1
|
Karakostis K, Padariya M, Thermou A, Fåhraeus R, Kalathiya U, Vollrath F. Thermal stress, p53 structures and learning from elephants. Cell Death Discov 2024; 10:353. [PMID: 39107279 PMCID: PMC11303390 DOI: 10.1038/s41420-024-02109-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/09/2024] Open
Abstract
As species adapt to climatic changes, temperature-dependent functions of p53 in development, metabolism and cancer will adapt as well. Structural analyses of p53 epitopes interacting in response to environmental stressors, such as heat, may uncover physiologically relevant functions of p53 in cell regulation and genomic adaptations. Here we explore the multiple p53 elephant paradigm with an experimentally validated in silico model showing that under heat stress some p53 copies escape negative regulation by the MDM2 E3 ubiquitin ligase. Multiple p53 isoforms have evolved naturally in the elephant thus presenting a unique experimental system to study the scope of p53 functions and the contribution of environmental stressors to DNA damage. We assert that fundamental insights derived from studies of a historically heat-challenged mammal will provide important insights directly relevant to human biology in the light of climate change when 'heat' may introduce novel challenges to our bodies and health.
Collapse
Affiliation(s)
- Konstantinos Karakostis
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, Paris, France.
| | - Monikaben Padariya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, Gdansk, Poland.
| | - Aikaterini Thermou
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, Paris, France
| | - Robin Fåhraeus
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, Paris, France
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, Gdansk, Poland
| | - Fritz Vollrath
- Department of Biology, University of Oxford, Oxford, UK.
- Save the Elephants Marula Manor, Karen, P.O. Box 54667, Nairobi, Kenya.
| |
Collapse
|
2
|
Xiao Y, Jin W, Qian K, Ju L, Wang G, Wu K, Cao R, Chang L, Xu Z, Luo J, Shan L, Yu F, Chen X, Liu D, Cao H, Wang Y, Cao X, Zhou W, Cui D, Tian Y, Ji C, Luo Y, Hong X, Chen F, Peng M, Zhang Y, Wang X. Integrative Single Cell Atlas Revealed Intratumoral Heterogeneity Generation from an Adaptive Epigenetic Cell State in Human Bladder Urothelial Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308438. [PMID: 38582099 PMCID: PMC11200000 DOI: 10.1002/advs.202308438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/22/2024] [Indexed: 04/08/2024]
Abstract
Intratumor heterogeneity (ITH) of bladder cancer (BLCA) contributes to therapy resistance and immune evasion affecting clinical prognosis. The molecular and cellular mechanisms contributing to BLCA ITH generation remain elusive. It is found that a TM4SF1-positive cancer subpopulation (TPCS) can generate ITH in BLCA, evidenced by integrative single cell atlas analysis. Extensive profiling of the epigenome and transcriptome of all stages of BLCA revealed their evolutionary trajectories. Distinct ancestor cells gave rise to low-grade noninvasive and high-grade invasive BLCA. Epigenome reprograming led to transcriptional heterogeneity in BLCA. During early oncogenesis, epithelial-to-mesenchymal transition generated TPCS. TPCS has stem-cell-like properties and exhibited transcriptional plasticity, priming the development of transcriptionally heterogeneous descendent cell lineages. Moreover, TPCS prevalence in tumor is associated with advanced stage cancer and poor prognosis. The results of this study suggested that bladder cancer interacts with its environment by acquiring a stem cell-like epigenomic landscape, which might generate ITH without additional genetic diversification.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Wan Jin
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
- Euler TechnologyBeijing102206China
| | - Kaiyu Qian
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Lingao Ju
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Gang Wang
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Kai Wu
- Euler TechnologyBeijing102206China
| | - Rui Cao
- Department of UrologyBeijing Friendship HospitalCapital Medical UniversityBeijing100050China
| | | | - Zilin Xu
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Jun Luo
- Department of PathologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | | | - Fang Yu
- Department of PathologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | | | | | - Hong Cao
- Department of PathologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Yejinpeng Wang
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Xinyue Cao
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
- Clinical Trial CenterZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Wei Zhou
- Hubei Key Laboratory of Medical Technology on TransplantationInstitute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan UniversityWuhan430071China
| | - Diansheng Cui
- Department of UrologyHubei Cancer HospitalWuhan430079China
| | - Ye Tian
- Department of UrologyBeijing Friendship HospitalCapital Medical UniversityBeijing100050China
| | - Chundong Ji
- Department of UrologyThe Affiliated Hospital of Panzhihua UniversityPanzhihua617099China
| | - Yongwen Luo
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Xin Hong
- Department of UrologyPeking University International HospitalBeijing102206China
| | - Fangjin Chen
- Center for Quantitative BiologySchool of Life SciencesPeking UniversityBeijing100091China
| | - Minsheng Peng
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunming650201China
- Kunming College of Life ScienceUniversity of Academy of SciencesKunming650201China
| | - Yi Zhang
- Euler TechnologyBeijing102206China
| | - Xinghuan Wang
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
- Medical Research InstituteWuhan UniversityWuhan430071China
| |
Collapse
|
3
|
Li H, Song C, Zhang Y, Liu G, Mi H, Li Y, Chen Z, Ma X, Zhang P, Cheng L, Peng P, Zhu H, Chen Z, Dong M, Chen S, Meng H, Xiao Q, Li H, Wu Q, Wang B, Zhang S, Shu K, Wan F, Guo D, Zhou W, Zhou L, Mao F, Rich JN, Yu X. Transgelin Promotes Glioblastoma Stem Cell Hypoxic Responses and Maintenance Through p53 Acetylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305620. [PMID: 38087889 PMCID: PMC10870072 DOI: 10.1002/advs.202305620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Indexed: 02/17/2024]
Abstract
Glioblastoma (GBM) is a lethal cancer characterized by hypervascularity and necrosis associated with hypoxia. Here, it is found that hypoxia preferentially induces the actin-binding protein, Transgelin (TAGLN), in GBM stem cells (GSCs). Mechanistically, TAGLN regulates HIF1α transcription and stabilizes HDAC2 to deacetylate p53 and maintain GSC self-renewal. To translate these findings into preclinical therapeutic paradigm, it is found that sodium valproate (VPA) is a specific inhibitor of TAGLN/HDAC2 function, with augmented efficacy when combined with natural borneol (NB) in vivo. Thus, TAGLN promotes cancer stem cell survival in hypoxia and informs a novel therapeutic paradigm.
Collapse
Affiliation(s)
- Huan Li
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Chao Song
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yang Zhang
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Guohao Liu
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Hailong Mi
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yachao Li
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zhiye Chen
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xiaoyu Ma
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Po Zhang
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Lidong Cheng
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Peng Peng
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Hongtao Zhu
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zirong Chen
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Minhai Dong
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Sui Chen
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Hao Meng
- Intelligent Pathology InstituteThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230031China
| | - QunGen Xiao
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Honglian Li
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Qiulian Wu
- UPMC Hillman Cancer CenterDepartment of MedicineUniversity of Pittsburgh Medical CenterPittsburghPA15219USA
| | - Baofeng Wang
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Suojun Zhang
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Kai Shu
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Feng Wan
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Dongsheng Guo
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Wenchao Zhou
- Intelligent Pathology InstituteThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230031China
| | - Lin Zhou
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Feng Mao
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Jeremy N. Rich
- UPMC Hillman Cancer CenterDepartment of MedicineUniversity of Pittsburgh Medical CenterPittsburghPA15219USA
- Department of NeurologyUniversity of Pittsburgh School of MedicinePittsburghPA15213USA
| | - Xingjiang Yu
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| |
Collapse
|
4
|
Mansur MB, Greaves M. Convergent TP53 loss and evolvability in cancer. BMC Ecol Evol 2023; 23:54. [PMID: 37743495 PMCID: PMC10518978 DOI: 10.1186/s12862-023-02146-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/10/2023] [Indexed: 09/26/2023] Open
Abstract
Cancer cell populations evolve by a stepwise process involving natural selection of the fittest variants within a tissue ecosystem context and as modified by therapy. Genomic scrutiny of patient samples reveals an extraordinary diversity of mutational profiles both between patients with similar cancers and within the cancer cell population of individual patients. Does this signify highly divergent evolutionary trajectories or are there repetitive and predictable patterns?Major evolutionary innovations or adaptations in different species are frequently repeated, or convergent, reflecting both common selective pressures and constraints on optimal solutions. We argue this is true of evolving cancer cells, especially with respect to the TP53 gene. Functional loss variants in TP53 are the most common genetic change in cancer. We discuss the likely microenvironmental selective pressures involved and the profound impact this has on cell fitness, evolvability and probability of subsequent drug resistance.
Collapse
Affiliation(s)
- Marcela Braga Mansur
- Centre for Evolution and Cancer, The Institute of Cancer Research, ICR, London, UK
| | - Mel Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, ICR, London, UK.
| |
Collapse
|
5
|
Voskarides K, Giannopoulou N. The Role of TP53 in Adaptation and Evolution. Cells 2023; 12:cells12030512. [PMID: 36766853 PMCID: PMC9914165 DOI: 10.3390/cells12030512] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
The TP53 gene is a major player in cancer formation, and it is considered the most important tumor suppressor gene. The p53 protein acts as a transcription factor, and it is involved in DNA repair, senescence, cell-cycle control, autophagy, and apoptosis. Beyond cancer, there is evidence that TP53 is associated with fertility, aging, and longevity. Additionally, more evidence exists that genetic variants in TP53 are associated with environmental adaptation. Special TP53 amino-acid residues or pathogenic TP53 mutations seem to be adaptive for animals living in hypoxic and cold environments or having been exposed to starvation, respectively. At the somatic level, it has recently been proven that multiple cancer genes, including TP53, are under positive selection in healthy human tissues. It is not clear why these driver mutations do not transform these tissues into cancerous ones. Other studies have shown that elephants have multiple TP53 copies, probably this being the reason for the very low cancer incidence in these large animals. This may explain the famous Peto's paradox. This review discusses in detail the multilevel role of TP53 in adaptation, according to the published evidence. This role is complicated, and it extends from cells to individuals and to populations.
