2015; 284:798-814. [DOI: 10.1016/j.neuroscience.2014.10.037] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 12/14/2022]
|
11
|
Huang L, Carney J, Cardona DM, Counter CM. Decreased tumorigenesis in mice with a Kras point mutation at C118. Nat Commun 2014; 5:5410. [PMID: 25394415 PMCID: PMC4234187 DOI: 10.1038/ncomms6410] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 09/29/2014] [Indexed: 02/04/2023] Open
Abstract
KRAS, NRAS, or HRAS genes are mutated to encode an active oncogenic protein in a quarter of human cancers. Redox-dependent reactions can also lead to Ras activation in a manner dependent upon the thiol residue of cysteine 118 (C118). Here, to investigate the effect of mutating this residue on tumorigenesis, we introduce a C118S mutation into the endogenous murine Kras allele and expose the resultant mice to the carcinogen urethane, which induces Kras mutation-positive lung tumors. We report that Kras+/C118S and KrasC118S/C118S mice develop fewer lung tumors. Although the KrasC118S allele does not appear to affect tumorigenesis when the remaining Kras allele is conditionally oncogenic, there is a moderate imbalance of oncogenic mutations favoring the native Kras allele in tumors from Kras+/C118S mice treated with urethane. We conclude that the KrasC118S allele impedes urethane-induced lung tumorigenesis.
Collapse
Affiliation(s)
- Lu Huang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - John Carney
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Diana M Cardona
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Christopher M Counter
- 1] Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA [2] Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
12
|
AMP kinase regulates K-ATP currents evoked by NMDA receptor stimulation in rat subthalamic nucleus neurons. Neuroscience 2014; 274:138-52. [PMID: 24875176 DOI: 10.1016/j.neuroscience.2014.05.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/10/2014] [Accepted: 05/18/2014] [Indexed: 11/21/2022]
Abstract
Our lab recently showed that N-methyl-D-aspartate (NMDA) evokes ATP-sensitive K(+) (K-ATP) currents in subthalamic nucleus (STN) neurons in slices of the rat brain. Both K-ATP channels and 5'-adenosine monophosphate-activated protein kinase (AMPK) are considered cellular energy sensors because their activities are influenced by the phosphorylation state of adenosine nucleotides. Moreover, AMPK has been shown to regulate K-ATP function in a variety of tissues including pancreas, cardiac myocytes, and hypothalamus. We used whole-cell patch clamp recordings to study the effect of AMPK activation on K-ATP channel function in STN neurons in slices of the rat brain. We found that bath or intracellular application of the AMPK activators A769662 and PT1 augmented tolbutamide-sensitive K-ATP currents evoked by NMDA receptor stimulation. The effect of AMPK activators was blocked by the AMPK inhibitor dorsomorphin (compound C), and by STO609, an inhibitor of the upstream AMPK activator CaMKKβ. AMPK augmentation of NMDA-induced K-ATP current was also blocked by intracellular BAPTA and by inhibitors of nitric oxide synthase and guanylyl cyclase. However, A769662 did not augment currents evoked by the K-ATP channel opener diazoxide. In the presence of NMDA, A769662 inhibited depolarizing plateau potentials and burst firing, both of which could be antagonized by tolbutamide or dorsomorphin. These studies show that AMPK augments NMDA-induced K-ATP currents by a Ca(2+)-dependent process that involves nitric oxide and cGMP. By augmenting K-ATP currents, AMPK activation would be expected to dampen the excitatory effect of glutamate-mediated transmission in the STN.
Collapse
|
13
|
Yang Y, Jin X, Jiang C. S-glutathionylation of ion channels: insights into the regulation of channel functions, thiol modification crosstalk, and mechanosensing. Antioxid Redox Signal 2014; 20:937-51. [PMID: 23834398 PMCID: PMC3924852 DOI: 10.1089/ars.2013.5483] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Ion channels control membrane potential, cellular excitability, and Ca(++) signaling, all of which play essential roles in cellular functions. The regulation of ion channels enables cells to respond to changing environments, and post-translational modification (PTM) is one major regulation mechanism. RECENT ADVANCES Many PTMs (e.g., S-glutathionylation, S-nitrosylation, S-palmitoylation, S-sulfhydration, etc.) targeting the thiol group of cysteine residues have emerged to be essential for ion channels regulation under physiological and pathological conditions. CRITICAL ISSUES Under oxidative stress, S-glutathionylation could be a critical PTM that regulates many molecules. In this review, we discuss S-glutathionylation-mediated structural and functional changes of ion channels. Criteria for testing S-glutathionylation, methods and reagents used in ion channel S-glutathionylation studies, and thiol modification crosstalk, are also covered. Mechanotransduction, and S-glutathionylation of the mechanosensitive KATP channel, are discussed. FUTURE DIRECTIONS Further investigation of the ion channel S-glutathionylation, especially the physiological significance of S-glutathionylation and thiol modification crosstalk, could lead to a better understanding of the thiol modifications in general and the ramifications of such modifications on cellular functions and related diseases.
Collapse
Affiliation(s)
- Yang Yang
- 1 Department of Neurology, Yale University School of Medicine , New Haven, Connecticut
| | | | | |
Collapse
|
14
|
Zhang DM, Chai Y, Erickson JR, Brown JH, Bers DM, Lin YF. Intracellular signalling mechanism responsible for modulation of sarcolemmal ATP-sensitive potassium channels by nitric oxide in ventricular cardiomyocytes. J Physiol 2013; 592:971-90. [PMID: 24277866 DOI: 10.1113/jphysiol.2013.264697] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The ATP-sensitive potassium (KATP) channels are crucial for stress adaptation in the heart. It has previously been suggested that the function of KATP channels is modulated by nitric oxide (NO), a gaseous messenger known to be cytoprotective; however, the underlying mechanism remains poorly understood. Here we sought to delineate the intracellular signalling mechanism responsible for NO modulation of sarcolemmal KATP (sarcKATP) channels in ventricular cardiomyocytes. Cell-attached patch recordings were performed in transfected human embryonic kidney (HEK) 293 cells and ventricular cardiomyocytes freshly isolated from adult rabbits or genetically modified mice, in combination with pharmacological and biochemical approaches. Bath application of the NO donor NOC-18 increased the single-channel activity of Kir6.2/SUR2A (i.e., the principal ventricular-type KATP) channels in HEK293 cells, whereas the increase was abated by KT5823 [a selective cGMP-dependent protein kinase (PKG) inhibitor], mercaptopropionyl glycine [MPG; a reactive oxygen species (ROS) scavenger], catalase (an H2O2-degrading enzyme), myristoylated autocamtide-2 related inhibitory peptide (mAIP) selective for Ca2+ / calmodulin-dependent protein kinase II (CaMKII) and U0126 [an extracellular signal-regulated protein kinase 1/2 (ERK1/2) inhibitor], respectively. The NO donors NOC-18 and N-(2-deoxy-α,β-d-glucopyranose-2-)-N2-acetyl-S-nitroso-d,l-penicillaminamide (glycol-SNAP-2) were also capable of stimulating native sarcKATP channels preactivated by the channel opener pinacidil in rabbit ventricular myocytes, through reducing the occurrence and the dwelling time of the long closed states whilst increasing the frequency of channel opening; in contrast, all these changes were reversed in the presence of inhibitors selective for soluble guanylyl cyclase (sGC), PKG, calmodulin, CaMKII or ERK1/2. Mimicking the action of NO donors, exogenous H2O2 potentiated pinacidil-preactivated sarcKATP channel activity in intact cardiomyocytes, but the H2O2-induced KATP channel stimulation was obliterated when ERK1/2 or CaMKII activity was suppressed, implying that H2O2 is positioned upstream of ERK1/2 and CaMKII for K(ATP) channel modulation. Furthermore, genetic ablation (i.e., knockout) of CaMKIIδ, the predominant cardiac CaMKII isoform, diminished ventricular sarcK(ATP) channel stimulation elicited by activation of PKG, unveiling CaMKIIδ as a crucial player. Additionally, evidence from kinase activity and Western blot analyses revealed that activation of NO-PKG signalling augmented CaMKII activity in rabbit ventricular myocytes and, importantly, CaMKII activation by PKG occurred in an ERK1/2-dependent manner, placing ERK1/2 upstream of CaMKII. Taken together, these findings suggest that NO modulates ventricular sarcK(ATP) channels via a novel sGC-cGMP-PKG-ROS(H2O2)-ERK1/2-calmodulin-CaMKII (δ isoform in particular) signalling cascade, which heightens K(ATP) channel activity by destabilizing the long closed states while facilitating closed-to-open state transitions. This pathway may contribute to regulation of cardiac excitability and cytoprotection against ischaemia-reperfusion injury, in part, by opening myocardial sarcK(ATP) channels.
