1
|
Whidbey C. The right tool for the job: Chemical biology and microbiome science. Cell Chem Biol 2025; 32:83-97. [PMID: 39765228 DOI: 10.1016/j.chembiol.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/16/2024] [Accepted: 12/11/2024] [Indexed: 01/19/2025]
Abstract
Microbiomes exist in ecological niches ranging from the ocean and soil to inside of larger organisms like plants and animals. Within these niches, microbes play key roles in biochemical processes that impact larger phenomena, such as biogeochemical cycling or health. By understanding of how these processes occur at the molecular level, it may be possible to develop new interventions to address global problems. The complexity of these systems poses challenges to more traditional techniques. Chemical biology can help overcome these challenges by providing tools that are broadly applicable and can obtain molecular-level information about complex systems. This primer is intended to serve as a brief introduction to chemical biology and microbiome science, to highlight some of the ways that these two disciplines complement each other, and to encourage dialog and collaboration between these fields.
Collapse
|
2
|
Smitha Pillai K, Laxton O, Li G, Lin J, Karginova O, Nanda R, Olopade OI, Tay S, Moellering RE. Single-cell chemoproteomics identifies metastatic activity signatures in breast cancer. SCIENCE ADVANCES 2024; 10:eadp2622. [PMID: 39441940 PMCID: PMC11498211 DOI: 10.1126/sciadv.adp2622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
Protein activity state, rather than protein or mRNA abundance, is a biologically regulated and relevant input to many processes in signaling, differentiation, development, and diseases such as cancer. While there are numerous methods to detect and quantify mRNA and protein abundance in biological samples, there are no general approaches to detect and quantify endogenous protein activity with single-cell resolution. Here, we report the development of a chemoproteomic platform, single-cell activity-dependent proximity ligation, which uses automated, microfluidics-based single-cell capture and nanoliter volume manipulations to convert the interactions of family-wide chemical activity probes with native protein targets into multiplexed, amplifiable oligonucleotide barcodes. We demonstrate accurate, reproducible, and multiplexed quantitation of a six-enzyme (Ag-6) panel with known ties to cancer cell aggressiveness directly in single cells. We further identified increased Ag-6 enzyme activity across breast cancer cell lines of increasing metastatic potential, as well as in primary patient-derived tumor cells and organoids from patients with breast cancer.
Collapse
Affiliation(s)
- Kavya Smitha Pillai
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Olivia Laxton
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Gang Li
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Jing Lin
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Olga Karginova
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Rita Nanda
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Olufunmilayo I. Olopade
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Savaş Tay
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Raymond E. Moellering
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
3
|
Niphakis MJ, Cravatt BF. Ligand discovery by activity-based protein profiling. Cell Chem Biol 2024; 31:1636-1651. [PMID: 39303700 DOI: 10.1016/j.chembiol.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Genomic technologies have led to massive gains in our understanding of human gene function and disease relevance. Chemical biologists are a primary beneficiary of this information, which can guide the prioritization of proteins for chemical probe and drug development. The vast functional and structural diversity of disease-relevant proteins, however, presents challenges for conventional small molecule screening libraries and assay development that in turn raise questions about the broader "druggability" of the human proteome. Here, we posit that activity-based protein profiling (ABPP), by generating global maps of small molecule-protein interactions in native biological systems, is well positioned to address major obstacles in human biology-guided chemical probe and drug discovery. We will support this viewpoint with case studies highlighting a range of small molecule mechanisms illuminated by ABPP that include the disruption and stabilization of biomolecular (protein-protein/nucleic acid) interactions and underscore allostery as a rich source of chemical tools for historically "undruggable" protein classes.
Collapse
|
4
|
Zhai Y, Zhang X, Chen Z, Yan D, Zhu L, Zhang Z, Wang X, Tian K, Huang Y, Yang X, Sun W, Wang D, Tsai YH, Luo T, Li G. Global profiling of functional histidines in live cells using small-molecule photosensitizer and chemical probe relay labelling. Nat Chem 2024; 16:1546-1557. [PMID: 38834725 DOI: 10.1038/s41557-024-01545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 04/26/2024] [Indexed: 06/06/2024]
Abstract
Recent advances in chemical proteomics have focused on developing chemical probes that react with nucleophilic amino acid residues. Although histidine is an attractive candidate due to its importance in enzymatic catalysis, metal binding and protein-protein interaction, its moderate nucleophilicity poses challenges. Its modification is frequently influenced by cysteine and lysine, which results in poor selectivity and narrow proteome coverage. Here we report a singlet oxygen and chemical probe relay labelling method that achieves high selectivity towards histidine. Libraries of small-molecule photosensitizers and chemical probes were screened to optimize histidine labelling, enabling histidine profiling in live cells with around 7,200 unique sites. Using NMR spectroscopy and X-ray crystallography, we characterized the reaction mechanism and the structures of the resulting products. We then applied this method to discover unannotated histidine sites key to enzymatic activity and metal binding in select metalloproteins. This method also revealed the accessibility change of histidine mediated by protein-protein interaction that influences select protein subcellular localization, underscoring its capability in discovering functional histidines.
Collapse
Affiliation(s)
- Yansheng Zhai
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Xinyu Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, China
| | - Zijing Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | | | - Lin Zhu
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Zhe Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xianghe Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Kailu Tian
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yan Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Xi Yang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Dong Wang
- Shenzhen University, Shenzhen, China
| | - Yu-Hsuan Tsai
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Gang Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
5
|
McKenna SM, Florea BI, Zisterer DM, van Kasteren SI, McGouran JF. Probing the metalloproteome: an 8-mercaptoquinoline motif enriches minichromosome maintenance complex components as significant metalloprotein targets in live cells. RSC Chem Biol 2024; 5:776-786. [PMID: 39092446 PMCID: PMC11289876 DOI: 10.1039/d4cb00053f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/18/2024] [Indexed: 08/04/2024] Open
Abstract
Affinity-based probes are valuable tools for detecting binding interactions between small molecules and proteins in complex biological environments. Metalloproteins are a class of therapeutically significant biomolecules which bind metal ions as part of key structural or catalytic domains and are compelling targets for study. However, there is currently a limited range of chemical tools suitable for profiling the metalloproteome. Here, we describe the preparation and application of a novel, photoactivatable affinity-based probe for detection of a subset of previously challenging to engage metalloproteins. The probe, bearing an 8-mercaptoquinoline metal chelator, was anticipated to engage several zinc metalloproteins, including the 26S-proteasome subunit Rpn11. Upon translation of the labelling experiment to mammalian cell lysate and live cell experiments, proteomic analysis revealed that several metalloproteins were competitively enriched. The diazirine probe SMK-24 was found to effectively enrich multiple components of the minichromosome maintenance complex, a zinc metalloprotein assembly with helicase activity essential to DNA replication. Cell cycle analysis experiments revealed that HEK293 cells treated with SMK-24 experienced stalling in G0/G1 phase, consistent with inactivation of the DNA helicase complex. This work represents an important contribution to the library of cell-permeable chemical tools for studying a collection of metalloproteins for which no previous probe existed.
Collapse
Affiliation(s)
- Sean M McKenna
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin 152-160 Pearse St Dublin 2 Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC) Ireland
| | - Bogdan I Florea
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Daniela M Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin 152-160 Pearse St Dublin 2 Ireland
| | - Sander I van Kasteren
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Joanna F McGouran
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin 152-160 Pearse St Dublin 2 Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC) Ireland
| |
Collapse
|
6
|
Wozniak JM, Li W, Governa P, Chen LY, Jadhav A, Dongre A, Forli S, Parker CG. Enhanced mapping of small-molecule binding sites in cells. Nat Chem Biol 2024; 20:823-834. [PMID: 38167919 PMCID: PMC11213684 DOI: 10.1038/s41589-023-01514-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Photoaffinity probes are routinely utilized to identify proteins that interact with small molecules. However, despite this common usage, resolving the specific sites of these interactions remains a challenge. Here we developed a chemoproteomic workflow to determine precise protein binding sites of photoaffinity probes in cells. Deconvolution of features unique to probe-modified peptides, such as their tendency to produce chimeric spectra, facilitated the development of predictive models to confidently determine labeled sites. This yielded an expansive map of small-molecule binding sites on endogenous proteins and enabled the integration with multiplexed quantitation, increasing the throughput and dimensionality of experiments. Finally, using structural information, we characterized diverse binding sites across the proteome, providing direct evidence of their tractability to small molecules. Together, our findings reveal new knowledge for the analysis of photoaffinity probes and provide a robust method for high-resolution mapping of reversible small-molecule interactions en masse in native systems.
Collapse
Affiliation(s)
- Jacob M Wozniak
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Weichao Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Paolo Governa
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Li-Yun Chen
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Appaso Jadhav
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Ashok Dongre
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | |
Collapse
|
7
|
Islam S, Gour J, Beer T, Tang HY, Cassel J, Salvino JM, Busino L. A Tandem-Affinity Purification Method for Identification of Primary Intracellular Drug-Binding Proteins. ACS Chem Biol 2024; 19:233-242. [PMID: 38271588 PMCID: PMC10878392 DOI: 10.1021/acschembio.3c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024]
Abstract
In the field of drug discovery, understanding how small molecule drugs interact with cellular components is crucial. Our study introduces a novel methodology to uncover primary drug targets using Tandem Affinity Purification for identification of Drug-Binding Proteins (TAP-DBP). Central to our approach is the generation of a FLAG-hemagglutinin (HA)-tagged chimeric protein featuring the FKBP12(F36V) adaptor protein and the TurboID enzyme. Conjugation of drug molecules with the FKBP12(F36V) ligand allows for the coordinated recruitment of drug-binding partners effectively enabling in-cell TurboID-mediated biotinylation. By employing a tandem affinity purification protocol based on FLAG-immunoprecipitation and streptavidin pulldown, alongside mass spectrometry analysis, TAP-DBP allows for the precise identification of drug-primary binding partners. Overall, this study introduces a systematic, unbiased method for identification of drug-protein interactions, contributing a clear understanding of target engagement and drug selectivity to advance the mode of action of a drug in cells.
