1
|
Involvement of Potassium Channel Signalling in Migraine Pathophysiology. Pharmaceuticals (Basel) 2023; 16:ph16030438. [PMID: 36986537 PMCID: PMC10057509 DOI: 10.3390/ph16030438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Migraine is a primary headache disorder ranked as the leading cause of years lived with disability among individuals younger than 50 years. The aetiology of migraine is complex and might involve several molecules of different signalling pathways. Emerging evidence implicates potassium channels, predominantly ATP-sensitive potassium (KATP) channels and large (big) calcium-sensitive potassium (BKCa) channels in migraine attack initiation. Basic neuroscience revealed that stimulation of potassium channels activated and sensitized trigeminovascular neurons. Clinical trials showed that administration of potassium channel openers caused headache and migraine attack associated with dilation of cephalic arteries. The present review highlights the molecular structure and physiological function of KATP and BKCa channels, presents recent insights into the role of potassium channels in migraine pathophysiology, and discusses possible complementary effects and interdependence of potassium channels in migraine attack initiation.
Collapse
|
2
|
Duncan PJ, Fazli M, Romanò N, Le Tissier P, Bertram R, Shipston MJ. Chronic stress facilitates bursting electrical activity in pituitary corticotrophs. J Physiol 2021; 600:313-332. [PMID: 34855218 DOI: 10.1113/jp282367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/18/2021] [Indexed: 11/08/2022] Open
Abstract
Coordination of an appropriate stress response is dependent upon anterior pituitary corticotroph excitability in response to hypothalamic secretagogues and glucocorticoid negative feedback. A key determinant of corticotroph excitability is large conductance calcium- and voltage-activated (BK) potassium channels that are critical for promoting corticotrophin-releasing hormone (CRH)-induced bursting that enhances adrenocorticotrophic hormone secretion. Previous studies revealed hypothalamic-pituitary-adrenal axis hyperexcitability following chronic stress (CS) is partly a function of increased corticotroph output. Thus, we hypothesise that chronic stress promotes corticotroph excitability through a BK-dependent mechanism. Corticotrophs from CS mice displayed significant increase in spontaneous bursting, which was suppressed by the BK blocker paxilline. Mathematical modelling reveals that the time constant of BK channel activation, plus properties and proportion of BK channels functionally coupled to L-type Ca2+ channels determines bursting activity. Surprisingly, CS corticotrophs (but not unstressed) display CRH-induced bursting even when the majority of BK channels are inhibited by paxilline, which modelling suggests is a consequence of the stochastic behaviour of a small number of BK channels coupled to L-type Ca2+ channels. Our data reveal that changes in the stochastic behaviour of a small number of BK channels can finely tune corticotroph excitability through stress-induced changes in BK channel properties. Importantly, regulation of BK channel function is highly context dependent allowing dynamic control of corticotroph excitability over a large range of time domains and physiological challenges in health and disease. This is likely to occur in other BK-expressing endocrine cells, with important implications for the physiological processes they regulate and the potential for therapy. KEY POINTS: Chronic stress (CS) is predicted to modify the electrical excitability of anterior pituitary corticotrophs. Electrophysiological recordings from isolated corticotrophs from CS male mice display spontaneous electrical bursting behaviour compared to the tonic spiking behaviour of unstressed corticotrophs. The increased spontaneous bursting from CS corticotrophs is BK-dependent and mathematical modelling reveals that the time constant of activation, properties and proportion of BK channels functionally coupled to L-type calcium channels determines the promotion of bursting activity. CS (but not unstressed) corticotrophs display corticotrophin-releasing hormone-induced bursting even when the majority of BK channels are pharmacologically inhibited, which can be explained by the stochastic behaviour of a small number of BK channels with distinct properties. Corticotroph excitability can be finely tuned by the stochastic behaviour of a small number of BK channels dependent on their properties and functional co-localisation with L-type calcium channels to control corticotroph excitability over diverse time domains and physiological challenges.
Collapse
Affiliation(s)
- Peter J Duncan
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Mehran Fazli
- Department of Mathematics, Florida State University, Tallahassee, FL, USA
| | - Nicola Romanò
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Paul Le Tissier
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Richard Bertram
- Department of Mathematics, Florida State University, Tallahassee, FL, USA.,Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, FL, USA
| | - Michael J Shipston
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Sancho M, Kyle BD. The Large-Conductance, Calcium-Activated Potassium Channel: A Big Key Regulator of Cell Physiology. Front Physiol 2021; 12:750615. [PMID: 34744788 PMCID: PMC8567177 DOI: 10.3389/fphys.2021.750615] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/29/2021] [Indexed: 12/01/2022] Open
Abstract
Large-conductance Ca2+-activated K+ channels facilitate the efflux of K+ ions from a variety of cells and tissues following channel activation. It is now recognized that BK channels undergo a wide range of pre- and post-translational modifications that can dramatically alter their properties and function. This has downstream consequences in affecting cell and tissue excitability, and therefore, function. While finding the “silver bullet” in terms of clinical therapy has remained elusive, ongoing research is providing an impressive range of viable candidate proteins and mechanisms that associate with and modulate BK channel activity, respectively. Here, we provide the hallmarks of BK channel structure and function generally, and discuss important milestones in the efforts to further elucidate the diverse properties of BK channels in its many forms.
Collapse
Affiliation(s)
- Maria Sancho
- Department of Pharmacology, University of Vermont, Burlington, VT, United States
| | - Barry D Kyle
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
4
|
Zhao H, Xue Q, Li C, Wang Q, Han S, Zhou Y, Yang T, Xie Y, Fu H, Lu C, Meng F, Zhang M, Zhang Y, Wu X, Wu S, Zhuo M, Xu H. Upregulation of Beta4 subunit of BK Ca channels in the anterior cingulate cortex contributes to mechanical allodynia associated anxiety-like behaviors. Mol Brain 2020; 13:22. [PMID: 32070382 PMCID: PMC7029562 DOI: 10.1186/s13041-020-0555-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/19/2020] [Indexed: 12/02/2022] Open
Abstract
The anterior cingulate cortex (ACC) serves as a critical hub for the anxiety and pain perception. The large-conductance Ca2+-activated potassium channels, or BKCa channels, are ubiquitously expressed throughout the central nervous system including the cingulate cortex. However, what changes of cortical BKCa channels undergo in the ACC remains unknown in pain-related anxiety. In the present study, a significant upregulation of synaptic and non-synaptic BKCa channel accessory β4 subunits in the ACC was accompanied with pain-associated anxiety-like behaviors in the chronic compression of multiple dorsal root ganglia (mCCD) of the rat. NS1619, an opener of BKCa channels, significantly rescued the alteration of fAHP and AP duration of ACC pyramidal neurons in mCCD rats. The mRNA expression of BKCa β4 subunits was extremely upregulated in the ACC after mCCD with the increased amount of both synaptic and non-synaptic BKCa β4 subunit protein. Meanwhile, NS1619 reversed the enhanced AMPA receptor-mediated spontaneous excitatory postsynaptic current (sEPSC) frequency and the attenuated PPR of ACC neurons in mCCD rats. Local activation of BKCa channels in the ACC reversed mechanical allodynia and anxiety-like behaviors. These results suggest that the upregulation of postsynaptic and presynaptic BKCa β4 subunit may contribute to neuronal hyperexcitability and the enhanced synaptic transmission in the ACC in neuropathic pain state, and then may result in anxiety-like behavior induced by neuropathic pain.
Collapse
Affiliation(s)
- Huan Zhao
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.,Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.,Department of Anesthesiology, Heze Municipal Hospital, Heze, 274031, Shandong, China
| | - Qian Xue
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Cong Li
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.,Department of Anesthesiology, Heze Municipal Hospital, Heze, 274031, Shandong, China.,Shandong First Medcial University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Qingchuan Wang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.,Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shichao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yongsheng Zhou
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Tao Yang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yingli Xie
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Hao Fu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Changbo Lu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Fancheng Meng
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ming Zhang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yan Zhang
- Department of Anesthesiology, Heze Municipal Hospital, Heze, 274031, Shandong, China
| | - Xianglong Wu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shengxi Wu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.,Department of Phsyiology, University of Toronto, Toronto, Canada
| | - Hui Xu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China. .,Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
5
|
Manoury B, Idres S, Leblais V, Fischmeister R. Ion channels as effectors of cyclic nucleotide pathways: Functional relevance for arterial tone regulation. Pharmacol Ther 2020; 209:107499. [PMID: 32068004 DOI: 10.1016/j.pharmthera.2020.107499] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Numerous mediators and drugs regulate blood flow or arterial pressure by acting on vascular tone, involving cyclic nucleotide intracellular pathways. These signals lead to regulation of several cellular effectors, including ion channels that tune cell membrane potential, Ca2+ influx and vascular tone. The characterization of these vasocontrictive or vasodilating mechanisms has grown in complexity due to i) the variety of ion channels that are expressed in both vascular endothelial and smooth muscle cells, ii) the heterogeneity of responses among the various vascular beds, and iii) the number of molecular mechanisms involved in cyclic nucleotide signalling in health and disease. This review synthesizes key data from literature that highlight ion channels as physiologically relevant effectors of cyclic nucleotide pathways in the vasculature, including the characterization of the molecular mechanisms involved. In smooth muscle cells, cation influx or chloride efflux through ion channels are associated with vasoconstriction, whereas K+ efflux repolarizes the cell membrane potential and mediates vasodilatation. Both categories of ion currents are under the influence of cAMP and cGMP pathways. Evidence that some ion channels are influenced by CN signalling in endothelial cells will also be presented. Emphasis will also be put on recent data touching a variety of determinants such as phosphodiesterases, EPAC and kinase anchoring, that complicate or even challenge former paradigms.
