1
|
Buschbom-Helmke S, Wang P, Alcaide A, Miguez-Cabello F, Carta M, Viotti JS, Nielsen B, Mulle C, Bowie D, Jørgensen FS, Pickering DS, Bunch L. Domoic Acid as a Lead for the Discovery of the First Selective Ligand for Kainate Receptor Subtype 5 (GluK5). J Med Chem 2024; 67:14524-14542. [PMID: 39133077 DOI: 10.1021/acs.jmedchem.4c01311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Twenty-one simplified analogues of the natural product domoic acid were designed, synthesized, and then characterized at homomeric kainic acid (KA) receptors (GluK1-3,5). LBG20304 displays a high affinity for homomeric GluK5 receptors (IC50 = 432 nM) with a >40-fold selectivity over homomeric GluK1-3 subtypes and ≫100-fold selectivity over native AMPA and N-methyl d-aspartate receptors. Functional studies of LBG20304 on heteromeric GluK2/5 receptors show no agonist or antagonist functional response at 10 μM, while a concentration of 100 μM at neuronal slices (rat) shows low agonist activity. A molecular dynamics simulation of LBG20304, in a homology model of GluK5, suggests specific interactions with the GluK5 receptor and an occluded ligand binding domain, which is translated to agonist or partial agonist activity. LBG20304 is a new compound for the study of the role and function of the KA receptors with the aim of understanding the involvement of these receptors in health and disease.
Collapse
Affiliation(s)
- Silke Buschbom-Helmke
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen OE, Denmark
| | - Pengfei Wang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen OE, Denmark
| | - Anna Alcaide
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen OE, Denmark
| | - Federico Miguez-Cabello
- Department of Pharmacology & Therapeutics, Faculty of Medicine, McGill University, H3G 0B1 Montréal, Canada
| | - Mario Carta
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, F-33000 Bordeaux, France
| | - Julio S Viotti
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, F-33000 Bordeaux, France
| | - Birgitte Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen OE, Denmark
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, F-33000 Bordeaux, France
| | - Derek Bowie
- Department of Pharmacology & Therapeutics, Faculty of Medicine, McGill University, H3G 0B1 Montréal, Canada
| | - Flemming Steen Jørgensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen OE, Denmark
| | - Darryl S Pickering
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen OE, Denmark
| | - Lennart Bunch
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen OE, Denmark
| |
Collapse
|
2
|
Bogdanović N, Segura-Covarrubias G, Zhang L, Tajima N. Structural dynamics of GluK2 kainate receptors in apo and partial agonist bound states. RESEARCH SQUARE 2023:rs.3.rs-3592604. [PMID: 38076992 PMCID: PMC10705692 DOI: 10.21203/rs.3.rs-3592604/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Kainate receptors (KARs) belong to the family of ionotropic glutamate receptors (iGluRs) and are tetrameric ligand-gated ion channels that regulate neurotransmitter release and excitatory synaptic transmission in the central nervous system. While KARs share overall architectures with other iGluR subfamilies, their dynamics are significantly different from those of other iGluRs. KARs are activated by both full and partial agonists. While there is less efficacy with partial agonists than with full agonists, the detailed mechanism has remained elusive. Here, we used cryo-electron microscopy to determine the structures of homomeric rat GluK2 KARs in the absence of ligands (apo) and in complex with a partial agonist. Intriguingly, the apo state KARs were captured in desensitized conformation. This structure confirms the KAR desensitization prior to activation. Structures of KARs complexed to the partial agonist domoate populate in domoate bound desensitized and non-active/non-desensitized states. These previously unseen intermediate structures highlight the molecular mechanism of partial agonism in KARs. Additionally, we show how N-glycans stabilized the ligand-binding domain dimer via cation/anion binding and modulated receptor gating properties using electrophysiology. Our findings provide vital structural and functional insights into the unique KAR gating mechanisms.
Collapse
Affiliation(s)
- Nebojša Bogdanović
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Ohio, 44106, USA
- Equal contribution
| | - Guadalupe Segura-Covarrubias
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Ohio, 44106, USA
- Equal contribution
| | - Lisa Zhang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Ohio, 44106, USA
| | - Nami Tajima
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Ohio, 44106, USA
| |
Collapse
|
3
|
Nishizawa S, Ouchi H, Suzuki H, Ohnishi T, Sasaki S, Oyagi Y, Kanakogi M, Matsumura Y, Nakagawa S, Asakawa T, Egi M, Inai M, Yoshimura F, Takita R, Kan T. Total synthesis of (-)-domoic acid, a potent ionotropic glutamate receptor agonist and the key compound in oceanic harmful algal blooms. Org Biomol Chem 2023; 21:1653-1656. [PMID: 36723220 DOI: 10.1039/d2ob02325c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The stereo-controlled total synthesis of (-)-domoic acid is described. The critical construction of the C1'-C2' Z-configuration was accomplished by taking advantage of an unsaturated lactam structure. The side chain fragment was introduced in the final stages of synthesis through a modified Julia-Kocieński reaction, aiming for its efficient derivatization.
Collapse
Affiliation(s)
- Shigeru Nishizawa
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Hitoshi Ouchi
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Hiroto Suzuki
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Takuma Ohnishi
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Shingo Sasaki
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Yu Oyagi
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Masaki Kanakogi
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Yoshitaka Matsumura
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Shunsuke Nakagawa
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Tomohiro Asakawa
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Masahiro Egi
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Makoto Inai
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Fumihiko Yoshimura
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Ryo Takita
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Toshiyuki Kan
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
4
|
Louzao MC, Vilariño N, Vale C, Costas C, Cao A, Raposo-Garcia S, Vieytes MR, Botana LM. Current Trends and New Challenges in Marine Phycotoxins. Mar Drugs 2022; 20:md20030198. [PMID: 35323497 PMCID: PMC8950113 DOI: 10.3390/md20030198] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023] Open
Abstract
Marine phycotoxins are a multiplicity of bioactive compounds which are produced by microalgae and bioaccumulate in the marine food web. Phycotoxins affect the ecosystem, pose a threat to human health, and have important economic effects on aquaculture and tourism worldwide. However, human health and food safety have been the primary concerns when considering the impacts of phycotoxins. Phycotoxins toxicity information, often used to set regulatory limits for these toxins in shellfish, lacks traceability of toxicity values highlighting the need for predefined toxicological criteria. Toxicity data together with adequate detection methods for monitoring procedures are crucial to protect human health. However, despite technological advances, there are still methodological uncertainties and high demand for universal phycotoxin detectors. This review focuses on these topics, including uncertainties of climate change, providing an overview of the current information as well as future perspectives.
Collapse
Affiliation(s)
- Maria Carmen Louzao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| | - Natalia Vilariño
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Carmen Vale
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Celia Costas
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Alejandro Cao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Sandra Raposo-Garcia
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Mercedes R. Vieytes
- Departamento de Fisiologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain;
| | - Luis M. Botana
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| |
Collapse
|
5
|
Abstract
Neural communication and modulation are complex processes. Ionotropic glutamate receptors (iGluRs) significantly contribute to mediating the fast-excitatory branch of neurotransmission in the mammalian brain. Kainate receptors (KARs), a subfamily of the iGluRs, act as modulators of the neuronal circuitry by playing important roles at both the post- and presynaptic sites of specific neurons. The functional tetrameric receptors are formed by two different gene families, low agonist affinity (GluK1-GluK3) and high agonist affinity (GluK4-GluK5) subunits. These receptors garnered attention in the past three decades, and since then, much work has been done to understand their localization, interactome, physiological functions, and regulation. Cloning of the receptor subunits (GluK1-GluK5) in the early 1990s led to recombinant expression of kainate receptors in heterologous systems. This facilitated understanding of the functional differences between subunit combinations, splice variants, trafficking, and drug discovery. Structural studies of individual domains and recent full-length homomeric and heteromeric kainate receptors have revealed unique functional mechanisms, which have answered several long-standing questions in the field of kainate receptor biology. In this chapter, we review the current understanding of kainate receptors and associated disorders.