Collapse
Affiliation(s)
- Dai-Min Zhang
- Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Room 4144, Tupper Hall, One Shields Avenue, Davis, CA 95616-8644, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Parsons MP, Burt J, Cranford A, Alberto C, Zipperlen K, Hirasawa M. Nociceptin induces hypophagia in the perifornical and lateral hypothalamic area. PLoS One 2012; 7:e45350. [PMID: 23028954 PMCID: PMC3444493 DOI: 10.1371/journal.pone.0045350] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 08/15/2012] [Indexed: 11/18/2022] Open
Abstract
Nociceptin/orphanin FQ (N/OFQ) is known to induce food intake when administered into the lateral ventricle or certain brain areas. This is somewhat contradictory to its reward-suppressing role, as food is a strong rewarding stimulus. This discrepancy may be due to the functional diversity of N/OFQ's target brain areas. N/OFQ has been shown to inhibit orexin and melanin-concentrating hormone (MCH) neurons, both of which are appetite-inducing cells. As the expression of these neurons is largely confined to the lateral hypothalamus/perifornical area (LH/PFA), we hypothesized that N/OFQ inhibits food intake by acting in this area. To test this hypothesis, we examined the effect of local N/OFQ infusion within the LH/PFA on food intake in the rat and found that N/OFQ decreased sugar pellet as well as chow intake. This effect was not seen when the injection site was outside of the LH/PFA, suggesting a site-specific effect. Next, to determine a possible cellular mechanism of N/OFQ action on food intake, whole cell patch clamp recordings were performed on rat orexin neurons. As previously reported in mice, N/OFQ induced a strong and long lasting hyperpolarization. Pharmacological study indicated that N/OFQ directly inhibited orexin neurons by activating ATP-sensitive potassium (KATP) channels. This effect was partially but significantly attenuated by the inhibitors of PI3K, PKC and PKA, suggesting that the N/OFQ signaling is mediated by these protein kinases. In summary, our results demonstrate a KATP channel-dependent N/OFQ signaling and that N/OFQ is a site-specific anorexic peptide.
Collapse
Affiliation(s)
- Matthew P. Parsons
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, Newfoundland and Labrador, Canada
| | - Julia Burt
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, Newfoundland and Labrador, Canada
| | - Amanda Cranford
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, Newfoundland and Labrador, Canada
| | - Christian Alberto
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, Newfoundland and Labrador, Canada
| | - Katrin Zipperlen
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, Newfoundland and Labrador, Canada
| | - Michiru Hirasawa
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, Newfoundland and Labrador, Canada
| |
Collapse
|
16
|
Munhall AC, Wu YN, Belknap JK, Meshul CK, Johnson SW. NMDA alters rotenone toxicity in rat substantia nigra zona compacta and ventral tegmental area dopamine neurons. Neurotoxicology 2012; 33:429-35. [DOI: 10.1016/j.neuro.2012.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 04/04/2012] [Accepted: 04/09/2012] [Indexed: 12/21/2022]
|
17
|
Ma L, Deng Y, Zhang B, Bai Y, Cao J, Li S, Liu J. Pinacidil, a Katp channel opener, identified as a novel agonist for TRPA1. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11434-012-5035-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Choi S, Yeum CH, Kim YD, Park CG, Kim MY, Park JS, Jeong HS, Kim BJ, So I, Kim KW. Receptor tyrosine and MAP kinase are involved in effects of H(2)O(2) on interstitial cells of Cajal in murine intestine. J Cell Mol Med 2011; 14:257-66. [PMID: 20414970 PMCID: PMC3837618 DOI: 10.1111/j.1582-4934.2008.00403.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hydrogen peroxide (H(2)O(2)) is involved in intestinal motility through changes of smooth muscle activity. However, there is no report as to the modulatory effects of H(2)O(2) on interstitial cells of Cajal (ICC). We investigated the H(2)O(2) effects and signal transductions to determine whether the intestinal motility can be modulated through ICC. We performed whole-cell patch clamp in cultured ICC from murine intestine and molecular analyses. H(2)O(2) hyperpolarized the membrane and inhibited pacemaker currents. These effects were inhibited by glibenclamide, an inhibitor of ATP-sensitive K+ (K(ATP)) channels. The free-radical scavenger catalase inhibited the H(2)O(2)-induced effects. MAFP and AACOCF3 (a cytosolic phospholipase A2 inhibitors) or SC-560 and NS-398 (a selective COX-1 and 2 inhibitor) or AH6809 (an EP2 receptor antagonist) inhibited the H(2)O(2)-induced effects. PD98059 (a mitogen activated/ERK-activating protein kinase inhibitor) inhibited the H(2)O(2)-induced effects, though SB-203580 (a p38 MAPK inhibitor) or a JNK inhibitor did not affect. H(2)O(2)-induced effects could not be inhibited by LY-294002 (an inhibitor of PI3-kinases), calphostin C (a protein kinase C inhibitor) or SQ-22536 (an adenylate cyclase inhibitor). Adenoviral infection analysis revealed H2O2 stimulated tyrosine kinase activity and AG 1478 (an antagonist of epidermal growth factor receptor tyrosine kinase) inhibited the H(2)O(2)-induced effects. These results suggest H(2)O(2) can modulate ICC pacemaker activity and this occur by the activation of K(ATP) channels through PGE(2) production via receptor tyrosine kinase-dependent MAP kinase activation.
Collapse
Affiliation(s)
- Seok Choi
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sha Y, Marshall HE. S-nitrosylation in the regulation of gene transcription. Biochim Biophys Acta Gen Subj 2011; 1820:701-11. [PMID: 21640163 DOI: 10.1016/j.bbagen.2011.05.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 05/14/2011] [Indexed: 12/30/2022]
Abstract
BACKGROUND Post-translational modification of proteins by S-nitrosylation serves as a major mode of signaling in mammalian cells and a growing body of evidence has shown that transcription factors and their activating pathways are primary targets. S-nitrosylation directly modifies a number of transcription factors, including NF-κB, HIF-1, and AP-1. In addition, S-nitrosylation can indirectly regulate gene transcription by modulating other cell signaling pathways, in particular JNK kinase and ras. SCOPE OF REVIEW The evolution of S-nitrosylation as a signaling mechanism in the regulation of gene transcription, physiological advantages of protein S-nitrosylation in the control of gene transcription, and discussion of the many transcriptional proteins modulated by S-nitrosylation is summarized. MAJOR CONCLUSIONS S-nitrosylation plays a crucial role in the control of mammalian gene transcription with numerous transcription factors regulated by this modification. Many of these proteins serve as immunomodulators, and inducible nitric oxide synthase (iNOS) is regarded as a principal mediatiator of NO-dependent S-nitrosylation. However, additional targets within the nucleus (e.g. histone deacetylases) and alternative mechanisms of S-nitrosylation (e.g. GAPDH-mediated trans-nitrosylation) are thought to play a role in NOS-dependent transcriptional regulation. GENERAL SIGNIFICANCE Derangement of SNO-regulated gene transcription is an important factor in a variety of pathological conditions including neoplasia and sepsis. A better understanding of protein S-nitrosylation as it relates to gene transcription and the physiological mechanisms behind this process is likely to lead to novel therapies for these disorders. This article is part of a Special Issue entitled Regulation of Cellular Processes by S-nitrosylation.
Collapse
Affiliation(s)
- Yonggang Sha
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | | |
Collapse
|
20
|
Duan JH, Wang Y, Duarte D, Vasko MR, Nicol GD, Hingtgen CM. Ras signaling pathways mediate NGF-induced enhancement of excitability of small-diameter capsaicin-sensitive sensory neurons from wildtype but not Nf1+/- mice. Neurosci Lett 2011; 496:70-4. [PMID: 21501659 DOI: 10.1016/j.neulet.2011.03.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/18/2011] [Accepted: 03/28/2011] [Indexed: 11/30/2022]
Abstract
Nerve growth factor (NGF) activates multiple downstream effectors, including Ras, phosphoinositide-3 kinase, and sphingomyelins. However, pathway mediating the NGF-induced augmentation of sensory neuronal excitability remains largely unknown. We previously reported that small-diameter sensory neurons with a heterozygous mutation of the Nf1 gene (Nf1+/-) exhibited increased excitability. The protein product of the Nf1 gene is neurofibromin, a guanosine triphosphatase-activating protein (GAP) for p21ras (Ras) that accelerates the conversion of active Ras-GTP to inactive Ras-GDP. Thus, Nf1+/- cells have augmented basal and stimulated Ras activity. To investigate whether NGF-induced increases in excitability of small-diameter sensory neurons are dependent on Ras signaling, an antibody that blocks the activation of Ras, Y13-259, was perfused into the cell. Under these conditions, the enhanced excitability produced by NGF was suppressed in wildtype neurons but the excitability of Nf1+/- neurons was unaltered. In addition, expression of a dominant-negative form of Ras abolished the ability of NGF to increase the excitability of small-diameter sensory neurons. These results demonstrate that NGF enhances excitability of small-diameter sensory neurons in a Ras-dependent manner while the consequences of decreased expression of neurofibromin cannot be restored by blocking Ras signaling; suggesting that Ras-initiated signaling pathways can regulate both transcriptional and posttranslational control of ion channels important in neuronal excitability.
