1
|
Biggers L, Elhabashy H, Ackad E, Yousef MS. Molecular dynamics simulations of an engineered T4 lysozyme exclude helix to sheet transition, and provide insights into long distance, intra-protein switchable motion. Protein Sci 2020; 29:542-554. [PMID: 31702853 PMCID: PMC6954740 DOI: 10.1002/pro.3780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/23/2019] [Accepted: 11/05/2019] [Indexed: 01/05/2023]
Abstract
An engineered variant of T4 lysozyme serves as a model for studying induced remote conformational changes in a full protein context. The design involves a duplicated surface helix, flanked by two loops, that switches between two different conformations spanning about 20 Å. Molecular dynamics simulations of the engineered protein, up to 1 μs, rule out α-helix to β-sheet transitions within the duplicated helix as suggested by others. These simulations highlight how the use of different force fields can lead to radical differences in the structure of the protein. In addition, Markov state modeling and transition path theory were employed to map a 6.6 μs simulation for possible early intermediate states and to provide insights into the onset of the switching motion. The putative intermediates involve the folding of one helical turn in the C-terminal loop through energy driven, sequential rearrangement of nearby salt bridges around the key residue Arg63. These results provide a first step towards understanding the energetics and dynamics of a rather complicated intra-protein motion.
Collapse
Affiliation(s)
- Laurence Biggers
- Department of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTexas
| | - Hadeer Elhabashy
- Biomolecular Interactions, Max Planck Institute for Developmental BiologyTübingenGermany
| | - Edward Ackad
- Department of PhysicsCollege of Arts and Sciences, Southern Illinois University EdwardsvilleEdwardsvilleIllinois
| | - Mohammad S. Yousef
- Premedical Unit, Weill Cornell Medicine‐QatarCornell UniversityDohaQatar
| |
Collapse
|
2
|
Kumar A, Nokhrin S, Woloschuk RM, Woolley GA. Duplication of a Single Strand in a β-Sheet Can Produce a New Switching Function in a Photosensory Protein. Biochemistry 2018; 57:4093-4104. [PMID: 29897240 DOI: 10.1021/acs.biochem.8b00445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Duplication of a single β-strand that forms part of a β-sheet in photoactive yellow protein (PYP) was found to produce two approximately isoenergetic protein conformations, in which either the first or the second copy of the duplicated β-strand participates in the β-sheet. Whereas one conformation (big-loop) is more stable at equilibrium in the dark, the other conformation (long-tail) is populated after recovery from blue light irradiation. By appending a recognition motif (E-helix) to the C-terminus of the protein, we show that β-strand duplication, and the resulting possibility of β-strand slippage, can lead to a new switchable protein-protein interaction. We suggest that β-strand duplication may be a general means of introducing two-state switching activity into protein structures.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , ON M5S 3H6 , Canada
| | - Sergiy Nokhrin
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , ON M5S 3H6 , Canada
| | - Ryan M Woloschuk
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , ON M5S 3H6 , Canada
| | - G Andrew Woolley
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , ON M5S 3H6 , Canada
| |
Collapse
|
3
|
Bezsudnova EY, Petrova TE, Popinako AV, Antonov MY, Stekhanova TN, Popov VO. Intramolecular hydrogen bonding in the polyextremophilic short-chain dehydrogenase from the archaeon Thermococcus sibiricus and its close structural homologs. Biochimie 2015; 118:82-9. [PMID: 26300061 DOI: 10.1016/j.biochi.2015.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/19/2015] [Indexed: 01/27/2023]
Abstract
The short-chain alcohol dehydrogenase from the archaeon Thermococcus sibiricus (TsAdh319) exhibits adaptation to different kinds of stress: high temperature, high salinity, and the presence of organic solvents and denaturants. Previously a comparison of TsAdh319 with close structural homologs revealed an abnormally large number of charged residues on the surface of TsAdh319 tetramer. We further focused on the analysis of hydrogen bonding of TsAdh319 and its structural homologs from thermophilic and mesophilic organisms as a structural factor of adaptation to extreme environment. The calculation and analysis of the dynamics of hydrogen bonds of different kind were performed. In particular, the intramolecular hydrogen bonds of different kind according to their location and the type of a.a. residues involved in the bond were analyzed. TsAdh319 showed the greatest contribution of charged residues to the formation of surface hydrogen bonds, inner hydrogen bonding, and the bonds between different subunits compared to its structural homologs. Molecular dynamics simulations revealed that, of three enzyme molecules analyzed, TsAdh319 shows the least change in the number of hydrogen bonds of different kinds upon a temperature shift from 27 to 85 °C. The greatest changes were observed for a homologous enzyme from a mesophilic host. Only guanidine hydrochloride being a charged agent was able to deactivate TsAdh319. We suggest that the percentage of charged residues plays a key role in the resistance of TsAdh319 to environmental stress. The analysis shows that salt bridges in TsAdh319 serve as a universal instrument of stabilization under different extreme conditions.