Collapse
Affiliation(s)
- Konstantinos Voskarides
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 2414 Nicosia, Cyprus
- School of Veterinary Medicine, University of Nicosia, 2414 Nicosia, Cyprus
- Correspondence: ; Tel.: +357-22-471-819
| | - Nefeli Giannopoulou
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 2414 Nicosia, Cyprus
| |
Collapse
|
6
|
Trivedi DD, Dalai SK, Bakshi SR. The Mystery of Cancer Resistance: A Revelation Within Nature. J Mol Evol 2023; 91:133-155. [PMID: 36693985 DOI: 10.1007/s00239-023-10092-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023]
Abstract
Cancer, a disease due to uncontrolled cell proliferation is as ancient as multicellular organisms. A 255-million-years-old fossilized forerunner mammal gorgonopsian is probably the oldest evidence of cancer, to date. Cancer seems to have evolved by adapting to the microenvironment occupied by immune sentinel, modulating the cellular behavior from cytotoxic to regulatory, acquiring resistance to chemotherapy and surviving hypoxia. The interaction of genes with environmental carcinogens is central to cancer onset, seen as a spectrum of cancer susceptibility among human population. Cancer occurs in life forms other than human also, although their exposure to environmental carcinogens can be different. Role of genetic etiology in cancer in multiple species can be interesting with regard to not only cancer susceptibility, but also genetic conservation and adaptation in speciation. The widely used model organisms for cancer research are mouse and rat which are short-lived and reproduce rapidly. Research in these cancer prone animal models has been valuable as these have led to cancer therapy. However, another rewarding area of cancer research can be the cancer-resistant animal species. The Peto's paradox and G-value paradox are evident when natural cancer resistance is observed in large mammals, like elephant and whale, small rodents viz. Naked Mole Rat and Blind Mole Rat, and Bat. The cancer resistance remains to be explored in other small or large and long-living animals like giraffe, camel, rhinoceros, water buffalo, Indian bison, Shire horse, polar bear, manatee, elephant seal, walrus, hippopotamus, turtle and tortoise, sloth, and squirrel. Indeed, understanding the molecular mechanisms of avoiding neoplastic transformation across various life forms can be potentially having translational value for human cancer management. Adapted and Modified from (Hanahan and Weinberg 2011).
Collapse
|
7
|
Zhao Y, Song L, Wang J, Fang X, Li K, Han L, Beiles A, Cao YB, Nevo E. Selection of p53 pathway in adaptive evolution and reproductive isolation in incipient sympatric speciation of Drosophila at Evolution Canyon. Biol J Linn Soc Lond 2023. [DOI: 10.1093/biolinnean/blac125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abstract
Sympatric speciation (SS) refers to the origin of new species within a freely breeding population. The ‘Evolution Canyon’ (EC) in Israel is a natural microsite model for SS of species across phylogenies from viruses and bacteria to mammals, adapting to, and speciating in, interslope microclimates. The cosmopolitan Drosophila melanogaster at EC I, Mount Carmel, is undergoing incipient SS in response to sharply divergent interslope microclimate stresses, including solar radiation, temperature, humidity and pathogenicity. We demonstrated here a selective interslope divergence of single nucleotide polymorphism (SNP) distribution in the Drosophila p53 pathway. This involves a total of 71 genes, which are associated with DNA repair, heat response, and fungal and bacterial resistant pathways. This distribution pattern links the previously observed thermotolerance and ageing divergence of D. melanogaster between the opposite canyon slopes: the south-facing slope (SFS, or African slope: tropical, savannoid and dry) and the abutting north-facing slope (NFS, or European slope; temperate, forested, cool and humid). The genes with interslope-significant differential SNPs link the p53 pathway with pathways related to the responses to microclimates through protein-protein interaction. Moreover, for the first time we provide evidence that the p53 pathway is linked to reproductive isolation, and is thus actively participating in incipient SS of D. melanogaster. This is the first demonstration of a link between the p53 pathway and reproductive isolation, thereby contributing to adaptive incipient sympatric speciation.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Physiology, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital , , Hangzhou 301158 , China
- Zhejiang University School of Medicine , , Hangzhou 301158 , China
- Institute of Evolution, University of Haifa , Haifa 3498838 , Israel
| | - Li Song
- BGI Genomics, BGI-Shenzhen , Shenzhen 518083 , China
| | - Junying Wang
- School of Life Science, South China Normal University , Guangzhou 510631 , China
| | - Xiaodong Fang
- BGI Genomics, BGI-Shenzhen , Shenzhen 518083 , China
| | - Kexin Li
- Institute of Evolution, University of Haifa , Haifa 3498838 , Israel
| | - Lijuan Han
- BGI Genomics, BGI-Shenzhen , Shenzhen 518083 , China
| | - Avigdor Beiles
- Institute of Evolution, University of Haifa , Haifa 3498838 , Israel
| | - Yi-Bin Cao
- Institute of Evolution, University of Haifa , Haifa 3498838 , Israel
- Division of Biochemistry and Molecular Biology, Department of Biotechnology, College of Chemistry and Life Science, Zhejiang Normal University , Jinhua 321004 , China
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa , Haifa 3498838 , Israel
| |
Collapse
|
8
|
Schraverus H, Larondelle Y, Page MM. Beyond the Lab: What We Can Learn about Cancer from Wild and Domestic Animals. Cancers (Basel) 2022; 14:cancers14246177. [PMID: 36551658 PMCID: PMC9776354 DOI: 10.3390/cancers14246177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer research has benefited immensely from the use of animal models. Several genetic tools accessible in rodent models have provided valuable insight into cellular and molecular mechanisms linked to cancer development or metastasis and various lines are available. However, at the same time, it is important to accompany these findings with those from alternative or non-model animals to offer new perspectives into the understanding of tumor development, prevention, and treatment. In this review, we first discuss animals characterized by little or no tumor development. Cancer incidence in small animals, such as the naked mole rat, blind mole rat and bats have been reported as almost negligible and tumor development may be inhibited by increased defense and repair mechanisms, altered cell cycle signaling and reduced rates of cell migration to avoid tumor microenvironments. On the other end of the size spectrum, large animals such as elephants and whales also appear to have low overall cancer rates, possibly due to gene replicates that are involved in apoptosis and therefore can inhibit uncontrolled cell cycle progression. While it is important to determine the mechanisms that lead to cancer protection in these animals, we can also take advantage of other animals that are highly susceptible to cancer, especially those which develop tumors similar to humans, such as carnivores or poultry. The use of such animals does not require the transplantation of malignant cancer cells or use of oncogenic substances as they spontaneously develop tumors of similar presentation and pathophysiology to those found in humans. For example, some tumor suppressor genes are highly conserved between humans and domestic species, and various tumors develop in similar ways or because of a common environment. These animals are therefore of great interest for broadening perspectives and techniques and for gathering information on the tumor mechanisms of certain types of cancer. Here we present a detailed review of alternative and/or non-model vertebrates, that can be used at different levels of cancer research to open new perspectives and fields of action.
Collapse
|
9
|
An Z, Chen X, Li J. Response to Different Oxygen Partial Pressures and Evolution Analysis of Apoptosis-Related Genes in Plateau Zokor ( Myospalax baileyi). Front Genet 2022; 13:865301. [PMID: 35754836 PMCID: PMC9214310 DOI: 10.3389/fgene.2022.865301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022] Open
Abstract
The plateau zokor (Myospalax baileyi) is a native species of the Qinghai–Tibet Plateau that spends its entire life underground in sealed burrows with hypoxic conditions. The present study aimed to assess the sequence characteristics of apoptosis-related genes and the response to different oxygen partial pressures (pO2) in plateau zokor and Sprague-Dawley rats. The sequences of the p53-induced protein with a death domain (Pidd), p53-upregulated modulator of apoptosis (Puma), insulin-like growth factor binding protein 3 (Igfbp3), and apoptosis protease-activating factor 1 (Apaf1) were evaluated concerning homology and convergent evolution sites, and their mRNA levels were evaluated in different tissues under 14.13 (3,300 m) and 16.12 kPa (2,260 m) pO2 conditions. Our results showed that, (1) the sequences of the apoptosis-related genes in plateau zokor were highly similar to those of Nannospalax galili, followed by Rattus norvegicus; (2). Pidd, Puma, Igfbp3, and Apaf1 of plateau zokor were found to have five, one, two, and five convergent sites in functional domains with N. galili, respectively. Lastly (3), under low pO2, the expression of Pidd and Puma was downregulated in the lung of plateau zokors. In turn, Igfbp3 and Apaf1 were upregulated in the liver and lung, and Puma was upregulated in the skeletal muscle of plateau zokor under low pO2. In Sprague-Dawley rats, low pO2 downregulated Puma and Apaf1 expression in the liver and downregulated Igfbp3 and Puma in the lung and skeletal muscle separately. In contrast, low pO2 upregulated Pidd expression in the liver and skeletal muscle of Sprague-Dawley rats. Overall, the expression patterns of Apaf1, Igfbp3, and Puma showed the opposite pattern in the liver, lung, and skeletal muscle, respectively, of plateau zokor as compared with Sprague-Dawley rats. In conclusion, for the long-time adaptation to hypoxic environments, Pidd, Puma, Igfbp3, and Apaf1 of plateau zokor underwent convergent evolution, which we believe may have led to upregulation of their levels under low oxygen partial pressures to induce apoptosis, so as to suppress tumorigenesis under hypoxic environments in plateau zokor.
Collapse
Affiliation(s)
- Zhifang An
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Xiaoqi Chen
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China.,Department of Obstetrics and Gynaecology, Affiliated Hospital of Qinghai University, Xining, China.,Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Jimei Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China.,Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Department of General Medicine, Qinghai Provincial People's Hospital, Xining, China
| |
Collapse
|
10
|
Voskarides K, Koutsofti C, Pozova M. TP53 Mutant Versus Wild-Type Zebrafish Larvae Under Starvation Stress: Larvae Can Live Up to 17 Days Post-Fertilization Without Food. Zebrafish 2022; 19:49-55. [PMID: 35417275 DOI: 10.1089/zeb.2022.0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, an experimental protocol has been developed for comparing survival rates of mutant and wild-type zebrafish larvae under extreme starvation. Zebrafish larvae were placed in 96-well plates at fourth day postfertilization (dpf) and larvae were not fed at all from hatching to cease. Zdf1 zebrafish line was used, a strain carrying the (cancer) pathogenic TP53-M214K amino acid substitution. TP53-M214 corresponds to the human TP53-M246 and both residues are located on the DNA-binding domain of the p53 protein. Survival statistical analysis did not show any significant difference in the overall survival rates between homozygous mutant and wild-type larvae. When considering 15 dpf as the endpoint of the experiment (66% of larvae died), a borderline statistical significance was observed for the dominant model of inheritance (p = 0.015; relative hazard = 0.8320). Despite the fact yolk sac of larvae is depleted at 7-8 dpf, 34% of larvae survive until 15 dpf and 1.5% until 17 dpf. Concluding, three main results derive from this study: (1) pathogenic homozygous mutations in TP53 probably do not alter survival rates of zebrafish larvae under starvation; (2) zebrafish larvae can live up to 17 dpf without food, surviving only with their initial nutritional supplies; and (3) an easy and affordable protocol has been developed for estimating survival rates of zebrafish larvae under stressful conditions.