Collapse
Affiliation(s)
- J-H Duan
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, Indianapolis, IN 46202, United States
| | | | | | | | | | | |
Collapse
|
21
|
Chai Y, Zhang DM, Lin YF. Activation of cGMP-dependent protein kinase stimulates cardiac ATP-sensitive potassium channels via a ROS/calmodulin/CaMKII signaling cascade. PLoS One 2011; 6:e18191. [PMID: 21479273 PMCID: PMC3066208 DOI: 10.1371/journal.pone.0018191] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 02/28/2011] [Indexed: 11/19/2022] Open
Abstract
Background Cyclic GMP (cGMP)-dependent protein kinase (PKG) is recognized as an important signaling component in diverse cell types. PKG may influence the function of cardiac ATP-sensitive potassium (KATP) channels, an ion channel critical for stress adaptation in the heart; however, the underlying mechanism remains largely unknown. The present study was designed to address this issue. Methods and Findings Single-channel recordings of cardiac KATP channels were performed in both cell-attached and inside-out patch configurations using transfected human embryonic kidney (HEK)293 cells and rabbit ventricular cardiomyocytes. We found that Kir6.2/SUR2A (the cardiac-type KATP) channels were activated by cGMP-selective phosphodiesterase inhibitor zaprinast in a concentration-dependent manner in cell-attached patches obtained from HEK293 cells, an effect mimicked by the membrane-permeable cGMP analog 8-bromo-cGMP whereas abolished by selective PKG inhibitors. Intriguingly, direct application of PKG moderately reduced rather than augmented Kir6.2/SUR2A single-channel currents in excised, inside-out patches. Moreover, PKG stimulation of Kir6.2/SUR2A channels in intact cells was abrogated by ROS/H2O2 scavenging, antagonism of calmodulin, and blockade of calcium/calmodulin-dependent protein kinase II (CaMKII), respectively. Exogenous H2O2 also concentration-dependently stimulated Kir6.2/SUR2A channels in intact cells, and its effect was prevented by inhibition of calmodulin or CaMKII. PKG stimulation of KATP channels was confirmed in intact ventricular cardiomyocytes, which was ROS- and CaMKII-dependent. Kinetically, PKG appeared to stimulate these channels by destabilizing the longest closed state while stabilizing the long open state and facilitating opening transitions. Conclusion The present study provides novel evidence that PKG exerts dual regulation of cardiac KATP channels, including marked stimulation resulting from intracellular signaling mediated by ROS (H2O2 in particular), calmodulin and CaMKII, alongside of moderate channel suppression likely mediated by direct PKG phosphorylation of the channel or some closely associated proteins. The novel cGMP/PKG/ROS/calmodulin/CaMKII signaling pathway may regulate cardiomyocyte excitability by opening KATP channels and contribute to cardiac protection against ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yongping Chai
- Departments of Physiology and Membrane Biology, University of California Davis, Davis, California, United States of America
| | - Dai-Min Zhang
- Departments of Physiology and Membrane Biology, University of California Davis, Davis, California, United States of America
| | - Yu-Fung Lin
- Departments of Physiology and Membrane Biology, University of California Davis, Davis, California, United States of America
- Department of Anesthesiology, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Tegeder I, Scheving R, Wittig I, Geisslinger G. SNO-ing at the nociceptive synapse? Pharmacol Rev 2011; 63:366-89. [PMID: 21436345 DOI: 10.1124/pr.110.004200] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nitric oxide is generally considered a pronociceptive retrograde transmitter that, by activation of soluble guanylyl cyclase-mediated cGMP production and activation of cGMP-dependent protein kinase, drives nociceptive hypersensitivity. The duality of its functions, however, is increasingly recognized. This review summarizes nitric-oxide-mediated direct S-nitrosylation of target proteins that may modify nociceptive signaling, including glutamate receptors and G-protein-coupled receptors, transient receptor potential channels, voltage-gated channels, proinflammatory enzymes, transcription factors, and redoxins. S-Nitrosylation events require close proximity of nitric oxide production and target proteins and a permissive redox state in the vicinity. Despite the diversity of potential targets and effects, three major schemes arise that may affect nociceptive signaling: 1) S-Nitrosylation-mediated changes of ion channel gating properties, 2) modulation of membrane fusion and fission, and thereby receptor and channel membrane insertion, and 3) modulation of ubiquitination, and thereby protein degradation or transcriptional activity. In addition, S-Nitrosylation may alter the production of nitric oxide itself.
Collapse
Affiliation(s)
- Irmgard Tegeder
- Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, Haus 74; 60590 Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
23
|
Heo J. Redox control of GTPases: from molecular mechanisms to functional significance in health and disease. Antioxid Redox Signal 2011; 14:689-724. [PMID: 20649471 DOI: 10.1089/ars.2009.2984] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Small GTPases, including the proto-oncoprotein Ras and Rho GTPases, are involved in various cellular signaling events. Some of these small GTPases are redox sensitive, including Ras, Rho, Ran, Dexras1, and Rhes GTPases. Thus, the redox-mediated regulation of these GTPases often determines the course of their cellular signaling cascades. This article takes into consideration the application of Marcus theory to potential redox-based molecular mechanisms in the regulation of these redox-sensitive GTPases and the relevance of such mechanisms to a specific redox-sensitive motif. The discussion also takes into account various diseases, including cancers, heart, and neuronal disorders, that are often linked with the dysregulation of the redox signaling cascades associated with these redox-sensitive GTPases.
Collapse
Affiliation(s)
- Jongyun Heo
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| |
Collapse
|
24
|
Puerta E, Pastor F, Dvoracek J, De Saavedra MDM, Goñi-Allo B, Jordán J, Hervias I, Aguirre N. Delayed pre-conditioning by 3-nitropropionic acid prevents 3,4-methylenedioxymetamphetamine-induced 5-HT deficits. J Neurochem 2010; 114:843-52. [DOI: 10.1111/j.1471-4159.2010.06808.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Chai Y, Lin YF. Stimulation of neuronal KATP channels by cGMP-dependent protein kinase: involvement of ROS and 5-hydroxydecanoate-sensitive factors in signal transduction. Am J Physiol Cell Physiol 2010; 298:C875-92. [PMID: 20053925 PMCID: PMC2853218 DOI: 10.1152/ajpcell.00196.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 12/31/2009] [Indexed: 11/22/2022]
Abstract
The ATP-sensitive potassium (K(ATP)) channel couples intracellular metabolic state to membrane excitability. Recently, we demonstrated that neuronal K(ATP) channels are functionally enhanced by activation of a nitric oxide (NO)/cGMP/cGMP-dependent protein kinase (PKG) signaling cascade. In this study, we further investigated the intracellular mechanism underlying PKG stimulation of neuronal K(ATP) channels. By performing single-channel recordings in transfected HEK293 and neuroblastoma SH-SY5Y cells, we found that the increase of Kir6.2/SUR1 (i.e., the neuronal-type K(ATP)) channel currents by PKG activation in cell-attached patches was diminished by 5-hydroxydecanoate (5-HD), an inhibitor of the putative mitochondrial K(ATP) channel; N-(2-mercaptopropionyl)glycine, a reactive oxygen species (ROS) scavenger, and catalase, a hydrogen peroxide (H(2)O(2))-decomposing enzyme. These reagents also ablated NO-induced K(ATP) channel stimulation and prevented the shifts in the single-channel open- and closed-time distributions resulting from PKG activation and NO induction. Bath application of H(2)O(2) reproduced PKG stimulation of Kir6.2/SUR1 but did not activate tetrameric Kir6.2LRKR368/369/370/371AAAA channels. Moreover, neither the PKG activator nor exogenous H(2)O(2) was able to enhance the function of K(ATP) channels in the presence of Ca(2+) chelators and calmodulin antagonists, whereas the stimulatory effect of H(2)O(2) was unaffected by 5-HD. Altogether, in this report we provide novel evidence that activation of PKG stimulates neuronal K(ATP) channels by modulating intrinsic channel gating via a 5-HD-sensitive factor(s)/ROS/Ca(2+)/calmodulin signaling pathway that requires the presence of the SUR1 subunit. This signaling pathway may contribute to neuroprotection against ischemic injury and regulation of neuronal excitability and neurotransmitter release by modulating the function of neuronal K(ATP) channels.
Collapse
Affiliation(s)
- Yongping Chai
- Dept. of Physiology and Membrane Biology, Univ. of California, Davis, One Shields Ave., Davis, CA 95616, USA
| | | |
Collapse
|
26
|
Norepinephrine and nitric oxide promote cell survival signaling in hippocampal neurons. Eur J Pharmacol 2010; 633:1-9. [PMID: 20149790 DOI: 10.1016/j.ejphar.2010.01.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 12/17/2009] [Accepted: 01/20/2010] [Indexed: 11/21/2022]
Abstract
Nitric oxide (NO), physical exercise and/or antidepressant drugs, through the increased release of norepinephrine and brain-derived neurotrophic factor (BDNF), have been shown to exert profound protective, pro-survival effects on neurons otherwise compromised by injury, disease, prolonged stress, and subsequent depression in vivo. We sought, therefore, to evaluate such survival and neuroprotection in hippocampal neurons in culture, which, in an analogous model of in vivo cellular stress, was deprived of several vital nutrients. We assessed pro-survival outcomes following the application of norepinephrine or the noradrenergic partial agonist, clonidine, a general nitric oxide synthase inhibitor and NO donor, using a cell survival assay and quantitative Western blotting of the survival signaling molecules, BDNF, P-CREB, P-Akt, and P-MAPK in hippocampal neuronal lysates. We demonstrate that norepinephrine, clonidine, the NO donor and various combinations of these drugs increased cell survival and the immunoreactivity of the four survival signaling molecules in the face of nutrient deprivation stress, whereas the NO synthase inhibitor, and each of several survival signaling pathway inhibitors all decreased cell survival even below that of controls without nutrient supplementation. These results demonstrate that conditions that make cells vulnerable to environmental/toxic insult can be offset by norepinephrine and its related drugs or by NO donors and exacerbated by drugs that specifically inhibit a key survival signaling pathway. These results indicate that pharmacological intervention can promote neuroprotection and survival signaling in the face of nutrient withdrawal, but that this may require that several pathways remain intact.