Collapse
Affiliation(s)
- Boris Manoury
- Inserm, Umr-S 1180, Université Paris-Saclay, Châtenay-Malabry, France.
| | - Sarah Idres
- Inserm, Umr-S 1180, Université Paris-Saclay, Châtenay-Malabry, France
| | - Véronique Leblais
- Inserm, Umr-S 1180, Université Paris-Saclay, Châtenay-Malabry, France
| | | |
Collapse
|
6
|
Zhou Y, Xia XM, Lingle CJ. BK channel inhibition by strong extracellular acidification. eLife 2018; 7:38060. [PMID: 29963986 PMCID: PMC6054526 DOI: 10.7554/elife.38060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/01/2018] [Indexed: 12/24/2022] Open
Abstract
Mammalian BK-type voltage- and Ca2+-dependent K+ channels are found in a wide range of cells and intracellular organelles. Among different loci, the composition of the extracellular microenvironment, including pH, may differ substantially. For example, it has been reported that BK channels are expressed in lysosomes with their extracellular side facing the strongly acidified lysosomal lumen (pH ~4.5). Here we show that BK activation is strongly and reversibly inhibited by extracellular H+, with its conductance-voltage relationship shifted by more than +100 mV at pHO 4. Our results reveal that this inhibition is mainly caused by H+ inhibition of BK voltage-sensor (VSD) activation through three acidic residues on the extracellular side of BK VSD. Given that these key residues (D133, D147, D153) are highly conserved among members in the voltage-dependent cation channel superfamily, the mechanism underlying BK inhibition by extracellular acidification might also be applicable to other members in the family.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, United States
| | - Xiao-Ming Xia
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, United States
| | - Christopher J Lingle
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
7
|
Salomonsson M, Brasen JC, Sorensen CM. Role of renal vascular potassium channels in physiology and pathophysiology. Acta Physiol (Oxf) 2017; 221:14-31. [PMID: 28371470 DOI: 10.1111/apha.12882] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/10/2016] [Accepted: 03/22/2017] [Indexed: 12/31/2022]
Abstract
The control of renal vascular tone is important for the regulation of salt and water balance, blood pressure and the protection against damaging elevated glomerular pressure. The K+ conductance is a major factor in the regulation of the membrane potential (Vm ) in vascular smooth muscle (VSMC) and endothelial cells (EC). The vascular tone is controlled by Vm via its effect on the opening probability of voltage-operated Ca2+ channels (VOCC) in VSMC. When K+ conductance increases Vm becomes more negative and vasodilation follows, while deactivation of K+ channels leads to depolarization and vasoconstriction. K+ channels in EC indirectly participate in the control of vascular tone by endothelium-derived vasodilation. Therefore, by regulating the tone of renal resistance vessels, K+ channels have a potential role in the control of fluid homoeostasis and blood pressure as well as in the protection of the renal parenchyma. The main classes of K+ channels (calcium activated (KCa ), inward rectifier (Kir ), voltage activated (Kv ) and ATP sensitive (KATP )) have been found in the renal vessels. In this review, we summarize results available in the literature and our own studies in the field. We compare the ambiguous in vitro and in vivo results. We discuss the role of single types of K+ channels and the integrated function of several classes. We also deal with the possible role of renal vascular K+ channels in the pathophysiology of hypertension, diabetes mellitus and sepsis.
Collapse
Affiliation(s)
| | - J. C. Brasen
- Department of Electrical Engineering; Technical University of Denmark; Kgs. Lyngby Denmark
| | - C. M. Sorensen
- Department of Biomedical Sciences; Division of Renal and Vascular Physiology; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
8
|
Zaidman NA, Panoskaltsis-Mortari A, O'Grady SM. Large-conductance Ca 2+ -activated K + channel activation by apical P2Y receptor agonists requires hydrocortisone in differentiated airway epithelium. J Physiol 2017; 595:4631-4645. [PMID: 28481415 DOI: 10.1113/jp274200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/02/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Hydrocortisone (HC) is required for activation of large-conductance Ca2+ -activated K+ current (BK) by purinergic receptor agonists. HC reduces insertion of the stress-regulated exon (STREX) in the KCNMA1 gene, permitting protein kinase C (PKC)-dependent channel activation. Overlapping and unique purinergic signalling regions exist at the apical border of differentiated surface cells. BK channels localize in the cilia of surface cells. ABSTRACT In the present study we investigated the role of hydrocortisone (HC) on uridine-5'-triphosphate (UTP)-stimulated ion transport in differentiated, pseudostratified epithelia derived from normal human bronchial basal cells. The presence of a UTP-stimulated, paxilline-sensitive large-conductance Ca2+ -activated K+ (BK) current was demonstrated in control epithelia but was not stimulated in epithelia differentiated in the absence of HC (HC0). Addition of the BK channel opener NS11021 directly activated channels in control epithelia; however, under HC0 conditions, activation only occurred when UTP was added after NS11021. The PKC inhibitors GF109203x and Gö6983 blocked BK activation by UTP in control epithelia, suggesting that PKC-mediated phosphorylation plays a permissive role in purinoceptor-stimulated BK activation. Moreover, HC0 epithelia expressed significantly more KCNMA1 containing the stress-regulated exon (STREX), a splice-variant of the α-subunit that displays altered channel regulation by phosphorylation, compared to control epithelia. Furthermore, BK channels as well as purinergic receptors were shown to localize in unique and overlapping domains at the apical membrane of ciliated surface cells. These results establish a previously unrecognized role for glucocorticoids in regulation of BK channels in airway epithelial cells.
Collapse
Affiliation(s)
- Nathan A Zaidman
- Department of Integrative Biology and Physiology, University of Minnesota, 6-125 Jackson Hall, Minneapolis, MN, USA
| | - Angela Panoskaltsis-Mortari
- Department of Integrative Biology and Physiology, University of Minnesota, 6-125 Jackson Hall, Minneapolis, MN, USA.,Department of Pediatrics, University of Minnesota, 660E MCRB, Minneapolis, MN, USA
| | - Scott M O'Grady
- Department of Integrative Biology and Physiology, University of Minnesota, 6-125 Jackson Hall, Minneapolis, MN, USA.,Department of Animal Science, University of Minnesota, 480 Haecker Hall, St. Paul, Minneapolis, MN, USA
| |
Collapse
|
9
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
10
|
Latorre R, Castillo K, Carrasquel-Ursulaez W, Sepulveda RV, Gonzalez-Nilo F, Gonzalez C, Alvarez O. Molecular Determinants of BK Channel Functional Diversity and Functioning. Physiol Rev 2017; 97:39-87. [DOI: 10.1152/physrev.00001.2016] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Large-conductance Ca2+- and voltage-activated K+ (BK) channels play many physiological roles ranging from the maintenance of smooth muscle tone to hearing and neurosecretion. BK channels are tetramers in which the pore-forming α subunit is coded by a single gene ( Slowpoke, KCNMA1). In this review, we first highlight the physiological importance of this ubiquitous channel, emphasizing the role that BK channels play in different channelopathies. We next discuss the modular nature of BK channel-forming protein, in which the different modules (the voltage sensor and the Ca2+ binding sites) communicate with the pore gates allosterically. In this regard, we review in detail the allosteric models proposed to explain channel activation and how the models are related to channel structure. Considering their extremely large conductance and unique selectivity to K+, we also offer an account of how these two apparently paradoxical characteristics can be understood consistently in unison, and what we have learned about the conduction system and the activation gates using ions, blockers, and toxins. Attention is paid here to the molecular nature of the voltage sensor and the Ca2+ binding sites that are located in a gating ring of known crystal structure and constituted by four COOH termini. Despite the fact that BK channels are coded by a single gene, diversity is obtained by means of alternative splicing and modulatory β and γ subunits. We finish this review by describing how the association of the α subunit with β or with γ subunits can change the BK channel phenotype and pharmacology.
Collapse
Affiliation(s)
- Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Willy Carrasquel-Ursulaez
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Romina V. Sepulveda
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Fernando Gonzalez-Nilo
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Carlos Gonzalez
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Osvaldo Alvarez
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
11
|
Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:89-144. [PMID: 28212804 DOI: 10.1016/bs.apha.2016.07.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Potassium channels importantly contribute to the regulation of vascular smooth muscle (VSM) contraction and growth. They are the dominant ion conductance of the VSM cell membrane and importantly determine and regulate membrane potential. Membrane potential, in turn, regulates the open-state probability of voltage-gated Ca2+ channels (VGCC), Ca2+ influx through VGCC, intracellular Ca2+, and VSM contraction. Membrane potential also affects release of Ca2+ from internal stores and the Ca2+ sensitivity of the contractile machinery such that K+ channels participate in all aspects of regulation of VSM contraction. Potassium channels also regulate proliferation of VSM cells through membrane potential-dependent and membrane potential-independent mechanisms. VSM cells express multiple isoforms of at least five classes of K+ channels that contribute to the regulation of contraction and cell proliferation (growth). This review will examine the structure, expression, and function of large conductance, Ca2+-activated K+ (BKCa) channels, intermediate-conductance Ca2+-activated K+ (KCa3.1) channels, multiple isoforms of voltage-gated K+ (KV) channels, ATP-sensitive K+ (KATP) channels, and inward-rectifier K+ (KIR) channels in both contractile and proliferating VSM cells.
Collapse
|
12
|
Shipston MJ, Tian L. Posttranscriptional and Posttranslational Regulation of BK Channels. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 128:91-126. [PMID: 27238262 DOI: 10.1016/bs.irn.2016.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Large conductance calcium- and voltage-activated potassium (BK) channels are ubiquitously expressed and play an important role in the regulation of an eclectic array of physiological processes. Their diverse functional role requires channels with a wide variety of properties even though the pore-forming α-subunit is encoded by a single gene, KCNMA1. To achieve this, BK channels exploit some of the most fundamental posttranscriptional and posttranslational mechanisms that allow proteomic diversity to be generated from a single gene. These include mechanisms that diversify mRNA variants and abundance such as alternative pre-mRNA splicing, editing, and control by miRNA. The BK channel is also subject to a diverse array of posttranslational modifications including protein phosphorylation, lipidation, glycosylation, and ubiquitination to control the number, properties, and regulation of BK channels in specific cell types. Importantly, "cross talk" between these posttranscriptional and posttranslational modifications typically converge on disordered domains of the BK channel α-subunit. This allows both wide physiological diversity to be generated and a diversity of mechanisms to allow conditional regulation of BK channels and is emerging as an important determinant of BK channel function in health and disease.
Collapse
Affiliation(s)
- M J Shipston
- Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom.
| | - L Tian
- Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Carrisoza-Gaytan R, Carattino MD, Kleyman TR, Satlin LM. An unexpected journey: conceptual evolution of mechanoregulated potassium transport in the distal nephron. Am J Physiol Cell Physiol 2015; 310:C243-59. [PMID: 26632600 DOI: 10.1152/ajpcell.00328.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Flow-induced K secretion (FIKS) in the aldosterone-sensitive distal nephron (ASDN) is mediated by large-conductance, Ca(2+)/stretch-activated BK channels composed of pore-forming α-subunits (BKα) and accessory β-subunits. This channel also plays a critical role in the renal adaptation to dietary K loading. Within the ASDN, the cortical collecting duct (CCD) is a major site for the final renal regulation of K homeostasis. Principal cells in the ASDN possess a single apical cilium whereas the surfaces of adjacent intercalated cells, devoid of cilia, are decorated with abundant microvilli and microplicae. Increases in tubular (urinary) flow rate, induced by volume expansion, diuretics, or a high K diet, subject CCD cells to hydrodynamic forces (fluid shear stress, circumferential stretch, and drag/torque on apical cilia and presumably microvilli/microplicae) that are transduced into increases in principal (PC) and intercalated (IC) cell cytoplasmic Ca(2+) concentration that activate apical voltage-, stretch- and Ca(2+)-activated BK channels, which mediate FIKS. This review summarizes studies by ourselves and others that have led to the evolving picture that the BK channel is localized in a macromolecular complex at the apical membrane, composed of mechanosensitive apical Ca(2+) channels and a variety of kinases/phosphatases as well as other signaling molecules anchored to the cytoskeleton, and that an increase in tubular fluid flow rate leads to IC- and PC-specific responses determined, in large part, by the cell-specific composition of the BK channels.