Collapse
Affiliation(s)
- Sehbanul Islam
- University
of Pennsylvania, Perelman School
of Medicine, Department of Cancer Biology, Philadelphia, Pennsylvania 19104, United States
| | - Jitendra Gour
- Medicinal
Chemistry and Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Thomas Beer
- Medicinal
Chemistry and Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Hsin-Yao Tang
- Medicinal
Chemistry and Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Joel Cassel
- Molecular
Screening and Protein Expression Shared Resource, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Joseph M. Salvino
- Medicinal
Chemistry and Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Luca Busino
- University
of Pennsylvania, Perelman School
of Medicine, Department of Cancer Biology, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
8
|
Pandit S, Duchow M, Chao W, Capasso A, Samanta D. DNA-Barcoded Plasmonic Nanostructures for Activity-Based Protease Sensing. Angew Chem Int Ed Engl 2024; 63:e202310964. [PMID: 37985161 DOI: 10.1002/anie.202310964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
We report the development of a new class of protease activity sensors called DNA-barcoded plasmonic nanostructures. These probes are comprised of gold nanoparticles functionalized with peptide-DNA conjugates (GPDs), where the peptide is a substrate of the protease of interest. The DNA acts as a barcode identifying the peptide and facilitates signal amplification. Protease-mediated peptide cleavage frees the DNA from the nanoparticle surface, which is subsequently measured via a CRISPR/Cas12a-based assay as a proxy for protease activity. As proof-of-concept, we show activity-based, multiplexed detection of the SARS-CoV-2-associated protease, 3CL, and the apoptosis marker, caspase 3, with high sensitivity and selectivity. GPDs yield >25-fold turn-on signals, 100-fold improved response compared to commercial probes, and detection limits as low as 58 pM at room temperature. Moreover, nanomolar concentrations of proteases can be detected visually by leveraging the aggregation-dependent color change of the gold nanoparticles. We showcase the clinical potential of GPDs by detecting a colorectal cancer-associated protease, cathepsin B, in three different patient-derived cell lines. Taken together, GPDs detect physiologically relevant concentrations of active proteases in challenging biological samples, require minimal sample processing, and offer unmatched multiplexing capabilities (mediated by DNA), making them powerful chemical tools for biosensing and disease diagnostics.
Collapse
Affiliation(s)
- Subrata Pandit
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St., Austin, TX 78712, USA
| | - Mark Duchow
- Department of Oncology, Dell Medical School, The University of Texas at Austin, 1601 Trinity St., Austin, TX 78712, USA
| | - Wilson Chao
- Department of Biochemistry, The University of Texas at Austin, 105 E 24th St., Austin, TX 78712, USA
| | - Anna Capasso
- Department of Oncology, Dell Medical School, The University of Texas at Austin, 1601 Trinity St., Austin, TX 78712, USA
| | - Devleena Samanta
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St., Austin, TX 78712, USA
| |
Collapse
|
9
|
Malgorn C, Becher F, Bruyat P, Fruchart-Gaillard C, Beau F, Bregant S, Devel L. A New Affinity-Based Probe to Profile MMP Active Forms. Methods Mol Biol 2024; 2747:29-39. [PMID: 38038929 DOI: 10.1007/978-1-0716-3589-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
A new generation of affinity-based probes (AfBPs) has been developed to label and identity matrix metalloproteinases (MMPs) under their active form in complex proteomes. First, the probe reacts with an active MMP through a proximity-driven reaction that does not require any external trigger. Following this affinity-labeling step, a streptavidin-based enrichment of the resulting biotin-tagged MMP is carried out. Finally, after on-beads proteolytic digestion by trypsin, MMP signature peptides are analyzed and identified by mass spectrometry. Such a "photoactivation-free" labeling can be applied to the detection of several MMPs in a wide variety of biological systems, including in vivo conditions.
Collapse
Affiliation(s)
- Carole Malgorn
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - François Becher
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Pierrick Bruyat
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Carole Fruchart-Gaillard
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Fabrice Beau
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Sarah Bregant
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Laurent Devel
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France.
| |
Collapse
|
10
|
Yang F, Zhu Y, Li X, Xiang F, Deng M, Zhang W, Song W, Sun H, Tang C. Identification of Protein-Phenol Adducts in Meat Proteins: A Molecular Probe Technology Study. Foods 2023; 12:4225. [PMID: 38231694 DOI: 10.3390/foods12234225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
Plant polyphenols with a catechol structure can form covalent adducts with meat proteins, which affects the quality and processing of meat products. However, there is a lack of fast and effective methods of characterizing these adducts and understanding their mechanisms. This study aimed to investigate the covalent interaction between myofibrillar protein (MP) and caffeic acid (CA), a plant polyphenol with a catechol structure, using molecular probe technology. The CA-MP adducts were separated via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and detected via Western blot and LC-MS/MS analyses. The Western blot analysis revealed that various specific adducts were successfully enriched and identified as bands around 220 kDa, 45 kDa, and two distinct bands between 95 and 130 kDa. Combined with the LC-MS/MS analysis, a total of 51 peptides were identified to be CA-adducted, corresponding to 31 proteins. More than 80% of the adducted peptides carried one adducted site, and the rest carried two adducted sites. The adducted sites were located on cysteine (C/Cys), histidine (H/His), arginine (R/Arg), lysine (K/Lys), proline (P/Pro), and N-terminal (N-Term) residues. Results showed that the covalent interaction of CA and MP was highly selective for the R side chain of amino acids. Moreover, the adducts were more likely to form via C-N bonding than C-S bonding. This study provides new insights into the covalent interaction of plant polyphenols and meat proteins, which has important implications for the rational use of plant polyphenols in the meat processing industry.
Collapse
Affiliation(s)
- Fenhong Yang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingying Zhu
- Engineering Research Center of Magnetic Resonance Analysis Technology, Department of Food Nutrition and Test, Suzhou Vocational University, Suzhou 210005, China
| | - Xiaohan Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengtao Xiang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Moru Deng
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Song
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Sun
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Changbo Tang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Lin B, Nair S, Fellner DMJ, Nasef NA, Singh H, Negron L, Goldstone DC, Brimble MA, Gerrard JA, Domigan L, Evans JC, Stephens JM, Merry TL, Loomes KM. The Leptospermum scoparium (Mānuka)-Specific Nectar and Honey Compound 3,6,7-Trimethyllumazine (Lepteridine TM) That Inhibits Matrix Metalloproteinase 9 (MMP-9) Activity. Foods 2023; 12:4072. [PMID: 38002130 PMCID: PMC10670905 DOI: 10.3390/foods12224072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
3,6,7-trimethyllumazine (Lepteridine™) is a newly discovered natural pteridine derivative unique to Mānuka (Leptospermum scoparium) nectar and honey, with no previously reported biological activity. Pteridine derivative-based medicines, such as methotrexate, are used to treat auto-immune and inflammatory diseases, and Mānuka honey reportedly possesses anti-inflammatory properties and is used topically as a wound dressing. MMP-9 is a potential candidate protein target as it is upregulated in recalcitrant wounds and intestinal inflammation. Using gelatin zymography, 40 μg/mL LepteridineTM inhibited the gelatinase activities of both pro- (22%, p < 0.0001) and activated (59%, p < 0.01) MMP-9 forms. By comparison, LepteridineTM exerted modest (~10%) inhibition against a chromogenic peptide substrate and no effect against a fluorogenic peptide substrate. These findings suggest that LepteridineTM may not interact within the catalytic domain of MMP-9 and exerts a negligible effect on the active site hydrolysis of small soluble peptide substrates. Instead, the findings implicate fibronectin II domain interactions by LepteridineTM which impair gelatinase activity, possibly through perturbed tethering of MMP-9 to the gelatin matrix. Molecular modelling analyses were equivocal over interactions at the S1' pocket versus the fibronectin II domain, while molecular dynamic calculations indicated rapid exchange kinetics. No significant degradation of synthetic or natural LepteridineTM in Mānuka honey occurred during simulated gastrointestinal digestion. MMP-9 regulates skin and gastrointestinal inflammatory responses and extracellular matrix remodelling. These results potentially implicate LepteridineTM bioactivity in Mānuka honey's reported beneficial effects on wound healing via topical application and anti-inflammatory actions in gastrointestinal disorder models via oral consumption.
Collapse
Affiliation(s)
- Bin Lin
- School of Biological Sciences and Institute for Innovation in Biotechnology, The University of Auckland, Auckland 1142, New Zealand; (B.L.); (S.N.); (D.C.G.); (M.A.B.); (J.A.G.)
| | - Smitha Nair
- School of Biological Sciences and Institute for Innovation in Biotechnology, The University of Auckland, Auckland 1142, New Zealand; (B.L.); (S.N.); (D.C.G.); (M.A.B.); (J.A.G.)
| | - Daniel M. J. Fellner
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand;
| | - Noha Ahmed Nasef
- Riddet Institute, Massey University, Palmerston North 4410, New Zealand; (N.A.N.); (H.S.)
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North 4410, New Zealand; (N.A.N.); (H.S.)
| | - Leonardo Negron
- Callaghan Innovation, Gracefield Innovation Quarter, 69 Gracefield Road, Lower Hutt 5010, New Zealand;
| | - David C. Goldstone
- School of Biological Sciences and Institute for Innovation in Biotechnology, The University of Auckland, Auckland 1142, New Zealand; (B.L.); (S.N.); (D.C.G.); (M.A.B.); (J.A.G.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand;
| | - Margaret A. Brimble
- School of Biological Sciences and Institute for Innovation in Biotechnology, The University of Auckland, Auckland 1142, New Zealand; (B.L.); (S.N.); (D.C.G.); (M.A.B.); (J.A.G.)
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand;
| | - Juliet A. Gerrard
- School of Biological Sciences and Institute for Innovation in Biotechnology, The University of Auckland, Auckland 1142, New Zealand; (B.L.); (S.N.); (D.C.G.); (M.A.B.); (J.A.G.)
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand;
| | - Laura Domigan
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland 1142, New Zealand;
| | - Jackie C. Evans
- Comvita NZ Limited, 23 Wilson Road South, Bay of Plenty, Paengaroa 3189, New Zealand; (J.C.E.); (J.M.S.)
| | - Jonathan M. Stephens
- Comvita NZ Limited, 23 Wilson Road South, Bay of Plenty, Paengaroa 3189, New Zealand; (J.C.E.); (J.M.S.)
| | - Troy L. Merry
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand;
- Comvita NZ Limited, 23 Wilson Road South, Bay of Plenty, Paengaroa 3189, New Zealand; (J.C.E.); (J.M.S.)
- Discipline of Nutrition, School of Medical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Kerry M. Loomes
- School of Biological Sciences and Institute for Innovation in Biotechnology, The University of Auckland, Auckland 1142, New Zealand; (B.L.); (S.N.); (D.C.G.); (M.A.B.); (J.A.G.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand;
| |
Collapse
|
12
|
Chen S, Liang C, Li H, Yu W, Prothiwa M, Kopczynski D, Loroch S, Fransen M, Verhelst SHL. Pepstatin-Based Probes for Photoaffinity Labeling of Aspartic Proteases and Application to Target Identification. ACS Chem Biol 2023; 18:686-692. [PMID: 36920024 DOI: 10.1021/acschembio.2c00946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Aspartic proteases are a small class of proteases implicated in a wide variety of human diseases. Covalent chemical probes for photoaffinity labeling (PAL) of these proteases are underdeveloped. We here report a full on-resin synthesis of clickable PAL probes based on the natural product inhibitor pepstatin incorporating a minimal diazirine reactive group. The position of this group in the inhibitor determines the labeling efficiency. The most effective probes sensitively detect cathepsin D, a biomarker for breast cancer, in cell lysates. Moreover, through chemical proteomics experiments and deep learning algorithms, we identified sequestosome-1, an important player in autophagy, as a direct interaction partner and substrate of cathepsin D.
