1
|
Costa ISD, Junot T, Silva FL, Felix W, Cardozo Fh JL, Pereira de Araujo AF, Pais do Amaral C, Gonçalves S, Santos NC, Leite JRSA, Bloch C, Brand GD. Occurrence and evolutionary conservation analysis of α-helical cationic amphiphilic segments in the human proteome. FEBS J 2024; 291:547-565. [PMID: 37945538 DOI: 10.1111/febs.16997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/14/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
The existence of encrypted fragments with antimicrobial activity in human proteins has been thoroughly demonstrated in the literature. Recently, algorithms for the large-scale identification of these segments in whole proteomes were developed, and the pervasiveness of this phenomenon was stated. These algorithms typically mine encrypted cationic and amphiphilic segments of proteins, which, when synthesized as individual polypeptide sequences, exert antimicrobial activity by membrane disruption. In the present report, the human reference proteome was submitted to the software kamal for the uncovering of protein segments that correspond to putative intragenic antimicrobial peptides (IAPs). The assessment of the identity of these segments, frequency, functional classes of parent proteins, structural relevance, and evolutionary conservation of amino acid residues within their corresponding proteins was conducted in silico. Additionally, the antimicrobial and anticancer activity of six selected synthetic peptides was evaluated. Our results indicate that cationic and amphiphilic segments can be found in 2% of all human proteins, but are more common in transmembrane and peripheral membrane proteins. These segments are surface-exposed basic patches whose amino acid residues present similar conservation scores to other residues with similar solvent accessibility. Moreover, the antimicrobial and anticancer activity of the synthetic putative IAP sequences was irrespective to whether these are associated to membranes in the cellular setting. Our study discusses these findings in light of the current understanding of encrypted peptide sequences, offering some insights into the relevance of these segments to the organism in the context of their harboring proteins or as separate polypeptide sequences.
Collapse
Affiliation(s)
- Igor S D Costa
- Laboratório de Síntese e Análise de Biomoléculas - LSAB, Instituto de Química, Universidade de Brasília, Brazil
| | - Tiago Junot
- Laboratório de Síntese e Análise de Biomoléculas - LSAB, Instituto de Química, Universidade de Brasília, Brazil
| | - Fernanda L Silva
- Laboratório de Síntese e Análise de Biomoléculas - LSAB, Instituto de Química, Universidade de Brasília, Brazil
| | - Wanessa Felix
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada - NuPMIA, Faculdade de Medicina, Universidade de Brasília, Brazil
| | - José L Cardozo Fh
- Laboratório de Espectrometria de Massa - LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
| | - Antonio F Pereira de Araujo
- Laboratório de Biofísica Teórica e Computacional, Departamento de Biologia Celular, Universidade de Brasília, Brazil
| | | | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - José R S A Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada - NuPMIA, Faculdade de Medicina, Universidade de Brasília, Brazil
| | - Carlos Bloch
- Laboratório de Espectrometria de Massa - LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
| | - Guilherme D Brand
- Laboratório de Síntese e Análise de Biomoléculas - LSAB, Instituto de Química, Universidade de Brasília, Brazil
| |
Collapse
|
2
|
Ensembles from Ordered and Disordered Proteins Reveal Similar Structural Constraints during Evolution. J Mol Biol 2019; 431:1298-1307. [DOI: 10.1016/j.jmb.2019.01.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 01/08/2023]
|
3
|
di Ronza A, Bajaj L, Sharma J, Sanagasetti D, Lotfi P, Adamski CJ, Collette J, Palmieri M, Amawi A, Popp L, Chang KT, Meschini MC, Leung HCE, Segatori L, Simonati A, Sifers RN, Santorelli FM, Sardiello M. CLN8 is an endoplasmic reticulum cargo receptor that regulates lysosome biogenesis. Nat Cell Biol 2018; 20:1370-1377. [PMID: 30397314 PMCID: PMC6277210 DOI: 10.1038/s41556-018-0228-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 10/04/2018] [Indexed: 12/21/2022]
Abstract
Organelle biogenesis requires proper transport of proteins from their site of synthesis to their target subcellular compartment1-3. Lysosomal enzymes are synthesized in the endoplasmic reticulum (ER) and traffic through the Golgi complex before being transferred to the endolysosomal system4-6, but how they are transferred from the ER to the Golgi is unknown. Here, we show that ER-to-Golgi transfer of lysosomal enzymes requires CLN8, an ER-associated membrane protein whose loss of function leads to the lysosomal storage disorder, neuronal ceroid lipofuscinosis 8 (a type of Batten disease)7. ER-to-Golgi trafficking of CLN8 requires interaction with the COPII and COPI machineries via specific export and retrieval signals localized in the cytosolic carboxy terminus of CLN8. CLN8 deficiency leads to depletion of soluble enzymes in the lysosome, thus impairing lysosome biogenesis. Binding to lysosomal enzymes requires the second luminal loop of CLN8 and is abolished by some disease-causing mutations within this region. Our data establish an unanticipated example of an ER receptor serving the biogenesis of an organelle and indicate that impaired transport of lysosomal enzymes underlies Batten disease caused by mutations in CLN8.