Collapse
Affiliation(s)
| | - Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, Pittsburgh, Pennsylvania
| | - Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine, Pittsburgh, Pennsylvania
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York; and
| |
Collapse
|
14
|
Duncan PJ, Şengül S, Tabak J, Ruth P, Bertram R, Shipston MJ. Large conductance Ca²⁺-activated K⁺ (BK) channels promote secretagogue-induced transition from spiking to bursting in murine anterior pituitary corticotrophs. J Physiol 2015; 593:1197-211. [PMID: 25615909 PMCID: PMC4358680 DOI: 10.1113/jphysiol.2015.284471] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/16/2014] [Indexed: 12/14/2022] Open
Abstract
Anterior pituitary corticotroph cells are a central component of the hypothalamic-pituitary-adrenal (HPA) axis essential for the neuroendocrine response to stress. Corticotrophs are excitable cells that receive input from two hypothalamic secretagogues, corticotrophin-releasing hormone (CRH) and arginine vasopressin (AVP) to control the release of adrenocorticotrophic hormone (ACTH). Although corticotrophs are spontaneously active and increase in excitability in response to CRH and AVP the patterns of electrical excitability and underlying ionic conductances are poorly understood. In this study, we have used electrophysiological, pharmacological and genetic approaches coupled with mathematical modelling to investigate whether CRH and AVP promote distinct patterns of electrical excitability and to interrogate the role of large conductance calcium- and voltage-activated potassium (BK) channels in spontaneous and secretagogue-induced activity. We reveal that BK channels do not play a significant role in the generation of spontaneous activity but are critical for the transition to bursting in response to CRH. In contrast, AVP promotes an increase in single spike frequency, a mechanism independent of BK channels but dependent on background non-selective conductances. Co-stimulation with CRH and AVP results in complex patterns of excitability including increases in both single spike frequency and bursting. The ability of corticotroph excitability to be differentially regulated by hypothalamic secretagogues provides a mechanism for differential control of corticotroph excitability in response to different stressors.
Collapse
Affiliation(s)
- Peter J Duncan
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | | | | | | | | | | |
Collapse
|
15
|
Toro L, Li M, Zhang Z, Singh H, Wu Y, Stefani E. MaxiK channel and cell signalling. Pflugers Arch 2014; 466:875-86. [PMID: 24077696 DOI: 10.1007/s00424-013-1359-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 01/23/2023]
Abstract
The large-conductance Ca2+- and voltage-activated K+ (MaxiK, BK, BKCa, Slo1, KCa1.1) channel role in cell signalling is becoming apparent as we learn how the channel interacts with a multiplicity of proteins not only at the plasma membrane but also in intracellular organelles including the endoplasmic reticulum, nucleus, and mitochondria. In this review, we focus on the interactions of MaxiK channels with seven-transmembrane G protein-coupled receptors and discuss information suggesting that, the channel big C-terminus may act as the nucleus of signalling molecules including kinases relevant for cell death and survival. Increasing evidence indicates that the channel is able to associate with a variety of receptors including β-adrenergic receptors, G protein-coupled estrogen receptors, acetylcholine receptors, thromboxane A2 receptors, and angiotensin II receptors, which highlights the varied functions that the channel has (or may have) not only in regulating contraction/relaxation of muscle cells or neurotransmission in the brain but also in cell metabolism, proliferation, migration, and gene expression. In line with this view, MaxiK channels have been implicated in obesity and in brain, prostate, and mammary cancers. A better understanding on the molecular mechanisms underlying or triggered by MaxiK channel abnormalities like overexpression in certain cancers may lead to new therapeutics to prevent devastating diseases.
Collapse
|
16
|
Sitdikova GF, Fuchs R, Kainz V, Weiger TM, Hermann A. Phosphorylation of BK channels modulates the sensitivity to hydrogen sulfide (H2S). Front Physiol 2014; 5:431. [PMID: 25429270 PMCID: PMC4228848 DOI: 10.3389/fphys.2014.00431] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/16/2014] [Indexed: 12/14/2022] Open
Abstract
Introduction: Gases, such as nitric oxide (NO), carbon monoxide (CO), or hydrogen sulfide (H2S), termed gasotransmitters, play an increasingly important role in understanding of how electrical signaling of cells is modulated. H2S is well-known to act on various ion channels and receptors. In a previous study we reported that H2S increased calcium-activated potassium (BK) channel activity. Aims: The goal of the present study is to investigate the modulatory effect of BK channel phosphorylation on the action of H2S on the channel as well as to recalculate and determine the H2S concentrations in aqueous sodium hydrogen sulfide (NaHS) solutions. Methods: Single channel recordings of GH3, GH4, and GH4 STREX cells were used to analyze channel open probability, amplitude, and open dwell times. H2S was measured with an anion selective electrode. Results: The concentration of H2S produced from NaHS was recalculated taking pH, temperature salinity of the perfusate, and evaporation of H2S into account. The results indicate that from a concentration of 300 μM NaHS, only 11–13%, i.e., 34–41 μM is effective as H2S in solution. GH3, GH4, and GH4 STREX cells respond differently to phosphorylation. BK channel open probability (Po) of all cells lines used was increased by H2S in ATP-containing solutions. PKA prevented the action of H2S on channel Po in GH4 and GH4 STREX, but not in GH3 cells. H2S, high significantly increased Po of all PKG pretreated cells. In the presence of PKC, which lowers channel activity, H2S increased channel Po of GH4 and GH4 STREX, but not those of GH3 cells. H2S increased open dwell times of GH3 cells in the absence of ATP significantly. A significant increase of dwell times with H2S was also observed in the presence of okadaic acid. Conclusions: Our results suggest that phosphorylation by PKG primes the channels for H2S activation and indicate that channel phosphorylation plays an important role in the response to H2S.
Collapse
Affiliation(s)
- Guzel F Sitdikova
- Department of Physiology of Man and Animals, Kazan Federal University Kazan, Russia
| | - Roman Fuchs
- Neurosignaling Unit, Department of Organismic Biology, University of Salzburg Salzburg, Austria
| | - Verena Kainz
- Division of Cellular and Molecular Neurobiology, Department of Cell Biology, University of Salzburg Salzburg, Austria
| | - Thomas M Weiger
- Division of Cellular and Molecular Neurobiology, Department of Cell Biology, University of Salzburg Salzburg, Austria
| | - Anton Hermann
- Division of Cellular and Molecular Neurobiology, Department of Cell Biology, University of Salzburg Salzburg, Austria
| |
Collapse
|
17
|
Velázquez-Marrero C, Seale GE, Treistman SN, Martin GE. Large conductance voltage- and Ca2+-gated potassium (BK) channel β4 subunit influences sensitivity and tolerance to alcohol by altering its response to kinases. J Biol Chem 2014; 289:29261-72. [PMID: 25190810 DOI: 10.1074/jbc.m114.604306] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tolerance is a well described component of alcohol abuse and addiction. The large conductance voltage- and Ca(2+)-gated potassium channel (BK) has been very useful for studying molecular tolerance. The influence of association with the β4 subunit can be observed at the level of individual channels, action potentials in brain slices, and finally, drinking behavior in the mouse. Previously, we showed that 50 mm alcohol increases both α and αβ4 BK channel open probability, but only α BK develops acute tolerance to this effect. Currently, we explore the possibility that the influence of the β4 subunit on tolerance may result from a striking effect of β4 on kinase modulation of the BK channel. We examine the influence of the β4 subunit on PKA, CaMKII, and phosphatase modulation of channel activity, and on molecular tolerance to alcohol. We record from human BK channels heterologously expressed in HEK 293 cells composed of its core subunit, α alone (Insertless), or co-expressed with the β4 BK auxiliary subunit, as well as, acutely dissociated nucleus accumbens neurons using the cell-attached patch clamp configuration. Our results indicate that BK channels are strongly modulated by activation of specific kinases (PKA and CaMKII) and phosphatases. The presence of the β4 subunit greatly influences this modulation, allowing a variety of outcomes for BK channel activity in response to acute alcohol.
Collapse
Affiliation(s)
- Cristina Velázquez-Marrero
- the Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico 00901
| | - Garrett E Seale
- the Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico 00901
| | - Steven N Treistman
- the Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico 00901
| | - Gilles E Martin
- From the Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01604 and
| |
Collapse
|
18
|
Kyle BD, Braun AP. The regulation of BK channel activity by pre- and post-translational modifications. Front Physiol 2014; 5:316. [PMID: 25202279 PMCID: PMC4141542 DOI: 10.3389/fphys.2014.00316] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/02/2014] [Indexed: 11/17/2022] Open
Abstract
Large conductance, Ca2+-activated K+ (BK) channels represent an important pathway for the outward flux of K+ ions from the intracellular compartment in response to membrane depolarization, and/or an elevation in cytosolic free [Ca2+]. They are functionally expressed in a range of mammalian tissues (e.g., nerve and smooth muscles), where they can either enhance or dampen membrane excitability. The diversity of BK channel activity results from the considerable alternative mRNA splicing and post-translational modification (e.g., phosphorylation) of key domains within the pore-forming α subunit of the channel complex. Most of these modifications are regulated by distinct upstream cell signaling pathways that influence the structure and/or gating properties of the holo-channel and ultimately, cellular function. The channel complex may also contain auxiliary subunits that further affect channel gating and behavior, often in a tissue-specific manner. Recent studies in human and animal models have provided strong evidence that abnormal BK channel expression/function contributes to a range of pathologies in nerve and smooth muscle. By targeting the upstream regulatory events modulating BK channel behavior, it may be possible to therapeutically intervene and alter BK channel expression/function in a beneficial manner.