Collapse
Affiliation(s)
- Suyuan Chen
- Leibniz Institut für Analytische Wissenschaften - ISAS, e.V., Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany
| | - Chunguang Liang
- Bioinformatik, Biozentrum, Universität Würzburg, 97074 Würzburg, Germany.,Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Hongli Li
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Peroxisome Biology and Intracellular Communication, Herestraat 49 box 901b, 3000 Leuven, Belgium
| | - Weimeng Yu
- Bioinformatik, Biozentrum, Universität Würzburg, 97074 Würzburg, Germany
| | - Michaela Prothiwa
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestraat 49 box 901b, 3000 Leuven, Belgium
| | - Dominik Kopczynski
- Department of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Stefan Loroch
- Leibniz Institut für Analytische Wissenschaften - ISAS, e.V., Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany.,Ruhr-Universität Bochum, Medizinisches Proteom-Center, Building ProDi E2.240, Gesundheitscampus 4, D-44801 Bochum, Germany.,ProtiFi LLC, 1000 Turk Hill Road, Suite 180, 2nd Floor, Fairport, New York 14450, United States
| | - Marc Fransen
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Peroxisome Biology and Intracellular Communication, Herestraat 49 box 901b, 3000 Leuven, Belgium
| | - Steven H L Verhelst
- Leibniz Institut für Analytische Wissenschaften - ISAS, e.V., Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany.,KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestraat 49 box 901b, 3000 Leuven, Belgium
| |
Collapse
|
13
|
Xu M, Ma X, Ye Z, Wang F, Xu S, Zhang CJ. Concentration-Dependent Enrichment Identifies Primary Protein Targets of Multitarget Bioactive Molecules. J Proteome Res 2023; 22:802-811. [PMID: 36716354 DOI: 10.1021/acs.jproteome.2c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Multitarget bioactive molecules (MBMs) are of increasing importance in drug discovery as they could produce high efficacy and a low chance of resistance. Several advanced approaches of quantitative proteomics were developed to accurately identify the protein targets of MBMs, but little study has been carried out in a sequential manner to identify primary protein targets (PPTs) of MBMs. This set of proteins will first interact with MBMs in the temporal order and play an important role in the mode of action of MBMs, especially when MBMs are at low concentrations. Herein, we describe a valuable observation that the result of the enrichment process is highly dependent on concentrations of the probe and the proteome. Interestingly, high concentrations of probe and low concentrations of incubated proteome will readily miss the hyper-reactive protein targets and thereby increase the probability of rendering PPTs with false-negative results, while low concentrations of probe and high concentrations of incubated proteome more than likely will capture the PPTs. Based on this enlightening observation, we developed a proof-of-concept approach to identify the PPTs of iodoacetamide, a thiol-reactive MBM. This study will deepen our understanding of the enrichment process and improve the accuracy of pull-down-guided target identification.
Collapse
Affiliation(s)
- Manyi Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Xingyu Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Zi Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Fengge Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Shiqi Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Chong-Jing Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| |
Collapse
|
14
|
Hang HC. Benjamin F. Cravatt III – Chemical Proteomics Trailblazer. Isr J Chem 2023. [DOI: 10.1002/ijch.202200066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Howard C. Hang
- Department of Immunology and Microbiology, Scripps Research La Jolla CA 92037
- Department of Chemistry, Scripps Research La Jolla CA 92037
| |
Collapse
|
15
|
Chang M. Matrix metalloproteinase profiling and their roles in disease. RSC Adv 2023; 13:6304-6316. [PMID: 36825288 PMCID: PMC9942564 DOI: 10.1039/d2ra07005g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/24/2023] [Indexed: 02/25/2023] Open
Abstract
Matrix metalloproteinases (MMPs) play roles in remodelling of the extracellular matrix that occurs during morphogenesis, repair, and angiogenesis. Dysregulation of extracellular matrix remodelling can lead to cell proliferation, invasion, and tissue fibrosis. Identification of a specific MMP(s) in a disease has been challenging due to the presence of 24 closely-related human MMPs, each existing in three forms, of which only one is active and capable of catalysis. This review focuses on methods for MMP profiling, with particular emphasis on the batimastat affinity resin that binds only to the active forms of MMPs and related ADAMs (a disintegrin and metalloproteinases), which are then identified by mass spectrometry. Use of the batimastat affinity resin has identified targets for intervention in several human diseases.
Collapse
Affiliation(s)
- Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame Notre Dame IN 46556 USA
| |
Collapse
|
16
|
Xiao W, Chen Y, Wang C. Quantitative Chemoproteomic Methods for Reactive Cysteinome Profiling. Isr J Chem 2023. [DOI: 10.1002/ijch.202200100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Weidi Xiao
- Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry and Molecular Engineering Peking University 100871 Peking China
- Peking-Tsinghua Center for Life Sciences Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
| | - Ying Chen
- Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry and Molecular Engineering Peking University 100871 Peking China
- Peking-Tsinghua Center for Life Sciences Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry and Molecular Engineering Peking University 100871 Peking China
- Peking-Tsinghua Center for Life Sciences Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
| |
Collapse
|
17
|
Brody SI, Buonomo JA, Orimoloye MO, Jia Z, Sharma S, Brown CD, Baughn AD, Aldrich CC. A Nucleophilic Activity-Based Probe Enables Profiling of PLP-Dependent Enzymes. Chembiochem 2023; 24:e202200669. [PMID: 36652345 DOI: 10.1002/cbic.202200669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/19/2023]
Abstract
PLP-dependent enzymes represent an important class of highly "druggable" enzymes that perform a wide array of critical reactions to support all organisms. Inhibition of individual members of this family of enzymes has been validated as a therapeutic target for pathologies ranging from infection with Mycobacterium tuberculosis to epilepsy. Given the broad nature of the activities within this family of enzymes, we envisioned a universally acting probe to characterize existing and putative members of the family that also includes the necessary chemical moieties to enable activity-based protein profiling experiments. Hence, we developed a probe that contains an N-hydroxyalanine warhead that acts as a covalent inhibitor of PLP-dependent enzymes, a linear diazirine for UV crosslinking, and an alkyne moiety to enable enrichment of crosslinked proteins. Our molecule was used to study PLP-dependent enzymes in vitro as well as look at whole-cell lysates of M. tuberculosis and assess inhibitory activity. The probe was able to enrich and identify LysA, a PLP-dependent enzyme crucial for lysine biosynthesis, through mass spectrometry. Overall, our study shows the utility of this trifunctional first-generation probe. We anticipate further optimization of probes for PLP-dependent enzymes will enable the characterization of rationally designed covalent inhibitors of PLP-dependent enzymes, which will expedite the preclinical characterization of these important therapeutic targets.
Collapse
Affiliation(s)
- Scott I Brody
- Department of Medicinal Chemistry, University of Minnesota-Twin Cities, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Joseph A Buonomo
- Department of Medicinal Chemistry, University of Minnesota-Twin Cities, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Moyosore O Orimoloye
- Department of Medicinal Chemistry, University of Minnesota-Twin Cities, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Ziyi Jia
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Sachin Sharma
- Department of Medicinal Chemistry, University of Minnesota-Twin Cities, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Christopher D Brown
- Department of Medicinal Chemistry, University of Minnesota-Twin Cities, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Anthony D Baughn
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota-Twin Cities, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
18
|
Firdous P, Hassan T, Farooq S, Nissar K. Applications of proteomics in cancer diagnosis. Proteomics 2023. [DOI: 10.1016/b978-0-323-95072-5.00014-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
19
|
Gonzalez-Valero A, Reeves AG, Page ACS, Moon PJ, Miller E, Coulonval K, Crossley SWM, Xie X, He D, Musacchio PZ, Christian AH, McKenna JM, Lewis RA, Fang E, Dovala D, Lu Y, McGregor LM, Schirle M, Tallarico JA, Roger PP, Toste FD, Chang CJ. An Activity-Based Oxaziridine Platform for Identifying and Developing Covalent Ligands for Functional Allosteric Methionine Sites: Redox-Dependent Inhibition of Cyclin-Dependent Kinase 4. J Am Chem Soc 2022; 144:22890-22901. [PMID: 36484997 PMCID: PMC10124963 DOI: 10.1021/jacs.2c04039] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Activity-based protein profiling (ABPP) is a versatile strategy for identifying and characterizing functional protein sites and compounds for therapeutic development. However, the vast majority of ABPP methods for covalent drug discovery target highly nucleophilic amino acids such as cysteine or lysine. Here, we report a methionine-directed ABPP platform using Redox-Activated Chemical Tagging (ReACT), which leverages a biomimetic oxidative ligation strategy for selective methionine modification. Application of ReACT to oncoprotein cyclin-dependent kinase 4 (CDK4) as a representative high-value drug target identified three new ligandable methionine sites. We then synthesized a methionine-targeting covalent ligand library bearing a diverse array of heterocyclic, heteroatom, and stereochemically rich substituents. ABPP screening of this focused library identified 1oxF11 as a covalent modifier of CDK4 at an allosteric M169 site. This compound inhibited kinase activity in a dose-dependent manner on purified protein and in breast cancer cells. Further investigation of 1oxF11 found prominent cation-π and H-bonding interactions stabilizing the binding of this fragment at the M169 site. Quantitative mass-spectrometry studies validated 1oxF11 ligation of CDK4 in breast cancer cell lysates. Further biochemical analyses revealed cross-talk between M169 oxidation and T172 phosphorylation, where M169 oxidation prevented phosphorylation of the activating T172 site on CDK4 and blocked cell cycle progression. By identifying a new mechanism for allosteric methionine redox regulation on CDK4 and developing a unique modality for its therapeutic intervention, this work showcases a generalizable platform that provides a starting point for engaging in broader chemoproteomics and protein ligand discovery efforts to find and target previously undruggable methionine sites.
Collapse
Affiliation(s)
- Angel Gonzalez-Valero
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Audrey G. Reeves
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Annika C. S. Page
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Patrick J. Moon
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Edward Miller
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Katia Coulonval
- Faculté de Médecine, Institute of Interdisciplinary Research, Université Libre de Bruxelles, Campus Erasme, Brussels 1070, Belgium
| | - Steven W. M. Crossley
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Xiao Xie
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Dan He
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Patricia Z. Musacchio
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Alec H. Christian
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jeffrey M. McKenna
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Richard A. Lewis
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Eric Fang
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Dustin Dovala
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Yipin Lu
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Lynn M. McGregor
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Markus Schirle
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - John A. Tallarico
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Pierre P. Roger
- Faculté de Médecine, Institute of Interdisciplinary Research, Université Libre de Bruxelles, Campus Erasme, Brussels 1070, Belgium
| | - F. Dean Toste
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| |
Collapse
|
20
|
Georgiadis D, Skoulikas N, Papakyriakou A, Stratikos E. Phosphinic Peptides as Tool Compounds for the Study of Pharmacologically Relevant Zn-Metalloproteases. ACS Pharmacol Transl Sci 2022; 5:1228-1253. [PMID: 36524013 PMCID: PMC9745897 DOI: 10.1021/acsptsci.2c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 11/29/2022]
Abstract
Phosphinic peptides constitute an important class of bioactive compounds that have found a wide range of applications in the field of biology and pharmacology of Zn-metalloproteases, the largest family of proteases in humans. They are designed to mimic the structure of natural substrates during their proteolysis, thus acting as mechanism-based, transition state analogue inhibitors. A combination of electrostatic interactions between the phosphinic acid group and the Zn cation as well as optimal noncovalent enzyme-ligand interactions can result in both high binding affinity for the desired target and selectivity against other proteases. Due to these unique properties, phosphinic peptides have been mainly employed as tool compounds for (a) the purposes of rational drug design by serving as ligands in X-ray crystal structures of target enzymes and allowing the identification of crucial interactions that govern optimal molecular recognition, and (b) the delineation of biological pathways where Zn-metalloproteases are key regulators. For the latter objective, inhibitors of the phosphinopeptidic type have been used either unmodified or after being transformed to probes of various types, thus expanding the arsenal of functional tools available to researchers. The aim of this review is to summarize all recent research achievements in which phosphinic peptides have played a central role as tool compounds in the understanding of the mechanism and biological functions of Zn-metalloproteases in both health and disease.