Collapse
Affiliation(s)
- Alberto di Ronza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Lakshya Bajaj
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Jaiprakash Sharma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Deepthi Sanagasetti
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Parisa Lotfi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Carolyn Joy Adamski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - John Collette
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Michela Palmieri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Abdallah Amawi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Lauren Popp
- Departments of Bioengineering, Chemical and Biomolecular Engineering, and Biochemistry and Cell Biology, Rice University, Houston, TX, USA
| | - Kevin Tommy Chang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Maria Chiara Meschini
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Hon-Chiu Eastwood Leung
- Departments of Medicine, Pediatrics, and Molecular and Cellular Biology, Dan Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Laura Segatori
- Departments of Bioengineering, Chemical and Biomolecular Engineering, and Biochemistry and Cell Biology, Rice University, Houston, TX, USA
| | - Alessandro Simonati
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Richard Norman Sifers
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | | | - Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
4
|
Chang KT, Guo J, di Ronza A, Sardiello M. Aminode: Identification of Evolutionary Constraints in the Human Proteome. Sci Rep 2018; 8:1357. [PMID: 29358731 PMCID: PMC5778061 DOI: 10.1038/s41598-018-19744-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022] Open
Abstract
Evolutionarily constrained regions (ECRs) are a hallmark for sites of critical importance for a protein's structure or function. ECRs can be inferred by comparing the amino acid sequences from multiple protein homologs in the context of the evolutionary relationships that link the analyzed proteins. The compilation and analysis of the datasets required to infer ECRs, however, are time consuming and require skills in coding and bioinformatics, which can limit the use of ECR analysis in the biomedical community. Here, we developed Aminode, a user-friendly webtool for the routine and rapid inference of ECRs. Aminode is pre-loaded with the results of the analysis of the whole human proteome compared with proteomes from 62 additional vertebrate species. Profiles of the relative rates of amino acid substitution and ECR maps of human proteins are available for immediate search and download on the Aminode website. Aminode can also be used for custom analyses of protein families of interest. Interestingly, mapping of known missense variants shows great enrichment of pathogenic variants and depletion of non-pathogenic variants in Aminode-generated ECRs, suggesting that ECR analysis may help evaluate the potential pathogenicity of variants of unknown significance. Aminode is freely available at http://www.aminode.org .