Collapse
Affiliation(s)
- Surbhi Dhingra
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University, Pune, Maharashtra, India
| | - Juhi Yadav
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University, Pune, Maharashtra, India
| | - Janesh Kumar
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University, Pune, Maharashtra, India.
| |
Collapse
|
6
|
Maeno Y, Kotaki Y, Terada R, Hidaka M, Cho Y, Konoki K, Yotsu-Yamashita M. Preparation of domoic acid analogues using a bioconversion system, and their toxicity in mice. Org Biomol Chem 2021; 19:7894-7902. [PMID: 34549233 DOI: 10.1039/d1ob01378e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Domoic acid (1, DA), a member of the natural kainoid family, is a potent agonist of ionotropic glutamate receptors in the central nervous system. The chemical synthesis of DA and its derivatives requires considerable effort to establish a pyrrolidine ring containing three contiguous stereocenters. Recently, a biosynthetic cyclase for DA, DabC, was identified. This enzyme cyclizes the linear precursor of isodomoic acid A (IA) to IA, a bioactive DA analogue. In this study, we developed a bioconversion system to obtain DA analogues from linear substrates prepared by simple chemical synthesis using DabC expressed in Escherichia coli, in vivo. Three IA analogues with various substitutions at the C7'-geranyl terminus were prepared using this system: two minor natural analogues, 7'-methyl-IA (5) and 7'-hydroxy-IA (6), and one new unnatural analogue, 7'-amide-IA (7). In addition, the toxicity of these DA analogues in mice was examined by intracerebroventricular injection. Most of the mice injected with 5 (3 nmol) and 6 (3 nmol) did not show any adverse symptoms, whereas the mice injected with 7 (3 nmol) showed typical symptoms induced by DA (1, 0.7 nmol) and IA (2, 3 nmol). These results suggest that the 7'-carbonyl group in the side chain of IA (2) is crucial for its toxicity. The docking studies of DA, IA (2), 5, 6, and 7 to GluK1 supported these results.
Collapse
Affiliation(s)
- Yukari Maeno
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8572, Japan.
| | - Yuichi Kotaki
- Fukushima College, 1-1 Chigoike Miyashiro, Fukushima 960-0181, Japan
| | - Ryuta Terada
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Masafumi Hidaka
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8572, Japan.
| | - Yuko Cho
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8572, Japan.
| | - Keiichi Konoki
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8572, Japan.
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8572, Japan.
| |
Collapse
|
7
|
Mayer ML. Structural biology of kainate receptors. Neuropharmacology 2021; 190:108511. [PMID: 33798545 DOI: 10.1016/j.neuropharm.2021.108511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/31/2022]
Abstract
This review summarizes structural studies on kainate receptors that explain unique functional properties of this receptor family. A large number of structures have been solved for ligand binding domain dimer assemblies, giving insight into the subtype selective pharmacology of agonists, antagonists, and allosteric modulators. Structures and biochemical studies on the amino terminal domain reveal mechanisms that play a key role in assembly of heteromeric receptors. Surprisingly, structures of full length homomeric GluK2, GluK3 and heteromeric GluK2/GluK5, receptors reveal a novel structure for the desensitized state that is strikingly different from that for AMPA receptors.
Collapse
Affiliation(s)
- Mark L Mayer
- Porter Neuroscience Research Center, NINDS, NIH, 35A Convent Drive Room 3D 904, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
Jang S, Yang E, Kim D, Kim H, Kim E. Clmp Regulates AMPA and Kainate Receptor Responses in the Neonatal Hippocampal CA3 and Kainate Seizure Susceptibility in Mice. Front Synaptic Neurosci 2021; 12:567075. [PMID: 33408624 PMCID: PMC7779639 DOI: 10.3389/fnsyn.2020.567075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/02/2020] [Indexed: 12/05/2022] Open
Abstract
Synaptic adhesion molecules regulate synapse development through trans-synaptic adhesion and assembly of diverse synaptic proteins. Many synaptic adhesion molecules positively regulate synapse development; some, however, exert negative regulation, although such cases are relatively rare. In addition, synaptic adhesion molecules regulate the amplitude of post-synaptic receptor responses, but whether adhesion molecules can regulate the kinetic properties of post-synaptic receptors remains unclear. Here we report that Clmp, a homophilic adhesion molecule of the Ig domain superfamily that is abundantly expressed in the brain, reaches peak expression at a neonatal stage (week 1) and associates with subunits of AMPA receptors (AMPARs) and kainate receptors (KARs). Clmp deletion in mice increased the frequency and amplitude of AMPAR-mediated miniature excitatory post-synaptic currents (mEPSCs) and the frequency, amplitude, and decay time constant of KAR-mediated mEPSCs in hippocampal CA3 neurons. Clmp deletion had minimal impacts on evoked excitatory synaptic currents at mossy fiber-CA3 synapses but increased extrasynaptic KAR, but not AMPAR, currents, suggesting that Clmp distinctly inhibits AMPAR and KAR responses. Behaviorally, Clmp deletion enhanced novel object recognition and susceptibility to kainate-induced seizures, without affecting contextual or auditory cued fear conditioning or pattern completion-based contextual fear conditioning. These results suggest that Clmp negatively regulates hippocampal excitatory synapse development and AMPAR and KAR responses in the neonatal hippocampal CA3 as well as object recognition and kainate seizure susceptibility in mice.
Collapse
Affiliation(s)
- Seil Jang
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Esther Yang
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, South Korea
| | - Doyoun Kim
- Center for Drug Discovery Platform Research, Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
9
|
Tian Z, Clark BLM, Menard F. Kainic Acid-Based Agonists of Glutamate Receptors: SAR Analysis and Guidelines for Analog Design. ACS Chem Neurosci 2019; 10:4190-4198. [PMID: 31550120 DOI: 10.1021/acschemneuro.9b00349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A comprehensive survey of kainic acid analogs that have been tested for their biological activity is presented. Specifically, this review (1) gathers and compares over 100 kainoids according to a relative activity scale, (2) exposes structural features required to optimize affinity for kainate receptors, and (3) suggests design rules to create next-generation KA analogs. Literature SAR data are analyzed systematically and combined with the most recent crystallographic studies. In view of the renewed interest in neuroactive molecules, this review aims to help guide the efforts of organic synthesis laboratories, as well as to inform newcomers to KA/GluK research.
Collapse
Affiliation(s)
- Zhenlin Tian
- Department of Chemistry, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Brianna L. M. Clark
- Department of Chemistry, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Frederic Menard
- Department of Chemistry, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
10
|
Kumari J, Vinnakota R, Kumar J. Structural and Functional Insights into GluK3-kainate Receptor Desensitization and Recovery. Sci Rep 2019; 9:10254. [PMID: 31311973 PMCID: PMC6635489 DOI: 10.1038/s41598-019-46770-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022] Open
Abstract
GluK3-kainate receptors are atypical members of the iGluR family that reside at both the pre- and postsynapse and play a vital role in the regulation of synaptic transmission. For a better understanding of structural changes that underlie receptor functions, GluK3 receptors were trapped in desensitized and resting/closed states and structures analyzed using single particle cryo-electron microscopy. While the desensitized GluK3 has domain organization as seen earlier for another kainate receptor-GluK2, antagonist bound GluK3 trapped a resting state with only two LBD domains in dimeric arrangement necessary for receptor activation. Using structures as a guide, we show that the N-linked glycans at the interface of GluK3 ATD and LBD likely mediate inter-domain interactions and attune receptor-gating properties. The mutational analysis also identified putative N-glycan interacting residues. Our results provide a molecular framework for understanding gating properties unique to GluK3 and exploring the role of N-linked glycosylation in their modulation.
Collapse
Affiliation(s)
- Jyoti Kumari
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University, Maharashtra, Pune, 411007, India
| | - Rajesh Vinnakota
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University, Maharashtra, Pune, 411007, India
| | - Janesh Kumar
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University, Maharashtra, Pune, 411007, India.
| |
Collapse
|
11
|
Maeno Y, Kotaki Y, Terada R, Cho Y, Konoki K, Yotsu-Yamashita M. Six domoic acid related compounds from the red alga, Chondria armata, and domoic acid biosynthesis by the diatom, Pseudo-nitzschia multiseries. Sci Rep 2018; 8:356. [PMID: 29321590 PMCID: PMC5762911 DOI: 10.1038/s41598-017-18651-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/15/2017] [Indexed: 01/05/2023] Open
Abstract
Domoic acid (DA, 1), a potent neurotoxin that causes amnesic shellfish poisoning, has been found in diatoms and red algae. While biosynthetic pathway towards DA from geranyl diphosphate and L-glutamate has been previously proposed, its late stage is still unclear. Here, six novel DA related compounds, 7'-methyl-isodomoic acid A (2) and B (3), N-geranyl-L-glutamic acid (4), 7'-hydroxymethyl-isodomoic acid A (5) and B (6), and N-geranyl-3(R)-hydroxy-L-glutamic acid (7), were isolated from the red alga, Chondria armata, and their structures were determined. The compounds 4 and 7, linear compounds, are predictable as the precursors to form the DA pyrrolidine ring. The compounds 2 and 3 are thought as the cyclized products of 7; therefore, dehydration and electron transfer from the internal olefin of 7 is a possible mechanism for the pyrrolidine ring formation. One terminal methyl group of the side chain of 2 and 3 is predicted to be oxidized to hydroxymethyl (5, 6), and then to carboxylic acids, forming isodomoic acids A and B. Finally, the terminal olefin of isodomoic acid A would be isomerized to form DA. In addition, [15N, D]-labeled 4 was incorporated into DA using the diatom, Pseudo-nitzschia multiseries, demonstrating that 4 is the genuine precursor of DA.