Collapse
Affiliation(s)
- Dimitris Georgiadis
- Department
of Chemistry, National and Kapodistrian
University of Athens, GR-15784 Athens, Greece
| | - Nikolaos Skoulikas
- Department
of Chemistry, National and Kapodistrian
University of Athens, GR-15784 Athens, Greece
| | - Athanasios Papakyriakou
- National
Centre for Scientific Research “Demokritos”, Agia Paraskevi GR-15341 Athens, Greece
| | - Efstratios Stratikos
- Department
of Chemistry, National and Kapodistrian
University of Athens, GR-15784 Athens, Greece
- National
Centre for Scientific Research “Demokritos”, Agia Paraskevi GR-15341 Athens, Greece
| |
Collapse
|
21
|
Anderson AJ, Seebald LM, Arbour CA, Imperiali B. Probing Monotopic Phosphoglycosyl Transferases from Complex Cellular Milieu. ACS Chem Biol 2022; 17:3191-3197. [PMID: 36346917 PMCID: PMC9703085 DOI: 10.1021/acschembio.2c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Monotopic phosphoglycosyl transferase enzymes (monoPGTs) initiate the assembly of prokaryotic glycoconjugates essential for bacterial survival and proliferation. MonoPGTs belong to an expansive superfamily with a diverse and richly annotated sequence space; however, the biochemical roles of most monoPGTs in glycoconjugate biosynthesis pathways remain elusive. To better understand these critical enzymes, we have implemented activity-based protein profiling (ABPP) probes as protein-centric, membrane protein compatible tools that lay the groundwork for understanding the activity and regulation of the monoPGT superfamily from a cellular proteome. With straightforward gel-based readouts, we demonstrate robust, covalent labeling at the active site of various representative monoPGTs from cell membrane fractions using 3-phenyl-2H-azirine probes.
Collapse
Affiliation(s)
- Alyssa J. Anderson
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leah M. Seebald
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christine A. Arbour
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
22
|
Cuffaro D, Ciccone L, Rossello A, Nuti E, Santamaria S. Targeting Aggrecanases for Osteoarthritis Therapy: From Zinc Chelation to Exosite Inhibition. J Med Chem 2022; 65:13505-13532. [PMID: 36250680 PMCID: PMC9620172 DOI: 10.1021/acs.jmedchem.2c01177] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 11/30/2022]
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease. In 1999, two members of the A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTS) family of metalloproteinases, ADAMTS4 and ADAMTS5, or aggrecanases, were identified as the enzymes responsible for aggrecan degradation in cartilage. The first aggrecanase inhibitors targeted the active site by chelation of the catalytic zinc ion. Due to the generally disappointing performance of zinc-chelating inhibitors in preclinical and clinical studies, inhibition strategies tried to move away from the active-site zinc in order to improve selectivity. Exosite inhibitors bind to proteoglycan-binding residues present on the aggrecanase ancillary domains (called exosites). While exosite inhibitors are generally more selective than zinc-chelating inhibitors, they are still far from fulfilling their potential, partly due to a lack of structural and functional data on aggrecanase exosites. Filling this gap will inform the design of novel potent, selective aggrecanase inhibitors.
Collapse
Affiliation(s)
- Doretta Cuffaro
- Department
of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Lidia Ciccone
- Department
of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Armando Rossello
- Department
of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Elisa Nuti
- Department
of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Salvatore Santamaria
- Department
of Immunology and Inflammation, Imperial
College London, Du Cane Road, London W12
0NN, U.K.
| |
Collapse
|
23
|
Kim S, Doukmak EJ, Flax RG, Gray DJ, Zirimu VN, de Jong E, Steinhardt RC. Developing Photoaffinity Probes for Dopamine Receptor D 2 to Determine Targets of Parkinson's Disease Drugs. ACS Chem Neurosci 2022; 13:3008-3022. [PMID: 36183275 PMCID: PMC9585581 DOI: 10.1021/acschemneuro.2c00544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Dopaminergic pathways control highly consequential aspects of physiology and behavior. One of the most therapeutically important and best-studied receptors in these pathways is dopamine receptor D2 (DRD2). Unfortunately, DRD2 is challenging to study with traditional molecular biological techniques, and most drugs designed to target DRD2 are ligands for many other receptors. Here, we developed probes able to both covalently bind to DRD2 using photoaffinity labeling and provide a chemical handle for detection or affinity purification. These probes behaved like good DRD2 agonists in traditional biochemical assays and were able to perform in chemical-biological assays of cell and receptor labeling. Rat whole brain labeling and affinity enrichment using the probes permitted proteomic analysis of the probes' interacting proteins. Bioinformatic study of the hits revealed that the probes bound noncanonically targeted proteins in Parkinson's disease network as well as the retrograde endocannabinoid signaling, neuronal nitric oxide synthase, muscarinic acetylcholine receptor M1, GABA receptor, and dopamine receptor D1 (DRD1) signaling networks. Follow-up analysis may yield insights into how this pathway relates specifically to Parkinson's disease symptoms or provide new targets for treatments. This work reinforces the notion that the combination of chemical biology and omics-based approaches provides a broad picture of a molecule's "interactome" and may also give insight into the pleiotropy of effects observed for a drug or perhaps indicate new applications.
Collapse
Affiliation(s)
- Spencer
T. Kim
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Emma J. Doukmak
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Raymond G. Flax
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Dylan J. Gray
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Victoria N. Zirimu
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Ebbing de Jong
- SUNY
Upstate Medical University, Syracuse, New York 13244, United States
| | - Rachel C. Steinhardt
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States,BioInspired
Institute, Syracuse University, Syracuse, New York 13244, United States,Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States,
| |
Collapse
|
24
|
Sivanich MK, Gu T, Tabang DN, Li L. Recent advances in isobaric labeling and applications in quantitative proteomics. Proteomics 2022; 22:e2100256. [PMID: 35687565 PMCID: PMC9787039 DOI: 10.1002/pmic.202100256] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/21/2022] [Accepted: 06/07/2022] [Indexed: 12/30/2022]
Abstract
Mass spectrometry (MS) has emerged at the forefront of quantitative proteomic techniques. Liquid chromatography-mass spectrometry (LC-MS) can be used to determine abundances of proteins and peptides in complex biological samples. Several methods have been developed and adapted for accurate quantification based on chemical isotopic labeling. Among various chemical isotopic labeling techniques, isobaric tagging approaches rely on the analysis of peptides from MS2-based quantification rather than MS1-based quantification. In this review, we will provide an overview of several isobaric tags along with some recent developments including complementary ion tags, improvements in sensitive quantitation of analytes with lower abundance, strategies to increase multiplexing capabilities, and targeted analysis strategies. We will also discuss limitations of isobaric tags and approaches to alleviate these restrictions through bioinformatic tools and data acquisition methods. This review will highlight several applications of isobaric tags, including biomarker discovery and validation, thermal proteome profiling, cross-linking for structural investigations, single-cell analysis, top-down proteomics, along with applications to different molecules including neuropeptides, glycans, metabolites, and lipids, while providing considerations and evaluations to each application.
Collapse
Affiliation(s)
| | - Ting‐Jia Gu
- School of PharmacyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | - Lingjun Li
- Department of ChemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- School of PharmacyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
25
|
Fedorov II, Lineva VI, Tarasova IA, Gorshkov MV. Mass Spectrometry-Based Chemical Proteomics for Drug Target Discoveries. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:983-994. [PMID: 36180990 DOI: 10.1134/s0006297922090103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 06/16/2023]
Abstract
Chemical proteomics, emerging rapidly in recent years, has become a main approach to identifying interactions between the small molecules and proteins in the cells on a proteome scale and mapping the signaling and/or metabolic pathways activated and regulated by these interactions. The methods of chemical proteomics allow not only identifying proteins targeted by drugs, characterizing their toxicity and discovering possible off-target proteins, but also elucidation of the fundamental mechanisms of cell functioning under conditions of drug exposure or due to the changes in physiological state of the organism itself. Solving these problems is essential for both basic research in biology and clinical practice, including approaches to early diagnosis of various forms of serious diseases or prediction of the effectiveness of therapeutic treatment. At the same time, recent developments in high-resolution mass spectrometry have provided the technology for searching the drug targets across the whole cell proteomes. This review provides a concise description of the main objectives and problems of mass spectrometry-based chemical proteomics, the methods and approaches to their solution, and examples of implementation of these methods in biomedical research.
Collapse
Affiliation(s)
- Ivan I Fedorov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
- Moscow Institute of Physics and Technology (National University), Dolgoprudny, Moscow Region, 141700, Russia
| | - Victoria I Lineva
- Moscow Institute of Physics and Technology (National University), Dolgoprudny, Moscow Region, 141700, Russia
| | - Irina A Tarasova
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Mikhail V Gorshkov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
26
|
Morimoto K, Krahn D, Kaschani F, Hopkinson‐Woolley D, Gee A, Buscaill P, Mohammed S, Sieber SA, Cravatt BF, Schofield CJ, van der Hoorn RAL. Broad-range metalloprotease profiling in plants uncovers immunity provided by defence-related metalloenzyme. THE NEW PHYTOLOGIST 2022; 235:1287-1301. [PMID: 35510806 PMCID: PMC9322406 DOI: 10.1111/nph.18200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Plants encode > 100 metalloproteases representing > 19 different protein families. Tools to study this large and diverse class of proteases have not yet been introduced into plant research. We describe the use of hydroxamate-based photoaffinity probes to explore plant proteomes for metalloproteases. We detected labelling of 23 metalloproteases in leaf extracts of the model plant Arabidopsis thaliana that belong to nine different metalloprotease families and localize to different subcellular compartments. The probes identified several chloroplastic FtsH proteases, vacuolar aspartyl aminopeptidase DAP1, peroxisomal metalloprotease PMX16, extracellular matrix metalloproteases and many cytosolic metalloproteases. We also identified nonproteolytic metallohydrolases involved in the release of auxin and in the urea cycle. Studies on tobacco plants (Nicotiana benthamiana) infected with the bacterial plant pathogen Pseudomonas syringae uncovered the induced labelling of PRp27, a secreted protein with implicated metalloprotease activity. PRp27 overexpression increases resistance, and PRp27 mutants lacking metal binding site are no longer labelled, but still show increased immunity. Collectively, these studies reveal the power of broad-range metalloprotease profiling in plants using hydroxamate-based probes.