Collapse
Affiliation(s)
- Kevin T Chang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Junyan Guo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
- Microsoft Corporation, 1 Microsoft Way, Redmond, WA, 98052, USA
| | - Alberto di Ronza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Basak P, Maitra-Majee S, Das JK, Mukherjee A, Ghosh Dastidar S, Pal Choudhury P, Lahiri Majumder A. An evolutionary analysis identifies a conserved pentapeptide stretch containing the two essential lysine residues for rice L-myo-inositol 1-phosphate synthase catalytic activity. PLoS One 2017; 12:e0185351. [PMID: 28950028 PMCID: PMC5614600 DOI: 10.1371/journal.pone.0185351] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 09/11/2017] [Indexed: 12/11/2022] Open
Abstract
A molecular evolutionary analysis of a well conserved protein helps to determine the essential amino acids in the core catalytic region. Based on the chemical properties of amino acid residues, phylogenetic analysis of a total of 172 homologous sequences of a highly conserved enzyme, L-myo-inositol 1-phosphate synthase or MIPS from evolutionarily diverse organisms was performed. This study revealed the presence of six phylogenetically conserved blocks, out of which four embrace the catalytic core of the functional protein. Further, specific amino acid modifications targeting the lysine residues, known to be important for MIPS catalysis, were performed at the catalytic site of a MIPS from monocotyledonous model plant, Oryza sativa (OsMIPS1). Following this study, OsMIPS mutants with deletion or replacement of lysine residues in the conserved blocks were made. Based on the enzyme kinetics performed on the deletion/replacement mutants, phylogenetic and structural comparison with the already established crystal structures from non-plant sources, an evolutionarily conserved peptide stretch was identified at the active pocket which contains the two most important lysine residues essential for catalytic activity.
Collapse
Affiliation(s)
- Papri Basak
- Division of Plant Biology, Bose Institute (Centenary Campus), Kolkata, West Bengal, India
| | - Susmita Maitra-Majee
- Division of Plant Biology, Bose Institute (Centenary Campus), Kolkata, West Bengal, India
| | - Jayanta Kumar Das
- Applied Statistics Unit, Indian Statistical Institute, Kolkata, West Bengal, India
| | - Abhishek Mukherjee
- Division of Plant Biology, Bose Institute (Centenary Campus), Kolkata, West Bengal, India
| | | | | | - Arun Lahiri Majumder
- Division of Plant Biology, Bose Institute (Centenary Campus), Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
6
|
Phylogenetic Gaussian process model for the inference of functionally important regions in protein tertiary structures. PLoS Comput Biol 2014; 10:e1003429. [PMID: 24453956 PMCID: PMC3894161 DOI: 10.1371/journal.pcbi.1003429] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/22/2013] [Indexed: 11/30/2022] Open
Abstract
A critical question in biology is the identification of functionally important amino acid sites in proteins. Because functionally important sites are under stronger purifying selection, site-specific substitution rates tend to be lower than usual at these sites. A large number of phylogenetic models have been developed to estimate site-specific substitution rates in proteins and the extraordinarily low substitution rates have been used as evidence of function. Most of the existing tools, e.g. Rate4Site, assume that site-specific substitution rates are independent across sites. However, site-specific substitution rates may be strongly correlated in the protein tertiary structure, since functionally important sites tend to be clustered together to form functional patches. We have developed a new model, GP4Rate, which incorporates the Gaussian process model with the standard phylogenetic model to identify slowly evolved regions in protein tertiary structures. GP4Rate uses the Gaussian process to define a nonparametric prior distribution of site-specific substitution rates, which naturally captures the spatial correlation of substitution rates. Simulations suggest that GP4Rate can potentially estimate site-specific substitution rates with a much higher accuracy than Rate4Site and tends to report slowly evolved regions rather than individual sites. In addition, GP4Rate can estimate the strength of the spatial correlation of substitution rates from the data. By applying GP4Rate to a set of mammalian B7-1 genes, we found a highly conserved region which coincides with experimental evidence. GP4Rate may be a useful tool for the in silico prediction of functionally important regions in the proteins with known structures. To understand how a protein functions, a critical step is to know which regions in its protein tertiary structure may be functionally important. Functionally important protein regions are typically more conserved than other regions because mutations in these regions are more likely to be deleterious. A number of phylogenetic models have been developed to identify conserved sites or regions in proteins by comparing protein sequences from multiple species. However, most of these methods treat amino acid sites independently and do not consider the spatial clustering of conserved sites in the protein tertiary structure. Therefore, their power of identifying functional protein regions is limited. We develop a new statistical model, GP4Rate, which combines the information from the protein sequences and the protein tertiary structure to infer conserved regions. We demonstrate that GP4Rate outperforms Rate4Site, the most widely used phylogenetic software for inferring functional amino acid sites, via simulations with a case study of B7-1 genes. GP4Rate is a potentially useful tool for guiding mutagenesis experiments or providing insights on the relationship between protein structures and functions.