Collapse
Affiliation(s)
- Ekaterina Yu Bezsudnova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky pr. 33, bld. 2, 119071, Moscow, Russian Federation.
| | - Tatiana E Petrova
- Institute of Mathematical Problems of Biology, RAS, Institutskaya str. 4, Pushchino, 142290, Russian Federation
| | - Anna V Popinako
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky pr. 33, bld. 2, 119071, Moscow, Russian Federation
| | - Mikhail Yu Antonov
- M.K. Ammosov North-Eastern Federal University, Belinskiy str., 58, Suite 312, Yakutsk, 677980, Republic of Sakha (Yakutia), Russian Federation
| | - Tatiana N Stekhanova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky pr. 33, bld. 2, 119071, Moscow, Russian Federation
| | - Vladimir O Popov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky pr. 33, bld. 2, 119071, Moscow, Russian Federation; Dep. "Protein Factory", NBICS Center, National Research Centre "Kurchatov Institute", Akad. Kurchatova sqr., 1, Moscow, 123182, Russian Federation
| |
Collapse
|
4
|
Peng Q, Kong N, Wang HCE, Li H. Designing redox potential-controlled protein switches based on mutually exclusive proteins. Protein Sci 2012; 21:1222-30. [PMID: 22733630 DOI: 10.1002/pro.2109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Synthetic/artificial protein switches provide an efficient means of controlling protein functions using chemical signals and stimuli. Mutually exclusive proteins, in which only the host or guest domain can remain folded at a given time owing to conformational strain, have been used to engineer novel protein switches that can switch enzymatic functions on and off in response to ligand binding. To further explore the potential of mutually exclusive proteins as protein switches and sensors, we report here a new redox-based approach to engineer a mutually exclusive folding-based protein switch. By introducing a disulfide bond into the host domain of a mutually exclusive protein, we demonstrate that it is feasible to use redox potential to switch the host domain between its folded and unfolded conformations via the mutually exclusive folding mechanism, and thus switching the functionality of the host domain on and off. Our study opens a new and potentially general avenue that uses mutually exclusive proteins to design novel switches able to control the function of a variety of proteins.
Collapse
Affiliation(s)
- Qing Peng
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
5
|
Maksay G. Allostery in pharmacology: Thermodynamics, evolution and design. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 106:463-73. [DOI: 10.1016/j.pbiomolbio.2011.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 01/03/2011] [Indexed: 12/13/2022]
|
6
|
Stratton MM, Loh SN. Converting a protein into a switch for biosensing and functional regulation. Protein Sci 2011; 20:19-29. [PMID: 21064163 DOI: 10.1002/pro.541] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proteins that switch conformations in response to a signaling event (e.g., ligand binding or chemical modification) present a unique solution to the design of reagent-free biosensors as well as molecules whose biological functions are regulated in useful ways. The principal roadblock in the path to develop such molecules is that the majority of natural proteins do not change conformation upon binding their cognate ligands or becoming chemically modified. Herein, we review recent protein engineering efforts to introduce switching properties into binding proteins. By co-opting natural allosteric coupling, joining proteins in creative ways and formulating altogether new switching mechanisms, researchers are learning how to coax conformational changes from proteins that previously had none. These studies are providing some answers to the challenging question: how can one convert a lock-and-key binding protein into a molecular switch?