Collapse
Affiliation(s)
- Yukari Maeno
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-0845, Japan
| | - Yuichi Kotaki
- Fukushima College, 1-1 Chigoike Miyashiro, Fukushima, 960-0181, Japan
| | - Ryuta Terada
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Korimoto, Kagoshima, 890-0065, Japan
| | - Yuko Cho
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-0845, Japan
| | - Keiichi Konoki
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-0845, Japan
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-0845, Japan.
| |
Collapse
|
12
|
Progressive changes in hippocampal cytoarchitecture in a neurodevelopmental rat model of epilepsy: implications for understanding presymptomatic epileptogenesis, predictive diagnosis, and targeted treatments. EPMA J 2017; 8:247-254. [PMID: 29021835 DOI: 10.1007/s13167-017-0111-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/10/2017] [Indexed: 12/26/2022]
Abstract
Epilepsies affect about 4% of the population and are frequently characterized by a prolonged "silent" period before the onset of spontaneous seizures. Most current animal models of epilepsy either involve acute seizure induction or kindling protocols that induce repetitive seizures. We have developed a rat model of epilepsy that is characterized by a slowly progressing series of behavioral abnormalities prior to the onset of behavioral seizures. In the current study, we further describe an accompanying progression of cytoarchitectural changes in the hippocampal formation. Groups of male and female SD rats received serial injections of a low dose of domoic acid (0.020 mg/kg) (or vehicle) throughout the second week of life. Postmortem hippocampal tissue was obtained on postnatal days 29, 64, and 90 and processed for glial fibrillary acidic protein (GFAP), NeuN, and calbindin expression. The data revealed no significant changes on postnatal day (PND) 29 but a significant increase in hilar NeuN-positive cells in some regions on PND 64 and 90 that were identified as ectopic granule cells. Further, an increase in GFAP positive cell counts and evidence of reactive astrogliosis was found on PND 90 but not at earlier time points. We conclude that changes in cellular expression, possibly due to on-going non-convulsive seizures, develop slowly in this model and may contribute to progressive brain dysfunction that culminates in a seizure-prone phenotype.
Collapse
|
13
|
Yasuno Y, Hamada M, Yoshida Y, Shimamoto K, Shigeri Y, Akizawa T, Konishi M, Ohfune Y, Shinada T. Structure–activity relationship study at C9 position of kaitocephalin. Bioorg Med Chem Lett 2016; 26:3543-6. [DOI: 10.1016/j.bmcl.2016.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023]
|
14
|
Lessons from crystal structures of kainate receptors. Neuropharmacology 2016; 112:16-28. [PMID: 27236079 DOI: 10.1016/j.neuropharm.2016.05.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/19/2016] [Accepted: 05/22/2016] [Indexed: 11/22/2022]
Abstract
Kainate receptors belong to the family of ionotropic glutamate receptors. These receptors assemble from five subunits (GluK1-5) into tetrameric ion channels. Kainate receptors are located at both pre- and postsynaptic membranes in the central nervous system where they contribute to excitatory synaptic transmission and modulate network excitability by regulating neurotransmitter release. Dysfunction of kainate receptors has been implicated in several neurological disorders such as epilepsy, schizophrenia and depression. Here we provide a review on the current understanding of kainate receptor structure and how they bind agonists, antagonists and ions. The first structure of the ligand-binding domain of the GluK1 subunit was reported in 2005, seven years after publication of the crystal structure of a soluble construct of the ligand-binding domain of the AMPA-type subunit GluA2. Today, a full-length structure has been determined of GluK2 by cryo electron microscopy to 7.6 Å resolution as well as 84 high-resolution crystal structures of N-terminal domains and ligand-binding domains, including agonist and antagonist bound structures, modulatory ions and mutations. However, there are still many unanswered questions and challenges in front of us. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.
Collapse
|
15
|
Zuloaga DG, Lahvis GP, Mills B, Pearce HL, Turner J, Raber J. Fetal domoic acid exposure affects lateral amygdala neurons, diminishes social investigation and alters sensory-motor gating. Neurotoxicology 2016; 53:132-140. [PMID: 26797589 PMCID: PMC5929993 DOI: 10.1016/j.neuro.2016.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 01/01/2023]
Abstract
Domoic acid (DA) is an algal neurotoxin that accumulates in marine fish and shellfish. DA can move across the placenta and concentrate in amniotic fluid, which can be swallowed during late gestation. DA also transfers to infants via milk. Preclinical studies to determine effects of developmental DA expose have primarily involved DA exposure during the postnatal period and little is known about late CNS effects following prenatal DA. In the present study, we tested the hypothesis that prenatal exposure of FVB mice to low levels of DA would result in diminished social interaction and sensory motor gating associated with alterations in parvalbumin immunoreactivity in relevant brain regions undergoing development during and following DA exposure. In addition to parvalbumin, we stained with NeuN for a neuronal specific nuclear protein to determine if neuronal loss followed prenatal DA exposure. A single moderate dose of DA administered during gestation produces diminishes social investigation and alters sensorimotor gating, behavioral effects more pronounced in males than females. These behavioral changes were associated with discrete alterations in the parvalbumin-positive subtype of GABAergic neurons in the dentate gyrus and lateral amygdala.
Collapse
Affiliation(s)
- D G Zuloaga
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States
| | - G P Lahvis
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States.
| | - B Mills
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States
| | - H L Pearce
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States
| | - J Turner
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States
| | - J Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States; Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, United States.
| |
Collapse
|
16
|
Guo Y, Wolter T, Kubař T, Sumser M, Trauner D, Elstner M. Molecular Dynamics Investigation of gluazo, a Photo-Switchable Ligand for the Glutamate Receptor GluK2. PLoS One 2015; 10:e0135399. [PMID: 26308344 PMCID: PMC4550381 DOI: 10.1371/journal.pone.0135399] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 07/21/2015] [Indexed: 11/25/2022] Open
Abstract
Photochromic ligands (PCLs), defined as photoswitchable molecules that are able to endow native receptors with a sensitivity towards light, have become a promising photopharmacological tool for various applications in biology. In general, PCLs consist of a ligand of the target receptor covalently linked to an azobenzene, which can be reversibly switched between two configurations upon light illumination. Gluazo, as a PCL that targets excitatory amino acid receptors, in its dark-adapted trans iso-form was characterized to be a partial agonist of the kainate glutamate receptor GluK2. Application of UV light leads to the formation of the cis form, with remarkedly reduced affinity towards GluK2. The mechanism of the change of ligand affinity induced by the photoisomerization was unresolved. The presented computational study explains how the isomerization of such a PCL affects the structural changes in the target receptor that lead to its activation.
Collapse
Affiliation(s)
- Yanan Guo
- Department of Theoretical Chemical Biology, Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131, Karlsruhe, Germany
| | - Tino Wolter
- Department of Theoretical Chemical Biology, Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131, Karlsruhe, Germany
| | - Tomáš Kubař
- Department of Theoretical Chemical Biology, Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131, Karlsruhe, Germany
| | - Martin Sumser
- Department of Chemistry, Ludwig-Maximilians-Universität München and Center of Integrated Protein Science, Butenandtstr. 5–13, 81377 Munich, Germany
| | - Dirk Trauner
- Department of Chemistry, Ludwig-Maximilians-Universität München and Center of Integrated Protein Science, Butenandtstr. 5–13, 81377 Munich, Germany
| | - Marcus Elstner
- Department of Theoretical Chemical Biology, Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131, Karlsruhe, Germany
| |
Collapse
|
17
|
Dawe GB, Aurousseau MR, Daniels BA, Bowie D. Retour aux sources: defining the structural basis of glutamate receptor activation. J Physiol 2015; 593:97-110. [PMID: 25556791 PMCID: PMC4293057 DOI: 10.1113/jphysiol.2014.277921] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/05/2014] [Indexed: 01/12/2023] Open
Abstract
Ionotropic glutamate receptors (iGluRs) are the major excitatory neurotransmitter receptor in the vertebrate CNS and, as a result, their activation properties lie at the heart of much of the neuronal network activity observed in the developing and adult brain. iGluRs have also been implicated in many nervous system disorders associated with postnatal development (e.g. autism, schizophrenia), cerebral insult (e.g. stroke, epilepsy), and disorders of the ageing brain (e.g. Alzheimer's disease, Parkinsonism). In view of this, an emphasis has been placed on understanding how iGluRs activate and desensitize in functional and structural terms. Early structural models of iGluRs suggested that the strength of the agonist response was primarily governed by the degree of closure induced in the ligand-binding domain (LBD). However, recent studies have suggested a more nuanced role for the LBD with current evidence identifying the iGluR LBD interface as a "hotspot" regulating agonist behaviour. Such ideas remain to be consolidated with recently solved structures of full-length iGluRs to account for the global changes that underlie channel activation and desensitization.