Collapse
Affiliation(s)
- Barry D Kyle
- Department of Physiology and Pharmacology, Cumming School of Medicine, Libin Cardiovascular Research Institute, University of Calgary Calgary, AB, Canada
| | - Andrew P Braun
- Department of Physiology and Pharmacology, Cumming School of Medicine, Libin Cardiovascular Research Institute, University of Calgary Calgary, AB, Canada
| |
Collapse
|
19
|
Shipston MJ. S-acylation dependent post-translational cross-talk regulates large conductance calcium- and voltage- activated potassium (BK) channels. Front Physiol 2014; 5:281. [PMID: 25140154 PMCID: PMC4122160 DOI: 10.3389/fphys.2014.00281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/09/2014] [Indexed: 01/14/2023] Open
Abstract
Mechanisms that control surface expression and/or activity of large conductance calcium-activated potassium (BK) channels are important determinants of their (patho)physiological function. Indeed, BK channel dysfunction is associated with major human disorders ranging from epilepsy to hypertension and obesity. S-acylation (S-palmitoylation) represents a major reversible, post-translational modification controlling the properties and function of many proteins including ion channels. Recent evidence reveals that both pore-forming and regulatory subunits of BK channels are S-acylated and control channel trafficking and regulation by AGC-family protein kinases. The pore-forming α-subunit is S-acylated at two distinct sites within the N- and C-terminus, each site being regulated by different palmitoyl acyl transferases (zDHHCs) and acyl thioesterases (APTs). S-acylation of the N-terminus controls channel trafficking and surface expression whereas S-acylation of the C-terminal domain determines regulation of channel activity by AGC-family protein kinases. S-acylation of the regulatory β4-subunit controls ER exit and surface expression of BK channels but does not affect ion channel kinetics at the plasma membrane. Furthermore, a significant number of previously identified BK-channel interacting proteins have been shown, or are predicted to be, S-acylated. Thus, the BK channel multi-molecular signaling complex may be dynamically regulated by this fundamental post-translational modification and thus S-acylation likely represents an important determinant of BK channel physiology in health and disease.
Collapse
Affiliation(s)
- Michael J Shipston
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh Edinburgh, UK
| |
Collapse
|
20
|
Waite SL, Gandhi SV, Khan RN, Chapman NR. The effect of trichostatin-A and tumor necrosis factor on expression of splice variants of the MaxiK and L-type channels in human myometrium. Front Physiol 2014; 5:261. [PMID: 25076912 PMCID: PMC4097961 DOI: 10.3389/fphys.2014.00261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 06/20/2014] [Indexed: 01/30/2023] Open
Abstract
The onset of human parturition is associated with up-regulation of pro-inflammatory cytokines including tumor necrosis factor (TNF) as well as changes in ion flux, principally Ca2+ and K+, across the myometrial myocytes membrane. Elevation of intra-cellular Ca2+ from the sarcoplasmic reticulum opens L-type Ca2+ channels (LTCCs); in turn this increased calcium level activates MaxiK channels leading to relaxation. While the nature of how this cross-talk is governed remains unclear, our previous work demonstrated that the pro-inflammatory cytokine, TNF, and the histone deacetylase inhibitor, Trichostatin-A (TSA), exerted opposing effects on the expression of the pro-quiescent Gαs gene in human myometrial cells. Consequently, in this study we demonstrate that the different channel splice variants for both MaxiK and LTCC are expressed in primary myometrial myocytes. MaxiK mRNA expression was sensitive to TSA stimulation, this causing repression of the M1, M3, and M4 splice variants. A small but not statistically significantly increase in MaxiK expression was also seen in response to TNF. In contrast to this, expression of LTCC splice variants was seen to be influenced by both TNF and TSA. TNF induced overall increase in total LTCC expression while TSA stimulated a dual effect: causing induction of LTCC exon 8 expression but repressing expression of other LTCC splice variants including that encoding exons 30, 31, 33, and 34, exons 30–34 and exons 40–43. The significance of these observations is discussed herein.
Collapse
Affiliation(s)
- Sarah L Waite
- Academic Unit of Reproductive and Developmental Medicine, Department of Human Metabolism, University of Sheffield Sheffield, UK
| | - Saurabh V Gandhi
- Department of Obstetrics and Gynaecology, Sheffield Teaching Hospitals NHS Foundation Trust Sheffield, UK
| | - Raheela N Khan
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, Royal Derby Hospital, University of Nottingham Derby, UK
| | - Neil R Chapman
- Academic Unit of Reproductive and Developmental Medicine, Department of Human Metabolism, University of Sheffield Sheffield, UK
| |
Collapse
|
21
|
Large conductance Ca2+-activated K+ channel (BKCa) α-subunit splice variants in resistance arteries from rat cerebral and skeletal muscle vasculature. PLoS One 2014; 9:e98863. [PMID: 24921651 PMCID: PMC4055454 DOI: 10.1371/journal.pone.0098863] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/07/2014] [Indexed: 11/19/2022] Open
Abstract
Previous studies report functional differences in large conductance Ca2+ activated-K+ channels (BKCa) of smooth muscle cells (VSMC) from rat cerebral and cremaster muscle resistance arteries. The present studies aimed to determine if this complexity in BKCa activity may, in part, be due to splice variants in the pore-forming α-subunit. BKCa variants in the intracellular C terminus of the α-subunit, and their relative expression to total α-subunit, were examined by qPCR. Sequencing of RT-PCR products showed two α-subunit variants, ZERO and STREX, to be identical in cremaster and cerebral arteries. Levels of STREX mRNA expression were, however, significantly higher in cremaster VSMCs (28.9±4.2% of total α-BKCa) compared with cerebral vessels (16.5±0.9%). Further, a low level of BKCa SS4 α-subunit variant was seen in cerebral arteries, while undetectable in cremaster arteries. Protein biotinylation assays, in expression systems and arterial preparations, were used to determine whether differences in splice variant mRNA expression affect surface membrane/cytosolic location of the channel. In AD-293 and CHO-K1 cells, rat STREX was more likely to be located at the plasma membrane compared to ZERO, although the great majority of channel protein was in the membrane in both cases. Co-expression of β1-BKCa subunit with STREX or ZERO did not influence the dominant membrane expression of α-BKCa subunits, whereas in the absence of α-BKCa, a significant proportion of β1-subunit remained cytosolic. Biotinylation assays of cremaster and cerebral arteries showed that differences in STREX/ZERO expression do not alter membrane/cytosolic distribution of the channel under basal conditions. These data, however, revealed that the amount of α-BKCa in cerebral arteries is approximately 20X higher than in cremaster vessels. Thus, the data support the major functional differences in BKCa activity in cremaster, as compared to cerebral VSMCs, being related to total α-BKCa expression, regardless of differences in splice variant expression.
Collapse
|
22
|
Refinement of the spectra of exon usage by combined effects of extracellular stimulus and intracellular factors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:537-45. [PMID: 24844182 DOI: 10.1016/j.bbagrm.2014.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/29/2014] [Accepted: 05/12/2014] [Indexed: 11/23/2022]
Abstract
Finely tuned differential expression of alternative splice variants contributes to important physiological processes such as the fine-tuning of electrical firing or hearing frequencies; yet the underlying molecular basis for the expression control is not clear. The inclusion levels of four depolarization-regulated alternative exons were measured by RT-PCR in GH3 pituitary cells under different conditions of stimulation and/or RNA interference of splicing factors. The usage of the exons was reduced by membrane depolarization to various extents and was differentially modulated by the knock-down of splicing factors hnRNP L, L-like, I (PTBP1) or K or their combinations. A spectrum of each exon's level was produced under six knock-down conditions and was significantly shifted by depolarization. When all these conditions were considered together, a more refined or expanded spectrum of exon usage was obtained for each of the four exons. As a proof of principle for the molecular basis of the fine-tuning of exon usage, we show in the cases of hnRNP L and LL that their differential effects through the same element or different combinations of RNA sequences by the same factor hnRNP L are critical. The results thus demonstrate that the combined effect of varying extracellular stimuli and intracellular factors/RNA sequences refines or expands the spectra of endogenous exon usage, likely contributing to the fine-tuning of cellular properties.
Collapse
|
23
|
Samways DSK. Applications for mass spectrometry in the study of ion channel structure and function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:237-61. [PMID: 24952185 DOI: 10.1007/978-3-319-06068-2_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Ion channels are intrinsic membrane proteins that form gated ion-permeable pores across biological membranes. Depending on the type, ion channels exhibit sensitivities to a diverse range of stimuli including changes in membrane potential, binding by diffusible ligands, changes in temperature and direct mechanical force. The purpose of these proteins is to facilitate the passive diffusion of ions down their respective electrochemical gradients into and out of the cell, and between intracellular compartments. In doing so, ion channels can affect transmembrane potentials and regulate the intracellular homeostasis of the important second messenger, Ca(2+). The ion channels of the plasma membrane are of particular clinical interest due to their regulation of cell excitability and cytosolic Ca(2+) levels, and the fact that they are most amenable to manipulation by exogenously applied drugs and toxins. A critical step in improving the pharmacopeia of chemicals available that influence the activity of ion channels is understanding how their three-dimensional structure imparts function. Here, progress has been slow relative to that for soluble protein structures in large part due to the limitations of applying conventional structure determination methods, such as X-ray crystallography, nuclear magnetic resonance imaging, and mass spectrometry, to membrane proteins. Although still an underutilized technique in the assessment of membrane protein structure, recent advances have pushed mass spectrometry to the fore as an important complementary approach to studying the structure and function of ion channels. In addition to revealing the subtle conformational changes in ion channel structure that accompany gating and permeation, mass spectrometry is already being used effectively for identifying tissue-specific posttranslational modifications and mRNA splice variants. Furthermore, the use of mass spectrometry for high-throughput proteomics analysis, which has proven so successful for soluble proteins, is already providing valuable insight into the functional interactions of ion channels within the context of the macromolecular-signaling complexes that they inhabit in vivo. In this chapter, the potential for mass spectrometry as a complementary approach to the study of ion channel structure and function will be reviewed with examples of its application.
Collapse
Affiliation(s)
- Damien S K Samways
- Department of Biology, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699, USA,
| |
Collapse
|
24
|
Plant LD. Multilevel regulation: Controlling BK channels in central clock neurons. J Gen Physiol 2013; 142:579-83. [PMID: 24277601 PMCID: PMC3840922 DOI: 10.1085/jgp.201311128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Leigh D Plant
- Department of Biochemistry, Brandeis University, Waltham, MA 02453
| |
Collapse
|
25
|
Wu W, Wang Y, Deng XL, Sun HY, Li GR. Cholesterol down-regulates BK channels stably expressed in HEK 293 cells. PLoS One 2013; 8:e79952. [PMID: 24260325 PMCID: PMC3832390 DOI: 10.1371/journal.pone.0079952] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 09/28/2013] [Indexed: 12/23/2022] Open
Abstract
Cholesterol is one of the major lipid components of the plasma membrane in mammalian cells and is involved in the regulation of a number of ion channels. The present study investigates how large conductance Ca2+-activated K+ (BK) channels are regulated by membrane cholesterol in BK-HEK 293 cells expressing both the α-subunit hKCa1.1 and the auxiliary β1-subunit or in hKCa1.1-HEK 293 cells expressing only the α-subunit hKCa1.1 using approaches of electrophysiology, molecular biology, and immunocytochemistry. Membrane cholesterol was depleted in these cells with methyl-β-cyclodextrin (MβCD), and enriched with cholesterol-saturated MβCD (MβCD-cholesterol) or low-density lipoprotein (LDL). We found that BK current density was decreased by cholesterol enrichment in BK-HEK 293 cells, with a reduced expression of KCa1.1 protein, but not the β1-subunit protein. This effect was fully countered by the proteasome inhibitor lactacystin or the lysosome function inhibitor bafilomycin A1. Interestingly, in hKCa1.1-HEK 293 cells, the current density was not affected by cholesterol enrichment, but directly decreased by MβCD, suggesting that the down-regulation of BK channels by cholesterol depends on the auxiliary β1-subunit. The reduced KCa1.1 channel protein expression was also observed in cultured human coronary artery smooth muscle cells with cholesterol enrichment using MβCD-cholesterol or LDL. These results demonstrate the novel information that cholesterol down-regulates BK channels by reducing KCa1.1 protein expression via increasing the channel protein degradation, and the effect is dependent on the auxiliary β1-subunit.