Collapse
Affiliation(s)
| | - Constantina Koutsofti
- Center of Excellence in Biobanking and Biomedical Research, Molecular Medicine Research Center, University of Cyprus Medical School, Nicosia, Cyprus
| | - Maria Pozova
- Medical School, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
11
|
Zheng Z, Hua R, Xu G, Yang H, Shi P. Gene losses may contribute to subterranean adaptations in naked mole-rat and blind mole-rat. BMC Biol 2022; 20:44. [PMID: 35172813 PMCID: PMC8851862 DOI: 10.1186/s12915-022-01243-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/28/2022] [Indexed: 01/18/2023] Open
Abstract
Background Naked mole-rats (Heterocephalus glaber, NMRs) and blind mole-rats (Spalax galili, BMRs) are representative subterranean rodents that have evolved many extraordinary traits, including hypoxia tolerance, longevity, and cancer resistance. Although multiple candidate loci responsible for these traits have been uncovered by genomic studies, many of them are limited to functional changes to amino acid sequence and little is known about the contributions of other genetic events. To address this issue, we focused on gene losses (unitary pseudogenes) and systematically analyzed gene losses in NMRs and BMRs, aiming to elucidate the potential roles of pseudogenes in their adaptation to subterranean lifestyle. Results We obtained the pseudogene repertoires in NMRs and BMRs, as well as their respective aboveground relatives, guinea pigs and rats, on a genome-wide scale. As a result, 167, 139, 341, and 112 pseudogenes were identified in NMRs, BMRs, guinea pigs, and rats, respectively. Functional enrichment analysis identified 4 shared and 2 species-specific enriched functional groups (EFGs) in subterranean lineages. Notably, the pseudogenes in these EFGs might be associated with either regressive (e.g., visual system) or adaptive (e.g., altered DNA damage response) traits. In addition, several pseudogenes including TNNI3K and PDE5A might be associated with specific cardiac features observed in subterranean lineages. Interestingly, we observed 20 convergent gene losses in NMRs and BMRs. Given that the functional investigations of these genes are generally scarce, we provided functional evidence that independent loss of TRIM17 in NMRs and BMRs might be beneficial for neuronal survival under hypoxia, supporting the positive role of eliminating TRIM17 function in hypoxia adaptation. Our results also suggested that pseudogenes, together with positively selected genes, reinforced subterranean adaptations cooperatively. Conclusions Our study provides new insights into the molecular underpinnings of subterranean adaptations and highlights the importance of gene losses in mammalian evolution. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01243-0.
Collapse
Affiliation(s)
- Zhizhong Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Rong Hua
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.,Joint Laboratory of Animal Models for Human Diseases and Drug Development, Soochow University and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Hui Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China. .,Joint Laboratory of Animal Models for Human Diseases and Drug Development, Soochow University and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China. .,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
12
|
Li M, Pan D, Sun H, Zhang L, Cheng H, Shao T, Wang Z. The hypoxia adaptation of small mammals to plateau and underground burrow conditions. Animal Model Exp Med 2021; 4:319-328. [PMID: 34977483 PMCID: PMC8690988 DOI: 10.1002/ame2.12183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Oxygen is one of the important substances for the survival of most life systems on the earth, and plateau and underground burrow systems are two typical hypoxic environments. Small mammals living in hypoxic environments have evolved different adaptation strategies, which include increased oxygen delivery, metabolic regulation of physiological responses and other physiological responses that change tissue oxygen utilization. Multi-omics predictions have also shown that these animals have evolved different adaptations to extreme environments. In particular, vascular endothelial growth factor (VEGF) and erythropoietin (EPO), which have specific functions in the control of O2 delivery, have evolved adaptively in small mammals in hypoxic environments. Naked mole-rats and blind mole-rats are typical hypoxic model animals as they have some resistance to cancer. This review primarily summarizes the main living environment of hypoxia tolerant small mammals, as well as the changes of phenotype, physiochemical characteristics and gene expression mode of their long-term living in hypoxia environment.
Collapse
Affiliation(s)
- Mengke Li
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| | - Dan Pan
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| | - Hong Sun
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
- Centre for Nutritional EcologyZhengzhou UniversityZhengzhouP.R. China
| | - Lei Zhang
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| | - Han Cheng
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| | - Tian Shao
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| | - Zhenlong Wang
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| |
Collapse
|
13
|
Zhao Y, Seluanov A, Gorbunova V. Revelations About Aging and Disease from Unconventional Vertebrate Model Organisms. Annu Rev Genet 2021; 55:135-159. [PMID: 34416119 DOI: 10.1146/annurev-genet-071719-021009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aging is a major risk factor for multiple diseases. Understanding the underlying mechanisms of aging would help to delay and prevent age-associated diseases. Short-lived model organisms have been extensively used to study the mechanisms of aging. However, these short-lived species may be missing the longevity mechanisms that are needed to extend the lifespan of an already long-lived species such as humans. Unconventional long-lived animal species are an excellent resource to uncover novel mechanisms of longevity and disease resistance. Here, we review mechanisms that evolved in nonmodel vertebrate species to counteract age-associated diseases. Some antiaging mechanisms are conserved across species; however, various nonmodel species also evolved unique mechanisms to delay aging and prevent disease. This variety of antiaging mechanisms has evolved due to the remarkably diverse habitats and behaviors of these species. We propose that exploring a wider range of unconventional vertebrates will provide important resources to study antiaging mechanisms that are potentially applicable to humans.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Biology, University of Rochester, Rochester, New York 14627, USA; ,
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, New York 14627, USA; ,
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, New York 14627, USA; ,
| |
Collapse
|
14
|
Quina AS, Tavanez JP, Mathias MDL. Genetic variation at the p53 locus of two ecologically divergent Microtus pine voles: identification of molecular markers for species assignment. Integr Zool 2021; 17:1179-1192. [PMID: 34750970 DOI: 10.1111/1749-4877.12607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Lusitanian (Microtus lusitanicus) and the Mediterranean (Microtus duodecimcostatus) pine voles are recently diverged sister species endemic of the Iberian Peninsula that can be identified with ecological and morphological characters, but in areas where the 2 species co-occur, species designation may be difficult. Genetic discrimination between M. lusitanicus and M. duodecimcostatus has not been achieved yet possibly because of their estimated recent split and an evolutionary history that includes inter-species gene flow. Following our previous observations on exons 5-7 of the p53 gene, here we analyze the potential use of the p53 genomic region as a discrimination marker of these species by extending our analyses to several kb upstream and downstream of the p53 gene and characterizing the degree of genetic differentiation in 7 markers within this region. Additionally, we fully sequenced the P53 protein of both species. We observed: (i) generally high differentiation in this region; (ii) M. duodecimcostatus showed in general higher values of nucleotide and haplotype diversities; (iii) the concatenated phylogenetic tree separates the 2 species; (iv) the 2 P53 proteins only differ in 1 amino acid; (v) 4 of the markers, 2 in p53, one in Atp1b2, and another in Wrap53, contain species-specific genetic variation thus allowing a reliable discrimination between specimens from both species, irrespective of sampling location or introgression status. We provide additional data on the putative role of p53 in the evolution of these species and present researchers with a fast and cost-effective resource for M. lusitanicus and M. duodecimcostatus identification.
Collapse
Affiliation(s)
- Ana Sofia Quina
- CESAM - Centro de Estudos do Ambiente e do Mar, Departamento de Biologia, Universidade de Aveiro, Aveiro, Portugal.,CESAM - Centro de Estudos do Ambiente e do Mar, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - João Paulo Tavanez
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| | - Maria da Luz Mathias
- CESAM - Centro de Estudos do Ambiente e do Mar, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
15
|
Transposon-triggered innate immune response confers cancer resistance to the blind mole rat. Nat Immunol 2021; 22:1219-1230. [PMID: 34556881 PMCID: PMC8488014 DOI: 10.1038/s41590-021-01027-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/11/2021] [Indexed: 02/05/2023]
Abstract
Blind mole rats (BMRs) are small rodents, characterized by exceptionally long lifespan (> 21 years) and resistance to both spontaneous and induced tumorigenesis. Here we report that cancer resistance in the BMR is mediated by retrotransposable elements (RTEs). BMR cells and tissues express very low levels of DNA methyltransferase 1 (DNMT1). Upon cell hyperplasia, the BMR genome DNA loses methylation, resulting in activation of RTEs. Up-regulated RTEs form cytoplasmic RNA/DNA hybrids, which activate cGAS-STING pathway to induce cell death. Although this mechanism is enhanced in the BMR, we show that it functions in mice and human. We propose that RTEs were coopted to serve as tumor suppressors that monitor cell proliferation and are activated in premalignant cells to trigger cell death via activation of innate immune response. RTEs activation is a double-edged sword, serving as a tumor suppressor but in late life contributing to aging via induction of sterile inflammation.