Collapse
|
27
|
Freestone PS, Chung KKH, Guatteo E, Mercuri NB, Nicholson LFB, Lipski J. Acute action of rotenone on nigral dopaminergic neurons--involvement of reactive oxygen species and disruption of Ca2+ homeostasis. Eur J Neurosci 2009; 30:1849-59. [PMID: 19912331 DOI: 10.1111/j.1460-9568.2009.06990.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rotenone is a toxin used to generate animal models of Parkinson's disease; however, the mechanisms of toxicity in substantia nigra pars compacta (SNc) neurons have not been well characterized. We have investigated rotenone (0.05-1 microm) effects on SNc neurons in acute rat midbrain slices, using whole-cell patch-clamp recording combined with microfluorometry. Rotenone evoked a tolbutamide-sensitive outward current (94 +/- 15 pA) associated with increases in intracellular [Ca(2+)] ([Ca(2+)](i)) (73.8 +/- 7.7 nm) and intracellular [Na(+)] (3.1 +/- 0.6 mm) (all with 1 microm). The outward current was not affected by a high ATP level (10 mm) in the patch pipette but was decreased by Trolox. The [Ca(2+)](i) rise was abolished by removing extracellular Ca(2+), and attenuated by Trolox and a transient receptor potential M2 (TRPM2) channel blocker, N-(p-amylcinnamoyl) anthranilic acid. Other effects included mitochondrial depolarization (rhodamine-123) and increased mitochondrial reactive oxygen species (ROS) production (MitoSox), which was also abolished by Trolox. A low concentration of rotenone (5 nm) that, by itself, did not evoke a [Ca(2+)](i) rise resulted in a large (46.6 +/- 25.3 nm) Ca(2+) response when baseline [Ca(2+)](i) was increased by a 'priming' protocol that activated voltage-gated Ca(2+) channels. There was also a positive correlation between 'naturally' occurring variations in baseline [Ca(2+)](i) and the rotenone-induced [Ca(2+)](i) rise. This correlation was not seen in non-dopaminergic neurons of the substantia nigra pars reticulata (SNr). Our results show that mitochondrial ROS production is a key element in the effect of rotenone on ATP-gated K(+) channels and TRPM2-like channels in SNc neurons, and demonstrate, in these neurons (but not in the SNr), a large potentiation of rotenone-induced [Ca(2+)](i) rise by a small increase in baseline [Ca(2+)](i).
Collapse
Affiliation(s)
- Peter S Freestone
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
28
|
Liu B, Gan L, Sun X, Zhu Y, Tong Z, Xu H, Yang X. Enhancement of BK(Ca) channel activity induced by hydrogen peroxide: involvement of lipid phosphatase activity of PTEN. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2174-82. [PMID: 19646416 DOI: 10.1016/j.bbamem.2009.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 07/01/2009] [Accepted: 07/22/2009] [Indexed: 02/06/2023]
Abstract
Large-conductance calcium and voltage-dependent potassium (BK(Ca)) channel is an important determinant of vascular tone. It is activated by hydrogen peroxide (H(2)O(2)) which occurs in various physiological and pathological processes. However, the regulation mechanism is not fully understood. In the present study, the mSlo in the presence or absence of hbeta1 were cotransfected with the PTEN(wt), PTEN(C124S), PTEN(G129E) in HEK 293 cells. Typical BK(Ca) channel currents could be recorded in cell-attached configurations. We found that PTEN(wt) reduced the H(2)O(2)-induced BK(Ca) channel activation during the initial 10 min treatment. In contrast, coexpression with catalytically inactive PTEN(C124S)/PTEN(G129E) mutants that lack lipid phosphatase activity produced no regulation on the H(2)O(2)-induced BK(Ca) channel activation. These results demonstrated that PTEN regulated the H(2)O(2)-induced BK(Ca) channel activation through phosphatidylinositol 3-phosphatse. However, the inhibitory effect of PTEN on the H(2)O(2)-induced BK(Ca) channel activation was attenuated when cells were treated with H(2)O(2) at concentrations higher than 100 microM or at 100 microM for long-term treatment. In addition, the p-AKT expression level in PTEN(wt) overexpressing cells was lower than that in control cells, and the increase of cytoplasmic free calcium concentration ([Ca(2+)](i)) induced by H(2)O(2) was also inhibited. These findings may elucidate a new mechanism for H(2)O(2)-induced BK(Ca) channel activation and provide some evidences for the role of PTEN on vasodilation induced by H(2)O(2).
Collapse
Affiliation(s)
- Bo Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Strande JL, Widlansky ME, Tsopanoglou NE, Su J, Wang J, Hsu A, Routhu KV, Baker JE. Parstatin: a cryptic peptide involved in cardioprotection after ischaemia and reperfusion injury. Cardiovasc Res 2009; 83:325-34. [PMID: 19380418 DOI: 10.1093/cvr/cvp122] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AIMS Thrombin activates protease-activated receptor 1 by proteolytic cleavage of the N-terminus. Although much research has focused on the activated receptor, little is known about the 41-amino acid N-terminal peptide (parstatin). We hypothesized that parstatin would protect the heart against ischaemia-reperfusion injury. METHODS AND RESULTS We assessed the protective role of parstatin in an in vivo and in vitro rat model of myocardial ischaemia-reperfusion injury. Parstatin treatment before, during, and after ischaemia decreased infarct size by 26%, 23%, and 18%, respectively, in an in vivo model of ischaemia-reperfusion injury. Parstatin treatment immediately before ischaemia decreased infarct size by 65% and increased recovery in ventricular function by 23% in an in vitro model. We then assessed whether parstatin induced cardioprotection by activation of a Gi-protein-dependent pathway. Gi-protein inactivation by pertussis toxin completely abolished the cardioprotective effects. The cardioprotective effects were also abolished by inhibition of nitric oxide synthase (NOS), extracellular signal-regulated kinases 1/2 (ERK1/2), p38 mitogen-activated protein kinase (p38 MAPK), and K(ATP) channels in vitro. Furthermore, parstatin increased coronary flow and decreased perfusion pressure in the isolated heart. The vasodilatory properties of parstatin were confirmed in rat coronary arterioles. CONCLUSION A single treatment of parstatin administered prior to ischaemia confers immediate cardioprotection by recruiting the Gi-protein activation pathway including p38 MAPK, ERK1/2, NOS, and K(ATP) channels. Parstatin exerts effects on both the cardiomyocytes and the coronary circulation to induce cardioprotection. This suggests a potential therapeutic role of parstatin in the treatment of cardiac injury resulting from ischaemia and reperfusion.
Collapse
Affiliation(s)
- Jennifer L Strande
- Division of Cardiovascular Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Li X, Bazer FW, Gao H, Jobgen W, Johnson GA, Li P, McKnight JR, Satterfield MC, Spencer TE, Wu G. Amino acids and gaseous signaling. Amino Acids 2009; 37:65-78. [DOI: 10.1007/s00726-009-0264-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Accepted: 02/12/2009] [Indexed: 01/08/2023]
|
31
|
Zhou F, Yao HH, Wu JY, Ding JH, Sun T, Hu G. Opening of microglial K(ATP) channels inhibits rotenone-induced neuroinflammation. J Cell Mol Med 2009; 12:1559-70. [PMID: 19012619 PMCID: PMC3918072 DOI: 10.1111/j.1582-4934.2007.00144.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
As activated microglia (MG) is an early sign that often precedes and triggers neuronal death, inhibition of microglial activation and reduction of subsequent neurotoxicity may offer therapeutic benefit. The present study demonstrates that rat primary cultured MG expressed Kir6.1 and SUR2 subunits of KATP channel, which was identical to that expressed in BV-2 microglial cell line. The classic KATP channel opener pinacidil and selective mitochondrial KATP (mito-KATP) channel opener diazoxide prevented rotenone-induc microglial activation and production of pro-inflammatory factors (tumour necrosis factor[TNF]-α and prostaglandin E2[PGE2]). And the effects of pinacidil and diazoxide were reversed by mito-KATP blocker 5-hydroxydecanoate (5-HD), indicating that mito-KATP channels participate in the regulation of microglial activation. Moreover, the underlying mechanisms involved the stabilization of mitocho drial membrane potential and inhibition of p38/c-Jun-N-terminal kinase (JNK) activation in microglia. Furthermore, the in vivo study confirmed that diazoxide exhibited neuroprotective effects against rotenone along with the inhibition of microglial activation and neuroinflammation. Thus, microglial mito-KATP channel might be a novel prospective target for the treatment of neuroinflammation-related degenerative disorders such as Parkinson's disease.