Collapse
Affiliation(s)
- G Brent Dawe
- Integrated Program in Neuroscience, McGill UniversityMontréal, Québec, Canada
- Department of Pharmacology and Therapeutics, McGill UniversityMontréal, Québec, Canada
| | - Mark R Aurousseau
- Graduate Program in Pharmacology, McGill UniversityMontréal, Québec, Canada
- Department of Pharmacology and Therapeutics, McGill UniversityMontréal, Québec, Canada
| | - Bryan A Daniels
- Department of Pharmacology and Therapeutics, McGill UniversityMontréal, Québec, Canada
| | - Derek Bowie
- Department of Pharmacology and Therapeutics, McGill UniversityMontréal, Québec, Canada
| |
Collapse
|
18
|
Reduced curvature of ligand-binding domain free-energy surface underlies partial agonism at NMDA receptors. Structure 2014; 23:228-236. [PMID: 25543253 DOI: 10.1016/j.str.2014.11.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/04/2014] [Accepted: 11/14/2014] [Indexed: 01/17/2023]
Abstract
NMDA receptors are ligand-gated ion channels that mediate excitatory synaptic transmission in the central nervous system. Partial agonists elicit submaximal channel activation, but crystal structures of the ligand-binding domains (LBDs) bound with partial and full agonists show little difference. To uncover the molecular mechanism for partial agonism, here we computed the free-energy surfaces of the GluN1 (an obligatory subunit of NMDA receptors) LBD bound with a variety of ligands. The free-energy minima are similarly positioned for full and partial agonists, but the curvatures are significantly reduced in the latter case, indicating higher probabilities for sampling conformations with a not fully closed domain cleft. The free-energy surfaces for antagonists have both shifted minima and further reduced curvatures. Reduced curvature of free-energy surface appears to explain well the partial agonism at NMDA receptors and may present a unique paradigm in producing graded responses for receptors in general.
Collapse
|
19
|
Fisher JL. The neurotoxin domoate causes long-lasting inhibition of the kainate receptor GluK5 subunit. Neuropharmacology 2014; 85:9-17. [PMID: 24859608 PMCID: PMC4107164 DOI: 10.1016/j.neuropharm.2014.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/01/2014] [Accepted: 05/05/2014] [Indexed: 02/04/2023]
Abstract
Ionotropic glutamate receptors (iGluRs) are responsible for fast excitatory neurotransmission in the mammalian brain, and are critical regulators of neuronal activity and synaptic plasticity. The three main types of iGluRs (AMPA, NMDA, and kainate receptors) are composed of distinct subunit populations. The tetrameric kainate receptors can be assembled from a combination of five different types of subunits (GluK1-GluK5). GluK1-3 subunits are able to produce functional homomeric receptors, while GluK4-5 are obligate heteromers, and must assemble with a GluK1-3 subunit. The neurotoxin domoate is widely used as an agonist at kainate-type receptors because it produces a less desensitizing response compared to glutamate. We have identified an additional, subunit-dependent action of domoate at recombinant kainate receptors. When applied to heteromeric GluK2/K5 receptors, domoate generates a small, long-lasting, tonic current. In addition, brief exposure to domoate inhibits the GluK5 subunit, preventing its activation by other agonists for several minutes. These characteristics are not associated with the GluK1, K2, or K4 subunits and can be prevented by a mutation in GluK5 that reduces agonist binding affinity. The results also show that the domoate-bound, GluK2/K5 heteromeric receptors can be fully activated by agonists acting through the GluK2 subunit, suggesting that the subunits within the tetramer can function independently to open the ion channel, and that the domoate-bound state is not a desensitized or blocked conformation. This study describes new properties associated with domoate action at kainate receptors, and further characterizes the distinct roles played by different subunits in heteromeric receptors.
Collapse
Affiliation(s)
- Janet L Fisher
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| |
Collapse
|
20
|
Scott H, Panin VM. The role of protein N-glycosylation in neural transmission. Glycobiology 2014; 24:407-17. [PMID: 24643084 DOI: 10.1093/glycob/cwu015] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent studies have explored the function of N-linked glycosylation in the nervous system, demonstrating essential roles of carbohydrate structures in neural development. The function of N-glycans in neural physiology remains less understood; however, increasing evidence indicates that N-glycans can play specific modulatory roles controlling neural transmission and excitability of neural circuits. These roles are mediated via effects on synaptic proteins involved in neurotransmitter release, transporters that regulate nerotransmitter concentrations, neurotransmitter receptors, as well as via regulation of proteins that control excitability and response to milieu stimuli, such as voltage-gated ion channels and transient receptor potential channels, respectively. Sialylated N-glycan structures are among the most potent modulators of cell excitability, exerting prominent effects on voltage gated Na(+) and K(+) channels. This modulation appears to be underlain by complex molecular mechanisms involving electrostatic effects, as well as interaction modes based on more specific steric effects and interactions with lectins and other molecules. Data also indicate that particular features of N-glycans, such as their location on a protein and structural characteristics, can be specifically associated with the effect of glycosylation. These features and their functional implications can vary between different cell types, which highlight the importance of in vivo analyses of glycan functions. Experimental challenges are associated with the overwhelming complexity of the nervous system and glycosylation pathways in vertebrates, and thus model organisms like Drosophila should help elucidate evolutionarily conserved mechanisms underlying glycan functions. Recent studies supported this notion and shed light on functions of several glycosylation genes involved in the regulation of the nervous system.
Collapse
Affiliation(s)
- Hilary Scott
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA
| | | |
Collapse
|
21
|
Scott H, Panin VM. N-glycosylation in regulation of the nervous system. ADVANCES IN NEUROBIOLOGY 2014; 9:367-94. [PMID: 25151388 DOI: 10.1007/978-1-4939-1154-7_17] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein N-glycosylation can influence the nervous system in a variety of ways by affecting functions of glycoproteins involved in nervous system development and physiology. The importance of N-glycans for different aspects of neural development has been well documented. For example, some N-linked carbohydrate structures were found to play key roles in neural cell adhesion and axonal targeting during development. At the same time, the involvement of glycosylation in the regulation of neural physiology remains less understood. Recent studies have implicated N-glycosylation in the regulation of neural transmission, revealing novel roles of glycans in synaptic processes and the control of neural excitability. N-Glycans were found to markedly affect the function of several types of synaptic proteins involved in key steps of synaptic transmission, including neurotransmitter release, reception, and uptake. Glycosylation also regulates a number of channel proteins, such as TRP channels that control responses to environmental stimuli and voltage-gated ion channels, the principal determinants of neuronal excitability. Sialylated carbohydrate structures play a particularly prominent part in the modulation of voltage-gated ion channels. Sialic acids appear to affect channel functions via several mechanisms, including charge interactions, as well as other interactions that probably engage steric effects and interactions with other molecules. Experiments also indicated that some structural features of glycans can be particularly important for their function. Since glycan structures can vary significantly between different cell types and depend on the metabolic state of the cell, it is important to analyze glycan functions using in vivo approaches. While the complexity of the nervous system and intricacies of glycosylation pathways can create serious obstacles for in vivo experiments in vertebrates, recent studies have indicated that more simple and experimentally tractable model organisms like Drosophila should provide important advantages for elucidating evolutionarily conserved functions of N-glycosylation in the nervous system.