Collapse
|
16
|
Yu Z, Seim I, Yin M, Tian R, Sun D, Ren W, Yang G, Xu S. Comparative analyses of aging-related genes in long-lived mammals provide insights into natural longevity. Innovation (N Y) 2021; 2:100108. [PMID: 34557758 PMCID: PMC8454735 DOI: 10.1016/j.xinn.2021.100108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 04/26/2021] [Indexed: 11/29/2022] Open
Abstract
Extreme longevity has evolved multiple times during the evolution of mammals, yet its underlying molecular mechanisms remain largely underexplored. Here, we compared the evolution of 115 aging-related genes in 11 long-lived species and 25 mammals with non-increased lifespan (control group) in the hopes of better understanding the common molecular mechanisms behind longevity. We identified 16 unique positively selected genes and 23 rapidly evolving genes in long-lived species, which included nine genes involved in regulating lifespan through the insulin/IGF-1 signaling (IIS) pathway and 11 genes highly enriched in immune-response-related pathways, suggesting that the IIS pathway and immune response play a particularly important role in exceptional mammalian longevity. Interestingly, 11 genes related to cancer progression, including four positively selected genes and seven genes with convergent amino acid changes, were shared by two or more long-lived lineages, indicating that long-lived mammals might have evolved convergent or similar mechanisms of cancer resistance that extended their lifespan. This suggestion was further corroborated by our identification of 12 robust candidates for longevity-related genes closely related to cancer. Evolution analyses of 115 aging-related genes exploring natural longevity in mammals Positively selected genes & rapidly evolved genes enriched in IIS and immune pathways Convergent mutations in genes associated with cancer in long-lived species Evolution of longevity through cancer resistance in long-lived mammals
Collapse
Affiliation(s)
- Zhenpeng Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Inge Seim
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.,Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.,School of Biology and Environmental Science, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Mengxin Yin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ran Tian
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Di Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Wenhua Ren
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
17
|
Voskarides K. Broadening the spectrum of cancer genes under selection in human populations. FASEB Bioadv 2021; 3:275-277. [PMID: 33842852 PMCID: PMC8019256 DOI: 10.1096/fba.2020-00150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/17/2021] [Accepted: 03/12/2021] [Indexed: 11/11/2022] Open
|
18
|
Siddiqui SS, Vaill M, Varki A. Ongoing selection for a uniquely human null allele of SIGLEC12 in world-wide populations may protect against the risk of advanced carcinomas. FASEB Bioadv 2021; 3:278-279. [PMID: 33842853 PMCID: PMC8019254 DOI: 10.1096/fba.2021-00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 11/11/2022] Open
Affiliation(s)
- Shoib S. Siddiqui
- Departments of Medicine and Cellular and Molecular MedicineGlycobiology Research and Training Center, and Center for Academic Research and Training in AnthropogenyUniversity of CaliforniaSan DiegoCAUSA
- Present address:
School of Life and Medical SciencesUniversity of HertfordshireHatfieldUK
| | - Michael Vaill
- Departments of Medicine and Cellular and Molecular MedicineGlycobiology Research and Training Center, and Center for Academic Research and Training in AnthropogenyUniversity of CaliforniaSan DiegoCAUSA
| | - Ajit Varki
- Departments of Medicine and Cellular and Molecular MedicineGlycobiology Research and Training Center, and Center for Academic Research and Training in AnthropogenyUniversity of CaliforniaSan DiegoCAUSA
| |
Collapse
|
19
|
Shi L, Liu L, Li X, Wu Y, Tian X, Shi Y, Wang Z. Phylogeny and evolution of Lasiopodomys in subfamily Arvivolinae based on mitochondrial genomics. PeerJ 2021; 9:e10850. [PMID: 33777513 PMCID: PMC7977381 DOI: 10.7717/peerj.10850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/06/2021] [Indexed: 01/02/2023] Open
Abstract
The species of Lasiopodomys Lataste 1887 with their related genera remains undetermined owing to inconsistent morphological characteristics and molecular phylogeny. To investigate the phylogenetic relationship and speciation among species of the genus Lasiopodomys, we sequenced and annotated the whole mitochondrial genomes of three individual species, namely Lasiopodomys brandtii Radde 1861, L. mandarinus Milne-Edwards 1871, and Neodon (Lasiopodomys) fuscus Büchner 1889. The nucleotide sequences of the circular mitogenomes were identical for each individual species of L. brandtii, L. mandarinus, and N. fuscus. Each species contained 13 protein-coding genes (PCGs), 22 transfer RNAs, and 2 ribosomal RNAs, with mitochondrial genome lengths of 16,557 bp, 16,562 bp, and 16,324 bp, respectively. The mitogenomes and PCGs showed positive AT skew and negative GC skew. Mitogenomic phylogenetic analyses suggested that L. brandtii, L. mandarinus, and L. gregalis Pallas 1779 belong to the genus Lasiopodomys, whereas N. fuscus belongs to the genus Neodon grouped with N. irene. Lasiopodomys showed the closest relationship with Microtus fortis Büchner 1889 and M. kikuchii Kuroda 1920, which are considered as the paraphyletic species of genera Microtus. TMRCA and niche model analysis revealed that Lasiopodomys may have first appeared during the early Pleistocene epoch. Further, L. gregalis separated from others over 1.53 million years ago (Ma) and then diverged into L. brandtii and L. mandarinus 0.76 Ma. The relative contribution of climatic fluctuations to speciation and selection in this group requires further research.
Collapse
Affiliation(s)
- Luye Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Likuan Liu
- School of Life Sciences, Qinghai Normal University, Xining, Qinghai, China
| | - Xiujuan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yue Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangyu Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuhua Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
20
|
Shi L, Jiang M, Li M, Shang X, Li X, Huang M, Wu Y, Qiao C, Wang X, Tian X, Shi Y, Wang Z. Regulation of HIF-1α and p53 in stress responses in the subterranean rodents Lasiopodomys mandarinus and Lasiopodomys brandtii (Rodentia: Cricetidae). ZOOLOGIA 2021. [DOI: 10.3897/zoologia.38.e58607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The response mechanism and interaction patterns of HIF-1α and p53 in animals in an hypoxic environment are crucial for their hypoxic tolerance and adaptation. Many studies have shown that underground rodents have better hypoxic adaptation characteristics. However, the mechanism by which HIF-1α and p53 in underground rodents respond to hypoxic environments compared with in ground rodents remains unclear. Further, whether a synergy between HIF-1α and p53 enables animals tolerate extremely hypoxic environments is unclear. We studied HIF-1α and p53 expression in the brain tissue and cell apoptosis in the hippocampal CA1 region during 6 hours of acute hypoxia (5% oxygen) in Lasiopodomys mandarinus (Milne-Edwards, 1871) and Lasiopodomys brandtii (Radde, 1861), two closely related small rodents with different life characteristics (underground and aboveground, respectively), using a comparative biology method to determine the mechanisms underlying their adaptation to this environment. Our results indicate that HIF-1α and p53 expression is more rapid in L. mandarinus than in L. brandtii under acute hypoxic environments, resulting in a significant synergistic effect in L. mandarinus. Correlation analysis revealed that HIF-1α expression and the apoptotic index of the hippocampal CA1 regions of the brain tissues of L. mandarinus and L. brandtii, both under hypoxia, were significantly negatively and positively correlated, respectively. Long-term existence in underground burrow systems could enable better adaptation to hypoxia in L. mandarinus than in L. brandtii. We speculate that L. mandarinus can quickly eliminate resulting damage via the synergistic effect of p53 and HIF-1α in response to acute hypoxic environments, helping the organism quickly return to a normal state after the stress.
Collapse
|
21
|
Vazquez JM, Lynch VJ. Pervasive duplication of tumor suppressors in Afrotherians during the evolution of large bodies and reduced cancer risk. eLife 2021; 10:e65041. [PMID: 33513090 PMCID: PMC7952090 DOI: 10.7554/elife.65041] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
The risk of developing cancer is correlated with body size and lifespan within species. Between species, however, there is no correlation between cancer and either body size or lifespan, indicating that large, long-lived species have evolved enhanced cancer protection mechanisms. Elephants and their relatives (Proboscideans) are a particularly interesting lineage for the exploration of mechanisms underlying the evolution of augmented cancer resistance because they evolved large bodies recently within a clade of smaller-bodied species (Afrotherians). Here, we explore the contribution of gene duplication to body size and cancer risk in Afrotherians. Unexpectedly, we found that tumor suppressor duplication was pervasive in Afrotherian genomes, rather than restricted to Proboscideans. Proboscideans, however, have duplicates in unique pathways that may underlie some aspects of their remarkable anti-cancer cell biology. These data suggest that duplication of tumor suppressor genes facilitated the evolution of increased body size by compensating for decreasing intrinsic cancer risk.
Collapse
Affiliation(s)
- Juan M Vazquez
- Department of Human Genetics, The University of ChicagoChicagoUnited States
| | - Vincent J Lynch
- Department of Biological Sciences, University at BuffaloBuffaloUnited States
| |
Collapse
|
22
|
Sammons MA, Nguyen TAT, McDade SS, Fischer M. Tumor suppressor p53: from engaging DNA to target gene regulation. Nucleic Acids Res 2020; 48:8848-8869. [PMID: 32797160 PMCID: PMC7498329 DOI: 10.1093/nar/gkaa666] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
The p53 transcription factor confers its potent tumor suppressor functions primarily through the regulation of a large network of target genes. The recent explosion of next generation sequencing protocols has enabled the study of the p53 gene regulatory network (GRN) and underlying mechanisms at an unprecedented depth and scale, helping us to understand precisely how p53 controls gene regulation. Here, we discuss our current understanding of where and how p53 binds to DNA and chromatin, its pioneer-like role, and how this affects gene regulation. We provide an overview of the p53 GRN and the direct and indirect mechanisms through which p53 affects gene regulation. In particular, we focus on delineating the ubiquitous and cell type-specific network of regulatory elements that p53 engages; reviewing our understanding of how, where, and when p53 binds to DNA and the mechanisms through which these events regulate transcription. Finally, we discuss the evolution of the p53 GRN and how recent work has revealed remarkable differences between vertebrates, which are of particular importance to cancer researchers using mouse models.
Collapse
Affiliation(s)
- Morgan A Sammons
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Thuy-Ai T Nguyen
- Genome Integrity & Structural Biology Laboratory and Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Simon S McDade
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| |
Collapse
|
23
|
Abstract
Between the 1930s and 1950s, scientists developed key principles of population genetics to try and explain the aging process. Almost a century later, these aging theories, including antagonistic pleiotropy and mutation accumulation, have been experimentally validated in animals. Although the theories have been much harder to test in humans despite research dating back to the 1970s, recent research is closing this evidence gap. Here we examine the strength of evidence for antagonistic pleiotropy in humans, one of the leading evolutionary explanations for the retention of genetic risk variation for non-communicable diseases. We discuss the analytical tools and types of data that are used to test for patterns of antagonistic pleiotropy and provide a primer of evolutionary theory on types of selection as a guide for understanding this mechanism and how it may manifest in other diseases. We find an abundance of non-experimental evidence for antagonistic pleiotropy in many diseases. In some cases, several studies have independently found corroborating evidence for this mechanism in the same or related sets of diseases including cancer and neurodegenerative diseases. Recent studies also suggest antagonistic pleiotropy may be involved in cardiovascular disease and diabetes. There are also compelling examples of disease risk variants that confer fitness benefits ranging from resistance to other diseases or survival in extreme environments. This provides increasingly strong support for the theory that antagonistic pleiotropic variants have enabled improved fitness but have been traded for higher burden of disease later in life. Future research in this field is required to better understand how this mechanism influences contemporary disease and possible consequences for their treatment.
Collapse
|
24
|
Pradhan MR, Siau JW, Kannan S, Nguyen MN, Ouaray Z, Kwoh CK, Lane DP, Ghadessy F, Verma CS. Simulations of mutant p53 DNA binding domains reveal a novel druggable pocket. Nucleic Acids Res 2019; 47:1637-1652. [PMID: 30649466 PMCID: PMC6393305 DOI: 10.1093/nar/gky1314] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 11/25/2018] [Accepted: 01/09/2019] [Indexed: 01/01/2023] Open
Abstract
The DNA binding domain (DBD) of the tumor suppressor p53 is the site of several oncogenic mutations. A subset of these mutations lowers the unfolding temperature of the DBD. Unfolding leads to the exposure of a hydrophobic β-strand and nucleates aggregation which results in pathologies through loss of function and dominant negative/gain of function effects. Inspired by the hypothesis that structural changes that are associated with events initiating unfolding in DBD are likely to present opportunities for inhibition, we investigate the dynamics of the wild type (WT) and some aggregating mutants through extensive all atom explicit solvent MD simulations. Simulations reveal differential conformational sampling between the WT and the mutants of a turn region (S6-S7) that is contiguous to a known aggregation-prone region (APR). The conformational properties of the S6-S7 turn appear to be modulated by a network of interacting residues. We speculate that changes that take place in this network as a result of the mutational stress result in the events that destabilize the DBD and initiate unfolding. These perturbations also result in the emergence of a novel pocket that appears to have druggable characteristics. FDA approved drugs are computationally screened against this pocket.