Collapse
Affiliation(s)
- Fang Zhou
- *Correspondence to: Gang HU, MD, PhD, Jiangsu Key Laboratory of Neurodegeneration, Department of Anatomy, Histology & Pharmacology Nanjing Medical University, 140 Hanzhong Road Nanjing, Jiangsu 210029, P. R. China. Tel.: +86-25-86 86 31 69 Fax: +86-25-86 86 31 08 E-mail:
| | | | | | | | | | - Gang Hu
- *Correspondence to: Gang HU, MD, PhD, Jiangsu Key Laboratory of Neurodegeneration, Department of Anatomy, Histology & Pharmacology Nanjing Medical University, 140 Hanzhong Road Nanjing, Jiangsu 210029, P. R. China. Tel.: +86-25-86 86 31 69 Fax: +86-25-86 86 31 08 E-mail:
| |
Collapse
|
32
|
Chen YY, Chu HM, Pan KT, Teng CH, Wang DL, Wang AHJ, Khoo KH, Meng TC. Cysteine S-nitrosylation protects protein-tyrosine phosphatase 1B against oxidation-induced permanent inactivation. J Biol Chem 2008; 283:35265-72. [PMID: 18840608 DOI: 10.1074/jbc.m805287200] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein S-nitrosylation mediated by cellular nitric oxide (NO) plays a primary role in executing biological functions in cGMP-independent NO signaling. Although S-nitrosylation appears similar to Cys oxidation induced by reactive oxygen species, the molecular mechanism and biological consequence remain unclear. We investigated the structural process of S-nitrosylation of protein-tyrosine phosphatase 1B (PTP1B). We treated PTP1B with various NO donors, including S-nitrosothiol reagents and compound-releasing NO radicals, to produce site-specific Cys S-nitrosylation identified using advanced mass spectrometry (MS) techniques. Quantitative MS showed that the active site Cys-215 was the primary residue susceptible to S-nitrosylation. The crystal structure of NO donor-reacted PTP1B at 2.6 A resolution revealed that the S-NO state at Cys-215 had no discernible irreversibly oxidized forms, whereas other Cys residues remained in their free thiol states. We further demonstrated that S-nitrosylation of the Cys-215 residue protected PTP1B from subsequent H(2)O(2)-induced irreversible oxidation. Increasing the level of cellular NO by pretreating cells with an NO donor or by activating ectopically expressed NO synthase inhibited reactive oxygen species-induced irreversible oxidation of endogenous PTP1B. These findings suggest that S-nitrosylation might prevent PTPs from permanent inactivation caused by oxidative stress.
Collapse
Affiliation(s)
- Yi-Yun Chen
- Institute of Biological Chemistry, National Core Facility for Proteomics Research, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Lee JJ, Cho YW, Huh Y, Cha CI, Yeo SG. Effect of nitric oxide on auditory cortical neurons of aged rats. Neurosci Lett 2008; 447:37-41. [PMID: 18840505 DOI: 10.1016/j.neulet.2008.09.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 09/03/2008] [Accepted: 09/17/2008] [Indexed: 11/25/2022]
Abstract
Age-related changes in the effects of nitric oxide (NO) on neurons of the auditory cortex have not been determined. We therefore evaluated the anatomical changes and neurophysiological characteristics of these neurons in rats as a function of age. The numbers of cresyl violet stained cells, the numbers and areas of NADPH-d-positive neuronal cell bodies, and their optical density, were measured in Sprague-Dawley rats aged 24 months (aged group) and 4 months (control group). The modulatory effects of NO on K(+) currents of acutely isolated rat auditory cortical neurons were also assessed. There were no between-group differences in the distribution patterns of glial cells and neurons, or in the numbers and areas of NADPH-d-positive neuronal cell bodies. However, the optical density of NADPH-d-positive neuronal cell bodies was significantly greater in the aged group than in the control group. In addition, voltage-gated K(+) currents of rat auditory cortical neurons were activated by increased levels of NO. As activation of the K(+) current likely suppresses neuronal excitability, age-associated increases in NO production can hinder the function of the acoustic center by inhibiting neuron excitability.
Collapse
Affiliation(s)
- Jong-Ju Lee
- Department of Physiology, Biomedical Science Institute, Medical Research Center, Kyung Hee University School of Medicine, Seoul, South Korea
| | | | | | | | | |
Collapse
|
34
|
Ozawa K, Whalen EJ, Nelson CD, Mu Y, Hess DT, Lefkowitz RJ, Stamler JS. S-nitrosylation of beta-arrestin regulates beta-adrenergic receptor trafficking. Mol Cell 2008; 31:395-405. [PMID: 18691971 DOI: 10.1016/j.molcel.2008.05.024] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 03/26/2008] [Accepted: 05/29/2008] [Indexed: 02/03/2023]
Abstract
Signal transduction through G protein-coupled receptors (GPCRs) is regulated by receptor desensitization and internalization that follow agonist stimulation. Nitric oxide (NO) can influence these processes, but the cellular source of NO bioactivity and the effects of NO on GPCR-mediated signal transduction are incompletely understood. Here, we show in cells and mice that beta-arrestin 2, a central element in GPCR trafficking, interacts with and is S-nitrosylated at a single cysteine by endothelial NO synthase (eNOS), and that S-nitrosylation of beta-arrestin 2 is promoted by endogenous S-nitrosogluthathione. S-nitrosylation after agonist stimulation of the beta-adrenergic receptor, a prototypical GPCR, dissociates eNOS from beta-arrestin 2 and promotes binding of beta-arrestin 2 to clathrin heavy chain/beta-adaptin, thereby accelerating receptor internalization. The agonist- and NO-dependent shift in the affiliations of beta-arrestin 2 is followed by denitrosylation. Thus, beta-arrestin subserves the functional coupling of eNOS and GPCRs, and dynamic S-nitrosylation/denitrosylation of beta-arrestin 2 regulates stimulus-induced GPCR trafficking.
Collapse
Affiliation(s)
- Kentaro Ozawa
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
PKC-induced intracellular trafficking of Ca(V)2 precedes its rapid recruitment to the plasma membrane. J Neurosci 2008; 28:2601-12. [PMID: 18322103 DOI: 10.1523/jneurosci.4314-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of protein kinase C (PKC) potentiates secretion in Aplysia peptidergic neurons, in part by inducing new sites for peptide release at growth cone terminals. The mechanisms by which ion channels are trafficked to such sites are, however, not well understood. We now show that PKC activation rapidly recruits new Ca(V)2 subunits to the plasma membrane, and that recruitment is blocked by latrunculin B, an inhibitor of actin polymerization. In contrast, inhibition of microtubule polymerization selectively prevents the appearance of Ca(V)2 subunits only at the distal edge of the growth cone. In resting neurons, Ca(V)2-containing organelles reside in the central region of growth cones, but are absent from distal lamellipodia. After activation of PKC, these organelles are transported on microtubules to the lamellipodium. The ability to traffic to the most distal sites of channel insertion inside the lamellipodium does, therefore, not require intact actin but requires intact microtubules. Only after activation of PKC do Ca(V)2 channels associate with actin and undergo insertion into the plasma membrane.
Collapse
|
36
|
Chai Y, Lin YF. Dual regulation of the ATP-sensitive potassium channel by activation of cGMP-dependent protein kinase. Pflugers Arch 2008; 456:897-915. [PMID: 18231807 DOI: 10.1007/s00424-008-0447-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 12/09/2007] [Accepted: 01/04/2008] [Indexed: 12/19/2022]
Abstract
Adenosine triphosphate (ATP)-sensitive potassium (K(ATP)) channels couple cellular metabolic status to membrane electrical activity. In this study, we performed patch-clamp recordings to investigate how cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) regulates the function of K(ATP) channels, using both transfected human SH-SY5Y neuroblastoma cells and embryonic kidney (HEK) 293 cells. In intact SH-SY5Y cells, the single-channel currents of Kir6.2/sulfonylurea receptor (SUR) 1 channels, a neuronal-type K(ATP) isoform, were enhanced by zaprinast, a cGMP-specific phosphodiesterase inhibitor; this enhancement was abolished by inhibition of PKG, suggesting a stimulatory role of cGMP/PKG signaling in regulating the function of neuronal K(ATP) channels. Similar effects of cGMP accumulation were confirmed in intact HEK293 cells expressing Kir6.2/SUR1 channels. In contrast, direct application of purified PKG suppressed rather than activated Kir6.2/SUR1 channels in excised, inside-out patches, while tetrameric Kir6.2LRKR368/369/370/371AAAA channels expressed without the SUR subunit were not modulated by zaprinast or purified PKG. Lastly, reconstitution of the soluble guanylyl cyclase/cGMP/PKG signaling pathway by generation of nitric oxide led to Kir6.2/SUR1 channel activation in both cell types. Taken together, here, we report novel findings that PKG exerts dual functional regulation of neuronal K(ATP) channels in a SUR subunit-dependent manner, which may provide new means of therapeutic intervention for manipulating neuronal excitability and/or survival.