Collapse
|
7
|
Davidson CJ, Guthrie EE, Lipsick JS. Duplication and maintenance of the Myb genes of vertebrate animals. Biol Open 2012; 2:101-10. [PMID: 23431116 PMCID: PMC3575645 DOI: 10.1242/bio.20123152] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/09/2012] [Indexed: 12/21/2022] Open
Abstract
Gene duplication is an important means of generating new genes. The major mechanisms by which duplicated genes are preserved in the face of purifying selection are thought to be neofunctionalization, subfunctionalization, and increased gene dosage. However, very few duplicated gene families in vertebrate species have been analyzed by functional tests in vivo. We have therefore examined the three vertebrate Myb genes (c-Myb, A-Myb, and B-Myb) by cytogenetic map analysis, by sequence analysis, and by ectopic expression in Drosophila. We provide evidence that the vertebrate Myb genes arose by two rounds of regional genomic duplication. We found that ubiquitous expression of c-Myb and A-Myb, but not of B-Myb or Drosophila Myb, was lethal in Drosophila. Expression of any of these genes during early larval eye development was well tolerated. However, expression of c-Myb and A-Myb, but not of B-Myb or Drosophila Myb, during late larval eye development caused drastic alterations in adult eye morphology. Mosaic analysis implied that this eye phenotype was cell-autonomous. Interestingly, some of the eye phenotypes caused by the retroviral v-Myb oncogene and the normal c-Myb proto-oncogene from which v-Myb arose were quite distinct. Finally, we found that post-translational modifications of c-Myb by the GSK-3 protein kinase and by the Ubc9 SUMO-conjugating enzyme that normally occur in vertebrate cells can modify the eye phenotype caused by c-Myb in Drosophila. These results support a model in which the three Myb genes of vertebrates arose by two sequential duplications. The first duplication was followed by a subfunctionalization of gene expression, then neofunctionalization of protein function to yield a c/A-Myb progenitor. The duplication of this progenitor was followed by subfunctionalization of gene expression to give rise to tissue-specific c-Myb and A-Myb genes.
Collapse
Affiliation(s)
- Colin J Davidson
- Departments of Pathology, Genetics, and Biology, Stanford University , Stanford, CA 94305-5324 , USA
| | | | | |
Collapse
|
8
|
Zotti MJ, Christiaens O, Rougé P, Grutzmacher AD, Zimmer PD, Smagghe G. Structural changes under low evolutionary constraint may decrease the affinity of dibenzoylhydrazine insecticides for the ecdysone receptor in non-lepidopteran insects. INSECT MOLECULAR BIOLOGY 2012; 21:488-501. [PMID: 22808992 DOI: 10.1111/j.1365-2583.2012.01154.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Understanding how variations in genetic sequences are conveyed into structural and biochemical properties is of increasing interest in the field of molecular evolution. In order to gain insight into this process, we studied the ecdysone receptor (EcR), a transcription factor that controls moulting and metamorphosis in arthropods. Using an in silico homology model, we identified a region in the lepidopteran EcR that has no direct interaction with the natural hormone but is under strong evolutionary constraint. This region causes a small indentation in the three-dimensional structure of the protein which facilitates the binding of tebufenozide. Non-Mecopterida are considered much older, evolutionarily, than Lepidoptera and they do not have this extended cavity. This location shows differences in evolutionary constraint between Lepidoptera and other insects, where a much lower constraint is observed compared with the Lepidoptera. It is possible that the higher flexibility seen in the EcR of Lepidoptera is an entirely new trait and the higher constraint could then be an indication that this region does have another important function. Finally, we suggest that Try123, which is evolutionarily constrained and is up to now exclusively present in Lepidoptera EcRs, could play a critical role in discriminating between steroidal and non-steroidal ligands.