Collapse
Affiliation(s)
- Kyoko Morimoto
- The Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| | - Daniel Krahn
- The Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
- Department of Chemistry and the Ineos Oxford Institute for Antimcrobial ResearchUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Farnusch Kaschani
- The Plant Chemetics LaboratoryMax Planck Institute for Plant Breeding ResearchCologne50829Germany
| | - Digby Hopkinson‐Woolley
- The Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| | - Anna Gee
- The Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| | - Pierre Buscaill
- The Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| | - Shabaz Mohammed
- Department of BiochemistryUniversity of OxfordOxfordOX1 3QUUK
| | - Stephan A. Sieber
- Department of ChemistryThe Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaCA92037USA
| | - Benjamin F. Cravatt
- Department of ChemistryThe Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaCA92037USA
| | - Christopher J. Schofield
- Department of Chemistry and the Ineos Oxford Institute for Antimcrobial ResearchUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Renier A. L. van der Hoorn
- The Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
- The Plant Chemetics LaboratoryMax Planck Institute for Plant Breeding ResearchCologne50829Germany
| |
Collapse
|
27
|
de Almeida LGN, Thode H, Eslambolchi Y, Chopra S, Young D, Gill S, Devel L, Dufour A. Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol Rev 2022; 74:712-768. [PMID: 35738680 DOI: 10.1124/pharmrev.121.000349] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The first matrix metalloproteinase (MMP) was discovered in 1962 from the tail of a tadpole by its ability to degrade collagen. As their name suggests, matrix metalloproteinases are proteases capable of remodeling the extracellular matrix. More recently, MMPs have been demonstrated to play numerous additional biologic roles in cell signaling, immune regulation, and transcriptional control, all of which are unrelated to the degradation of the extracellular matrix. In this review, we will present milestones and major discoveries of MMP research, including various clinical trials for the use of MMP inhibitors. We will discuss the reasons behind the failures of most MMP inhibitors for the treatment of cancer and inflammatory diseases. There are still misconceptions about the pathophysiological roles of MMPs and the best strategies to inhibit their detrimental functions. This review aims to discuss MMPs in preclinical models and human pathologies. We will discuss new biochemical tools to track their proteolytic activity in vivo and ex vivo, in addition to future pharmacological alternatives to inhibit their detrimental functions in diseases. SIGNIFICANCE STATEMENT: Matrix metalloproteinases (MMPs) have been implicated in most inflammatory, autoimmune, cancers, and pathogen-mediated diseases. Initially overlooked, MMP contributions can be both beneficial and detrimental in disease progression and resolution. Thousands of MMP substrates have been suggested, and a few hundred have been validated. After more than 60 years of MMP research, there remain intriguing enigmas to solve regarding their biological functions in diseases.
Collapse
Affiliation(s)
- Luiz G N de Almeida
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Hayley Thode
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Yekta Eslambolchi
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sameeksha Chopra
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Daniel Young
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sean Gill
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Laurent Devel
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Antoine Dufour
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| |
Collapse
|
28
|
Liu GY, Nie S, Zheng X, Li N. Activity-Based Protein Profiling Probe for the Detection of Enzymes Catalyzing Polysorbate Degradation. Anal Chem 2022; 94:8625-8632. [PMID: 35679579 DOI: 10.1021/acs.analchem.2c00059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polysorbates are nonionic surfactants that have been widely used in biotherapeutic formulations to prevent protein aggregation and denaturation. However, polysorbates are subject to degradation after prolonged storage if certain lipases are present in the biotherapeutic product. Because the degradation of polysorbates compromises the shelf life of biotherapeutics and leads to the formation of undesirable products such as protein aggregates and subvisible particles, it is important to identify the active enzymes that catalyze polysorbate hydrolysis. In this study, we developed a novel fluorophosphonate activity-based protein profiling (ABPP) probe (termed the REGN probe), which mimics the structure of polysorbate and targets lipases catalyzing polysorbate degradation. We demonstrated that the REGN probe could enrich certain lipases from Chinese hamster ovary (CHO) cell lysate by more than 100-fold compared with direct tryptic digestion. Furthermore, we found that the REGN probe had higher lipase enrichment efficiency than commercially available ABPP probes including fluorophosphonate-biotin (FP-biotin) and FP-desthiobiotin. Remarkably, the REGN probe can enrich several lipases that cannot be labeled by commercial probes, such as lysosomal acid lipase and cytosolic phospholipase A2. Additionally, we showed that lipases with abundances as low as 0.08 ppm in drug substances were detected by the REGN probe enrichment and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Collectively, we have developed a novel ABPP probe with higher enrichment efficiency and broader coverage for lipases compared with commercial probes, and this probe can be used to detect the trace level of lipases in biotherapeutic products and to facilitate their development and manufacturing.
Collapse
Affiliation(s)
- Gao-Yuan Liu
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Song Nie
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Xiaojing Zheng
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| |
Collapse
|
29
|
On the Study of Deubiquitinases: Using the Right Tools for the Job. Biomolecules 2022; 12:biom12050703. [PMID: 35625630 PMCID: PMC9139131 DOI: 10.3390/biom12050703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Deubiquitinases (DUBs) have been the subject of intense scrutiny in recent years. Many of their diverse enzymatic mechanisms are well characterized in vitro; however, our understanding of these enzymes at the cellular level lags due to the lack of quality tool reagents. DUBs play a role in seemingly every biological process and are central to many human pathologies, thus rendering them very desirable and challenging therapeutic targets. This review aims to provide researchers entering the field of ubiquitination with knowledge of the pharmacological modulators and tool molecules available to study DUBs. A focus is placed on small molecule inhibitors, ubiquitin variants (UbVs), and activity-based probes (ABPs). Leveraging these tools to uncover DUB biology at the cellular level is of particular importance and may lead to significant breakthroughs. Despite significant drug discovery efforts, only approximately 15 chemical probe-quality small molecule inhibitors have been reported, hitting just 6 of about 100 DUB targets. UbV technology is a promising approach to rapidly expand the library of known DUB inhibitors and may be used as a combinatorial platform for structure-guided drug design.
Collapse
|
30
|
Sakoula D, Smith GJ, Frank J, Mesman RJ, Kop LFM, Blom P, Jetten MSM, van Kessel MAHJ, Lücker S. Universal activity-based labeling method for ammonia- and alkane-oxidizing bacteria. THE ISME JOURNAL 2022; 16:958-971. [PMID: 34743174 PMCID: PMC8941013 DOI: 10.1038/s41396-021-01144-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
The advance of metagenomics in combination with intricate cultivation approaches has facilitated the discovery of novel ammonia-, methane-, and other short-chain alkane-oxidizing microorganisms, indicating that our understanding of the microbial biodiversity within the biogeochemical nitrogen and carbon cycles still is incomplete. The in situ detection and phylogenetic identification of novel ammonia- and alkane-oxidizing bacteria remain challenging due to their naturally low abundances and difficulties in obtaining new isolates from complex samples. Here, we describe an activity-based protein profiling protocol allowing cultivation-independent unveiling of ammonia- and alkane-oxidizing bacteria. In this protocol, 1,7-octadiyne is used as a bifunctional enzyme probe that, in combination with a highly specific alkyne-azide cycloaddition reaction, enables the fluorescent or biotin labeling of cells harboring active ammonia and alkane monooxygenases. Biotinylation of these enzymes in combination with immunogold labeling revealed the subcellular localization of the tagged proteins, which corroborated expected enzyme targets in model strains. In addition, fluorescent labeling of cells harboring active ammonia or alkane monooxygenases provided a direct link of these functional lifestyles to phylogenetic identification when combined with fluorescence in situ hybridization. Furthermore, we show that this activity-based labeling protocol can be successfully coupled with fluorescence-activated cell sorting for the enrichment of nitrifiers and alkane-oxidizing bacteria from complex environmental samples, enabling the recovery of high-quality metagenome-assembled genomes. In conclusion, this study demonstrates a novel, functional tagging technique for the reliable detection, identification, and enrichment of ammonia- and alkane-oxidizing bacteria present in complex microbial communities.
Collapse
Affiliation(s)
- Dimitra Sakoula
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands.
- Division of Microbial Ecology, Center for Microbiology and Environmental Systems Science, University of Vienna, Althanstraße 14, 1090, Vienna, Austria.
| | - Garrett J Smith
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Jeroen Frank
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Rob J Mesman
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Linnea F M Kop
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Pieter Blom
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Mike S M Jetten
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Maartje A H J van Kessel
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Sebastian Lücker
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands.
| |
Collapse
|
31
|
TIMP-2 regulates 5-Fu resistance via the ERK/MAPK signaling pathway in colorectal cancer. Aging (Albany NY) 2022; 14:297-315. [PMID: 35022331 PMCID: PMC8791226 DOI: 10.18632/aging.203793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022]
Abstract
5-Fluorouracil (5-Fu) is the first-line chemotherapeutic option for colorectal cancer. However, its efficacy is inhibited by drug resistance. Cytokines play an important role in tumor drug resistance, even though their mechanisms are largely unknown. Using a cytokine array, we established that tissue inhibitor metalloproteinase 2 (TIMP-2) is highly expressed in 5-Fu resistant colorectal cancer patients. Analysis of samples from 84 patients showed that elevated TIMP-2 expression levels in colorectal patients were correlated with poor prognostic outcomes. In a 5-Fu-resistant patient-derived xenograft (PDX) model, TIMP-2 was also found to be highly expressed. We established an autocrine mechanism through which elevated TIMP-2 protein levels sustained colorectal cancer cell resistance to 5-Fu by constitutively activating the ERK/MAPK signaling pathway. Inhibition of TIMP-2 using an anti-TIMP-2 antibody or ERK/MAPK inhibition by U0126 suppressed TIMP-2 mediated 5-Fu-resistance in CRC patients. In conclusion, a novel TIMP-2-ERK/MAPK mediated 5-Fu resistance mechanism is involved in colorectal cancer. Therefore, targeting TIMP-2 or ERK/MAPK may provide a new strategy to overcome 5-Fu resistance in colorectal cancer chemotherapy.
Collapse
|
32
|
McKenna SM, Fay EM, McGouran JF. Flipping the Switch: Innovations in Inducible Probes for Protein Profiling. ACS Chem Biol 2021; 16:2719-2730. [PMID: 34779621 PMCID: PMC8689647 DOI: 10.1021/acschembio.1c00572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Over the past two
decades, activity-based probes have enabled a
range of discoveries, including the characterization of new enzymes
and drug targets. However, their suitability in some labeling experiments
can be limited by nonspecific reactivity, poor membrane permeability,
or high toxicity. One method for overcoming these issues is through
the development of “inducible” activity-based probes.