Collapse
Affiliation(s)
- Yongping Chai
- Department of Physiology and Membrane Biology, University of California, Rm. 4144, Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA
| | | |
Collapse
|
37
|
Lin YF, Chai Y. Functional modulation of the ATP-sensitive potassium channel by extracellular signal-regulated kinase-mediated phosphorylation. Neuroscience 2008; 152:371-80. [PMID: 18280666 DOI: 10.1016/j.neuroscience.2008.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 12/27/2007] [Accepted: 01/07/2008] [Indexed: 10/22/2022]
Abstract
ATP-sensitive potassium (K(ATP)) channels play an important role in controlling insulin secretion and vascular tone as well as protecting neurons under metabolic stress. We have previously demonstrated that stimulation of the K(ATP) channel by nitric oxide (NO) requires activation of Ras- and extracellular signal-regulated kinase (ERK) of the mitogen-activated protein kinase (MAPK) family. However, the mechanistic link between ERK and the K(atp) channel remained unknown. To investigate how ERK modulates the function of K(ATP) channels, we performed single-channel recordings in combination with site-directed mutagenesis. The Kir6.2/SUR1 channel, a neuronal K(ATP) channel isoform, was expressed in human embryonic kidney (HEK) 293 cells by transient transfection. Direct application of the activated ERK2 to the cytoplasmic surface of excised, inside-out patches markedly enhanced the single-channel activity of Kir6.2/SUR1 channels. The normalized open probability (NPo) and opening frequency were significantly increased, whereas the mean closed duration was reduced. The single-channel conductance level was not affected. The ERK2-induced stimulation of Kir6.2/SUR1 channels was prevented by heat-inactivation of the enzyme. Furthermore, alanine substitutions of T341 and S385 to disrupt the potential ERK phosphorylation sites present in the Kir6.2 subunit significantly abrogated the stimulatory effects of ERK2, while aspartate substitutions of T341 and S385 to mimic the (negative) charge effect of phosphorylation rendered a small yet significant reduction in the ATP sensitivity of the channel. Taken together, here we report for the first time that ERK2/MAPK activates neuronal-type K(ATP) channels, and this stimulation requires ERK phosphorylation of the Kir6.2 subunit at T341 and S385 residues. The ERK2-induced K(ATP) channel stimulation can be accounted for by changes in channel gating that destabilize the closed states and by reduction in the ATP sensitivity. As Kir6.2 is the pore-forming subunit of K(ATP) channels, ERK2-mediated phosphorylation may represent a common mechanism for K(ATP) channel regulation in different tissues.
Collapse
Affiliation(s)
- Y-F Lin
- Department of Anesthesiology, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
38
|
Ischemic tolerance as an active and intrinsic neuroprotective mechanism. HANDBOOK OF CLINICAL NEUROLOGY 2008; 92:171-95. [PMID: 18790275 DOI: 10.1016/s0072-9752(08)01909-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
39
|
Yasui S, Mawatari K, Kawano T, Morizumi R, Hamamoto A, Furukawa H, Koyama K, Nakamura A, Hattori A, Nakano M, Harada N, Hosaka T, Takahashi A, Oshita S, Nakaya Y. Insulin activates ATP-sensitive potassium channels via phosphatidylinositol 3-kinase in cultured vascular smooth muscle cells. J Vasc Res 2007; 45:233-43. [PMID: 18097147 DOI: 10.1159/000112545] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 10/14/2007] [Indexed: 11/19/2022] Open
Abstract
The effects of insulin on the vasculature are significant because insulin resistance is associated with hypertension. To increase the understanding of the effects of insulin on the vasculature, we analyzed changes in potassium ion transport in cultured vascular smooth muscle cells (VSMCs). Using the potential-sensitive fluorescence dye bis-(1,3-dibutylbarbituric acid)trimethine oxonol [DiBAC4(3)], we found that insulin induced membrane hyperpolarization after 2 min in A10 cells. Insulin-induced hyperpolarization was suppressed by glibenclamide, an ATP-sensitive potassium (K(ATP)) channel blocker. Using a cell-attached patch clamp experiment, the K(ATP) channel was activated by insulin in both A10 cells and isolated VSMCs from rat aortas, indicating that insulin causes membrane hyperpolarization via K(ATP) channel activation. These effects were not dependent on intracellular ATP concentration, but wortmannin, a phosphatidylinositol 3-kinase (PI3-K) inhibitor, significantly suppressed insulin-induced K(ATP) channel activation. In addition, insulin enhanced phosphorylation of insulin receptor, insulin receptor substrate (IRS)-1 and protein kinase B (Akt) after 2 min. These data suggest that K(ATP) channel activation by insulin is mediated by PI3-K. Furthermore, using a nitric oxide synthase (NOS) inhibitor, we found that NOS might play an important role downstream of PI3-K in insulin-induced K(ATP) channel activation. This study may contribute to our understanding of mechanisms of insulin resistance-associated hypertension.
Collapse
Affiliation(s)
- Sonoko Yasui
- Department of Nutrition and Metabolism, University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Inhibition of pacemaker currents by nitric oxide via activation of ATP-sensitive K+ channels in cultured interstitial cells of Cajal from the mouse small intestine. Naunyn Schmiedebergs Arch Pharmacol 2007; 376:175-84. [PMID: 17932655 DOI: 10.1007/s00210-007-0187-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 08/24/2007] [Indexed: 12/17/2022]
Abstract
We investigated the role of nitric oxide (NO) in pacemaker activity and signal mechanisms in cultured interstitial cells of Cajal (ICC) of the mouse small intestine using whole cell patch-clamp techniques at 30 degrees C. ICC generated pacemaker potential in the current clamp mode and pacemaker currents at a holding potential of -70 mV. (+/-)-S-nitroso-N-acetylpenicillamine (SNAP; a NO donor) produced membrane hyperpolarization and inhibited the amplitude and frequency of the pacemaker currents, and increased resting currents in the outward direction. These effects were blocked by the use of glibenclamide (an ATP-sensitive K+ channel blocker), but not by the use of 5-hydroxydecanoic acid (a mitochondrial ATP-sensitive K+ channel blocker). Pretreatment with ODQ (a guanylate cyclase inhibitor) almost blocked the NO-induced effects. The use of cell-permeable 8-bromo-cyclic GMP also mimicked the action of SNAP. However, the use of KT-5823 (a protein kinase G inhibitor) did not block the NO-induced effects. Spontaneous [Ca2+]i oscillations in ICC were inhibited by the treatment of SNAP, as seen in recordings of intracellular Ca2+ ([Ca2+]i). These results suggest that NO inhibits pacemaker activity by the activation of ATP-sensitive K+ channels via a cyclic GMP dependent mechanism in ICC, and the activation of ATP-sensitive K+ channels mediates the inhibition of spontaneous [Ca2+]i oscillations.
Collapse
|
41
|
Chen MJ, Russo-Neustadt AA. Nitric oxide signaling participates in norepinephrine-induced activity of neuronal intracellular survival pathways. Life Sci 2007; 81:1280-90. [PMID: 17915260 PMCID: PMC2435382 DOI: 10.1016/j.lfs.2007.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 08/08/2007] [Accepted: 09/05/2007] [Indexed: 10/22/2022]
Abstract
Much evidence has gathered that nitric oxide (NO) signaling, via cGMP-dependent mechanisms, may activate pro-survival pathways in hippocampal neurons and inhibit apoptosis. Past research has revealed that the enhancement of monoaminergic neurotransmission via exercise or treatment with antidepressant medications leads to an enhanced expression of brain-derived neurotrophic factor (BDNF). In isolated hippocampal neurons, norepinephrine (NE) application also increases the immunoreactivity of BDNF and several pro-survival signaling molecules. The data herein support the possibility that NO signaling plays an important role in enhancing neurotrophin expression and activation of the pro-survival phosphatidylinositol 3' kinase (PI-3K) pathway stimulated by NE. In isolated hippocampal neurons, the NO donor, sodium nitroprusside, increases BDNF, PI-3K, and phospho-ERK1 immunoreactivity. Specific inhibitors of the NO system suggest that NE-induced increases in hippocampal BDNF and the PI-3K pathway, but not stimulation of the MAPK pathway, depend upon NO signaling. In addition, inhibiting cGMP suggest that the effects of NE on BDNF immunoreactivity and Akt phosphorylation are also cGMP-dependent. Finally, the application of l-NAME to hippocampal neurons increases cell death. This is the first study of its kind demonstrating the involvement of NE-induced pro-survival signaling in three distinct signaling pathways: PI-3K, MAPK, and NO/cGMP. Possible mechanisms are discussed in light of the results.