Collapse
Affiliation(s)
- Margaret M Stratton
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
| | | |
Collapse
|
7
|
Murphy WL. Emerging area: biomaterials that mimic and exploit protein motion. SOFT MATTER 2011; 7:3679-3688. [PMID: 25214879 PMCID: PMC4159092 DOI: 10.1039/c0sm01351j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Traditional dynamic hydrogels have been designed to respond to changes in physicochemical inputs, such as pH and temperature, for a wide range of biomedical applications. An emerging strategy that may allow for more specific "bio-responsiveness" in synthetic hydrogels involves mimicking or exploiting nature's dynamic proteins. Hundreds of proteins are known to undergo pronounced conformational changes in response to specific biochemical triggers, and these responses represent a potentially attractive toolkit for design of dynamic materials. This "emerging area" review focuses on the use of protein motions as a new paradigm for design of dynamic hydrogels. In particular, the review emphasizes early examples of dynamic hydrogels that harness well-known protein motions. These examples then serve as templates to discuss challenges and suggest emerging directions in the field. Successful early examples of this approach, coupled with the fundamental properties of nature's protein motions, suggest that protein-based materials may ultimately achieve specific, multiplexed responses to a range of biochemical triggers. Applications of this new class of materials include drug delivery, biosensing, bioactuation, and tissue engineering.
Collapse
Affiliation(s)
- William L. Murphy
- Departments of Biomedical Engineering, Pharmacology, Orthopedics and Rehabilitation, University of Wisconsin, Madison, WI, 53706, USA
| |
Collapse
|
8
|
Dugdale ML, Vance ML, Wheatley RW, Driedger MR, Nibber A, Tran A, Huber RE. Importance of Arg-599 of β-galactosidase (Escherichia coli) as an anchor for the open conformations of Phe-601 and the active-site loop. Biochem Cell Biol 2011; 88:969-79. [PMID: 21102659 DOI: 10.1139/o10-144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Structural and kinetic data show that Arg-599 of β-galactosidase plays an important role in anchoring the "open" conformations of both Phe-601 and an active-site loop (residues 794-803). When alanine was substituted for Arg-599, the conformations of Phe-601 and the loop shifted towards the "closed" positions because interactions with the guanidinium side chain were lost. Also, Phe-601, the loop, and Na+, which is ligated by the backbone carbonyl of Phe-601, lost structural order, as indicated by large B-factors. IPTG, a substrate analog, restored the conformations of Phe-601 and the loop of R599A-β-galactosidase to the open state found with IPTG-complexed native enzyme and partially reinstated order. ᴅ-Galactonolactone, a transition state analog, restored the closed conformations of R599A-β-galactosidase to those found with ᴅ-galactonolactone-complexed native enzyme and completely re-established the order. Substrates and substrate analogs bound R599A-β-galactosidase with less affinity because the closed conformation does not allow substrate binding and extra energy is required for Phe-601 and the loop to open. In contrast, transition state analog binding, which occurs best when the loop is closed, was several-fold better. The higher energy level of the enzyme•substrate complex and the lower energy level of the first transition state means that less activation energy is needed to form the first transition state and thus the rate of the first catalytic step (k2) increased substantially. The rate of the second catalytic step (k3) decreased, likely because the covalent form is more stabilized than the second transition state when Phe-601 and the loop are closed. The importance of the guanidinium group of Arg-599 was confirmed by restoration of conformation, order, and activity by guanidinium ions.
Collapse
Affiliation(s)
- Megan L Dugdale
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
9
|
King WJ, Pytel NJ, Ng K, Murphy WL. Triggered drug release from dynamic microspheres via a protein conformational change. Macromol Biosci 2010; 10:580-4. [PMID: 20127670 DOI: 10.1002/mabi.200900382] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this study we formed and characterized dynamic hydrogel microspheres in which a protein conformational change was used to control microsphere volume changes and the release of an encapsulated drug. In particular, a specific biochemical ligand, trifluoperazine, induced calmodulin's nanometer scale conformation change, which translated to a 48.7% microsphere volume decrease. This specific, ligand-induced volume change triggered the release of a model drug, vascular endothelial growth factor (VEGF), at pre-determined times. After release from the microspheres, 85.6 +/- 10.5% of VEGF was in its native conformation. Taken together, these results suggest that protein conformational change could serve as a useful mechanism to control drug release from dynamic hydrogels.