Collapse
Affiliation(s)
- Wei Wu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yan Wang
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xiu-Ling Deng
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Hai-Ying Sun
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Gui-Rong Li
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Physiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- * E-mail:
| |
Collapse
|
26
|
Contreras GF, Castillo K, Enrique N, Carrasquel-Ursulaez W, Castillo JP, Milesi V, Neely A, Alvarez O, Ferreira G, González C, Latorre R. A BK (Slo1) channel journey from molecule to physiology. Channels (Austin) 2013; 7:442-58. [PMID: 24025517 DOI: 10.4161/chan.26242] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Calcium and voltage-activated potassium (BK) channels are key actors in cell physiology, both in neuronal and non-neuronal cells and tissues. Through negative feedback between intracellular Ca (2+) and membrane voltage, BK channels provide a damping mechanism for excitatory signals. Molecular modulation of these channels by alternative splicing, auxiliary subunits and post-translational modifications showed that these channels are subjected to many mechanisms that add diversity to the BK channel α subunit gene. This complexity of interactions modulates BK channel gating, modifying the energetic barrier of voltage sensor domain activation and channel opening. Regions for voltage as well as Ca (2+) sensitivity have been identified, and the crystal structure generated by the 2 RCK domains contained in the C-terminal of the channel has been described. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, has been found to be relevant in many physiological processes. This review includes the hallmarks of BK channel biophysics and its physiological impact on specific cells and tissues, highlighting its relationship with auxiliary subunit expression.
Collapse
Affiliation(s)
- Gustavo F Contreras
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso, Chile; Doctorado en Ciencias mención Neurociencia; Universidad de Valparaíso; Valparaíso, Chile
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso, Chile
| | - Nicolás Enrique
- Grupo de Investigación en Fisiología Vascular (GINFIV); Universidad Nacional de la Plata; La Plata, Argentina
| | - Willy Carrasquel-Ursulaez
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso, Chile; Doctorado en Ciencias mención Neurociencia; Universidad de Valparaíso; Valparaíso, Chile
| | - Juan Pablo Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso, Chile; Facultad de Ciencias; Universidad de Chile; Santiago, Chile
| | - Verónica Milesi
- Grupo de Investigación en Fisiología Vascular (GINFIV); Universidad Nacional de la Plata; La Plata, Argentina
| | - Alan Neely
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso, Chile
| | | | - Gonzalo Ferreira
- Laboratorio de Canales Iónicos; Departamento de Biofísica; Facultad de Medicina; Universidad de la República; Montevideo, Uruguay
| | - Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso, Chile
| | - Ramón Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso, Chile
| |
Collapse
|
27
|
Saldanha PA, Cairrão E, Maia CJ, Verde I. Long- and short-term effects of androgens in human umbilical artery smooth muscle. Clin Exp Pharmacol Physiol 2013; 40:181-9. [PMID: 23278339 DOI: 10.1111/1440-1681.12047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/25/2012] [Accepted: 12/12/2012] [Indexed: 12/19/2022]
Abstract
The aim of the present study was to determine the effects of androgens in the regulation of human umbilical artery (HUA) contractility. The short-term effects of testosterone on the tone of the HUA were investigated, as were the long-term effects of dihydrotestosterone (DHT) on the expression of some proteins involved in the contractile process. Endothelium-denuded HUA were treated for 24 h with DHT (2 μmol/L) or the vehicle control (ethanol) to analyse the genomic effects of androgens. Twenty-four hour treatment of HUA with DHT increased the mRNA expression of the β(1)-subunit of the large-conductance Ca(2+)-activated (BK(Ca)) channel and decreased expression of the α-subunit of L-type calcium channels. In organ bath studies, testosterone (1-100 μmol/L) produced similar relaxant responses in DHT- and vehicle-treated HUA rings precontracted with 5-HT, histamine and KCl. However, the relaxation response obtained by the combined application of testosterone (100 μmol/L) and nifedipine (10 μmol/L) was significantly greater in DHT- compared with vehicle-treated HUA. The results indicate that the rapid vasorelaxant effects of testosterone that are dependent on both BK(Ca) and voltage-sensitive potassium (K(V)) channel activity in control arteries become dependent solely on K(V) channel activity in DHT-treated HUA. Thus, the present study reveals the importance of the investigation of both the short- and long-term effects of androgens in human arteries.
Collapse
Affiliation(s)
- Paulo A Saldanha
- Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | | | | | |
Collapse
|
28
|
Regulation of large conductance calcium- and voltage-activated potassium (BK) channels by S-palmitoylation. Biochem Soc Trans 2013; 41:67-71. [PMID: 23356260 DOI: 10.1042/bst20120226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BK (large conductance calcium- and voltage-activated potassium) channels are important determinants of physiological control in the nervous, endocrine and vascular systems with channel dysfunction associated with major disorders ranging from epilepsy to hypertension and obesity. Thus the mechanisms that control channel surface expression and/or activity are important determinants of their (patho)physiological function. BK channels are S-acylated (palmitoylated) at two distinct sites within the N- and C-terminus of the pore-forming α-subunit. Palmitoylation of the N-terminus controls channel trafficking and surface expression whereas palmitoylation of the C-terminal domain determines regulation of channel activity by AGC-family protein kinases. Recent studies are beginning to reveal mechanistic insights into how palmitoylation controls channel trafficking and cross-talk with phosphorylation-dependent signalling pathways. Intriguingly, each site of palmitoylation is regulated by distinct zDHHCs (palmitoyl acyltransferases) and APTs (acyl thioesterases). This supports that different mechanisms may control substrate specificity by zDHHCs and APTs even within the same target protein. As palmitoylation is dynamically regulated, this fundamental post-translational modification represents an important determinant of BK channel physiology in health and disease.
Collapse
|
29
|
Joseph BK, Thakali KM, Moore CL, Rhee SW. Ion channel remodeling in vascular smooth muscle during hypertension: Implications for novel therapeutic approaches. Pharmacol Res 2013; 70:126-38. [PMID: 23376354 PMCID: PMC3607210 DOI: 10.1016/j.phrs.2013.01.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/10/2013] [Accepted: 01/17/2013] [Indexed: 02/07/2023]
Abstract
Ion channels are multimeric, transmembrane proteins that selectively mediate ion flux across the plasma membrane in a variety of cells including vascular smooth muscle cells (VSMCs). The dynamic interplay of Ca(2+) and K(+) channels on the plasma membrane of VSMCs plays a pivotal role in modulating the vascular tone of small arteries and arterioles. The abnormally-elevated arterial tone observed in hypertension thus points to an aberrant expression and function of Ca(2+) and K(+) channels in the VSMCs. In this short review, we focus on the three well-studied ion channels in VSMCs, namely the L-type Ca(2+) (CaV1.2) channels, the voltage-gated K(+) (KV) channels, and the large-conductance Ca(2+)-activated K(+) (BK) channels. First, we provide a brief overview on the physiological role of vascular CaV1.2, KV and BK channels in regulating arterial tone. Second, we discuss the current understanding of the expression changes and regulation of CaV1.2, KV and BK channels in the vasculature during hypertension. Third, based on available proof-of-concept studies, we describe the potential therapeutic approaches targeting these vascular ion channels in order to restore blood pressure to normotensive levels.
Collapse
Affiliation(s)
- Biny K Joseph
- Venenum Biodesign, 8 Black Forest Road, Hamilton, NJ 08691, USA
| | | | | | | |
Collapse
|
30
|
Voigt N, Heijman J, Trausch A, Mintert-Jancke E, Pott L, Ravens U, Dobrev D. Impaired Na⁺-dependent regulation of acetylcholine-activated inward-rectifier K⁺ current modulates action potential rate dependence in patients with chronic atrial fibrillation. J Mol Cell Cardiol 2013; 61:142-52. [PMID: 23531443 DOI: 10.1016/j.yjmcc.2013.03.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 02/07/2013] [Accepted: 03/11/2013] [Indexed: 01/23/2023]
Abstract
Shortened action-potential duration (APD) and blunted APD rate adaptation are hallmarks of chronic atrial fibrillation (cAF). Basal and muscarinic (M)-receptor-activated inward-rectifier K(+) currents (IK1 and IK,ACh, respectively) contribute to regulation of human atrial APD and are subject to cAF-dependent remodeling. Intracellular Na(+) ([Na(+)]i) enhances IK,ACh in experimental models but the effect of [Na(+)]i-dependent regulation of inward-rectifier K(+) currents on APD in human atrial myocytes is currently unknown. Here, we report a [Na(+)]i-dependent inhibition of outward IK1 in atrial myocytes from sinus rhythm (SR) or cAF patients. In contrast, IK,ACh activated by carbachol, a non-selective M-receptor agonist, increased with elevation of [Na(+)]i in SR. This [Na(+)]i-dependent IK,ACh regulation was absent in cAF. Including [Na(+)]i dependence of IK1 and IK,ACh in a recent computational model of the human atrial myocyte revealed that [Na(+)]i accumulation at fast rates inhibits IK1 and blunts physiological APD rate dependence in both groups. [Na(+)]i-dependent IK,ACh augmentation at fast rates increased APD rate dependence in SR, but not in cAF. These results identify impaired Na(+)-sensitivity of IK,ACh as one potential mechanism contributing to the blunted APD rate dependence in patients with cAF. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".