Collapse
Affiliation(s)
- Michael J Chen
- Department of Biological Sciences, California State University, 5151 State University Drive, Los Angeles, CA 90032, USA.
| | | |
Collapse
|
42
|
Bassil M, Anand-Srivastava MB. Nitric oxide modulates Gi-protein expression and adenylyl cyclase signaling in vascular smooth muscle cells. Free Radic Biol Med 2006; 41:1162-73. [PMID: 16962941 DOI: 10.1016/j.freeradbiomed.2006.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 06/13/2006] [Accepted: 07/01/2006] [Indexed: 11/25/2022]
Abstract
We have previously shown that treatment of rats with the nitric oxide (NO) synthase inhibitor N6-nitro-L-arginine methyl ester for 4 weeks resulted in the augmentation of blood pressure and enhanced levels of Gialpha proteins. The present studies were undertaken to investigate if NO can modulate the expression of Gi proteins and associated adenylyl cyclase signaling. A10 vascular smooth muscle cells (VSMC) and primary cultured cells from aorta of Sprague-Dawley rats were used for these studies. The cells were treated with S-nitroso-N-acetylpenicillamine (SNAP) or sodium nitroprusside (SNP) for 24 h and the expression of Gialpha proteins was determined by immunobloting techniques. Adenylyl cyclase activity was determined by measuring [32P]cAMP formation for [alpha-32P]ATP. Treatment of cells with SNAP (100 microM) or SNP (0.5 mM) decreased the expression of Gialpha-2 and Gialpha-3 by about 25-40% without affecting the levels of Gsalpha proteins. The decreased expression of Gialpha proteins was reflected in decreased Gi functions (receptor-independent and -dependent) as demonstrated by decreased or attenuated forskolin-stimulated adenylyl cyclase activity by GTPgammaS and inhibition of adenylyl cyclase activity by angiotensin II and C-ANP4-23, a ring-deleted analog of atrial natriuretic peptide (ANP) that specifically interacts with natriuretic peptide receptor-C (NPR-C) in SNAP-treated cells. The SNAP-induced decreased expression of Gialpha-2 and Gialpha-3 proteins was not blocked by 1H[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one, an inhibitor of soluble guanylyl cyclase, or KT5823, an inhibitor of protein kinase G, but was restored toward control levels by uric acid, a scavenger of peroxynitrite and Mn(111)tetralis (benzoic acid porphyrin) MnTBAP, a peroxynitrite scavenger and a superoxide dismutase mimetic agent that inhibits the production of peroxynitrite, suggesting that NO-mediated decreased expression of Gialpha protein was cGMP-independent and may be attributed to increased levels of peroxynitrite. In addition, Gsalpha-mediated stimulation of adenylyl cyclase by GTPgammaS, isoproterenol, and forskolin was significantly augmented in SNAP-treated cells. These results indicate that NO decreased the expression of Gialpha protein and associated functions in VSMC by cGMP-independent mechanisms. From these studies, it can be suggested that NO-induced decreased levels of Gi proteins and resultant increased levels of cAMP may be an additional mechanism through which NO regulates blood pressure.
Collapse
Affiliation(s)
- Marcel Bassil
- Department of Physiology, Faculty of Medicine, University of Montreal, C.P. 6128, Succ. Centre-ville, Montreal, Quebec, Canada H3C 3J7
| | | |
Collapse
|
43
|
Fan HP, Fan FJ, Bao L, Pei G. SNAP-25/syntaxin 1A complex functionally modulates neurotransmitter gamma-aminobutyric acid reuptake. J Biol Chem 2006; 281:28174-84. [PMID: 16861228 DOI: 10.1074/jbc.m601382200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurotransmitter gamma-aminobutyric acid (GABA) release to the synaptic clefts is mediated by the formation of a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, which includes two target SNAREs syntaxin 1A and SNAP-25 and one vesicle SNARE VAMP-2. The target SNAREs syntaxin 1A and SNAP-25 form a heterodimer, the putative intermediate of the SNARE complex. Neurotransmitter GABA clearance from synaptic clefts is carried out by the reuptake function of its transporters to terminate the postsynaptic signaling. Syntaxin 1A directly binds to the neuronal GABA transporter GAT-1 and inhibits its reuptake function. However, whether other SNARE proteins or SNARE complex regulates GABA reuptake remains unknown. Here we demonstrate that SNAP-25 efficiently inhibits GAT-1 reuptake function in the presence of syntaxin 1A. This inhibition depends on SNAP-25/syntaxin 1A complex formation. The H3 domain of syntaxin 1A is identified as the binding sites for both SNAP-25 and GAT-1. SNAP-25 binding to syntaxin 1A greatly potentiates the physical interaction of syntaxin 1A with GAT-1 and significantly enhances the syntaxin 1A-mediated inhibition of GAT-1 reuptake function. Furthermore, nitric oxide, which promotes SNAP-25 binding to syntaxin 1A to form the SNARE complex, also potentiates the interaction of syntaxin 1A with GAT-1 and suppresses GABA reuptake by GAT-1. Thus our findings delineate a further molecular mechanism for the regulation of GABA reuptake by a target SNARE complex and suggest a direct coordination between GABA release and reuptake.
Collapse
Affiliation(s)
- Hua-Ping Fan
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | |
Collapse
|
44
|
Roth S, Dreixler JC, Shaikh AR, Lee KH, Bindokas V. Mitochondrial potassium ATP channels and retinal ischemic preconditioning. Invest Ophthalmol Vis Sci 2006; 47:2114-24. [PMID: 16639023 PMCID: PMC2610248 DOI: 10.1167/iovs.05-1068] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
PURPOSE To examine the mechanisms of ischemic preconditioning (IPC) related to the opening of mitochondrial KATP (mKATP) channels in the retina. METHODS Rats were subjected to retinal ischemia after IPC, or retinas were rendered ischemic after pharmacological opening of mKATP channels. The effects of blocking mKATP channel opening, nitric oxide synthase (NOS) subtypes, or protein kinase C (PKC) on the protective effect of IPC or on the opening of mKATP channels were studied. Electroretinography assessed functional recovery after ischemia. Immunohistochemistry and image analysis were used to measure changes in levels of reactive oxygen species (ROS) and NOS subtypes and to determine their cellular localization. RESULTS IPC was effectively mimicked by injection of the mKATP channel opener diazoxide. Both IPC and its mimicking by diazoxide were completely attenuated by the mKATP channel blocker 5-hydroxydecanoic acid (5-HD). Nonspecific blockade of NOS by N(omega)-nitro-L-arginine (L-NNA), but not by specific inducible (i)NOS or neuronal (n)NOS inhibitors, blunted IPC and IPC-mimicking, as did blockade of PKC. IPC and diazoxide IPC-mimicking significantly enhanced mitochondrial ROS production in the inner retina, an effect blocked by 5-HD. Mitochondrial ROS colocalized with e- and nNOS in retinal cells after stimulation with diazoxide. CONCLUSIONS The results showed that IPC in the retina requires opening of the mKATP channel, and that IPC could be effectively mimicked using the mKATP channel opener diazoxide. eNOS-generated nitric oxide, PKC, and ROS are activated by opening of the mKATP channel.
Collapse
Affiliation(s)
- Steven Roth
- Department of Anesthesia and Critical Care, University of Chicago, Illinois 60637, USA.
| | | | | | | | | |
Collapse
|
45
|
Olmos A, Giner RM, Máñez S. Drugs modulating the biological effects of peroxynitrite and related nitrogen species. Med Res Rev 2006; 27:1-64. [PMID: 16752428 DOI: 10.1002/med.20065] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The term "reactive nitrogen species" includes nitrogen monoxide, commonly called nitric oxide, and some other remarkable chemical entities (peroxynitrite, nitrosoperoxycarbonate, etc.) formed mostly from nitrogen monoxide itself in biological environments. Regardless of the specific mechanisms implicated in their effects, however, it is clear that an integrated pharmacological approach to peroxynitrite and related species is only just beginning to take shape. The array of affected chemical and pathological processes is extremely broad. One of the most conspicuous mechanisms observed thus far has been the scavenging of the peroxynitrite anion by molecules endowed with antioxidant activity. This discovery has in turn lent great significance to several naturally occurring and synthetic antioxidants, which usually protect not only against oxidative reactions, but also from nitrating ones, both in vitro and in vivo. This has proven to be beneficial in different tissues, especially within the central nervous system. Taking these results and those of other biochemical investigations into account, many research lines are currently in progress to establish the true potential of reactive nitrogen species deactivators in the therapy of neurological diseases, ischemia-reperfusion damage, renal failure, and lung injury, among others.