These probes are added to samples in an unreactive state and require in situ transformation to their active form before labeling
can occur. In this Review, we discuss a variety of approaches to inducible
activity-based probe design, different means of probe activation,
and the advancements that have resulted from these applications. Additionally,
we highlight recent developments which may provide opportunities for
future inducible activity-based probe innovations.
Collapse
Affiliation(s)
- Sean M. McKenna
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, Limerick V94 T9PX, Ireland
| | - Ellen M. Fay
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
| | - Joanna F. McGouran
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, Limerick V94 T9PX, Ireland
| |
Collapse
|
33
|
Burton NR, Kim P, Backus KM. Photoaffinity labelling strategies for mapping the small molecule-protein interactome. Org Biomol Chem 2021; 19:7792-7809. [PMID: 34549230 PMCID: PMC8489259 DOI: 10.1039/d1ob01353j] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nearly all FDA approved drugs and bioactive small molecules exert their effects by binding to and modulating proteins. Consequently, understanding how small molecules interact with proteins at an molecular level is a central challenge of modern chemical biology and drug development. Complementary to structure-guided approaches, chemoproteomics has emerged as a method capable of high-throughput identification of proteins covalently bound by small molecules. To profile noncovalent interactions, established chemoproteomic workflows typically incorporate photoreactive moieties into small molecule probes, which enable trapping of small molecule-protein interactions (SMPIs). This strategy, termed photoaffinity labelling (PAL), has been utilized to profile an array of small molecule interactions, including for drugs, lipids, metabolites, and cofactors. Herein we describe the discovery of photocrosslinking chemistries, including a comparison of the strengths and limitations of implementation of each chemotype in chemoproteomic workflows. In addition, we highlight key examples where photoaffinity labelling has enabled target deconvolution and interaction site mapping.
Collapse
Affiliation(s)
- Nikolas R Burton
- Department of Chemistry and Biochemistry, College of Arts and Sciences, UCLA, Los Angeles, CA, 90095, USA.
| | - Phillip Kim
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Keriann M Backus
- Department of Chemistry and Biochemistry, College of Arts and Sciences, UCLA, Los Angeles, CA, 90095, USA.
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| |
Collapse
|
34
|
Cao YJ, Yu C, Wu KL, Wang X, Liu D, Tian Z, Zhao L, Qi X, Loredo A, Chung A, Xiao H. Synthesis of precision antibody conjugates using proximity-induced chemistry. Theranostics 2021; 11:9107-9117. [PMID: 34522229 PMCID: PMC8419051 DOI: 10.7150/thno.62444] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Rationale: Therapeutic antibody conjugates allow for the specific delivery of cytotoxic agents or immune cells to tumors, thus enhancing the antitumor activity of these agents and minimizing adverse systemic effects. Most current antibody conjugates are prepared by nonspecific modification of antibody cysteine or lysine residues, inevitably resulting in the generation of heterogeneous conjugates with limited therapeutic efficacies. Traditional strategies to prepare homogeneous antibody conjugates require antibody engineering or chemical/enzymatic treatments, processes that often affect antibody folding and stability, as well as yield and cost. Developing a simple and cost-effective way to precisely couple functional payloads to native antibodies is of great importance. Methods: We describe a simple proximity-induced antibody conjugation method (pClick) that enables the synthesis of homogeneous antibody conjugates from native antibodies without requiring additional antibody engineering or post-synthesis treatments. A proximity-activated crosslinker is introduced into a chemically synthesized affinity peptide modified with a bioorthogonal handle. Upon binding to a specific antibody site, the affinity peptide covalently attaches to the antibody via spontaneous crosslinking, yielding an antibody molecule ready for bioorthogonal conjugation with payloads. Results: We have prepared well-defined antibody-drug conjugates and bispecific small molecule-antibody conjugates using pClick technology. The resulting conjugates exhibit excellent in vitro cytotoxic activity against cancer cells and, in the case of bispecific conjugates, superb antitumor activity in mouse xenograft models. Conclusions: Our pClick technology enables efficient, simple, and site-specific conjugation of various moieties to the existing native antibodies. This technology does not require antibody engineering or additional UV/chemical/enzymatic treatments, therefore providing a general, convenient strategy for developing novel antibody conjugates.
Collapse
|
35
|
Mateus A, Kurzawa N, Perrin J, Bergamini G, Savitski MM. Drug Target Identification in Tissues by Thermal Proteome Profiling. Annu Rev Pharmacol Toxicol 2021; 62:465-482. [PMID: 34499524 DOI: 10.1146/annurev-pharmtox-052120-013205] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Drug target deconvolution can accelerate the drug discovery process by identifying a drug's targets (facilitating medicinal chemistry efforts) and off-targets (anticipating toxicity effects or adverse drug reactions). Multiple mass spectrometry-based approaches have been developed for this purpose, but thermal proteome profiling (TPP) remains to date the only one that does not require compound modification and can be used to identify intracellular targets in living cells. TPP is based on the principle that the thermal stability of a protein can be affected by its interactions. Recent developments of this approach have expanded its applications beyond drugs and cell cultures to studying protein-drug interactions and biological phenomena in tissues. These developments open up the possibility of studying drug treatment or mechanisms of disease in a holistic fashion, which can result in the design of better drugs and lead to a better understanding of fundamental biology. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- André Mateus
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| | - Nils Kurzawa
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; .,Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Jessica Perrin
- Cellzome GmbH, GlaxoSmithKline, 69117 Heidelberg, Germany
| | | | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| |
Collapse
|
36
|
Kaminska M, Bruyat P, Malgorn C, Doladilhe M, Cassar‐Lajeunesse E, Fruchart Gaillard C, De Souza M, Beau F, Thai R, Correia I, Galat A, Georgiadis D, Lequin O, Dive V, Bregant S, Devel L. Ligand‐Directed Modification of Active Matrix Metalloproteases: Activity‐based Probes with no Photolabile Group. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Monika Kaminska
- Université Paris-Saclay CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS 91191 Gif-sur-Yvette France
| | - Pierrick Bruyat
- Université Paris-Saclay CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS 91191 Gif-sur-Yvette France
| | - Carole Malgorn
- Université Paris-Saclay CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS 91191 Gif-sur-Yvette France
| | - Marion Doladilhe
- Université Paris-Saclay CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS 91191 Gif-sur-Yvette France
| | - Evelyne Cassar‐Lajeunesse
- Université Paris-Saclay CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS 91191 Gif-sur-Yvette France
| | - Carole Fruchart Gaillard
- Université Paris-Saclay CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS 91191 Gif-sur-Yvette France
| | - Mélissa De Souza
- Université Paris-Saclay CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS 91191 Gif-sur-Yvette France
| | - Fabrice Beau
- Université Paris-Saclay CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS 91191 Gif-sur-Yvette France
| | - Robert Thai
- Université Paris-Saclay CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS 91191 Gif-sur-Yvette France
| | - Isabelle Correia
- CNRS, Laboratoire des Biomolécules, LBM Sorbonne Université Ecole Normale Supérieure PSL University 75005 Paris France
| | - Andrzej Galat
- Université Paris-Saclay CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS 91191 Gif-sur-Yvette France
| | - Dimitris Georgiadis
- Department of Chemistry Laboratory of Organic Chemistry University of Athens Panepistimiopolis Zografou 15771 Athens Greece
| | - Olivier Lequin
- CNRS, Laboratoire des Biomolécules, LBM Sorbonne Université Ecole Normale Supérieure PSL University 75005 Paris France
| | - Vincent Dive
- Université Paris-Saclay CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS 91191 Gif-sur-Yvette France
| | - Sarah Bregant
- Université Paris-Saclay CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS 91191 Gif-sur-Yvette France
| | - Laurent Devel
- Université Paris-Saclay CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS 91191 Gif-sur-Yvette France
| |
Collapse
|
37
|
Henneberg LT, Schulman BA. Decoding the messaging of the ubiquitin system using chemical and protein probes. Cell Chem Biol 2021; 28:889-902. [PMID: 33831368 PMCID: PMC7611516 DOI: 10.1016/j.chembiol.2021.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/22/2021] [Accepted: 03/12/2021] [Indexed: 12/29/2022]
Abstract
Post-translational modification of proteins by ubiquitin is required for nearly all aspects of eukaryotic cell function. The numerous targets of ubiquitylation, and variety of ubiquitin modifications, are often likened to a code, where the ultimate messages are diverse responses to target ubiquitylation. E1, E2, and E3 multiprotein enzymatic assemblies modify specific targets and thus function as messengers. Recent advances in chemical and protein tools have revolutionized our ability to explore the ubiquitin system, through enabling new high-throughput screening methods, matching ubiquitylation enzymes with their cellular targets, revealing intricate allosteric mechanisms regulating ubiquitylating enzymes, facilitating structural revelation of transient assemblies determined by multivalent interactions, and providing new paradigms for inhibiting and redirecting ubiquitylation in vivo as new therapeutics. Here we discuss the development of methods that control, disrupt, and extract the flow of information across the ubiquitin system and have enabled elucidation of the underlying molecular and cellular biology.
Collapse
Affiliation(s)
- Lukas T Henneberg
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
38
|
Kaminska M, Bruyat P, Malgorn C, Doladilhe M, Cassar-Lajeunesse E, Fruchart Gaillard C, De Souza M, Beau F, Thai R, Correia I, Galat A, Georgiadis D, Lequin O, Dive V, Bregant S, Devel L. Ligand-Directed Modification of Active Matrix Metalloproteases: Activity-based Probes with no Photolabile Group. Angew Chem Int Ed Engl 2021; 60:18272-18279. [PMID: 34096148 DOI: 10.1002/anie.202106117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Indexed: 12/12/2022]
Abstract
Activity-based probes enable discrimination between the active enzyme and its inactive or inactivated counterparts. Since metalloproteases catalysis is non-covalent, activity-based probes targeting them have been systematically developed by decorating reversible inhibitors with photo-crosslinkers. By exploiting two types of ligand-guided chemistry, we identified novel activity-based probes capable of covalently modifying the active site of matrix metalloproteases (MMPs) without any external trigger. The ability of these probes to label recombinant MMPs was validated in vitro and the identity of the main labelling sites within their S3 ' region unambiguously assigned. We also demonstrated that our affinity probes can react with rhMMP12 at nanogram scale (that is, at 0.07 % (w/w)) in complex proteomes. Finally, this ligand-directed chemistry was successfully applied to label active MMP-12 secreted by eukaryote cells. We believe that this approach could be transferred more widely to many other metalloproteases, thus contributing to tackle their unresolved proteomic profiling in vivo.