Collapse
Affiliation(s)
- Mohan R Pradhan
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,School of Computer Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Jia Wei Siau
- p53 Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, Singapore 138648
| | - Srinivasaraghavan Kannan
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Minh N Nguyen
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Zohra Ouaray
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,School of Chemistry, University of Southampton, SO17 1BJ, United Kingdom
| | - Chee Keong Kwoh
- School of Computer Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - David P Lane
- p53 Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, Singapore 138648
| | - Farid Ghadessy
- p53 Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, Singapore 138648
| | - Chandra S Verma
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,Department of Biological sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,School of Biological sciences, Nanyang Technological University, 50 Nanyang Drive, Singapore 637551
| |
Collapse
|
25
|
Evolution Shapes the Gene Expression Response to Oxidative Stress. Int J Mol Sci 2019; 20:ijms20123040. [PMID: 31234431 PMCID: PMC6627103 DOI: 10.3390/ijms20123040] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) play a key role in cell physiology and function. ROS represents a potential source of damage for many macromolecules including DNA. It is thought that daily changes in oxidative stress levels were an important early factor driving evolution of the circadian clock which enables organisms to predict changes in ROS levels before they actually occur and thereby optimally coordinate survival strategies. It is clear that ROS, at relatively low levels, can serve as an important signaling molecule and also serves as a key regulator of gene expression. Therefore, the mechanisms that have evolved to survive or harness these effects of ROS are ancient evolutionary adaptations that are tightly interconnected with most aspects of cellular physiology. Our understanding of these mechanisms has been mainly based on studies using a relatively small group of genetic models. However, we know comparatively little about how these mechanisms are conserved or have adapted during evolution under different environmental conditions. In this review, we describe recent work that has revealed significant species-specific differences in the gene expression response to ROS by exploring diverse organisms. This evidence supports the notion that during evolution, rather than being highly conserved, there is inherent plasticity in the molecular mechanisms responding to oxidative stress.
Collapse
|
26
|
Voskarides K. Combination of 247 Genome-Wide Association Studies Reveals High Cancer Risk as a Result of Evolutionary Adaptation. Mol Biol Evol 2019; 35:473-485. [PMID: 29220501 PMCID: PMC5850495 DOI: 10.1093/molbev/msx305] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Analysis of GLOBOCAN-2012 data shows clearly here that cancer incidence worldwide is highly related with low average annual temperatures and extreme low temperatures. This applies for all cancers together or separately for many frequent or rare cancer types (all cancers P = 9.49×10-18). Supporting fact is that Inuit people, living at extreme low temperatures, have the highest cancer rates today. Hypothesizing an evolutionary explanation, 240 cancer genome-wide association studies, and seven genome-wide association studies for cold and high-altitude adaptation were combined. A list of 1,377 cancer-associated genes was created to initially investigate whether cold selected genes are enriched with cancer-associated genes. Among Native Americans, Inuit and Eskimos, the highest association was observed for Native Americans (P = 6.7×10-5). An overall or a meta-analysis approach confirmed further this result. Similar approach for three populations living at extreme high altitude, revealed high association for Andeans-Tibetans (P = 1.3×10-11). Overall analysis or a meta-analysis was also significant. A separate analysis showed special selection for tumor suppressor genes. These results can be viewed along with those of previous functional studies that showed that reduced apoptosis potential due to specific p53 variants (the most important tumor suppressor gene) is beneficial in high-altitude and cold environments. In conclusion, this study shows that genetic variants selected for adaptation at extreme environmental conditions can increase cancer risk later on age. This is in accordance with antagonistic pleiotropy hypothesis.
Collapse
|
27
|
Li Y, Zhang MC, Xu XK, Zhao Y, Mahanand C, Zhu T, Deng H, Nevo E, Du JZ, Chen XQ. Functional Diversity of p53 in Human and Wild Animals. Front Endocrinol (Lausanne) 2019; 10:152. [PMID: 30915036 PMCID: PMC6422910 DOI: 10.3389/fendo.2019.00152] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
The common understanding of p53 function is a genome guardian, which is activated by diverse stresses stimuli and mediates DNA repair, apoptosis, and cell cycle arrest. Increasing evidence has demonstrated p53 new cellular functions involved in abundant endocrine and metabolic response for maintaining homeostasis. However, TP53 is frequently mutant in human cancers, and the mutant p53 (Mut-p53) turns to an "evil" cancer-assistant. Mut-p53-induced epithelial-mesenchymal transition (EMT) plays a crucial role in the invasion and metastasis of endocrine carcinomas, and Mut-p53 is involved in cancer immune evasion by upregulating PD-L1 expression. Therefore, Mut-p53 is a valuable treatment target for malignant tumors. Targeting Mut-p53 in correcting sequence and conformation are increasingly concerned. Interestingly, in wild animals, p53 variations contribute to cancer resistant and high longevity. This review has discussed the multiple functions of p53 in health, diseases, and nature evolution, summarized the frequently mutant sites of p53, and the mechanisms of Mut-p53-mediated metastasis and immune evasion in endocrine cancers. We have provided a new insight for multiple roles of p53 in human and wild animals.
Collapse
Affiliation(s)
- Yi Li
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, School of Medicine, Zhejiang UniversityHHangzhou, China
| | - Meng-Chen Zhang
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, School of Medicine, Zhejiang UniversityHHangzhou, China
| | - Xiao-Kang Xu
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, School of Medicine, Zhejiang UniversityHHangzhou, China
| | - Yang Zhao
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Chatoo Mahanand
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, School of Medicine, Zhejiang UniversityHHangzhou, China
| | - Tao Zhu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Hong Deng
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Eviatar Nevo
- Institute of Evolution and International Graduate Center of Evolution, University of Haifa, Haifa, Israel
| | - Ji-Zeng Du
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, School of Medicine, Zhejiang UniversityHHangzhou, China
- Key Laboratory of Medical Neurobiology of the Ministry of Health, Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Neurobiology of Zhejiang Province, Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xue-Qun Chen
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, School of Medicine, Zhejiang UniversityHHangzhou, China
- Key Laboratory of Medical Neurobiology of the Ministry of Health, Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Neurobiology of Zhejiang Province, Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Xue-Qun Chen
| |
Collapse
|
28
|
Lagunas-Rangel FA. Cancer-free aging: Insights from Spalax ehrenbergi superspecies. Ageing Res Rev 2018; 47:18-23. [PMID: 29913210 DOI: 10.1016/j.arr.2018.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 01/19/2023]
Abstract
Cancer and ageing can be regarded as two different manifestations of the same underlying process-accumulation of cellular damage-and therefore both are closely linked. Nowadays, the ageing of populations worldwide is leading to an unprecedented increase in cancer cases and fatalities, and therefore the understanding of links between cancer and ageing is more important than ever. Spalax is considered an excellent model for ageing and, additionally, for cancer research, due to not show clear age-related phenotypic changes and not develop spontaneous tumours, despite its relatively long lifespan (∼20 years in captivity). Thereby, the purpose of this review is to summarize the recent knowledge on Spalax, with a particular emphasis on the molecular mechanisms associated with their longevity and cancer resistance.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico.
| |
Collapse
|
29
|
Mustonen V, Kesäniemi J, Lavrinienko A, Tukalenko E, Mappes T, Watts PC, Jurvansuu J. Fibroblasts from bank voles inhabiting Chernobyl have increased resistance against oxidative and DNA stresses. BMC Cell Biol 2018; 19:17. [PMID: 30157751 PMCID: PMC6114495 DOI: 10.1186/s12860-018-0169-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/20/2018] [Indexed: 11/25/2022] Open
Abstract
Background Elevated levels of environmental ionizing radiation can be a selective pressure for wildlife by producing reactive oxygen species and DNA damage. However, the underlying molecular mechanisms that are affected are not known. Results We isolated skin fibroblasts from bank voles (Myodes glareolus) inhabiting the Chernobyl nuclear power plant accident site where background radiation levels are about 100 times greater than in uncontaminated areas. After a 10 Gy dose of gamma radiation fibroblasts from Chernobyl animals recovered faster than fibroblasts isolated from bank voles living in uncontaminated control area. The Chernobyl fibroblasts were able to sustain significantly higher doses of an oxidant and they had, on average, a higher total antioxidant capacity than the control fibroblasts. Furthermore, the Chernobyl fibroblasts were also significantly more resistant than the control fibroblasts to continuous exposure to three DNA damaging drugs. After drug treatment transcription of p53-target gene pro-apoptotic Bax was higher in the control than in the Chernobyl fibroblasts. Conclusion Fibroblasts isolated from bank voles inhabiting Chernobyl nuclear power plant accident site show elevated antioxidant levels, lower sensitivity to apoptosis, and increased resistance against oxidative and DNA stresses. These cellular qualities may help bank voles inhabiting Chernobyl to cope with environmental radioactivity. Electronic supplementary material The online version of this article (10.1186/s12860-018-0169-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Venla Mustonen
- Department of Ecology and Genetics, University of Oulu, FI-90014, Oulu, Finland
| | - Jenni Kesäniemi
- Department of Ecology and Genetics, University of Oulu, FI-90014, Oulu, Finland
| | - Anton Lavrinienko
- Department of Ecology and Genetics, University of Oulu, FI-90014, Oulu, Finland
| | - Eugene Tukalenko
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, UA-03022, Ukraine
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Jyväskylä, Finland
| | - Phillip C Watts
- Department of Ecology and Genetics, University of Oulu, FI-90014, Oulu, Finland
| | - Jaana Jurvansuu
- Department of Ecology and Genetics, University of Oulu, FI-90014, Oulu, Finland.
| |
Collapse
|
30
|
Abstract
Cancer researchers have traditionally used the mouse and the rat as staple model organisms. These animals are very short-lived, reproduce rapidly and are highly prone to cancer. They have been very useful for modelling some human cancer types and testing experimental treatments; however, these cancer-prone species offer little for understanding the mechanisms of cancer resistance. Recent technological advances have expanded bestiary research to non-standard model organisms that possess unique traits of very high value to humans, such as cancer resistance and longevity. In recent years, several discoveries have been made in non-standard mammalian species, providing new insights on the natural mechanisms of cancer resistance. These include mechanisms of cancer resistance in the naked mole rat, blind mole rat and elephant. In each of these species, evolution took a different path, leading to novel mechanisms. Many other long-lived mammalian species display cancer resistance, including whales, grey squirrels, microbats, cows and horses. Understanding the molecular mechanisms of cancer resistance in all these species is important and timely, as, ultimately, these mechanisms could be harnessed for the development of human cancer therapies.