Collapse
Affiliation(s)
- Niels Voigt
- Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, 45122 Essen, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Butler T, Paul J, Europe-Finner N, Smith R, Chan EC. Role of serine-threonine phosphoprotein phosphatases in smooth muscle contractility. Am J Physiol Cell Physiol 2013; 304:C485-504. [PMID: 23325405 DOI: 10.1152/ajpcell.00161.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The degree of phosphorylation of myosin light chain 20 (MLC20) is a major determinant of force generation in smooth muscle. Myosin phosphatases (MPs) contain protein phosphatase (PP) 1 as catalytic subunits and are the major enzymes that dephosphorylate MLC20. MP regulatory targeting subunit 1 (MYPT1), the main regulatory subunit of MP in all smooth muscles, is a key convergence point of contractile and relaxatory pathways. Combinations of regulatory mechanisms, including isoform splicing, multiple phosphorylation sites, and scaffolding proteins, modulate MYPT1 activity with tissue and agonist specificities to affect contraction and relaxation. Other members of the PP1 family that do not target myosin, as well as PP2A and PP2B, dephosphorylate a range of proteins that affect smooth muscle contraction. This review discusses the role of phosphatases in smooth muscle contractility with a focus on MYPT1 in uterine smooth muscle. Myometrium shares characteristics of vascular and other visceral smooth muscles yet, during healthy pregnancy, undergoes hypertrophy, hyperplasia, quiescence, and labor as physiological processes. Myometrium presents an accessible model for the study of normal and pathological smooth muscle function, and a better understanding of myometrial physiology may allow the development of novel therapeutics for the many disorders of myometrial physiology from preterm labor to dysmenorrhea.
Collapse
Affiliation(s)
- Trent Butler
- Mothers and Babies Research Centre, Faculty of Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | | | | | |
Collapse
|
32
|
Zhang J, Halm ST, Halm DR. Role of the BK channel (KCa1.1) during activation of electrogenic K+ secretion in guinea pig distal colon. Am J Physiol Gastrointest Liver Physiol 2012; 303:G1322-34. [PMID: 23064759 PMCID: PMC3532550 DOI: 10.1152/ajpgi.00325.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Secretagogues acting at a variety of receptor types activate electrogenic K(+) secretion in guinea pig distal colon, often accompanied by Cl(-) secretion. Distinct blockers of K(Ca)1.1 (BK, Kcnma1), iberiotoxin (IbTx), and paxilline inhibited the negative short-circuit current (I(sc)) associated with K(+) secretion. Mucosal addition of IbTx inhibited epinephrine-activated I(sc) ((epi)I(sc)) and transepithelial conductance ((epi)G(t)) consistent with K(+) secretion occurring via apical membrane K(Ca)1.1. The concentration dependence of IbTx inhibition of (epi)I(sc) yielded an IC(50) of 193 nM, with a maximal inhibition of 51%. Similarly, IbTx inhibited (epi)G(t) with an IC(50) of 220 nM and maximal inhibition of 48%. Mucosally added paxilline (10 μM) inhibited (epi)I(sc) and (epi)G(t) by ∼50%. IbTx and paxilline also inhibited I(sc) activated by mucosal ATP, supporting apical K(Ca)1.1 as a requirement for this K(+) secretagogue. Responses to IbTx and paxilline indicated that a component of K(+) secretion occurred during activation of Cl(-) secretion by prostaglandin-E(2) and cholinergic stimulation. Analysis of K(Ca)1.1α mRNA expression in distal colonic epithelial cells indicated the presence of the ZERO splice variant and three splice variants for the COOH terminus. The presence of the regulatory β-subunits K(Ca)β1 and K(Ca)β4 also was demonstrated. Immunolocalization supported the presence of K(Ca)1.1α in apical and basolateral membranes of surface and crypt cells. Together these results support a cellular mechanism for electrogenic K(+) secretion involving apical membrane K(Ca)1.1 during activation by several secretagogue types, but the observed K(+) secretion likely required the activity of additional K(+) channel types in the apical membrane.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Susan T. Halm
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Dan R. Halm
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| |
Collapse
|
33
|
Ehling P, Cerina M, Meuth P, Kanyshkova T, Bista P, Coulon P, Meuth SG, Pape HC, Budde T. Ca(2+)-dependent large conductance K(+) currents in thalamocortical relay neurons of different rat strains. Pflugers Arch 2012. [PMID: 23207578 DOI: 10.1007/s00424-012-1188-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mutations in genes coding for Ca(2+) channels were found in patients with childhood absence epilepsy (CAE) indicating a contribution of Ca(2+)-dependent mechanisms to the generation of spike-wave discharges (SWD) in humans. Since the involvement of Ca(2+) signals remains unclear, the aim of the present study was to elucidate the function of a Ca(2+)-dependent K(+) channel (BKCa) under physiological conditions and in the pathophysiological state of CAE. The activation of BKCa channels is dependent on both voltage and intracellular Ca(2+) concentrations. Moreover, these channels exhibit an outstandingly high level of regulatory heterogeneity that builds the basis for the influence of BKCa channels on different aspects of neuronal activity. Here, we analyse the contribution of BKCa channels to firing of thalamocortical relay neurons, and we test the hypothesis that BKCa channel activity affects the phenotype of a genetic rat model of CAE. We found that the activation of the β2-adrenergic receptor/protein kinase A pathway resulted in BKCa channel inhibition. Furthermore, BKCa channels affect the number of action potentials fired in a burst and produced spike frequency adaptation during tonic activity. The latter result was confirmed by a computer modelling approach. We demonstrate that the β2-adrenergic inhibition of BKCa channels prevents spike frequency adaptation and, thus, might significantly support the tonic firing mode of thalamocortical relay neurons. In addition, we show that BKCa channel functioning differs in epileptic WAG/Rij and thereby likely contributes to highly synchronised, epileptic network activity.
Collapse
Affiliation(s)
- Petra Ehling
- Institute of Physiology I, University of Münster, Robert-Koch-Str. 27a, Münster, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Young FB, Butland SL, Sanders SS, Sutton LM, Hayden MR. Putting proteins in their place: Palmitoylation in Huntington disease and other neuropsychiatric diseases. Prog Neurobiol 2012; 97:220-38. [DOI: 10.1016/j.pneurobio.2011.11.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 11/01/2011] [Accepted: 11/08/2011] [Indexed: 01/02/2023]
|
35
|
Surguchev A, Bai JP, Joshi P, Navaratnam D. Hair cell BK channels interact with RACK1, and PKC increases its expression on the cell surface by indirect phosphorylation. Am J Physiol Cell Physiol 2012; 303:C143-50. [PMID: 22538239 DOI: 10.1152/ajpcell.00062.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Large conductance (BK) calcium activated potassium channels (Slo) are ubiquitous and implicated in a number of human diseases including hypertension and epilepsy. BK channels consist of a pore forming α-subunit (Slo) and a number of accessory subunits. In hair cells of nonmammalian vertebrates these channels play a critical role in electrical resonance, a mechanism of frequency selectivity. Hair cell BK channel clusters on the surface and currents increase along the tonotopic axis and contribute significantly to the responsiveness of these hair cells to sounds of high frequency. In contrast, messenger RNA levels encoding the Slo gene show an opposite decrease in high frequency hair cells. To understand the molecular events underlying this paradox, we used a yeast two-hybrid screen to isolate binding partners of Slo. We identified Rack1 as a Slo binding partner and demonstrate that PKC activation increases Slo surface expression. We also establish that increased Slo recycling of endocytosed Slo is at least partially responsible for the increased surface expression of Slo. Moreover, analysis of several PKC phosphorylation site mutants confirms that the effects of PKC on Slo surface expression are likely indirect. Finally, we show that Slo clusters on the surface of hair cells are also increased by increased PKC activity and may contribute to the increasing amounts of channel clusters on the surface of high-frequency hair cells.
Collapse
Affiliation(s)
- Alexei Surguchev
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | |
Collapse
|
36
|
Sorensen CM, Braunstein TH, Holstein-Rathlou NH, Salomonsson M. Role of vascular potassium channels in the regulation of renal hemodynamics. Am J Physiol Renal Physiol 2012; 302:F505-18. [DOI: 10.1152/ajprenal.00052.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
K+ conductance is a major determinant of membrane potential ( Vm) in vascular smooth muscle (VSMC) and endothelial cells (EC). The vascular tone is controlled by Vm through the action of voltage-operated Ca2+ channels (VOCC) in VSMC. Increased K+ conductance leads to hyperpolarization and vasodilation, while inactivation of K+ channels causes depolarization and vasoconstriction. K+ channels in EC indirectly participate in the control of vascular tone by several mechanisms, e.g., release of nitric oxide and endothelium-derived hyperpolarizing factor. In the kidney, a change in the activity of one or more classes of K+ channels will lead to a change in hemodynamic resistance and therefore of renal blood flow and glomerular filtration pressure. Through these effects, the activity of renal vascular K+ channels influences renal salt and water excretion, fluid homeostasis, and ultimately blood pressure. Four main classes of K+ channels [calcium activated (KCa), inward rectifier (Kir), voltage activated (KV), and ATP sensitive (KATP)] are found in the renal vasculature. Several in vitro experiments have suggested a role for individual classes of K+ channels in the regulation of renal vascular function. Results from in vivo experiments are sparse. We discuss the role of the different classes of renal vascular K+ channels and their possible role in the integrated function of the renal microvasculature. Since several pathological conditions, among them hypertension, are associated with alterations in K+ channel function, the role of renal vascular K+ channels in the control of salt and water excretion deserves attention.
Collapse
Affiliation(s)
- Charlotte Mehlin Sorensen
- Institute of Biomedical Sciences, Division of Renal and Vascuar Physiology, The Panum Institute, and
| | - Thomas Hartig Braunstein
- Danish National Research Foundation Center for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
| | | | - Max Salomonsson
- Institute of Biomedical Sciences, Division of Renal and Vascuar Physiology, The Panum Institute, and
| |
Collapse
|
37
|
Jeffries O, Tian L, McClafferty H, Shipston MJ. An electrostatic switch controls palmitoylation of the large conductance voltage- and calcium-activated potassium (BK) channel. J Biol Chem 2011; 287:1468-77. [PMID: 22084244 PMCID: PMC3256903 DOI: 10.1074/jbc.m111.224840] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Protein palmitoylation is a major dynamic posttranslational regulator of protein function. However, mechanisms that control palmitoylation are poorly understood. In many proteins, palmitoylation occurs at cysteine residues juxtaposed to membrane-anchoring domains such as transmembrane helices, sites of irreversible lipid modification, or hydrophobic and/or polybasic domains. In particular, polybasic domains represent an attractive mechanism to dynamically control protein palmitoylation, as the function of these domains can be dramatically influenced by protein phosphorylation. Here we demonstrate that a polybasic domain immediately upstream of palmitoylated cysteine residues within an alternatively spliced insert in the C terminus of the large conductance calcium- and voltage-activated potassium channel is an important determinant of channel palmitoylation and function. Mutation of basic amino acids to acidic residues within the polybasic domain results in inhibition of channel palmitoylation and a significant right-shift in channel half maximal voltage for activation. Importantly, protein kinase A-dependent phosphorylation of a single serine residue within the core of the polybasic domain, which results in channel inhibition, also reduces channel palmitoylation. These data demonstrate the key role of the polybasic domain in controlling stress-regulated exon palmitoylation and suggests that phosphorylation controls the domain by acting as an electrostatic switch.