Collapse
Affiliation(s)
- Hilary Scott
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA
| | | |
Collapse
|
22
|
Reiter A, Skerra A, Trauner D, Schiefner A. A Photoswitchable Neurotransmitter Analogue Bound to Its Receptor. Biochemistry 2013; 52:8972-4. [DOI: 10.1021/bi4014402] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alwin Reiter
- Munich Center for Integrated Protein Science (CIPS-M)
- Department
of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse
5-13, 81377 München, Germany
| | - Arne Skerra
- Munich Center for Integrated Protein Science (CIPS-M)
- Lehrstuhl
für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85350 Freising-Weihenstephan, Germany
| | - Dirk Trauner
- Munich Center for Integrated Protein Science (CIPS-M)
- Department
of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse
5-13, 81377 München, Germany
| | - André Schiefner
- Munich Center for Integrated Protein Science (CIPS-M)
- Lehrstuhl
für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85350 Freising-Weihenstephan, Germany
| |
Collapse
|
23
|
In silico insights of L-glutamate: structural features in vacuum and in complex with its receptor. JOURNAL OF AMINO ACIDS 2013; 2013:872058. [PMID: 24307941 PMCID: PMC3836412 DOI: 10.1155/2013/872058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/05/2013] [Indexed: 11/17/2022]
Abstract
Structural properties of the glutamate in vacuum and in complex with its receptor were analyzed. The analysis was focused on global properties, attempting to characterize features such as overall flexibility and common trends in the conformation set. The glutamate, as other ligands in complex with the receptor, adopts a spatial conformation that corresponds to one of the possible molecular equilibrium states in physiological conditions. The glutamate forms an extended structure for all cases, but the energy of the glutamate round out form is lower than the extended glutamate form. The results showed the glutamate as a flexible molecule, which can easily adapt to different interacting environments, and it can be considered as an approximation to address why glutamate interacts with a great number of molecules.
Collapse
|
24
|
Nayeem N, Mayans O, Green T. Correlating efficacy and desensitization with GluK2 ligand-binding domain movements. Open Biol 2013; 3:130051. [PMID: 23720540 PMCID: PMC3866869 DOI: 10.1098/rsob.130051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 05/08/2013] [Indexed: 02/06/2023] Open
Abstract
Gating of AMPA- and kainate-selective ionotropic glutamate receptors can be defined in terms of ligand affinity, efficacy and the rate and extent of desensitization. Crucial insights into all three elements have come from structural studies of the ligand-binding domain (LBD). In particular, binding-cleft closure is associated with efficacy, whereas dissociation of the dimer formed by neighbouring LBDs is linked with desensitization. We have explored these relationships in the kainate-selective subunit GluK2 by studying the effects of mutating two residues (K531 and R775) that form key contacts within the LBD dimer interface, but whose truncation unexpectedly attenuates desensitization. One mutation (K531A) also switches the relative efficacies of glutamate and kainate. LBD crystal structures incorporating these mutations revealed several conformational changes that together explain their phenotypes. K531 truncation results in new dimer contacts, consistent with slower desensitization and sideways movement in the ligand-binding cleft correlating with efficacy. The tested mutants also disrupted anion binding; no chloride was detected in the dimer-interface site, including in R775A where absence of chloride was the only structural change evident. From this, we propose that the charge balance in the GluK2 LBD dimer interface maintains a degree of instability, necessary for rapid and complete desensitization.
Collapse
Affiliation(s)
- Naushaba Nayeem
- Department of Pharmacology, University of Liverpool, Liverpool L69 3GE, UK
| | - Olga Mayans
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Tim Green
- Department of Pharmacology, University of Liverpool, Liverpool L69 3GE, UK
| |
Collapse
|
25
|
Tiedeken JA, Ramsdell JS. Persistent Neurological Damage Associated With Spontaneous Recurrent Seizures and Atypical Aggressive Behavior of Domoic Acid Epileptic Disease. Toxicol Sci 2013; 133:133-43. [DOI: 10.1093/toxsci/kft037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Mishina M, Uemura T, Yasumura M, Yoshida T. Molecular mechanism of parallel fiber-Purkinje cell synapse formation. Front Neural Circuits 2012. [PMID: 23189042 PMCID: PMC3505014 DOI: 10.3389/fncir.2012.00090] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The cerebellum receives two excitatory afferents, the climbing fiber (CF) and the mossy fiber-parallel fiber (PF) pathway, both converging onto Purkinje cells (PCs) that are the sole neurons sending outputs from the cerebellar cortex. Glutamate receptor δ2 (GluRδ2) is expressed selectively in cerebellar PCs and localized exclusively at the PF-PC synapses. We found that a significant number of PC spines lack synaptic contacts with PF terminals and some of residual PF-PC synapses show mismatching between pre- and postsynaptic specializations in conventional and conditional GluRδ2 knockout mice. Studies with mutant mice revealed that in addition to PF-PC synapse formation, GluRδ2 is essential for synaptic plasticity, motor learning, and the restriction of CF territory. GluRδ2 regulates synapse formation through the amino-terminal domain, while the control of synaptic plasticity, motor learning, and CF territory is mediated through the carboxyl-terminal domain. Thus, GluRδ2 is the molecule that bridges synapse formation and motor learning. We found that the trans-synaptic interaction of postsynaptic GluRδ2 and presynaptic neurexins (NRXNs) through cerebellin 1 (Cbln1) mediates PF-PC synapse formation. The synaptogenic triad is composed of one molecule of tetrameric GluRδ2, two molecules of hexameric Cbln1 and four molecules of monomeric NRXN. Thus, GluRδ2 triggers synapse formation by clustering four NRXNs. These findings provide a molecular insight into the mechanism of synapse formation in the brain.
Collapse
Affiliation(s)
- Masayoshi Mishina
- Brain Science Laboratory, The Research Organization of Science and Technology, Ritsumeikan University Shiga, Japan ; Molecular Neurobiology and Pharmacology, Graduate School of Medicine, The University of Tokyo Tokyo, Japan
| | | | | | | |
Collapse
|
27
|
Tiedeken JA, Muha N, Ramsdell JS. A Cupric Silver Histochemical Analysis of Domoic Acid Damage to Olfactory Pathways Following Status Epilepticus in a Rat Model for Chronic Recurrent Spontaneous Seizures and Aggressive Behavior. Toxicol Pathol 2012; 41:454-69. [DOI: 10.1177/0192623312453521] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The amnesic shellfish toxin, domoic acid, interferes with glutamatergic pathways leading to neuronal damage, most notably causing memory loss and seizures. In this study, the authors utilized a recently developed rat model for domoic acid–induced epilepsy, an emerging disease appearing in California sea lions weeks to months after poisoning, to identify structural damage that may lead to a permanent epileptic state. Sprague Dawley rats were kindled with several low hourly intraperitoneal doses of domoic acid until a state of status epilepticus (SE) appears. This kindling approach has previously been shown to induce a permanent state of epileptic disease in 96% animals within 6 months. Three animals were selected for neurohistology a week after the initial SE. An amino cupric silver staining method using neutral red counterstain was used on every eighth 40 µm coronal section from each brain to highlight neural degeneration from the olfactory bulb through the brain stem. The most extensive damage was found in the olfactory bulb and related olfactory pathways, including the anterior/medial olfactory cortices, endopiriform nucleus, and entorhinal cortex. These findings indicate that damage to olfactory pathways is prominent in a rat model for domoic acid–induced chronic recurrent spontaneous seizures and aggressive behavior.
Collapse
Affiliation(s)
- Jessica A. Tiedeken
- Marine Biotoxins Program, Center for Coastal Environmental Health and Biomolecular Research, National Ocean Service, Charleston, South Carolina, USA
| | - Noah Muha
- Marine Biotoxins Program, Center for Coastal Environmental Health and Biomolecular Research, National Ocean Service, Charleston, South Carolina, USA
| | - John S. Ramsdell
- Marine Biotoxins Program, Center for Coastal Environmental Health and Biomolecular Research, National Ocean Service, Charleston, South Carolina, USA
| |
Collapse
|
28
|
Abstract
Elucidation of molecular mechanisms of synapse formation is a prerequisite for the understanding of neural wiring, higher brain functions, and mental disorders. The trans-synaptic interaction of postsynaptic glutamate receptor δ2 (GluRδ2) and presynaptic neurexins (NRXNs) through cerebellin precursor protein 1 (Cbln1) mediates synapse formation in vivo in the cerebellum. Here, we asked how the trans-synaptic triad induces synapse formation. Native GluRδ2 existed as a tetramer in the membrane, whereas the N-terminal domain (NTD) of GluRδ2 formed a stable homodimer. When incubated with cultured mouse cerebellar granule cells (GCs), dimeric GluRδ2-NTD and Cbln1 exerted little effect on the accumulation of punctate immunostaining signals for Bassoon and vesicular glutamate transporter 1 in GC axons. However, tetramerized GluRδ2-NTD stimulated the accumulation of these presynaptic proteins in the axons. Analysis of Cbln1 mutants suggested that the binding sites of GluRδ2 and NRXN1β on Cbln1 are differential. Furthermore, there was no competition in the binding to Cbln1 between GluRδ2-NTD and the extracellular domain (ECD) of NRXN1β. Thus, GluRδ2 and Cbln1 interacted with each other rather independently of Cbln1-NRXN1β interaction and vice versa. Gel filtration and isothermal titration calorimetry analyses consistently showed that dimeric GluRδ2-NTD and hexameric Cbln1 assembled in the 1:1 ratio, whereas hexameric Cbln1 and the laminin-neurexin-sex hormone-binding globulin domain of NRXN1β-ECD assembled in the 1:2 ratio. Thus, the synaptogenic triad is assembled from tetrameric GluRδ2, hexameric Cbln1, and monomeric NRXN in the ratio of 1:2:4. These results suggest that GluRδ2 triggers synapse formation by clustering four NRXNs through triad formation.