Collapse
Affiliation(s)
- Monika Kaminska
- Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Pierrick Bruyat
- Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Carole Malgorn
- Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Marion Doladilhe
- Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Evelyne Cassar-Lajeunesse
- Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Carole Fruchart Gaillard
- Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Mélissa De Souza
- Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Fabrice Beau
- Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Robert Thai
- Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Isabelle Correia
- CNRS, Laboratoire des Biomolécules, LBM, Sorbonne Université, Ecole Normale Supérieure, PSL University, 75005, Paris, France
| | - Andrzej Galat
- Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Dimitris Georgiadis
- Department of Chemistry, Laboratory of Organic Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Olivier Lequin
- CNRS, Laboratoire des Biomolécules, LBM, Sorbonne Université, Ecole Normale Supérieure, PSL University, 75005, Paris, France
| | - Vincent Dive
- Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Sarah Bregant
- Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Laurent Devel
- Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS, 91191, Gif-sur-Yvette, France
| |
Collapse
|
39
|
Kirchhain A, Zubrienė A, Kairys V, Vivaldi F, Bonini A, Biagini D, Santalucia D, Matulis D, Di Francesco F. Biphenyl substituted lysine derivatives as recognition elements for the matrix metalloproteinases MMP-2 and MMP-9. Bioorg Chem 2021; 115:105155. [PMID: 34303036 DOI: 10.1016/j.bioorg.2021.105155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/25/2022]
Abstract
Matrix metalloproteinases (MMPs) are an important factor in cancer progression and metastasis, especially gelatinases MMP-2 and MMP-9. A simple methodology for their detection and monitoring is highly desirable. Molecular probes have been very widely and successfully applied to study the activity of MMPs in cellular processes in vitro. We thus synthesized a small compound library of MMP-2 and MMP-9 binding probes based on drug molecules and endowed with free amine groups for the functionalization of transducer surfaces. In this study, we combined experimental results obtained by a kinetic fluorogenic peptide substrate cleavage assay with molecular modeling studies in order to assess the ability of the probe to bind to their target enzymes. The synthesized biphenyl substituted lysine derivatives showed IC50-values in the low nanomolar concentration range against MMP-2 (ligands 3a-d: 3 nM to 8 µM, ligands 4a-d: 45 nM to 350 µM) and low micromolar range against MMP-9 (ligands 3a-d: 350 nM to 60 µM, ligands 4a-d: 5 µM to 600 µM), with a selectivity up to more than 160-fold for MMP-2. The experimental results correlated well with molecular modelling with FleXAID and X-score functions. We showed that in our compound series, the side chain remained far away from the S1' cavity and the ligand for all the docked minima. Ligands 4a-d with their free amine group on the side chain may thus be bound to transducer surfaces for the fabrication of sensors, while retaining their activity against their target enzymes.
Collapse
Affiliation(s)
- Arno Kirchhain
- Dipartimento di Chimica e Chimica Industriale, Via Giuseppe Moruzzi, 13, 56124 Pisa, Italy.
| | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius LT-10257, Lithuania
| | - Visvaldas Kairys
- Department of Bioinformatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius LT-10257, Lithuania
| | - Federico Vivaldi
- Dipartimento di Chimica e Chimica Industriale, Via Giuseppe Moruzzi, 13, 56124 Pisa, Italy
| | - Andrea Bonini
- Dipartimento di Chimica e Chimica Industriale, Via Giuseppe Moruzzi, 13, 56124 Pisa, Italy
| | - Denise Biagini
- Dipartimento di Chimica e Chimica Industriale, Via Giuseppe Moruzzi, 13, 56124 Pisa, Italy
| | - Delio Santalucia
- Dipartimento di Chimica e Chimica Industriale, Via Giuseppe Moruzzi, 13, 56124 Pisa, Italy
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius LT-10257, Lithuania
| | - Fabio Di Francesco
- Dipartimento di Chimica e Chimica Industriale, Via Giuseppe Moruzzi, 13, 56124 Pisa, Italy
| |
Collapse
|
40
|
Fang H, Peng B, Ong SY, Wu Q, Li L, Yao SQ. Recent advances in activity-based probes (ABPs) and affinity-based probes (A fBPs) for profiling of enzymes. Chem Sci 2021; 12:8288-8310. [PMID: 34221311 PMCID: PMC8221178 DOI: 10.1039/d1sc01359a] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Activity-based protein profiling (ABPP) is a technique that uses highly selective active-site targeted chemical probes to label and monitor the state of proteins. ABPP integrates the strengths of both chemical and biological disciplines. By utilizing chemically synthesized or modified bioactive molecules, ABPP is able to reveal complex physiological and pathological enzyme-substrate interactions at molecular and cellular levels. It is also able to provide critical information of the catalytic activity changes of enzymes, annotate new functions of enzymes, discover new substrates of enzymes, and allow real-time monitoring of the cellular location of enzymes. Based on the mechanism of probe-enzyme interaction, two types of probes that have been used in ABPP are activity-based probes (ABPs) and affinity-based probes (AfBPs). This review highlights the recent advances in the use of ABPs and AfBPs, and summarizes their design strategies (based on inhibitors and substrates) and detection approaches.
Collapse
Affiliation(s)
- Haixiao Fang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 P. R. China
| | - Sing Yee Ong
- Department of Chemistry, National University of Singapore 4 Science Drive 2 117544 Singapore
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore 4 Science Drive 2 117544 Singapore
| |
Collapse
|
41
|
Knapinska AM, Singh C, Drotleff G, Blanco D, Chai C, Schwab J, Herd A, Fields GB. Matrix Metalloproteinase 13 Inhibitors for Modulation of Osteoclastogenesis: Enhancement of Solubility and Stability. ChemMedChem 2021; 16:1133-1142. [PMID: 33331147 PMCID: PMC8035250 DOI: 10.1002/cmdc.202000911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/14/2020] [Indexed: 11/08/2022]
Abstract
Matrix metalloproteinase 13 (MMP-13) activity has been correlated to breast cancer bone metastasis. It has been proposed that MMP-13 contributes to bone metastasis through the promotion of osteoclastogenesis. To explore the mechanisms of MMP-13 action, we previously described a highly efficacious and selective MMP-13 inhibitor, RF036. Unfortunately, further pursuit of RF036 as a probe of MMP-13 in vitro and in vivo activities was not practical due to the limited solubility and stability of the inhibitor. Our new study has explored replacing the RF036 backbone sulfur atom and terminal methyl group to create inhibitors with more favorable pharmacokinetic properties. One compound, designated inhibitor 3, in which the backbone sulfur and terminal methyl group of RF036 were replaced by nitrogen and oxetane, respectively, had comparable activity, selectivity, and membrane permeability to RF036, while exhibiting greatly enhanced solubility and stability. Inhibitor 3 effectively inhibited MMP-13-mediated osteoclastogenesis but spared collagenolysis, and thus represents a next-generation MMP-13 probe applicable for in vivo studies of breast cancer metastasis.
Collapse
Affiliation(s)
- Anna M Knapinska
- Department of Chemistry & Biochemistry, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Chandani Singh
- Department of Chemistry & Biochemistry, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Gary Drotleff
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | - Daniela Blanco
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Cedric Chai
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | - Jason Schwab
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Anu Herd
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
- Department of Chemistry, The Scripps Research Institute/Scripps Florida, 120 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
42
|
Borne AL, Brulet JW, Yuan K, Hsu KL. Development and biological applications of sulfur-triazole exchange (SuTEx) chemistry. RSC Chem Biol 2021; 2:322-337. [PMID: 34095850 PMCID: PMC8174820 DOI: 10.1039/d0cb00180e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/05/2021] [Indexed: 12/27/2022] Open
Abstract
Sulfur electrophiles constitute an important class of covalent small molecules that have found widespread applications in synthetic chemistry and chemical biology. Various electrophilic scaffolds, including sulfonyl fluorides and arylfluorosulfates as recent examples, have been applied for protein bioconjugation to probe ligand sites amenable for chemical proteomics and drug discovery. In this review, we describe the development of sulfonyl-triazoles as a new class of electrophiles for sulfur-triazole exchange (SuTEx) chemistry. SuTEx achieves covalent reaction with protein sites through irreversible modification of a residue with an adduct group (AG) upon departure of a leaving group (LG). A principal differentiator of SuTEx from other chemotypes is the selection of a triazole heterocycle as the LG, which introduces additional capabilities for tuning the sulfur electrophile. We describe the opportunities afforded by modifications to the LG and AG alone or in tandem to facilitate nucleophilic substitution reactions at the SO2 center in cell lysates and live cells. As a result of these features, SuTEx serves as an efficient platform for developing chemical probes with tunable bioactivity to study novel nucleophilic sites on established and poorly annotated protein targets. Here, we highlight a suite of biological applications for the SuTEx electrophile and discuss future goals for this enabling covalent chemistry.
Collapse
Affiliation(s)
- Adam L. Borne
- Department of Pharmacology, University of Virginia School of MedicineCharlottesvilleVirginia 22908USA
| | - Jeffrey W. Brulet
- Department of Chemistry, University of VirginiaMcCormick Road, P.O. Box 400319CharlottesvilleVirginia 22904USA+1-434-297-4864
| | - Kun Yuan
- Department of Chemistry, University of VirginiaMcCormick Road, P.O. Box 400319CharlottesvilleVirginia 22904USA+1-434-297-4864
| | - Ku-Lung Hsu
- Department of Pharmacology, University of Virginia School of MedicineCharlottesvilleVirginia 22908USA
- Department of Chemistry, University of VirginiaMcCormick Road, P.O. Box 400319CharlottesvilleVirginia 22904USA+1-434-297-4864
- University of Virginia Cancer Center, University of VirginiaCharlottesvilleVA 22903USA
- Department of Molecular Physiology and Biological Physics, University of VirginiaCharlottesvilleVirginia 22908USA
| |
Collapse
|
43
|
Vizovisek M, Ristanovic D, Menghini S, Christiansen MG, Schuerle S. The Tumor Proteolytic Landscape: A Challenging Frontier in Cancer Diagnosis and Therapy. Int J Mol Sci 2021; 22:ijms22052514. [PMID: 33802262 PMCID: PMC7958950 DOI: 10.3390/ijms22052514] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
In recent decades, dysregulation of proteases and atypical proteolysis have become increasingly recognized as important hallmarks of cancer, driving community-wide efforts to explore the proteolytic landscape of oncologic disease. With more than 100 proteases currently associated with different aspects of cancer development and progression, there is a clear impetus to harness their potential in the context of oncology. Advances in the protease field have yielded technologies enabling sensitive protease detection in various settings, paving the way towards diagnostic profiling of disease-related protease activity patterns. Methods including activity-based probes and substrates, antibodies, and various nanosystems that generate reporter signals, i.e., for PET or MRI, after interaction with the target protease have shown potential for clinical translation. Nevertheless, these technologies are costly, not easily multiplexed, and require advanced imaging technologies. While the current clinical applications of protease-responsive technologies in oncologic settings are still limited, emerging technologies and protease sensors are poised to enable comprehensive exploration of the tumor proteolytic landscape as a diagnostic and therapeutic frontier. This review aims to give an overview of the most relevant classes of proteases as indicators for tumor diagnosis, current approaches to detect and monitor their activity in vivo, and associated therapeutic applications.