Collapse
Affiliation(s)
- Andrei Seluanov
- University of Rochester, Department of Biology, Rochester, NY, USA
| | - Vadim N Gladyshev
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vera Gorbunova
- University of Rochester, Department of Biology, Rochester, NY, USA.
| |
Collapse
|
31
|
Domankevich V, Eddini H, Odeh A, Shams I. Resistance to DNA damage and enhanced DNA repair capacity in the hypoxia-tolerant blind mole rat Spalax carmeli. ACTA ACUST UNITED AC 2018; 221:jeb.174540. [PMID: 29593080 DOI: 10.1242/jeb.174540] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/02/2018] [Indexed: 01/05/2023]
Abstract
Blind mole rats of the genus Spalax are the only mammalian species to date for which spontaneous cancer has never been reported and resistance to carcinogen-induced cancers has been demonstrated. However, the underlying mechanisms are still poorly understood. The fact that Spalax spp. are also hypoxia-tolerant and long-lived species implies the presence of molecular adaptations to prevent genomic instability, which underlies both cancer and aging. We previously demonstrated the upregulation of transcripts related to DNA replication and repair pathways in Spalax Yet, to date, no direct experimental evidence for improved genomic maintenance has been demonstrated for this genus. Here, we show that compared with skin fibroblasts of the above-ground rat, Spalax carmeli skin fibroblasts in culture resist several types of genotoxic insult, accumulate fewer genotoxic lesions and exhibit an enhanced DNA repair capacity. Our results strongly support that this species has evolved efficient mechanisms to maintain DNA integrity as an adaptation to the stressful conditions in the subterranean habitat.
Collapse
Affiliation(s)
- Vered Domankevich
- The Institute of Evolution and Department of Evolutionary and Environmental Biology, University of Haifa, Haifa 3498838, Israel
| | - Hossam Eddini
- The Institute of Evolution and Department of Evolutionary and Environmental Biology, University of Haifa, Haifa 3498838, Israel
| | - Amani Odeh
- The Institute of Evolution and Department of Evolutionary and Environmental Biology, University of Haifa, Haifa 3498838, Israel
| | - Imad Shams
- The Institute of Evolution and Department of Evolutionary and Environmental Biology, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
32
|
Ellis M, Stern O, Ashur-Fabian O. The double benefit of Spalax p53: surviving underground hypoxia while defying lung cancer cells in vitro via autophagy and caspase-dependent cell death. Oncotarget 2018; 7:63242-63251. [PMID: 27557517 PMCID: PMC5325360 DOI: 10.18632/oncotarget.11443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/15/2016] [Indexed: 01/19/2023] Open
Abstract
The blind subterranean mole rat, Spalax ehrenbergi, is a model organism for hypoxia tolerance. This superspecies have adapted to severe environment by altering an array of hypoxia-mediated genes, among which an alteration in the p53 DNA binding domain (corresponding to R174K in humans) that hinders its transcriptional activity towards apoptotic genes. It is well accepted that apoptosis is not the only form of programmed cell death and that mechanisms that depend on autophagy are also involved. In the current work we have extended our research and investigated the possibility that Spalax p53 can activate autophagy. Using two complementary assays, we have established that over-expression of the Spalax p53 in p53-null cells (human lung cancer cells, H1299), potently induces autophagy. As Spalax is considered highly resistant to cancer, we further studied the relative contribution of autophagy on the outcome of H1299 cells, following transfection with Spalax p53. Results indicate that Spalax p53 acts as a tumor suppressor in lung cancer cells, inducing cell death that involves autophagy and caspases and inhibiting cell number, which is exclusively caspase-dependent. To conclude, the Spalax p53 protein was evolutionary adapted to survive severe underground hypoxia while retaining the ability to defy lung cancer.
Collapse
Affiliation(s)
- Martin Ellis
- Translational Hemato-Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, 4428164, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Orly Stern
- Translational Hemato-Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, 4428164, Israel
| | - Osnat Ashur-Fabian
- Translational Hemato-Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, 4428164, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.,The Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
33
|
An ZF, Zhao K, Wei LN, Wang ZJ, Li SH, Wei L, Wei DB. p53 gene cloning and response to hypoxia in the plateau zokor, Myospalax baileyi. ANIM BIOL 2018. [DOI: 10.1163/15707563-18000004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
The plateau zokor (Myospalax baileyi) is a specialized subterranean rodent that lives on the Qinghai-Tibet Plateau. The species has evolved a series of strategies to adapt to its hypoxic environment and hypercapnia. p53 is a tumour suppressor gene that plays a crucial role in the cellular response to hypoxia by inducing cell cycle arrest, cell apoptosis, DNA damage repair and angiogenesis. To investigate the sequence characteristics of p53 and the response to hypoxia in plateau zokor, we cloned the p53 coding DNA sequence, analysed it, and measured the expression level of p53 at different altitudes in plateau zokor and rats. Our results show that the coding DNA sequence is 1179 bp, consisting of 392 amino acid residues. Compared to human p53, the subterranean rodents have two mutation sites in common with the human hotspots in the DNA-binding domain. Compared to subterranean rodents, plateau zokor have a mutation at residue 309. In addition, subterranean rodents have two convergent sites at residues 78 and 84. The expression levels of p53 in plateau zokor tissues increase significantly from 2260 m to 3300 m, but there was no significant difference in rats at those altitudes. Our results suggest that subterranean rodents have two mutation sites in common with the human hotspots in the DNA-binding domain, the mutation of Gly309Asp is a unique mutation site of plateau zokor p53, and there are two convergent sites enhancing subterranean rodent adaptation to hypoxic conditions. In addition, p53 is sensitive to the oxygen concentration in plateau zokor, and hypoxia upregulates the levels of p53. Generally, plateau zokor use this strategy to adapt to a hypoxic environment.
Collapse
Affiliation(s)
- Zhi-fang An
- 1State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining, Qinghai 810016, China
- 2Research Center for High Altitude Medicine, Qinghai University, 251 Ningda Road, Xining, Qinghai 810016, China
| | - Kang Zhao
- 3College of Medical, Qinghai University, 251 Ningda Road, Xining, Qinghai 810016, China
| | - Lin-na Wei
- 4College of Eco-Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, Qinghai 810016, China
| | - Zhi-jie Wang
- 4College of Eco-Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, Qinghai 810016, China
| | - Su-hua Li
- 2Research Center for High Altitude Medicine, Qinghai University, 251 Ningda Road, Xining, Qinghai 810016, China
| | - Lian Wei
- 4College of Eco-Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, Qinghai 810016, China
| | - Deng-bang Wei
- 1State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining, Qinghai 810016, China
- 4College of Eco-Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, Qinghai 810016, China
| |
Collapse
|
34
|
Graham AM, Lavretsky P, Muñoz-Fuentes V, Green AJ, Wilson RE, McCracken KG. Migration-Selection Balance Drives Genetic Differentiation in Genes Associated with High-Altitude Function in the Speckled Teal (Anas flavirostris) in the Andes. Genome Biol Evol 2018; 10:14-32. [PMID: 29211852 PMCID: PMC5757641 DOI: 10.1093/gbe/evx253] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2017] [Indexed: 12/30/2022] Open
Abstract
Local adaptation frequently occurs across populations as a result of migration-selection balance between divergent selective pressures and gene flow associated with life in heterogeneous landscapes. Studying the effects of selection and gene flow on the adaptation process can be achieved in systems that have recently colonized extreme environments. This study utilizes an endemic South American duck species, the speckled teal (Anas flavirostris), which has both high- and low-altitude populations. High-altitude speckled teal (A. f. oxyptera) are locally adapted to the Andean environment and mostly allopatric from low-altitude birds (A. f. flavirostris); however, there is occasional gene flow across altitudinal gradients. In this study, we used next-generation sequencing to explore genetic patterns associated with high-altitude adaptation in speckled teal populations, as well as the extent to which the balance between selection and migration have affected genetic architecture. We identified a set of loci with allele frequencies strongly correlated with altitude, including those involved in the insulin-like signaling pathway, bone morphogenesis, oxidative phosphorylation, responders to hypoxia-induced DNA damage, and feedback loops to the hypoxia-inducible factor pathway. These same outlier loci were found to have depressed gene flow estimates, as well as being highly concentrated on the Z-chromosome. Our results suggest a multifactorial response to life at high altitudes through an array of interconnected pathways that are likely under positive selection and whose genetic components seem to be providing an effective genomic barrier to interbreeding, potentially functioning as an avenue for population divergence and speciation.
Collapse
Affiliation(s)
| | | | - Violeta Muñoz-Fuentes
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Estación Biológica de Doñana, EBD-CSIC, Sevilla, Spain
| | - Andy J Green
- Estación Biológica de Doñana, EBD-CSIC, Sevilla, Spain
| | - Robert E Wilson
- Institute of Arctic Biology and University of Alaska Museum, University of Alaska, Fairbanks
| | - Kevin G McCracken
- Department of Biology, University of Miami
- Institute of Arctic Biology and University of Alaska Museum, University of Alaska, Fairbanks
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine
| |
Collapse
|
35
|
Savić I, Ćirović D, Bugarski-Stanojević V. Exceptional Chromosomal Evolution and Cryptic Speciation of Blind Mole Rats Nannospalax leucodon (Spalacinae, Rodentia) from South-Eastern Europe. Genes (Basel) 2017; 8:E292. [PMID: 29068425 PMCID: PMC5704205 DOI: 10.3390/genes8110292] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/12/2017] [Accepted: 10/17/2017] [Indexed: 01/13/2023] Open
Abstract
Mole rats are exclusively subterranean and highly specialized rodents. Their long lifespans, remarkable anti-cancer mechanisms, and various distinctive adaptive features make them a useful research model. Moreover, opposing convergence of morphological traits, they have developed extremely high karyotype variability. Thus, 74 chromosomal forms have been described so far and new ones are being revealed continuously. These evolved during the process of rapid radiation and occur in different biogeographical regions. During research into their reproductive biology we have already provided substantial evidence for species-level separation of these taxa. Here, we review diverse chromosomal forms of the lesser blind mole rat, Mediterranean Nannospalax leucodon, distributed in South-eastern Europe, their karyotype records, biogeography, origin, and phylogeny from our extensive research. In the light of new data from molecular genetic studies, we question some former valuations and propose a cryptospecies rank for seven reproductively isolated chromosomal forms with sympatric and parapatric distribution and clear ecogeographical discrepances in their habitats, as well as new experimental and theoretical methods for understanding the courses of speciation of these unique fossorial mammals.