Collapse
|
29
|
Fehrentz T, Schönberger M, Trauner D. Optochemical Genetics. Angew Chem Int Ed Engl 2011; 50:12156-82. [DOI: 10.1002/anie.201103236] [Citation(s) in RCA: 316] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Indexed: 11/09/2022]
|
30
|
|
31
|
Unno M, Shinohara M, Takayama K, Tanaka H, Teruya K, Doh-ura K, Sakai R, Sasaki M, Ikeda-Saito M. Binding and selectivity of the marine toxin neodysiherbaine A and its synthetic analogues to GluK1 and GluK2 kainate receptors. J Mol Biol 2011; 413:667-83. [PMID: 21893069 DOI: 10.1016/j.jmb.2011.08.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 08/11/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022]
Abstract
Dysiherbaine (DH) and neodysiherbaine A (NDH) selectively bind and activate two kainate-type ionotropic glutamate receptors, GluK1 and GluK2. The ligand-binding domains of human GluK1 and GluK2 were crystallized as bound forms with a series of DH analogues including DH, NDH, 8-deoxy-NDH, 9-deoxy-NDH and 8,9-dideoxy-NDH (MSVIII-19), isolated from natural sources or prepared by total synthesis. Since the DH analogues exhibit a wide range of binding affinities and agonist efficacies, it follows that the detailed analysis of crystal structure would provide us with a significant opportunity to elucidate structural factors responsible for selective binding and some aspects of gating efficacy. We found that differences in three amino acids (Thr503, Ser706 and Ser726 in GluK1 and Ala487, Asn690 and Thr710 in GluK2) in the ligand-binding pocket generate differences in the binding modes of NDH to GluK1 and GluK2. Furthermore, deletion of the C(9) hydroxy group in NDH alters the ligand conformation such that it is no longer suited for binding to the GluK1 ligand-binding pocket. In GluK2, NDH pushes and rotates the side chain of Asn690 (substituted for Ser706 in GluK1) and disrupts an interdomain hydrogen bond with Glu409. The present data support the idea that receptor selectivities of DH analogues resulted from the differences in the binding modes of the ligands in GluK1/GluK2 and the steric repulsion of Asn690 in GluK2. All ligands, regardless of agonist efficacy, induced full domain closure. Consequently, ligand efficacy and domain closure did not directly coincide with DH analogues and the kainate receptors.
Collapse
Affiliation(s)
- Masaki Unno
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai, Naka, Ibaraki 319-1106, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ahmed AH, Wang S, Chuang HH, Oswald RE. Mechanism of AMPA receptor activation by partial agonists: disulfide trapping of closed lobe conformations. J Biol Chem 2011; 286:35257-66. [PMID: 21846932 PMCID: PMC3186401 DOI: 10.1074/jbc.m111.269001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/08/2011] [Indexed: 11/06/2022] Open
Abstract
The mechanism by which agonist binding to an ionotropic glutamate receptor leads to channel opening is a central issue in molecular neurobiology. Partial agonists are useful tools for studying the activation mechanism because they produce full channel activation with lower probability than full agonists. Structural transitions that determine the efficacy of partial agonists can provide information on the trigger that begins the channel-opening process. The ligand-binding domain of AMPA receptors is a bilobed structure, and the closure of the lobes is associated with channel activation. One possibility is that partial agonists sterically block full lobe closure but that partial degrees of closure trigger the channel with a lower probability. Alternatively, full lobe closure may be required for activation, and the stability of the fully closed state could determine efficacy with the fully closed state having a lower stability when bound to partial relative to full agonists. Disulfide-trapping experiments demonstrated that even extremely low efficacy ligands such as 6-cyano-7-nitroquinoxaline-2,3-dione can produce a full lobe closure, presumably with low probability. The results are consistent the hypothesis that the efficacy is determined at least in part by the stability of the state in which the lobes are fully closed.
Collapse
Affiliation(s)
| | - Shu Wang
- Biomedical Sciences, Cornell University, Ithaca, New York 14853
| | - Huai-Hu Chuang
- Biomedical Sciences, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
33
|
Postila PA, Ylilauri M, Pentikäinen OT. Full and partial agonism of ionotropic glutamate receptors indicated by molecular dynamics simulations. J Chem Inf Model 2011; 51:1037-47. [PMID: 21500800 DOI: 10.1021/ci2000055] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) are synaptic proteins that facilitate signal transmission in the central nervous system. Extracellular iGluR cleft closure is linked to receptor activation; however, the mechanism underlying partial agonism is not entirely understood. Full agonists close the bilobed ligand-binding domain (LBD), while antagonists prevent closure; the transmembrane ion channel either opens or stays closed, respectively. Although some bulky partial agonists produce intermediate iGluR-LBD closure, the available crystal structures also imply that the cleft can be shut with certain partial agonists. Recently, we have shown that the iGluR-LBD closure stage can be recreated by inserting a ligand into the closed cleft and simulating the ligand-receptor complex with molecular dynamics. Our simulations indicate that partial agonist binding does not necessarily prevent full receptor cleft closure; instead, it destabilizes cleft closure. Interdomain hydrogen bonds were studied thoroughly, and one hydrogen bond, in particular, was consistently disrupted by bound partial agonists. Accordingly, the simulation protocol presented here can be used to categorize compounds in silico as partial or full agonists for iGluRs.
Collapse
Affiliation(s)
- Pekka A Postila
- Department of Biological and Environmental Science, P.O. Box 35, University of Jyväskylä , FI-40014, Finland
| | | | | |
Collapse
|
34
|
Zhou WH, Guo XC, Zhao HQ, Wu SX, Yang HH, Wang XR. Molecularly imprinted polymer for selective extraction of domoic acid from seafood coupled with high-performance liquid chromatographic determination. Talanta 2011; 84:777-82. [DOI: 10.1016/j.talanta.2011.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 01/27/2011] [Accepted: 02/08/2011] [Indexed: 11/17/2022]
|
35
|
Rambhadran A, Gonzalez J, Jayaraman V. Conformational changes at the agonist binding domain of the N-methyl-D-aspartic acid receptor. J Biol Chem 2011; 286:16953-7. [PMID: 21454656 DOI: 10.1074/jbc.m111.224576] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The conformational changes in the agonist binding domain of the glycine-binding GluN1 and glutamate-binding GluN2A subunits of the N-methyl D-aspartic acid receptor upon binding agonists of varying efficacy have been investigated by luminescence resonance energy transfer (LRET) measurements. The LRET-based distances indicate a cleft closure conformational change at the GluN1 subunit upon binding agonists; however, no significant changes in the cleft closure are observed between partial and full agonists. This is consistent with the previously reported crystal structures for the isolated agonist binding domain of this receptor. Additionally, the LRET-based distances show that the agonist binding domain of the glutamate-binding GluN2A subunit exhibits a graded cleft closure with the extent of cleft closure being proportional to the extent of activation, indicating that the mechanism of activation in this subunit is similar to that of the glutamate binding α-amino-5-methyl-3-hydroxy-4-isoxazole propionate and kainate subtypes of the ionotropic glutamate receptors.
Collapse
Affiliation(s)
- Anu Rambhadran
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
36
|
Abstract
VIDEO ABSTRACT Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that mediate chemical communication between neurons at synapses. A variant iGluR subfamily, the Ionotropic Receptors (IRs), was recently proposed to detect environmental volatile chemicals in olfactory cilia. Here, we elucidate how these peripheral chemosensors have evolved mechanistically from their iGluR ancestors. Using a Drosophila model, we demonstrate that IRs act in combinations of up to three subunits, comprising individual odor-specific receptors and one or two broadly expressed coreceptors. Heteromeric IR complex formation is necessary and sufficient for trafficking to cilia and mediating odor-evoked electrophysiological responses in vivo and in vitro. IRs display heterogeneous ion conduction specificities related to their variable pore sequences, and divergent ligand-binding domains function in odor recognition and cilia localization. Our results provide insights into the conserved and distinct architecture of these olfactory and synaptic ion channels and offer perspectives into the use of IRs as genetically encoded chemical sensors.