Collapse
Affiliation(s)
- Owen Jeffries
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | | | | | | |
Collapse
|
38
|
Phosphorylation of the voltage-gated potassium channel Kv2.1 by AMP-activated protein kinase regulates membrane excitability. Proc Natl Acad Sci U S A 2011; 108:18132-7. [PMID: 22006306 DOI: 10.1073/pnas.1106201108] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Firing of action potentials in excitable cells accelerates ATP turnover. The voltage-gated potassium channel Kv2.1 regulates action potential frequency in central neurons, whereas the ubiquitous cellular energy sensor AMP-activated protein kinase (AMPK) is activated by ATP depletion and protects cells by switching off energy-consuming processes. We show that treatment of HEK293 cells expressing Kv2.1 with the AMPK activator A-769662 caused hyperpolarizing shifts in the current-voltage relationship for channel activation and inactivation. We identified two sites (S440 and S537) directly phosphorylated on Kv2.1 by AMPK and, using phosphospecific antibodies and quantitative mass spectrometry, show that phosphorylation of both sites increased in A-769662-treated cells. Effects of A-769662 were abolished in cells expressing Kv2.1 with S440A but not with S537A substitutions, suggesting that phosphorylation of S440 was responsible for these effects. Identical shifts in voltage gating were observed after introducing into cells, via the patch pipette, recombinant AMPK rendered active but phosphatase-resistant by thiophosphorylation. Ionomycin caused changes in Kv2.1 gating very similar to those caused by A-769662 but acted via a different mechanism involving Kv2.1 dephosphorylation. In cultured rat hippocampal neurons, A-769662 caused hyperpolarizing shifts in voltage gating similar to those in HEK293 cells, effects that were abolished by intracellular dialysis with Kv2.1 antibodies. When active thiophosphorylated AMPK was introduced into cultured neurons via the patch pipette, a progressive, time-dependent decrease in the frequency of evoked action potentials was observed. Our results suggest that activation of AMPK in neurons during conditions of metabolic stress exerts a protective role by reducing neuronal excitability and thus conserving energy.
Collapse
|
39
|
Ross FA, Rafferty JN, Dallas ML, Ogunbayo O, Ikematsu N, McClafferty H, Tian L, Widmer H, Rowe ICM, Wyatt CN, Shipston MJ, Peers C, Hardie DG, Evans AM. Selective expression in carotid body type I cells of a single splice variant of the large conductance calcium- and voltage-activated potassium channel confers regulation by AMP-activated protein kinase. J Biol Chem 2011; 286:11929-36. [PMID: 21209098 PMCID: PMC3069395 DOI: 10.1074/jbc.m110.189779] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Inhibition of large conductance calcium-activated potassium (BKCa) channels mediates, in part, oxygen sensing by carotid body type I cells. However, BKCa channels remain active in cells that do not serve to monitor oxygen supply. Using a novel, bacterially derived AMP-activated protein kinase (AMPK), we show that AMPK phosphorylates and inhibits BKCa channels in a splice variant-specific manner. Inclusion of the stress-regulated exon within BKCa channel α subunits increased the stoichiometry of phosphorylation by AMPK when compared with channels lacking this exon. Surprisingly, however, the increased phosphorylation conferred by the stress-regulated exon abolished BKCa channel inhibition by AMPK. Point mutation of a single serine (Ser-657) within this exon reduced channel phosphorylation and restored channel inhibition by AMPK. Significantly, RT-PCR showed that rat carotid body type I cells express only the variant of BKCa that lacks the stress-regulated exon, and intracellular dialysis of bacterially expressed AMPK markedly attenuated BKCa currents in these cells. Conditional regulation of BKCa channel splice variants by AMPK may therefore determine the response of carotid body type I cells to hypoxia.
Collapse
Affiliation(s)
- Fiona A Ross
- College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Intron retention facilitates splice variant diversity in calcium-activated big potassium channel populations. Proc Natl Acad Sci U S A 2010; 107:21152-7. [PMID: 21078998 DOI: 10.1073/pnas.1015264107] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report that the stress axis-regulated exon (STREX)-containing calcium-activated big potassium (BKCa) channel splice variant expression and physiology are regulated in part by cytoplasmic splicing and intron retention. NextGen sequencing of the mRNA complement of pooled hippocampal dendrite samples found intron 17a (i17a), the intron immediately preceding STREX, in the BKCa mRNA. Further molecular analyses of i17a revealed that the majority of i17a-containing BKCa channel mRNAs associate with STREX. i17a siRNA treatment followed by STREX protein immunocytochemistry demonstrated both reduced levels and altered subcellular distribution of STREX-containing BKCa channel protein. Selective reduction of i17a-BKCa or STREX-BKCa mRNAs induced similar changes in the burst firing properties of hippocampal neurons. Collectively, these data show that STREX splice variant regulation via cytoplasmic splicing and intron retention helps generate STREX-dependent BKCa current diversity in hippocampal neurons.
Collapse
|
41
|
Wu RS, Marx SO. The BK potassium channel in the vascular smooth muscle and kidney: α- and β-subunits. Kidney Int 2010; 78:963-74. [DOI: 10.1038/ki.2010.325] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Jeffries O, Geiger N, Rowe ICM, Tian L, McClafferty H, Chen L, Bi D, Knaus HG, Ruth P, Shipston MJ. Palmitoylation of the S0-S1 linker regulates cell surface expression of voltage- and calcium-activated potassium (BK) channels. J Biol Chem 2010; 285:33307-33314. [PMID: 20693285 PMCID: PMC2963414 DOI: 10.1074/jbc.m110.153940] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 07/14/2010] [Indexed: 11/18/2022] Open
Abstract
S-palmitoylation is rapidly emerging as an important post-translational mechanism to regulate ion channels. We have previously demonstrated that large conductance calcium- and voltage-activated potassium (BK) channels are palmitoylated within an alternatively spliced (STREX) insert. However, these studies also revealed that additional site(s) for palmitoylation must exist outside of the STREX insert, although the identity or the functional significance of these palmitoylated cysteine residues are unknown. Here, we demonstrate that BK channels are palmitoylated at a cluster of evolutionary conserved cysteine residues (Cys-53, Cys-54, and Cys-56) within the intracellular linker between the S0 and S1 transmembrane domains. Mutation of Cys-53, Cys-54, and Cys-56 completely abolished palmitoylation of BK channels lacking the STREX insert (ZERO variant). Palmitoylation allows the S0-S1 linker to associate with the plasma membrane but has no effect on single channel conductance or the calcium/voltage sensitivity. Rather, S0-S1 linker palmitoylation is a critical determinant of cell surface expression of BK channels, as steady state surface expression levels are reduced by ∼55% in the C53:54:56A mutant. STREX variant channels that could not be palmitoylated in the S0-S1 linker also displayed significantly reduced cell surface expression even though STREX insert palmitoylation was unaffected. Thus our work reveals the functional independence of two distinct palmitoylation-dependent membrane interaction domains within the same channel protein and demonstrates the critical role of S0-S1 linker palmitoylation in the control of BK channel cell surface expression.
Collapse
Affiliation(s)
- Owen Jeffries
- From the Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Nina Geiger
- From the Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom; Pharmacology and Toxicology, Institute of Pharmacy, University Tuebingen, 72076 Tuebingen, Germany
| | - Iain C M Rowe
- From the Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Lijun Tian
- From the Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Heather McClafferty
- From the Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Lie Chen
- From the Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Danlei Bi
- From the Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Hans Guenther Knaus
- Division for Molecular and Cellular Pharmacology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University Innsbruck, Peter-Mayr Strasse 1, 6020 Innsbruck, Austria
| | - Peter Ruth
- Pharmacology and Toxicology, Institute of Pharmacy, University Tuebingen, 72076 Tuebingen, Germany
| | - Michael J Shipston
- From the Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.
| |
Collapse
|
43
|
Poulsen AN, Jansen-Olesen I, Olesen J, Klaerke DA. Neuronal fast activating and meningeal silent modulatory BK channel splice variants cloned from rat. Pflugers Arch 2010; 461:65-75. [PMID: 20938677 DOI: 10.1007/s00424-010-0887-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 09/20/2010] [Accepted: 09/23/2010] [Indexed: 12/25/2022]
Abstract
The big conductance calcium-activated K(+) channel (BK) is involved in regulating neuron and smooth muscle cell excitability. Functional diversity of BK is generated by alpha-subunit splice variation and co-expression with beta subunits. Here, we present six different splice combinations cloned from rat brain or cerebral vascular/meningeal tissues, of which at least three variants were previously uncharacterized (X1, X2(92), and X2(188)). An additional variant was identified by polymerase chain reaction but not cloned. Expression in Xenopus oocytes showed that the brain-specific X1 variant displays reduced current, faster activation, and less voltage sensitivity than the insert-less Zero variant. Other cloned variants Strex and Slo27,3 showed slower activation than Zero. The X1 variant contains sequence inserts in the S1-S2 extracellular loop (8 aa), between intracellular domains RCK1 and RCK2 (4 aa at SS1) and upstream of the calcium "bowl" (27 aa at SS4). Two other truncated variants, X2(92) and X2(188), lacking the intracellular C-terminal (stop downstream of S6), were cloned from cerebral vascular/meningeal tissue. They appear non-functional as no current expression was observed, but the X2(92) appeared to slow the activation of the Zero variant when co-expressed. Positive protein expression of X2(92) was observed in oocytes by immunoblotting and fluorescence using a yellow fluorescent protein-tagged construct. The functional characteristics of the X1 variant may be important for a subpopulation of BK channels in the brain, while the "silent" truncated variants X2(92) and X2(188) may play a role as modulators of other BK channel variants in a way similar to well known beta subunits.
Collapse
Affiliation(s)
- Asser Nyander Poulsen
- Department of Animal and Veterinary Basic Sciences, Faculty of Life Sciences, University of Copenhagen, Groennegaardsvej 7, Frederiksberg C, Denmark.
| | | | | | | |
Collapse
|
44
|
Baek JH, Cerda O, Trimmer JS. Mass spectrometry-based phosphoproteomics reveals multisite phosphorylation on mammalian brain voltage-gated sodium and potassium channels. Semin Cell Dev Biol 2010; 22:153-9. [PMID: 20932926 DOI: 10.1016/j.semcdb.2010.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 09/23/2010] [Accepted: 09/28/2010] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium and potassium channels underlie electrical activity of neurons, and are dynamically regulated by diverse cell signaling pathways that ultimately exert their effects by altering the phosphorylation state of channel subunits. Recent mass spectrometric-based studies have led to a new appreciation of the extent and nature of phosphorylation of these ion channels in mammalian brain. This has allowed for new insights into how neurons dynamically regulate the localization, activity and expression through multisite ion channel phosphorylation.