Collapse
|
44
|
Boosting anti-PD-1 therapy with metformin-loaded macrophage-derived microparticles. Nat Commun 2021; 12:440. [PMID: 33469052 PMCID: PMC7815730 DOI: 10.1038/s41467-020-20723-x] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
The main challenges for programmed cell death 1(PD-1)/PD-1 ligand (PD-L1) checkpoint blockade lie in a lack of sufficient T cell infiltration, tumor immunosuppressive microenvironment, and the inadequate tumor accumulation and penetration of anti-PD-1/PD-L1 antibody. Resetting tumor-associated macrophages (TAMs) is a promising strategy to enhance T-cell antitumor immunity and ameliorate tumor immunosuppression. Here, mannose-modified macrophage-derived microparticles (Man-MPs) loading metformin (Met@Man-MPs) are developed to efficiently target to M2-like TAMs to repolarize into M1-like phenotype. Met@Man-MPs-reset TAMs remodel the tumor immune microenvironment by increasing the recruitment of CD8+ T cells into tumor tissues and decreasing immunosuppressive infiltration of myeloid-derived suppressor cells and regulatory T cells. More importantly, the collagen-degrading capacity of Man-MPs contributes to the infiltration of CD8+ T cells into tumor interiors and enhances tumor accumulation and penetration of anti-PD-1 antibody. These unique features of Met@Man-MPs contribute to boost anti-PD-1 antibody therapy, improving anticancer efficacy and long-term memory immunity after combination treatment. Our results support Met@Man-MPs as a potential drug to improve tumor resistance to anti-PD-1 therapy. Durable response rate to anti-PD-1/PD-L1 therapy remains relatively low in patients with cancer. Here the authors show that metformin-loaded mannose-modified macrophage-derived microparticles reprogram the tumor immune microenvironment and improve responses to anti-PD-1 therapy.
Collapse
|
45
|
Santamaria S, Cuffaro D, Nuti E, Ciccone L, Tuccinardi T, Liva F, D'Andrea F, de Groot R, Rossello A, Ahnström J. Exosite inhibition of ADAMTS-5 by a glycoconjugated arylsulfonamide. Sci Rep 2021; 11:949. [PMID: 33441904 PMCID: PMC7806935 DOI: 10.1038/s41598-020-80294-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
ADAMTS-5 is a major protease involved in the turnover of proteoglycans such as aggrecan and versican. Dysregulated aggrecanase activity of ADAMTS-5 has been directly linked to the etiology of osteoarthritis (OA). For this reason, ADAMTS-5 is a pharmaceutical target for the treatment of OA. ADAMTS-5 shares high structural and functional similarities with ADAMTS-4, which makes the design of selective inhibitors particularly challenging. Here we exploited the ADAMTS-5 binding capacity of β-N-acetyl-d-glucosamine to design a new class of sugar-based arylsulfonamides. Our most promising compound, 4b, is a non-zinc binding ADAMTS-5 inhibitor which showed high selectivity over ADAMTS-4. Docking calculations combined with molecular dynamics simulations demonstrated that 4b is a cross-domain inhibitor that targets the interface of the metalloproteinase and disintegrin-like domains. Furthermore, the interaction between 4b and the ADAMTS-5 Dis domain is mediated by hydrogen bonds between the sugar moiety and two lysine residues (K532 and K533). Targeted mutagenesis of these two residues confirmed their importance both for versicanase activity and inhibitor binding. This positively-charged cluster of ADAMTS-5 represents a previously unknown substrate-binding site (exosite) which is critical for substrate recognition and can therefore be targeted for the development of selective ADAMTS-5 inhibitors.
Collapse
Affiliation(s)
- Salvatore Santamaria
- Department of Immunology and Inflammation, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| | - Doretta Cuffaro
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - Elisa Nuti
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy.
| | - Lidia Ciccone
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - Francesca Liva
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - Felicia D'Andrea
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - Rens de Groot
- Department of Immunology and Inflammation, Imperial College London, Du Cane Road, London, W12 0NN, UK.,Institute of Cardiovascular Science, University College London, 51 Chenies Mews, London, WC1E 6HX, UK
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - Josefin Ahnström
- Department of Immunology and Inflammation, Imperial College London, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
46
|
Lim Y, Kuang Y, Wu J, Yao SQ. Late‐Stage C(sp
2
)−H Functionalization: A Powerful Toolkit To Arm Natural Products for In Situ Proteome Profiling? Chemistry 2020; 27:3575-3580. [DOI: 10.1002/chem.202004373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/04/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Ying‐Jie Lim
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Yulong Kuang
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Jie Wu
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Shao Q. Yao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
47
|
Kaur J, Bhardwaj A, Wuest F. In Cellulo Generation of Fluorescent Probes for Live-Cell Imaging of Cylooxygenase-2. Chemistry 2020; 27:3326-3337. [PMID: 32786126 DOI: 10.1002/chem.202003315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/09/2020] [Indexed: 02/01/2023]
Abstract
Live-cell imaging with fluorescent probes is an essential tool in chemical biology to visualize the dynamics of biological processes in real-time. Intracellular disease biomarker imaging remains a formidable challenge due to the intrinsic limitations of conventional fluorescent probes and the complex nature of cells. This work reports the in cellulo assembly of a fluorescent probe to image cyclooxygenase-2 (COX-2). We developed celecoxib-azide derivative 14, possessing favorable biophysical properties and excellent COX-2 selectivity profile. In cellulo strain-promoted fluorogenic click chemistry of COX-2-engaged compound 14 with non/weakly-fluorescent compounds 11 and 17 formed fluorescent probes 15 and 18 for the detection of COX-2 in living cells. Competitive binding studies, biophysical, and comprehensive computational analyses were used to describe protein-ligand interactions. The reported new chemical toolbox enables precise visualization and tracking of COX-2 in live cells with superior sensitivity in the visible range.
Collapse
Affiliation(s)
- Jatinder Kaur
- Department of Oncology, University of Alberta, Edmonton, AB, Canada.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Atul Bhardwaj
- Department of Oncology, University of Alberta, Edmonton, AB, Canada.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, Edmonton, AB, Canada.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
48
|
Hira J, Uddin MJ, Haugland MM, Lentz CS. From Differential Stains to Next Generation Physiology: Chemical Probes to Visualize Bacterial Cell Structure and Physiology. Molecules 2020; 25:E4949. [PMID: 33114655 PMCID: PMC7663024 DOI: 10.3390/molecules25214949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Abstract
Chemical probes have been instrumental in microbiology since its birth as a discipline in the 19th century when chemical dyes were used to visualize structural features of bacterial cells for the first time. In this review article we will illustrate the evolving design of chemical probes in modern chemical biology and their diverse applications in bacterial imaging and phenotypic analysis. We will introduce and discuss a variety of different probe types including fluorogenic substrates and activity-based probes that visualize metabolic and specific enzyme activities, metabolic labeling strategies to visualize structural features of bacterial cells, antibiotic-based probes as well as fluorescent conjugates to probe biomolecular uptake pathways.
Collapse
Affiliation(s)
- Jonathan Hira
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (J.H.); (M.J.U.)
| | - Md. Jalal Uddin
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (J.H.); (M.J.U.)
| | - Marius M. Haugland
- Department of Chemistry and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway;
| | - Christian S. Lentz
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (J.H.); (M.J.U.)
| |
Collapse
|
49
|
Iizuka S, Leon RP, Gribbin KP, Zhang Y, Navarro J, Smith R, Devlin K, Wang LG, Gibbs SL, Korkola J, Nan X, Courtneidge SA. Crosstalk between invadopodia and the extracellular matrix. Eur J Cell Biol 2020; 99:151122. [PMID: 33070041 DOI: 10.1016/j.ejcb.2020.151122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/24/2020] [Accepted: 08/12/2020] [Indexed: 12/27/2022] Open
Abstract
The scaffold protein Tks5α is required for invadopodia-mediated cancer invasion both in vitro and in vivo. We have previously also revealed a role for Tks5 in tumor cell growth using three-dimensional (3D) culture model systems and mouse transplantation experiments. Here we use both 3D and high-density fibrillar collagen (HDFC) culture to demonstrate that native collagen-I, but not a form lacking the telopeptides, stimulated Tks5-dependent growth, which was dependent on the DDR collagen receptors. We used microenvironmental microarray (MEMA) technology to determine that laminin, fibronectin and tropoelastin also stimulated invadopodia formation. A Tks5α-specific monoclonal antibody revealed its expression both on microtubules and at invadopodia. High- and super-resolution microscopy of cells in and on collagen was then used to place Tks5α at the base of invadopodia, separated from much of the actin and cortactin, but coincident with both matrix metalloprotease and cathepsin proteolytic activity. Inhibition of the Src family kinases, cathepsins or metalloproteases all reduced invadopodia length but each had distinct effects on Tks5α localization. These studies highlight the crosstalk between invadopodia and extracellular matrix components, and reveal the invadopodium to be a spatially complex structure.
Collapse
Affiliation(s)
- Shinji Iizuka
- Departments of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA.
| | - Ronald P Leon
- Departments of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA
| | - Kyle P Gribbin
- Departments of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA
| | - Ying Zhang
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
| | - Jose Navarro
- Departments of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA
| | - Rebecca Smith
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
| | - Kaylyn Devlin
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Lei G Wang
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
| | - Summer L Gibbs
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - James Korkola
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Xiaolin Nan
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Sara A Courtneidge
- Departments of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA; Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA.
| |
Collapse
|
50
|
Zumstein MT, Werner JJ, Helbling DE. Exploring the Specificity of Extracellular Wastewater Peptidases to Improve the Design of Sustainable Peptide-Based Antibiotics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11201-11209. [PMID: 32790288 DOI: 10.1021/acs.est.0c02564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
New antimicrobial peptides are emerging as promising alternatives to conventional antibiotics because of their specificity for target pathogens and their potential to be rapidly hydrolyzed (i.e., inactivated) by extracellular peptidases during biological wastewater treatment, thereby limiting the emergence and propagation of antibiotic resistance in the environment. However, little is known about the specificity of extracellular peptidases derived from wastewater microbial communities, which is a major impediment for the design of sustainable peptide-based antibiotics that can be hydrolyzed by wastewater peptidases. We used a set of natural peptides to explore the specificity of dissolved extracellular wastewater peptidases. We found that enzyme-catalyzed hydrolysis occurred at specific sites and that a subset of these hydrolyses was conserved across enzyme pools derived from three independent wastewater microbial communities. An analysis of the amino-acid residues flanking the hydrolyzed bonds revealed a set of residue motifs that were linked to enzyme-catalyzed hydrolysis and are therefore candidates for incorporation into new and sustainable peptide-based antibiotics.
Collapse
Affiliation(s)
- Michael T Zumstein
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Jeffrey J Werner
- Chemistry Department, SUNY-Cortland, Cortland, New York 13045, United States
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|