Collapse
|
37
|
MacLean DM, Wong AYC, Fay AM, Bowie D. Cations but not anions regulate the responsiveness of kainate receptors. J Neurosci 2011; 31:2136-44. [PMID: 21307250 PMCID: PMC6633048 DOI: 10.1523/jneurosci.4314-10.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/30/2010] [Accepted: 12/06/2010] [Indexed: 11/21/2022] Open
Abstract
Kainate-selective ionotropic glutamate receptors are unique among ligand-gated ion channels in their obligate requirement of external anions and cations for activation. Although it is established that the degree of kainate receptor (KAR) activation is shaped by the chemical nature of the agonist molecule, the possible complementary role of external ions has yet to be examined. Here we show that external cations but not anions regulate the responsiveness to a range of full and partial agonists acting on rat GluK2 receptors. This observation is unexpected as previous work has assumed anions and cations affect KARs in an identical manner through functionally coupled binding sites. However, our data demonstrate that anion- and cation-binding pockets behave discretely. We suggest cations uniquely regulate a pregating or flipping step that impacts the closed-cleft stability of the agonist-binding domain (ABD). This model departs from a previous proposal that KAR agonist efficacy is governed by the degree of closure elicited in the ABD by ligand binding. Our findings are, however, in line with recent studies on Cys-loop ligand-gated ion channels suggesting that the "flipping" mechanism has been conserved by structurally diverse ligand-gated ion channel families as a common means of regulating neurotransmitter behavior.
Collapse
Affiliation(s)
- David M. MacLean
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada H3G OB1
| | - Adrian Y. C. Wong
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada H3G OB1
| | - Anne-Marie Fay
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada H3G OB1
| | - Derek Bowie
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada H3G OB1
| |
Collapse
|
38
|
Contractor A, Mulle C, Swanson GT. Kainate receptors coming of age: milestones of two decades of research. Trends Neurosci 2011; 34:154-63. [PMID: 21256604 DOI: 10.1016/j.tins.2010.12.002] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 12/16/2010] [Accepted: 12/18/2010] [Indexed: 11/18/2022]
Abstract
Two decades have passed since the first report of the cloning of a kainate-type glutamate receptor (KAR) subunit. The intervening years have seen a rapid growth in our understanding of the biophysical properties and function of KARs in the brain. This research has led to an appreciation that KARs play very distinct roles at synapses relative to other members of the glutamate-gated ion channel receptor family, despite structural and functional commonalities. The surprisingly diverse and complex nature of KAR signaling underlies their unique impact upon neuronal networks through their direct and indirect effects on synaptic transmission, and their prominent role in regulating cell excitability. This review pieces together highlights from the two decades of research subsequent to the cloning of the first subunit, and provides an overview of our current understanding of the role of KARs in the CNS and their potential importance to neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Anis Contractor
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
39
|
Kainate receptor modulation by sodium and chloride. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 717:93-113. [PMID: 21713670 DOI: 10.1007/978-1-4419-9557-5_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The kainate-type glutamate receptor displays strong modulation by monovalent anions and cations. This modulation is independent of permeation of the ion channel. Instead, structural, computational and biophysical evidence shows that receptor activity is controlled by binding of sodium and chloride ions at sites that stabilize active dimers of glutamate binding domains. Modulation by monovalent ions is a surprisingly general property across ion channel families. However, evidence of a physiological role for ion-dependent effects on glutamate receptors is lacking, perhaps reflecting the adventitious use of ions as structural components of the kainate receptor. "ergo, Hercules, vita humanior sine sale non quit degree […]" "Heaven known, a civilized life is impossible without salt" -Pliny the Elder, Natural History XXXI 88.
Collapse
|
40
|
|
41
|
Lemière G, Sedehizadeh S, Toueg J, Fleary-Roberts N, Clayden J. A general synthetic approach to the amnesic shellfish toxins: total synthesis of (−)-isodomoic acid B, (−)-isodomoic acid E and (−)-isodomoic acid F. Chem Commun (Camb) 2011; 47:3745-7. [DOI: 10.1039/c1cc00048a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Nakagawa T. The biochemistry, ultrastructure, and subunit assembly mechanism of AMPA receptors. Mol Neurobiol 2010; 42:161-84. [PMID: 21080238 PMCID: PMC2992128 DOI: 10.1007/s12035-010-8149-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 11/02/2010] [Indexed: 12/25/2022]
Abstract
The AMPA-type ionotropic glutamate receptors (AMPA-Rs) are tetrameric ligand-gated ion channels that play crucial roles in synaptic transmission and plasticity. Our knowledge about the ultrastructure and subunit assembly mechanisms of intact AMPA-Rs was very limited. However, the new studies using single particle EM and X-ray crystallography are revealing important insights. For example, the tetrameric crystal structure of the GluA2cryst construct provided the atomic view of the intact receptor. In addition, the single particle EM structures of the subunit assembly intermediates revealed the conformational requirement for the dimer-to-tetramer transition during the maturation of AMPA-Rs. These new data in the field provide new models and interpretations. In the brain, the native AMPA-R complexes contain auxiliary subunits that influence subunit assembly, gating, and trafficking of the AMPA-Rs. Understanding the mechanisms of the auxiliary subunits will become increasingly important to precisely describe the function of AMPA-Rs in the brain. The AMPA-R proteomics studies continuously reveal a previously unexpected degree of molecular heterogeneity of the complex. Because the AMPA-Rs are important drug targets for treating various neurological and psychiatric diseases, it is likely that these new native complexes will require detailed mechanistic analysis in the future. The current ultrastructural data on the receptors and the receptor-expressing stable cell lines that were developed during the course of these studies are useful resources for high throughput drug screening and further drug designing. Moreover, we are getting closer to understanding the precise mechanisms of AMPA-R-mediated synaptic plasticity.
Collapse
Affiliation(s)
- Terunaga Nakagawa
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
43
|
Frydenvang K, Pickering DS, Greenwood JR, Krogsgaard-Larsen N, Brehm L, Nielsen B, Vogensen SB, Hald H, Kastrup JS, Krogsgaard-Larsen P, Clausen RP. Biostructural and pharmacological studies of bicyclic analogues of the 3-isoxazolol glutamate receptor agonist ibotenic acid. J Med Chem 2010; 53:8354-61. [PMID: 21067182 DOI: 10.1021/jm101218a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe an improved synthesis and detailed pharmacological characterization of the conformationally restricted analogue of the naturally occurring nonselective glutamate receptor agonist ibotenic acid (RS)-3-hydroxy-4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridine-7-carboxylic acid (7-HPCA, 5) at AMPA receptor subtypes. Compound 5 was shown to be a subtype-discriminating agonist at AMPA receptors with higher binding affinity and functional potency at GluA1/2 compared to GluA3/4, unlike the isomeric analogue (RS)-3-hydroxy-4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridine-5-carboxylic acid (5-HPCA, 4) that binds to all AMPA receptor subtypes with comparable potency. Biostructural X-ray crystallographic studies of 4 and 5 reveal different binding modes of (R)-4 and (S)-5 in the GluA2 agonist binding domain. WaterMap analysis of the GluA2 and GluA4 binding pockets with (R)-4 and (S)-5 suggests that the energy of hydration sites is ligand dependent, which may explain the observed selectivity.
Collapse
|
44
|
Vijayan R, Sahai MA, Czajkowski T, Biggin PC. A comparative analysis of the role of water in the binding pockets of ionotropic glutamate receptors. Phys Chem Chem Phys 2010; 12:14057-66. [PMID: 20856958 DOI: 10.1039/c004336b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The binding pockets within proteins often contain water molecules. The ligand-binding core of ionotropic glutamate receptors represents an example where the binding pocket has many crystallographically reported waters, but the precise role remains unclear. It is also unclear to what extent the dynamic properties of these waters are conserved across the different receptor subtypes. In order to shed some light on these aspects we have performed multiple molecular dynamics simulations of the ligand binding core of four glutamate bound iGluR structures (GluA2, GluK1, GluK2, and GluN2A) and one apo structure (GluA2). We find that the water positions are reproduced from the simulations, but they also reveal that all but one water molecule in the binding site can be rearranged or replaced with water molecules from the bulk that enter the binding site through transient water channels. This one exception is not reported in the apo crystal structure but within 15 ns of simulation, a water molecule enters the site from the bulk suggesting that it is a favoured position regardless of the state of the protein. Further calculations demonstrate that whilst it is not needed in order to be able to predict the correct binding pose, it does contribute a large favourable interaction energy. We also find that one conserved water has a much stronger interaction with the protein in GluA2, GluK1 and GluK2 compared to the GluN2A receptor. The position of this water molecule is such that it can influence the dynamics of the proposed switch in the GluA2 and GluK1/2 receptors.