Collapse
Affiliation(s)
- Ivo Savić
- Biological Faculty, University of Belgrade, 11000 Belgrade, Serbia.
| | - Duško Ćirović
- Biological Faculty, University of Belgrade, 11000 Belgrade, Serbia.
| | - Vanja Bugarski-Stanojević
- Institute for Biological Research "Siniša Stanković", University of Belgrade, 11060 Belgrade, Serbia.
| |
Collapse
|
36
|
Petruseva IO, Evdokimov AN, Lavrik OI. Genome Stability Maintenance in Naked Mole-Rat. Acta Naturae 2017; 9:31-41. [PMID: 29340215 PMCID: PMC5762826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Indexed: 11/02/2022] Open
Abstract
The naked mole-rat (Heterocephalus glaber) is one of the most promising models used to study genome maintenance systems, including the effective repair of damage to DNA. The naked mole-rat is the longest lived rodent species, which is extraordinarily resistant to cancer and has a number of other unique phenotypic traits. For at least 80% of its lifespan, this animal shows no signs of aging or any increased likelihood of death and retains the ability to reproduce. The naked mole-rat draws the heightened attention of researchers who study the molecular basis of lengthy lifespan and cancer resistance. Despite the fact that the naked mole-rat lives under genotoxic stress conditions (oxidative, etc.), the main characteristics of its genome and proteome are a high stability and effective functioning. Replicative senescence in the somatic cells of naked mole-rats is missing, while an additional p53/pRb-dependent mechanism of early contact inhibition has been revealed in its fibroblasts, which controls cell proliferation and its mechanism of arf-dependent aging. The unique traits of phenotypic and molecular adaptations found in the naked mole-rat speak to a high stability and effective functioning of the molecular machinery that counteract damage accumulation in its genome. This review analyzes existing results in the study of the molecular basis of longevity and high cancer resistance in naked mole-rats.
Collapse
Affiliation(s)
- I. O. Petruseva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentjeva Ave. 8, Novosibirsk, 630090, Russia
| | - A. N. Evdokimov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentjeva Ave. 8, Novosibirsk, 630090, Russia
| | - O. I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentjeva Ave. 8, Novosibirsk, 630090, Russia
- Novosibirsk State University, Ministry of education and science, Pirogova Str. 1, Novosibirsk, 630090 , Russia
- Altai State University, Ministry of education and science, Lenina Ave. 61, Barnaul, 656049, Russia
| |
Collapse
|
37
|
Ma S, Gladyshev VN. Molecular signatures of longevity: Insights from cross-species comparative studies. Semin Cell Dev Biol 2017; 70:190-203. [PMID: 28800931 PMCID: PMC5807068 DOI: 10.1016/j.semcdb.2017.08.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/31/2017] [Accepted: 08/03/2017] [Indexed: 01/26/2023]
Abstract
Much of the current research on longevity focuses on the aging process within a single species. Several molecular players (e.g. IGF1 and MTOR), pharmacological compounds (e.g. rapamycin and metformin), and dietary approaches (e.g. calorie restriction and methionine restriction) have been shown to be important in regulating and modestly extending lifespan in model organisms. On the other hand, natural lifespan varies much more significantly across species. Within mammals alone, maximum lifespan differs more than 100 fold, but the underlying regulatory mechanisms remain poorly understood. Recent comparative studies are beginning to shed light on the molecular signatures associated with exceptional longevity. These include genome sequencing of microbats, naked mole rat, blind mole rat, bowhead whale and African turquoise killifish, and comparative analyses of gene expression, metabolites, lipids and ions across multiple mammalian species. Together, they point towards several putative strategies for lifespan regulation and cancer resistance, as well as the pathways and metabolites associated with longevity variation. In particular, longevity may be achieved by both lineage-specific adaptations and common mechanisms that apply across the species. Comparing the resulting cross-species molecular signatures with the within-species lifespan extension strategies will improve our understanding of mechanisms of longevity control and provide a starting point for novel and effective interventions.
Collapse
Affiliation(s)
- Siming Ma
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Genome Institute of Singapore, A*STAR, Singapore, 138672, Singapore
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Laboratory of Systems Biology of Aging, Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
38
|
Tian X, Seluanov A, Gorbunova V. Molecular Mechanisms Determining Lifespan in Short- and Long-Lived Species. Trends Endocrinol Metab 2017; 28:722-734. [PMID: 28888702 PMCID: PMC5679293 DOI: 10.1016/j.tem.2017.07.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/16/2017] [Accepted: 07/25/2017] [Indexed: 12/20/2022]
Abstract
Aging is a global decline of physiological functions, leading to an increased susceptibility to diseases and ultimately death. Maximum lifespans differ up to 200-fold between mammalian species. Although considerable progress has been achieved in identifying conserved pathways that regulate individual lifespan within model organisms, whether the same pathways are responsible for the interspecies differences in longevity remains to be determined. Recent cross-species studies have begun to identify pathways responsible for interspecies differences in lifespan. Here, we review the evidence supporting the role of anticancer mechanisms, DNA repair machinery, insulin/insulin-like growth factor 1 signaling, and proteostasis in defining species lifespans. Understanding the mechanisms responsible for the dramatic differences in lifespan between species will have a transformative effect on developing interventions to improve human health and longevity.
Collapse
Affiliation(s)
- Xiao Tian
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
39
|
The system capacity view of aging and longevity. QUANTITATIVE BIOLOGY 2017. [DOI: 10.1007/s40484-017-0115-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Danial‐Farran N, Nasser NJ, Beiles A, Brenner B, Sarig G, Nevo E. Adaptive evolution of coagulation and blood properties in hypoxia tolerant
Spalax
in Israel. J Zool (1987) 2017. [DOI: 10.1111/jzo.12480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- N. Danial‐Farran
- Institute of Evolution International Graduate Center of Evolution University of Haifa Haifa Israel
| | - N. J. Nasser
- Institute of Evolution International Graduate Center of Evolution University of Haifa Haifa Israel
| | - A. Beiles
- Institute of Evolution International Graduate Center of Evolution University of Haifa Haifa Israel
| | - B. Brenner
- Thrombosis and Hemostasis Unit Department of Hematology and Bone Marrow Transplantation Rambam Health Care Campus Haifa Israel
- Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology Haifa Israel
| | - G. Sarig
- Thrombosis and Hemostasis Unit Department of Hematology and Bone Marrow Transplantation Rambam Health Care Campus Haifa Israel
- Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology Haifa Israel
- Hematology Laboratory Rambam Health Care Campus Haifa Israel
| | - E. Nevo
- Institute of Evolution International Graduate Center of Evolution University of Haifa Haifa Israel
| |
Collapse
|
41
|
Tollis M, Schiffman JD, Boddy AM. Evolution of cancer suppression as revealed by mammalian comparative genomics. Curr Opin Genet Dev 2017; 42:40-47. [DOI: 10.1016/j.gde.2016.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 02/05/2023]
|
42
|
Affiliation(s)
- J S Welsh
- Stritch School of Medicine Loyola University - Chicago, Department of Radiation Oncology, Cardinal Bernardin Cancer Center, Maywood, IL, USA
| | - T L Traum
- UW Cancer Center (retired), Aurora, IL, USA
| |
Collapse
|
43
|
Sulak M, Fong L, Mika K, Chigurupati S, Yon L, Mongan NP, Emes RD, Lynch VJ. TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants. eLife 2016; 5. [PMID: 27642012 PMCID: PMC5061548 DOI: 10.7554/elife.11994] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 09/17/2016] [Indexed: 12/21/2022] Open
Abstract
A major constraint on the evolution of large body sizes in animals is an increased risk of developing cancer. There is no correlation, however, between body size and cancer risk. This lack of correlation is often referred to as 'Peto's Paradox'. Here, we show that the elephant genome encodes 20 copies of the tumor suppressor gene TP53 and that the increase in TP53 copy number occurred coincident with the evolution of large body sizes, the evolution of extreme sensitivity to genotoxic stress, and a hyperactive TP53 signaling pathway in the elephant (Proboscidean) lineage. Furthermore, we show that several of the TP53 retrogenes (TP53RTGs) are transcribed and likely translated. While TP53RTGs do not appear to directly function as transcription factors, they do contribute to the enhanced sensitivity of elephant cells to DNA damage and the induction of apoptosis by regulating activity of the TP53 signaling pathway. These results suggest that an increase in the copy number of TP53 may have played a direct role in the evolution of very large body sizes and the resolution of Peto's paradox in Proboscideans. DOI:http://dx.doi.org/10.7554/eLife.11994.001 As time passes, healthy cells are more likely to become cancerous because more and more damaging mutations accumulate in the cell’s DNA. Assuming that all cells have a similar risk of acquiring mutations, larger and longer-lived animals – like elephants – should have a higher risk of cancer than smaller, shorter-lived animals – like mice. However, there does not appear to be any link between the size of an animal and its risk of developing cancer. Consequently, a key question in cancer biology is how very large animals protect themselves against these diseases. One gene that is often damaged during an animal’s lifetime is called TP53. This gene normally produces a tumor suppressor protein that senses when DNA is damaged or a cell is under stress and either briefly slows the cell’s growth while the damage is repaired or triggers cell death if the stress is overwhelming. One way that large animals could reduce their risk of cancer is to have extra copies of TP53 or other genes that encode tumor suppressor proteins. Here Sulak et al. used an evolutionary genomics approach to study TP53 in 61 animals of various sizes, including several large animals such as African elephants and Minke whales. All of the animals studied had at least one copy of TP53, and several had a few extra copies, known as TP53 retrogenes. African elephants – the largest living land mammal – had more retrogenes than any of the others with 19 in total. To investigate why African elephants have so many TP53 retrogenes, Sulak et al. also analyzed DNA from Asian elephants and several other closely related, but now extinct species, including the woolly mammoth. As expected, as species evolved larger body sizes they also evolved more TP53 retrogenes. Further experiments indicate that several of the TP53 retrogenes in African elephants are likely to be able to produce the tumor suppressor protein and that they contribute to elephant cells being better equipped to deal with DNA damage. The next step following on from this work will be to find out exactly how TP53 retrogenes help to protect animals from cancer. DOI:http://dx.doi.org/10.7554/eLife.11994.002
Collapse
Affiliation(s)
- Michael Sulak
- Department of Human Genetics, The University of Chicago, Chicago, United States
| | - Lindsey Fong
- Department of Human Genetics, The University of Chicago, Chicago, United States
| | - Katelyn Mika
- Department of Human Genetics, The University of Chicago, Chicago, United States
| | | | - Lisa Yon
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom.,Faculty of Medicine and Health Sciences, University of Nottingham, Leicestershire, United Kingdom
| | - Nigel P Mongan
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom.,Faculty of Medicine and Health Sciences, University of Nottingham, Leicestershire, United Kingdom.,Department of Pharmacology, Weill Cornell Medical College, New York, United States
| | - Richard D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom.,Faculty of Medicine and Health Sciences, University of Nottingham, Leicestershire, United Kingdom.,Advanced Data Analysis Centre, University of Nottingham UK, Nottingham, United Kingdom
| | - Vincent J Lynch
- Department of Human Genetics, The University of Chicago, Chicago, United States
| |
Collapse
|
44
|
Gene expression signatures of human cell and tissue longevity. NPJ Aging Mech Dis 2016; 2:16014. [PMID: 28721269 PMCID: PMC5514998 DOI: 10.1038/npjamd.2016.14] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 03/08/2016] [Accepted: 03/30/2016] [Indexed: 12/12/2022] Open
Abstract
Different cell types within the body exhibit substantial variation in the average time they live, ranging from days to the lifetime of the organism. The underlying mechanisms governing the diverse lifespan of different cell types are not well understood. To examine gene expression strategies that support the lifespan of different cell types within the human body, we obtained publicly available RNA-seq data sets and interrogated transcriptomes of 21 somatic cell types and tissues with reported cellular turnover, a bona fide estimate of lifespan, ranging from 2 days (monocytes) to a lifetime (neurons). Exceptionally long-lived neurons presented a gene expression profile of reduced protein metabolism, consistent with neuronal survival and similar to expression patterns induced by longevity interventions such as dietary restriction. Across different cell lineages, we identified a gene expression signature of human cell and tissue turnover. In particular, turnover showed a negative correlation with the energetically costly cell cycle and factors supporting genome stability, concomitant risk factors for aging-associated pathologies. In addition, the expression of p53 was negatively correlated with cellular turnover, suggesting that low p53 activity supports the longevity of post-mitotic cells with inherently low risk of developing cancer. Our results demonstrate the utility of comparative approaches in unveiling gene expression differences among cell lineages with diverse cell turnover within the same organism, providing insights into mechanisms that could regulate cell longevity.