Collapse
Affiliation(s)
- Je-Hyun Baek
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616-8519, United States
| | | | | |
Collapse
|
45
|
Savas S, Briollais L, Ibrahim-zada I, Jarjanazi H, Choi YH, Musquera M, Fleshner N, Venkateswaran V, Ozcelik H. A whole-genome SNP association study of NCI60 cell line panel indicates a role of Ca2+ signaling in selenium resistance. PLoS One 2010; 5:e12601. [PMID: 20830292 PMCID: PMC2935366 DOI: 10.1371/journal.pone.0012601] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 08/04/2010] [Indexed: 01/21/2023] Open
Abstract
Epidemiological studies have suggested an association between selenium intake and protection from a variety of cancer. Considering this clinical importance of selenium, we aimed to identify the genes associated with resistance to selenium treatment. We have applied a previous methodology developed by our group, which is based on the genetic and pharmacological data publicly available for the NCI60 cancer cell line panel. In short, we have categorized the NCI60 cell lines as selenium resistant and sensitive based on their growth inhibition (GI50) data. Then, we have utilized the Affymetrix 125K SNP chip data available and carried out a genome-wide case-control association study for the selenium sensitive and resistant NCI60 cell lines. Our results showed statistically significant association of four SNPs in 5q33–34, 10q11.2, 10q22.3 and 14q13.1 with selenium resistance. These SNPs were located in introns of the genes encoding for a kinase-scaffolding protein (AKAP6), a membrane protein (SGCD), a channel protein (KCNMA1), and a protein kinase (PRKG1). The knock-down of KCNMA1 by siRNA showed increased sensitivity to selenium in both LNCaP and PC3 cell lines. Furthermore, SNP-SNP interaction (epistasis) analysis indicated the interactions of the SNPs in AKAP6 with SGCD as well as SNPs in AKAP6 with KCNMA1 with each other, assuming additive genetic model. These genes were also all involved in the Ca2+ signaling, which has a direct role in induction of apoptosis and induction of apoptosis in tumor cells is consistent with the chemopreventive action of selenium. Once our findings are further validated, this knowledge can be translated into clinics where individuals who can benefit from the chemopreventive characteristics of the selenium supplementation will be easily identified using a simple DNA analysis.
Collapse
Affiliation(s)
- Sevtap Savas
- Fred A. Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Laurent Briollais
- Prosserman Centre for Health Research, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Irada Ibrahim-zada
- Fred A. Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Hamdi Jarjanazi
- Fred A. Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Yun Hee Choi
- Prosserman Centre for Health Research, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Mireia Musquera
- Division of Urology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Neil Fleshner
- Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Vasundara Venkateswaran
- Division of Urology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- * E-mail: (VV); (HO)
| | - Hilmi Ozcelik
- Fred A. Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (VV); (HO)
| |
Collapse
|
46
|
Chen L, Jeffries O, Rowe ICM, Liang Z, Knaus HG, Ruth P, Shipston MJ. Membrane trafficking of large conductance calcium-activated potassium channels is regulated by alternative splicing of a transplantable, acidic trafficking motif in the RCK1-RCK2 linker. J Biol Chem 2010; 285:23265-75. [PMID: 20479001 PMCID: PMC2906319 DOI: 10.1074/jbc.m110.139758] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Indexed: 01/26/2023] Open
Abstract
Trafficking of the pore-forming alpha-subunits of large conductance calcium- and voltage-activated potassium (BK) channels to the cell surface represents an important regulatory step in controlling BK channel function. Here, we identify multiple trafficking signals within the intracellular RCK1-RCK2 linker of the cytosolic C terminus of the channel that are required for efficient cell surface expression of the channel. In particular, an acidic cluster-like motif was essential for channel exit from the endoplasmic reticulum and subsequent cell surface expression. This motif could be transplanted onto a heterologous nonchannel protein to enhance cell surface expression by accelerating endoplasmic reticulum export. Importantly, we identified a human alternatively spliced BK channel variant, hSloDelta(579-664), in which these trafficking signals are excluded because of in-frame exon skipping. The hSloDelta(579-664) variant is expressed in multiple human tissues and cannot form functional channels at the cell surface even though it retains the putative RCK domains and downstream trafficking signals. Functionally, the hSloDelta(579-664) variant acts as a dominant negative subunit to suppress cell surface expression of BK channels. Thus alternative splicing of the intracellular RCK1-RCK2 linker plays a critical role in determining cell surface expression of BK channels by controlling the inclusion/exclusion of multiple trafficking motifs.
Collapse
Affiliation(s)
- Lie Chen
- From the
Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9XD, Scotland, United Kingdom
| | - Owen Jeffries
- From the
Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9XD, Scotland, United Kingdom
| | - Iain C. M. Rowe
- From the
Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9XD, Scotland, United Kingdom
| | - Zhi Liang
- From the
Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9XD, Scotland, United Kingdom
| | - Hans-Guenther Knaus
- the
Division for Molecular and Cellular Pharmacology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University Innsbruck, Peter-Mayr Strasse 1, 6020 Innsbruck, Austria, and
| | - Peter Ruth
- Pharmacology and Toxicology, Institute of Pharmacy, University Tuebingen, 72076 Tuebingen, Germany
| | - Michael J. Shipston
- From the
Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9XD, Scotland, United Kingdom
| |
Collapse
|
47
|
Cerda O, Trimmer JS. Analysis and functional implications of phosphorylation of neuronal voltage-gated potassium channels. Neurosci Lett 2010; 486:60-7. [PMID: 20600597 DOI: 10.1016/j.neulet.2010.06.064] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 06/16/2010] [Accepted: 06/22/2010] [Indexed: 11/30/2022]
Abstract
Phosphorylation is the most common and abundant post-translational modification to eukaryotic proteins, regulating a plethora of dynamic cellular processes. Here, we review and discuss recent advances in our knowledge of the breadth and importance of reversible phosphorylation in regulating the expression, localization and function of mammalian neuronal voltage-gated potassium (Kv) channels, key regulators of neuronal function. We highlight the role of modern mass spectrometric techniques and phosphospecific antibodies in revealing the extent and nature of phosphorylation at specific sites in Kv channels. We also emphasize the role of reversible phosphorylation in dynamically regulating diverse aspects of Kv channel biology. Finally, we discuss as important future directions the determination of the mechanistic basis for how altering phosphorylation state affects Kv channel expression, localization and function, the nature of macromolecular signaling complexes containing Kv channels and enzymes regulating their phosphorylation state, and the specific role of Kv channel phosphorylation in regulating neuronal function during physiological and pathophysiological events.
Collapse
Affiliation(s)
- Oscar Cerda
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616-8519, United States
| | | |
Collapse
|
48
|
Flores CA, Cid LP, Sepúlveda FV. A tale from the Crypt: splice variants of BK channels in colonic potassium secretion. J Physiol 2010; 588:1807-8. [DOI: 10.1113/jphysiol.2010.191783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
49
|
Tian L, McClafferty H, Jeffries O, Shipston MJ. Multiple palmitoyltransferases are required for palmitoylation-dependent regulation of large conductance calcium- and voltage-activated potassium channels. J Biol Chem 2010; 285:23954-62. [PMID: 20507996 PMCID: PMC2911306 DOI: 10.1074/jbc.m110.137802] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Palmitoylation is emerging as an important and dynamic regulator of ion channel function; however, the specificity with which the large family of acyl palmitoyltransferases (zinc finger Asp-His-His-Cys type-containing acyl palmitoyltransferase (DHHCs)) control channel palmitoylation is poorly understood. We have previously demonstrated that the alternatively spliced stress-regulated exon (STREX) variant of the intracellular C-terminal domain of the large conductance calcium- and voltage-activated potassium (BK) channels is palmitoylated and targets the STREX domain to the plasma membrane. Using a combined imaging, biochemical, and functional approach coupled with loss-of-function (small interfering RNA knockdown of endogenous DHHCs) and gain-of-function (overexpression of recombinant DHHCs) assays, we demonstrate that multiple DHHCs control palmitoylation of the C terminus of STREX channels, the association of the STREX domain with the plasma membrane, and functional channel regulation. Cysteine residues 12 and 13 within the STREX insert were the only endogenously palmitoylated residues in the entire C terminus of the STREX channel. Palmitoylation of this dicysteine motif was controlled by DHHCs 3, 5, 7, 9, and 17, although DHHC17 showed the greatest specificity for this site upon overexpression of the cognate DHHC. DHHCs that palmitoylated the channel also co-assembled with the channel in co-immunoprecipitation experiments, and knockdown of any of these DHHCs blocked regulation of the channel by protein kinase A-dependent phosphorylation. Taken together our data reveal that a subset of DHHCs controls STREX palmitoylation and function and suggest that DHHC17 may preferentially target cysteine-rich domains. Finally, our approach may prove useful in elucidating the specificity of DHHC palmitoylation of intracellular domains of other ion channels and transmembrane proteins.
Collapse
Affiliation(s)
- Lijun Tian
- Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh EH89XD, Scotland, United Kingdom
| | | | | | | |
Collapse
|
50
|
Abstract
Large conductance voltage- and Ca(2+)-activated potassium channels (BK channels) are important feedback regulators in excitable cells and are potently regulated by protein kinases. The present study reveals a dual role of protein kinase C (PKC) on BK channel regulation. Phosphorylation of S(695) by PKC, located between the two regulators of K(+) conductance (RCK1/2) domains, inhibits BK channel open-state probability. This PKC-dependent inhibition depends on a preceding phosphorylation of S(1151) in the C terminus of the channel alpha-subunit. Phosphorylation of only one alpha-subunit at S(1151) and S(695) within the tetrameric pore is sufficient to inhibit BK channel activity. We further detected that protein phosphatase 1 is associated with the channel, constantly counteracting phosphorylation of S(695). PKC phosphorylation at S(1151) also influences stimulation of BK channel activity by protein kinase G (PKG) and protein kinase A (PKA). Though the S(1151)A mutant channel is activated by PKA only, the phosphorylation of S(1151) by PKC renders the channel responsive to activation by PKG but prevents activation by PKA. Phosphorylation of S(695) by PKC or introducing a phosphomimetic aspartate at this position (S(695)D) renders BK channels insensitive to the stimulatory effect of PKG or PKA. Therefore, our findings suggest a very dynamic regulation of the channel by the local PKC activity. It is shown that this complex regulation is not only effective in recombinant channels but also in native BK channels from tracheal smooth muscle.
Collapse
|