Collapse
|
10
|
|
11
|
Oh KJ, Cash KJ, Plaxco KW. Beyond molecular beacons: optical sensors based on the binding-induced folding of proteins and polypeptides. Chemistry 2009; 15:2244-51. [PMID: 19191230 DOI: 10.1002/chem.200701748] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Many polypeptides and small proteins can be readily engineered such that they only fold upon binding a specific target ligand. This approach couples target recognition with a considerable change in polymer structure and dynamics. Recent years have seen the development of a number of biosensors that couple these large changes to readily measurable optical (fluorescent) outputs. These sensors afford the detection of a wide variety of macromolecular targets including proteins, polypeptides, and nucleic acids. Here we describe the design of such biosensors, from the first iterations as protein engineering experiments, to the development of biosensors targeting a range of protein and nucleic acid targets.
Collapse
Affiliation(s)
- Kenneth J Oh
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | | | | |
Collapse
|
12
|
Stratton MM, Mitrea DM, Loh SN. A Ca2+-sensing molecular switch based on alternate frame protein folding. ACS Chem Biol 2008; 3:723-32. [PMID: 18947182 DOI: 10.1021/cb800177f] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Existing strategies for creating biosensors mainly rely on large conformational changes to transduce a binding event to an output signal. Most molecules, however, do not exhibit large-scale structural changes upon substrate binding. Here, we present a general approach (alternate frame folding, or AFF) for engineering allosteric control into ligand binding proteins. AFF can in principle be applied to any protein to establish a binding-induced conformational change, even if none exists in the natural molecule. The AFF design duplicates a portion of the amino acid sequence, creating an additional "frame" of folding. One frame corresponds to the wild-type sequence, and folding produces the normal structure. Folding in the second frame yields a circularly permuted protein. Because the two native structures compete for a shared sequence, they fold in a mutually exclusive fashion. Binding energy is used to drive the conformational change from one fold to the other. We demonstrate the approach by converting the protein calbindin D(9k) into a molecular switch that senses Ca2+. The structures of Ca2+-free and Ca2+-bound calbindin are nearly identical. Nevertheless, the AFF mechanism engineers a robust conformational change that we detect using two covalently attached fluorescent groups. Biological fluorophores can also be employed to create a genetically encoded sensor. AFF should be broadly applicable to create sensors for a variety of small molecules.
Collapse
Affiliation(s)
- Margaret M. Stratton
- Department of Biochemistry & Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse New York 13210
| | - Diana M. Mitrea
- Department of Biochemistry & Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse New York 13210
| | - Stewart N. Loh
- Department of Biochemistry & Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse New York 13210
| |
Collapse
|
13
|
Liang J, Kim JR, Boock JT, Mansell TJ, Ostermeier M. Ligand binding and allostery can emerge simultaneously. Protein Sci 2007; 16:929-37. [PMID: 17400921 PMCID: PMC2206642 DOI: 10.1110/ps.062706007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A heterotropic allosteric effect involves an effector molecule that is distinct from the substrate or ligand of the protein. How heterotropic allostery originates is an unanswered question. We have previously created several heterotropic allosteric enzymes by recombining the genes for TEM1 beta-lactamase (BLA) and maltose binding protein (MBP) to create BLAs that are positively or negatively regulated by maltose. We show here that one of these engineered enzymes has approximately 10(6) M(-1) affinity for Zn(2+), a property that neither of the parental proteins possesses. Furthermore, Zn(2+) is a negative effector that noncompetitively switches off beta-lactam hydrolysis activity. Mutagenesis experiments indicate that the Zn(2+)-binding site does not involve a histidine or a cysteine, which is atypical of natural Zn(2+)-binding sites. These studies also implicate helices 1 and 12 of the BLA domain in allosteric signal propagation. These results support a model for the evolution of heterotropic allostery in which effector affinity and allosteric signaling emerge simultaneously.