Collapse
|
45
|
Salminen A, Kaarniranta K, Kauppinen A. AMPK and HIF signaling pathways regulate both longevity and cancer growth: the good news and the bad news about survival mechanisms. Biogerontology 2016; 17:655-80. [PMID: 27259535 DOI: 10.1007/s10522-016-9655-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 05/31/2016] [Indexed: 02/08/2023]
Abstract
The AMP-activated protein kinase (AMPK) and hypoxia-inducible factor (HIF) signaling pathways are evolutionarily-conserved survival mechanisms responding to two fundamental stresses, energy deficiency and/or oxygen deprivation. The AMPK and HIF pathways regulate the function of a survival network with several transcription factors, e.g. FOXO, NF-κB, NRF2, and p53, as well as with protein kinases and other factors, such as mTOR, ULK1, HDAC5, and SIRT1. Given that AMPK and HIF activation can enhance not only healthspan and lifespan but also cancer growth in a context-dependent manner; it seems that cancer cells can hijack certain survival factors to maintain their growth in harsh conditions. AMPK activation improves energy metabolism, stimulates autophagy, and inhibits inflammation, whereas HIF-1α increases angiogenesis and helps cells to adapt to severe conditions. First we will review how AMPK and HIF signaling mechanisms control the function of an integrated survival network which is able not only to improve the regulation of longevity but also support the progression of tumorigenesis. We will also describe distinct crossroads between the regulation of longevity and cancer, e.g. specific regulation through the AMPKα and HIF-α isoforms, the Warburg effect, mitochondrial dynamics, and cellular senescence.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, KYS, Finland
| | - Anu Kauppinen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
46
|
Adaptive methylation regulation of p53 pathway in sympatric speciation of blind mole rats, Spalax. Proc Natl Acad Sci U S A 2016; 113:2146-51. [PMID: 26858405 DOI: 10.1073/pnas.1522658112] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epigenetic modifications play significant roles in adaptive evolution. The tumor suppressor p53, well known for controlling cell fate and maintaining genomic stability, is much less known as a master gene in environmental adaptation involving methylation modifications. The blind subterranean mole rat Spalax eherenbergi superspecies in Israel consists of four species that speciated peripatrically. Remarkably, the northern Galilee species Spalax galili (2n = 52) underwent adaptive ecological sympatric speciation, caused by the sharply divergent chalk and basalt ecologies. This was demonstrated by mitochondrial and nuclear genomic evidence. Here we show that the expression patterns of the p53 regulatory pathway diversified between the abutting sympatric populations of S. galili in sharply divergent chalk-basalt ecologies. We identified higher methylation on several sites of the p53 promoter in the population living in chalk soil (chalk population). Site mutagenesis showed that methylation on these sites linked to the transcriptional repression of p53 involving Cut-Like Homeobox 1 (Cux1), paired box 4 (Pax 4), Pax 6, and activator protein 1 (AP-1). Diverse expression levels of p53 between the incipiently sympatrically speciating chalk-basalt abutting populations of S. galili selectively affected cell-cycle arrest but not apoptosis. We hypothesize that methylation modification of p53 has adaptively shifted in supervising its target genes during sympatric speciation of S. galili to cope with the contrasting environmental stresses of the abutting divergent chalk-basalt ecologies.
Collapse
|
47
|
Abstract
UNLABELLED Our understanding of cancer is being transformed by exploring clonal diversity, drug resistance, and causation within an evolutionary framework. The therapeutic resilience of advanced cancer is a consequence of its character as a complex, dynamic, and adaptive ecosystem engendering robustness, underpinned by genetic diversity and epigenetic plasticity. The risk of mutation-driven escape by self-renewing cells is intrinsic to multicellularity but is countered by multiple restraints, facilitating increasing complexity and longevity of species. But our own species has disrupted this historical narrative by rapidly escalating intrinsic risk. Evolutionary principles illuminate these challenges and provide new avenues to explore for more effective control. SIGNIFICANCE Lifetime risk of cancer now approximates to 50% in Western societies. And, despite many advances, the outcome for patients with disseminated disease remains poor, with drug resistance the norm. An evolutionary perspective may provide a clearer understanding of how cancer clones develop robustness and why, for us as a species, risk is now off the scale. And, perhaps, of what we might best do to achieve more effective control.
Collapse
Affiliation(s)
- Mel Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
48
|
Abstract
UNLABELLED Our understanding of cancer is being transformed by exploring clonal diversity, drug resistance, and causation within an evolutionary framework. The therapeutic resilience of advanced cancer is a consequence of its character as a complex, dynamic, and adaptive ecosystem engendering robustness, underpinned by genetic diversity and epigenetic plasticity. The risk of mutation-driven escape by self-renewing cells is intrinsic to multicellularity but is countered by multiple restraints, facilitating increasing complexity and longevity of species. But our own species has disrupted this historical narrative by rapidly escalating intrinsic risk. Evolutionary principles illuminate these challenges and provide new avenues to explore for more effective control. SIGNIFICANCE Lifetime risk of cancer now approximates to 50% in Western societies. And, despite many advances, the outcome for patients with disseminated disease remains poor, with drug resistance the norm. An evolutionary perspective may provide a clearer understanding of how cancer clones develop robustness and why, for us as a species, risk is now off the scale. And, perhaps, of what we might best do to achieve more effective control.
Collapse
Affiliation(s)
- Mel Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
49
|
p53 gene discriminates two ecologically divergent sister species of pine voles. Heredity (Edinb) 2015; 115:444-51. [PMID: 25990877 DOI: 10.1038/hdy.2015.44] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/10/2015] [Accepted: 03/24/2015] [Indexed: 12/11/2022] Open
Abstract
Genes with relevant roles in the differentiation of closely-related species are likely to have diverged simultaneously with the species and more accurately reproduce the species tree. The Lusitanian (Microtus lusitanicus) and Mediterranean (M. duodecimcostatus) pine voles are two recently separated sister species with fossorial lifestyles whose different ecological, physiological and morphological phenotypes reflect the better adaptation of M. duodecimcostatus to the underground habitat. Here we asked whether the differentiation of M. lusitanicus and M. duodecimcostatus involved genetic variations within the tumour suppressor p53 gene, given its role in stress-associated responses. We performed a population-genetic analysis through sequencing of exons and introns of p53 in individuals from sympatric and allopatric populations of both the species in the Iberian Peninsula in which a unidirectional introgression of mitochondrial DNA was previously observed. We were able to discriminate the two species to a large extent. We show that M. duodecimcostatus is composed of one genetically unstructured group of populations sharing a P53 protein that carries a mutation in the DNA-binding region not observed in M. lusitanicus, raising the possibility that this mutation may have been central in the evolutionary history of M. duodecimcostatus. Our results provide suggestive evidence for the involvement of a master transcription factor in the separation of M. lusitanicus and M. duodecimcostatus during Microtus radiation in the Quaternary presumably via a differential adaptive role of the novel p53 in M. duodecimcostatus.
Collapse
|
50
|
Schwalbe B, Schreiber M. Effect of lysine to arginine mutagenesis in the V3 loop of HIV-1 gp120 on viral entry efficiency and neutralization. PLoS One 2015; 10:e0119879. [PMID: 25785610 PMCID: PMC4364900 DOI: 10.1371/journal.pone.0119879] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/03/2015] [Indexed: 12/02/2022] Open
Abstract
HIV-1 infection is characterized by an ongoing replication leading to T-lymphocyte decline which is paralleled by the switch from CCR5 to CXCR4 coreceptor usage. To predict coreceptor usage, several computer algorithms using gp120 V3 loop sequence data have been developed. In these algorithms an occupation of the V3 positions 11 and 25, by one of the amino acids lysine (K) or arginine (R), is an indicator for CXCR4 usage. Amino acids R and K dominate at these two positions, but can also be identified at positions 9 and 10. Generally, CXCR4-viruses possess V3 sequences, with an overall positive charge higher than the V3 sequences of R5-viruses. The net charge is calculated by subtracting the number of negatively charged amino acids (D, aspartic acid and E, glutamic acid) from the number of positively charged ones (K and R). In contrast to D and E, which are very similar in their polar and acidic properties, the characteristics of the R guanidinium group differ significantly from the K ammonium group. However, in coreceptor predictive computer algorithms R and K are both equally rated. The study was conducted to analyze differences in infectivity and coreceptor usage because of R-to-K mutations at the V3 positions 9, 10 and 11. V3 loop mutants with all possible RRR-to-KKK triplets were constructed and analyzed for coreceptor usage, infectivity and neutralization by SDF-1α and RANTES. Virus mutants R9R10R11 showed the highest infectivity rates, and were inhibited more efficiently in contrast to the K9K10K11 viruses. They also showed higher efficiency in a virus-gp120 paired infection assay. Especially V3 loop position 9 was relevant for a switch to higher infectivity when occupied by R. Thus, K-to-R exchanges play a role for enhanced viral entry efficiency and should therefore be considered when the viral phenotype is predicted based on V3 sequence data.
Collapse
Affiliation(s)
- Birco Schwalbe
- Department Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Michael Schreiber
- Department Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- * E-mail:
| |
Collapse
|