Collapse
Affiliation(s)
- Ranjit Vijayan
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | | | | | |
Collapse
|
45
|
Sawant PM, Tyndall JDA, Holland PT, Peake BM, Mountfort DO, Kerr DS. In vivo seizure induction and affinity studies of domoic acid and isodomoic acids-D, -E and -F. Neuropharmacology 2010; 59:129-38. [PMID: 20416329 DOI: 10.1016/j.neuropharm.2010.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 03/15/2010] [Accepted: 03/31/2010] [Indexed: 11/20/2022]
Abstract
Domoic acid and its isomers are produced via algal blooms and are found in high concentrations in shellfish. Here, we assessed the acute seizurogenic potencies of isomers-D, -E and -F and their binding affinities at heterogeneous populations of KA receptors from rat cerebrum. In addition, binding affinities of all six isomers (Iso-A through -F) were assessed at AMPA receptors. Radioligand displacement studies indicated that the seizurogenic potency of Iso-F (E-configuration) closely correlates with its affinities at both KA and AMPA receptors, whereas isomers-D (Z) and -E (E), which exhibit distinctly lower seizurogenic potencies, are quite weak displacers. Previously observed functional potencies for isomers-A, -B and -C (Sawant et al., 2008) correlated with AMPA receptor affinities observed here. Taken together, these findings call into question previous structure-activity rules. Significantly, in our hands, Iso-D was ten-fold less potent than Iso-F. To further explain observed links between structural conformation and functional potency, molecular modeling was employed. Modeling results closely matched the rank order of potency and binding data observed. We further assessed the efficacy of isomers-D, -E and -F as pharmacological preconditioning agents. Acute preconditioning with low-dose Iso-D, -E or -F, before high-dose DA failed to impart behavioural tolerance. This study has shed new light on structural conformations affecting non-NMDA ionotropic glutamate receptor binding and functional potency, and provides a foundation for future work in areas of AMPA and KA receptor modeling.
Collapse
Affiliation(s)
- P M Sawant
- Department of Pharmacology and Toxicology, University of Otago School of Medical Sciences, Dunedin, New Zealand.
| | | | | | | | | | | |
Collapse
|
46
|
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 2010; 62:405-96. [PMID: 20716669 PMCID: PMC2964903 DOI: 10.1124/pr.109.002451] [Citation(s) in RCA: 2682] [Impact Index Per Article: 178.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.
Collapse
Affiliation(s)
- Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322-3090, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Neurological disease rises from ocean to bring model for human epilepsy to life. Toxins (Basel) 2010; 2:1646-75. [PMID: 22069654 PMCID: PMC3153267 DOI: 10.3390/toxins2071646] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 05/28/2010] [Accepted: 06/11/2010] [Indexed: 01/20/2023] Open
Abstract
Domoic acid of macroalgal origin was used for traditional and medicinal purposes in Japan and largely forgotten until its rediscovery in diatoms that poisoned 107 people after consumption of contaminated mussels. The more severely poisoned victims had seizures and/or amnesia and four died; however, one survivor unexpectedly developed temporal lobe epilepsy (TLE) a year after the event. Nearly a decade later, several thousand sea lions have stranded on California beaches with neurological symptoms. Analysis of the animals stranded over an eight year period indicated five clusters of acute neurological poisoning; however, nearly a quarter have stranded individually outside these events with clinical signs of a chronic neurological syndrome similar to TLE. These poisonings are not limited to sea lions, which serve as readily observed sentinels for other marine animals that strand during domoic acid poisoning events, including several species of dolphin and whales. Acute domoic acid poisoning is five-times more prominent in adult female sea lions as a result of the proximity of their year-round breeding grounds to major domoic acid bloom events. The chronic neurological syndrome, on the other hand, is more prevalent in young animals, with many potentially poisoned in utero. The sea lion rookeries of the Channel Islands are at the crossroads of domoic acid producing harmful algal blooms and a huge industrial discharge site for dichlorodiphenyltrichloroethane (DDTs). Studies in experimental animals suggest that chronic poisoning observed in immature sea lions may result from a spatial and temporal coincidence of DDTs and domoic acid during early life stages. Emergence of an epilepsy syndrome from the ocean brings a human epilepsy model to life and provides unexpected insights into interaction with legacy contaminants and expression of disease at different life stages.
Collapse
|
48
|
Alushin GM, Jane D, Mayer ML. Binding site and ligand flexibility revealed by high resolution crystal structures of GluK1 competitive antagonists. Neuropharmacology 2010; 60:126-34. [PMID: 20558186 DOI: 10.1016/j.neuropharm.2010.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 06/08/2010] [Indexed: 11/28/2022]
Abstract
The availability of crystal structures for the ligand binding domains of ionotropic glutamate receptors, combined with their key role in synaptic function in the normal and diseased brain, offers a unique selection of targets for pharmaceutical research compared to other drug targets for which the atomic structure of the ligand binding site is not known. Currently only a few antagonist structures have been solved, and these reveal ligand specific conformational changes that hinder rational drug design. Here we report high resolution crystal structures for three kainate receptor GluK1 antagonist complexes which reveal new and unexpected modes of binding, highlighting the continued need for experimentally determined receptor-ligand complexes.
Collapse
Affiliation(s)
- Gregory M Alushin
- Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, NICHD, NIH, DHHS, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
49
|
Das U, Kumar J, Mayer ML, Plested AJR. Domain organization and function in GluK2 subtype kainate receptors. Proc Natl Acad Sci U S A 2010; 107:8463-8. [PMID: 20404149 PMCID: PMC2889583 DOI: 10.1073/pnas.1000838107] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glutamate receptor ion channels (iGluRs) are excitatory neurotransmitter receptors with a unique molecular architecture in which the extracellular domains assemble as a dimer of dimers. The structure of individual dimer assemblies has been established previously for both the isolated ligand-binding domain (LBD) and more recently for the larger amino terminal domain (ATD). How these dimers pack to form tetrameric assemblies in intact iGluRs has remained controversial. Using recently solved crystal structures for the GluK2 kainate receptor ATD as a guide, we performed cysteine mutant cross-linking experiments in full-length tetrameric GluK2 to establish how the ATD packs in a dimer of dimers assembly. A similar approach, using a full-length AMPA receptor GluA2 crystal structure as a guide, was used to design cysteine mutant cross-links for the GluK2 LBD dimer of dimers assembly. The formation of cross-linked tetramers in full-length GluK2 by combinations of ATD and LBD mutants which individually produce only cross-linked dimers suggests that subunits in the ATD and LBD layers swap dimer partners. Functional studies reveal that cross-linking either the ATD or the LBD inhibits activation of GluK2 and that, in the LBD, cross-links within and between dimers have different effects. These results establish that kainate and AMPA receptors have a conserved extracellular architecture and provide insight into the role of individual dimer assemblies in activation of ion channel gating.
Collapse
Affiliation(s)
- Utpal Das
- Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Janesh Kumar
- Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Mark L. Mayer
- Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Andrew J. R. Plested
- Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany; and
- Neurocure, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
50
|
Ahmed AH, Oswald RE. Piracetam defines a new binding site for allosteric modulators of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors. J Med Chem 2010; 53:2197-203. [PMID: 20163115 PMCID: PMC2872987 DOI: 10.1021/jm901905j] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Glutamate receptors are the most prevalent excitatory neurotransmitter receptors in the vertebrate central nervous system and are important potential drug targets for cognitive enhancement and the treatment of schizophrenia. Allosteric modulators of AMPA receptors promote dimerization by binding to a dimer interface and reducing desensitization and deactivation. The pyrrolidine allosteric modulators, piracetam and aniracetam, were among the first of this class of drugs to be discovered. We have determined the structure of the ligand binding domain of the AMPA receptor subtypes GluA2 and GluA3 with piracetam and a corresponding structure of GluA3 with aniracetam. Both drugs bind to GluA2 and GluA3 in a very similar manner, suggesting little subunit specificity. However, the binding sites for piracetam and aniracetam differ considerably. Aniracetam binds to a symmetrical site at the center of the dimer interface. Piracetam binds to multiple sites along the dimer interface with low occupation, one of which is a unique binding site for potential allosteric modulators. This new site may be of importance in the design of new allosteric regulators.
Collapse
Affiliation(s)
| | - Robert E. Oswald
- Address correspondence to: Robert E. Oswald, Department of Molecular Medicine, Cornell University, Ithaca, NY 14853 USA, Tel. 1-607-253-3877, Fax. 1-607-253-3659,
| |
Collapse
|