Collapse
Affiliation(s)
- Ana Olmos
- Departament de Farmacologia, Universitat de València, València, Spain
| | | | | |
Collapse
|
46
|
Atkins JL, Day BW, Handrigan MT, Zhang Z, Pamnani MB, Gorbunov NV. Brisk production of nitric oxide and associated formation ofS-nitrosothiols in early hemorrhage. J Appl Physiol (1985) 2006; 100:1267-77. [PMID: 16339342 DOI: 10.1152/japplphysiol.01059.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The results of previous inhibitor studies suggest that there is some increase in nitric oxide (NO) production from constitutive NO synthase in early hemorrhage (H), but the magnitude of NO production early after H has not been previously assessed. It is generally believed that only modest production rates are possible from the constitutively expressed NO synthases. To study this, anesthetized male Sprague-Dawley rats were subjected to 90 min of isobaric (40 mmHg) H. During this period of time, the dynamics of accumulation of NO intermediates in the arterial blood was assessed using electron paramagnetic resonance spectroscopy, chemiluminescence, fluorescence imaging, and mass spectrometry. Electron paramagnetic resonance-detectable NO adducts were also measured with spin traps in blood plasma and red blood cells. H led to an increase in the concentration of hemoglobin-NO from 0.9 ± 0.2 to 4.8 ± 0.7 μM. This accumulation was attenuated by a nonselective inhibitor of NO synthase, NG-nitro-l-argininemethyl ester (l-NAME), but not by NG-nitro-d-argininemethyl ester (d-NAME) or 1400W. Administration of l-NAME (but not 1400W or d-NAME) during H produced a short-term increase in mean arterial pressure (∼90%). In H, the level of N oxides in red blood cells increased sevenfold. S-nitrosylation of plasma proteins was revealed with “biotin switch” techniques. The results provide compelling evidence that there is brisk production of NO in early H. The results indicate that the initial compensatory response to H is more complicated than previously realized, and it involves an orchestrated balance between intense vasoconstrictor and vasodilatory components.
Collapse
Affiliation(s)
- James L Atkins
- Division of Military Casualty Research, Walter Reed Army Institute of Research, Bldg. 503, Rm. 1N80, 503 Robert Grant Ave., Silver Spring, MD 20910-7500, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Skibo GG, Lushnikova IV, Voronin KY, Dmitrieva O, Novikova T, Klementiev B, Vaudano E, Berezin VA, Bock E. A synthetic NCAM-derived peptide, FGL, protects hippocampal neurons from ischemic insult both in vitro and in vivo. Eur J Neurosci 2006; 22:1589-96. [PMID: 16197499 DOI: 10.1111/j.1460-9568.2005.04345.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is a major unmet need for development of innovative strategies for neuroprotection against ischemic brain injury. Here we show that FGL, a neural cell adhesion molecule (NCAM)-derived peptide binding to and inducing phosphorylation of the fibroblast growth factor receptor (FGFR), acts neuroprotectively after an ischemic insult both in vitro and in vivo. The neuroprotective activity of FGL was tested in vitro on dissociated rat hippocampal neurons and hippocampal slice cultures, using a protocol of oxygen-glucose deprivation (OGD). FGL protected hippocampal neurons from damage and maintained or restored their metabolic and presynaptic activity, both if employed as a pretreatment alone to OGD, and if only applied after the insult. In vivo 24 h pretreatment with a single suboccipital injection of FGL significantly protected hippocampal CA1 neurons from death in a transient global ischemia model in the gerbil. We conclude that FGL promotes neuronal survival after ischemic brain injury.
Collapse
Affiliation(s)
- Galina G Skibo
- Protein Laboratory, Institute of Molecular Pathology, Panum Institute, University of Copenhagen, Blegdamsvej 3C, bld. 6.2, DK-2200 Copenhagen N, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Liss B, Haeckel O, Wildmann J, Miki T, Seino S, Roeper J. K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons. Nat Neurosci 2005; 8:1742-51. [PMID: 16299504 DOI: 10.1038/nn1570] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 09/19/2005] [Indexed: 12/21/2022]
Abstract
The selective degeneration of dopaminergic (DA) midbrain neurons in the substantia nigra (SN) is a hallmark of Parkinson disease. DA neurons in the neighboring ventral tegmental area (VTA) are significantly less affected. The mechanisms for this differential vulnerability of DA neurons are unknown. We identified selective activation of ATP-sensitive potassium (K-ATP) channels as a potential mechanism. We show that in response to parkinsonism-inducing toxins, electrophysiological activity of SN DA neurons, but not VTA DA neurons, is lost owing to activation of K-ATP channels. This selective K-ATP channel activation is controlled by differences in mitochondrial uncoupling between SN and VTA DA neurons. Genetic inactivation of the K-ATP channel pore-forming subunit Kir6.2 resulted in a selective rescue of SN but not VTA DA neurons in two mechanistically distinct mouse models of dopaminergic degeneration, the neurotoxicological 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model and the mutant weaver mouse. Thus, K-ATP channel activation has an unexpected role in promoting death of DA neurons in chronic disease.
Collapse
Affiliation(s)
- Birgit Liss
- Molecular Neurobiology, Department of Physiology, Marburg University Deutschhausstrasse 2, 35037 Marburg, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Ohtsuka T, Ishiwa D, Kamiya Y, Itoh H, Nagata I, Saito Y, Yamada Y, Sumitomo M, Andoh T. Effects of barbiturates on ATP-sensitive K channels in rat substantia nigra. Neuroscience 2005; 137:573-81. [PMID: 16289884 DOI: 10.1016/j.neuroscience.2005.08.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2005] [Revised: 08/07/2005] [Accepted: 08/31/2005] [Indexed: 10/25/2022]
Abstract
ATP-sensitive K channels are widely expressed in cytoplasmic membranes of neurons, and they couple cell metabolism to excitability. They are thought to be involved in neuroprotection against cell damage during hypoxia, ischemia and excitotoxicity by hyperpolarizing neurons and reducing excitability. Although barbiturates are often used in patients with brain ischemia, the effects of these agents on neuronal ATP-sensitive K channels have not been clarified. We studied the effects of thiopental and pentobarbital on surface ATP-sensitive K channels in principal neurons of rat substantia nigra pars compacta. Whole cell voltage- and current-clamp recordings were made using rat midbrain slices. ATP-sensitive K channels were activated by intracellular dialysis with an ATP-free pipette solution during perfusion with a glucose-free solution. When the pipette solution contained 4mM ATP and the perfusing solution contained 25 mM glucose, the membrane current at -60 mV remained stable. When intracellular ATP was depleted, hyperpolarization and an outward current developed slowly. Although thiopental did not affect the membrane current in the presence of ATP and glucose, it reversibly inhibited the hyperpolarization and outward current induced by intracellular ATP depletion at 100 and 300 microM. Thiopental reduced the ATP depletion-induced outward current by 4.7%, 36.7% and 87% at 30, 100 and 300 microM, respectively. The high dose of pentobarbital also exhibited similar effects on ATP-sensitive K channels. These results suggest that barbiturates at high concentrations but not at clinically relevant concentrations inhibit ATP-sensitive K channels activated by intracellular ATP depletion in rat substantia nigra.
Collapse
Affiliation(s)
- T Ohtsuka
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Yokohama 236-0004, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sakamoto K, Yonoki Y, Kubota Y, Kuwagata M, Saito M, Nakahara T, Ishii K. Inducible nitric oxide synthase inhibitors abolished histological protection by late ischemic preconditioning in rat retina. Exp Eye Res 2005; 82:512-8. [PMID: 16198335 DOI: 10.1016/j.exer.2005.08.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2005] [Revised: 08/04/2005] [Accepted: 08/11/2005] [Indexed: 01/26/2023]
Abstract
Brief ischemia was reported to protect retinal cells against injury induced by subsequent ischemia-reperfusion with de novo protein synthesis, and this phenomenon is known as late ischemic preconditioning. The aims of the present study were to determine whether nitric oxide synthase (NOS) was involved in the mechanism of late ischemic preconditioning in rat retina using pharmacological tools. Under anesthesia with pentobarbital sodium, male Sprague-Dawley rats were subjected to 60 min of retinal ischemia by raising intraocular pressure to 130 mm Hg. Ischemic preconditioning was achieved by applying 5 min of ischemia 24 hrs before 60 min of ischemia. Retinal sections sliced into 5 microm thick were examined 7 days after ischemia. Additional groups of rats received NG-nitro-L-arginine and NG-monomethyl-L-arginin, non-selective NO synthase inhibitors, 7-nitroindazole, a neuronal NOS inhibitor, and aminoguanidine and L-N6-(1-iminoethyl) lysine, inducible NO synthase (iNOS) inhibitors before preconditioning, and were subjected to 60 min of ischemia. In the non-preconditioned group, cell loss in the ganglion cell layer and thinning of the inner plexiform and inner nuclear layer were observed 7 days after 60 min of ischemia. Ischemic preconditioning for 5 min completely protected against the histological damage induced by 60 min of ischemia applied 24 hrs thereafter. Treatment of rats with aminoguanidine and L-N6-(1-iminoethyl) lysine, but not NG-nitro-L-arginine, NG-monomethyl-L-arginine or 7-nitroindazole, wiped off the protective effect of ischemic preconditioning. The inhibitory effect of aminoguanidine was abolished by L-arginine, but not D-arginine. The results in the present study suggest that NO synthesized by iNOS is involved in the histological protection by late ischemic preconditioning in rat retina.
Collapse
Affiliation(s)
- Kenji Sakamoto
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 9-1 Shirokane 5-chome, Minato-ku, Tokyo 108-8641, Japan.
| | | | | | | | | | | | | |
Collapse
|