Collapse
Affiliation(s)
- Jing Liang
- Program in Molecular and Computational Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | |
Collapse
|
14
|
Yousef MS, Bischoff N, Dyer CM, Baase WA, Matthews BW. Guanidinium derivatives bind preferentially and trigger long-distance conformational changes in an engineered T4 lysozyme. Protein Sci 2006; 15:853-61. [PMID: 16600969 PMCID: PMC2242493 DOI: 10.1110/ps.052020606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The binding of guanidinium ion has been shown to promote a large-scale translation of a tandemly duplicated helix in an engineered mutant of T4 lysozyme. The guanidinium ion acts as a surrogate for the guanidino group of an arginine side chain. Here we determine whether methyl- and ethylguanidinium provide better mimics. The results show that addition of the hydrophobic moieties to the ligand enhances the binding affinity concomitant with reduction in ligand solubility. Crystallographic analysis confirms that binding of the alternative ligands to the engineered site still drives the large-scale conformational change. Thermal analysis and NMR data show, in comparison to guanidinium, an increase in protein stability and in ligand affinity. This is presumably due to the successive increase in hydrophobicity in going from guanidinium to ethylguanidinium. A fluorescence-based optical method was developed to sense the ligand-triggered helix translation in solution. The results are a first step in the de novo design of a molecular switch that is not related to the normal function of the protein.
Collapse
Affiliation(s)
- Mohammad S Yousef
- Institute of Molecular Biology, Howard Hughes Medical Institute and Department of Physics, University of Oregon, Eugene, 97403-1229, USA
| | | | | | | | | |
Collapse
|
15
|
Ambroggio XI, Kuhlman B. Design of protein conformational switches. Curr Opin Struct Biol 2006; 16:525-30. [PMID: 16765587 DOI: 10.1016/j.sbi.2006.05.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 05/03/2006] [Accepted: 05/26/2006] [Indexed: 11/25/2022]
Abstract
Protein conformational switches are ubiquitous in nature and often regulate key biological processes. To design new proteins that can switch conformation, protein designers have focused on the two key components of protein switches: the amino acid sequence must be compatible with the multiple target states and there must be a mechanism for perturbing the relative stability of these states. Proteins have been designed that can switch between folded and disordered states, between distinct folded states and between different aggregation states. A variety of trigger mechanisms have been used, including pH shifts, post-translational modification and ligand binding. Recently, computational protein design methods have been applied to switch design. These include algorithms for designing novel ligand-binding sites and simultaneously optimizing a sequence for multiple target structures.
Collapse
Affiliation(s)
- Xavier I Ambroggio
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
16
|
Zarrine-Afsar A, Mittermaier A, Kay LE, Davidson AR. Protein stabilization by specific binding of guanidinium to a functional arginine-binding surface on an SH3 domain. Protein Sci 2006; 15:162-70. [PMID: 16373478 PMCID: PMC2242360 DOI: 10.1110/ps.051829106] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Guanidinium hydrochloride (GuHCl) at low concentrations significantly stabilizes the Fyn SH3 domain. In this work, we have demonstrated that this stabilizing effect is manifested through a dramatic (five- to sixfold) decrease in the unfolding rate of the domain with the folding rate being affected minimally. This behavior contrasts to the effect of NaCl, which stabilizes this domain by accelerating the folding rate. These data imply that the stabilizing effect of GuHCl is not predominantly ionic in nature. Through NMR studies, we have identified a specific binding site for guanidinium, and we have determined a dissociation constant of 90 mM for this interaction. The guanidinium-binding site overlaps with a functionally important arginine-binding pocket on the domain surface, and we have shown that GuHCl is a specific inhibitor of the peptide-binding activity of the domain. A different SH3 domain possessing a similar arginine-binding pocket is also thermodynamically stabilized by GuHCl. These data suggest that many proteins that normally interact with arginine-containing ligands may also be able to specifically interact with guanidinium. Thus, some caution should be used when using GuHCl as a denaturant in protein folding studies. Since arginine-mediated interactions are often important in the energetics of protein-protein interactions, our observations could be relevant for the design of small molecule inhibitors of protein-protein interactions.
Collapse
|