Collapse
Affiliation(s)
- M J Zotti
- Department of Crop Protection, Ghent University, Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
9
|
Daiyasu H, Nemoto W, Toh H. Evolutionary Analysis of Functional Divergence among Chemokine Receptors, Decoy Receptors, and Viral Receptors. Front Microbiol 2012; 3:264. [PMID: 22855685 PMCID: PMC3405870 DOI: 10.3389/fmicb.2012.00264] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/05/2012] [Indexed: 01/10/2023] Open
Abstract
Chemokine receptors (CKRs) function in the inflammatory response and in vertebrate homeostasis. Decoy and viral receptors are two types of CKR homologs with modified functions from those of the typical CKRs. The decoy receptors are able to bind ligands without signaling. On the other hand, the viral receptors show constitutive signaling without ligands. We examined the sites related to the functional difference. At first, the decoy and viral receptors were each classified into five groups, based on the molecular phylogenetic analysis. A multiple amino acid sequence alignment between each group and the CKRs was then constructed. The difference in the amino acid composition between the group and the CKRs was evaluated as the Kullback-Leibler (KL) information value at each alignment site. The KL information value is considered to reflect the difference in the functional constraints at the site. The sites with the top 5% of KL information values were selected and mapped on the structure of a CKR. The comparisons with decoy receptor groups revealed that the detected sites were biased on the intracellular side. In contrast, the sites detected from the comparisons with viral receptor groups were found on both the extracellular and intracellular sides. More sites were found in the ligand binding pocket in the analyses of the viral receptor groups, as compared to the decoy receptor groups. Some of the detected sites were located in the GPCR motifs. For example, the DRY motif of the decoy receptors was often degraded, although the motif of the viral receptors was basically conserved. The observations for the viral receptor groups suggested that the constraints in the pocket region are loose and that the sites on the intracellular side are different from those for the decoy receptors, which may be related to the constitutive signaling activity of the viral receptors.
Collapse
Affiliation(s)
- Hiromi Daiyasu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University Osaka, Japan
| | | | | |
Collapse
|
10
|
Use of comparative genomics approaches to characterize interspecies differences in response to environmental chemicals: challenges, opportunities, and research needs. Toxicol Appl Pharmacol 2011; 271:372-85. [PMID: 22142766 DOI: 10.1016/j.taap.2011.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 11/11/2011] [Accepted: 11/16/2011] [Indexed: 01/12/2023]
Abstract
A critical challenge for environmental chemical risk assessment is the characterization and reduction of uncertainties introduced when extrapolating inferences from one species to another. The purpose of this article is to explore the challenges, opportunities, and research needs surrounding the issue of how genomics data and computational and systems level approaches can be applied to inform differences in response to environmental chemical exposure across species. We propose that the data, tools, and evolutionary framework of comparative genomics be adapted to inform interspecies differences in chemical mechanisms of action. We compare and contrast existing approaches, from disciplines as varied as evolutionary biology, systems biology, mathematics, and computer science, that can be used, modified, and combined in new ways to discover and characterize interspecies differences in chemical mechanism of action which, in turn, can be explored for application to risk assessment. We consider how genetic, protein, pathway, and network information can be interrogated from an evolutionary biology perspective to effectively characterize variations in biological processes of toxicological relevance among organisms. We conclude that comparative genomics approaches show promise for characterizing interspecies differences in mechanisms of action, and further, for improving our understanding of the uncertainties inherent in extrapolating inferences across species in both ecological and human health risk assessment. To achieve long-term relevance and consistent use in environmental chemical risk assessment, improved bioinformatics tools, computational methods robust to data gaps, and quantitative approaches for conducting extrapolations across species are critically needed. Specific areas ripe for research to address these needs are recommended.
Collapse
|
11
|
McFerrin LG, Stone EA. The non-random clustering of non-synonymous substitutions and its relationship to evolutionary rate. BMC Genomics 2011; 12:415. [PMID: 21846337 PMCID: PMC3176261 DOI: 10.1186/1471-2164-12-415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 08/16/2011] [Indexed: 01/11/2023] Open
Abstract
Background Protein sequences are subject to a mosaic of constraint. Changes to functional domains and buried residues, for example, are more apt to disrupt protein structure and function than are changes to residues participating in loops or exposed to solvent. Regions of constraint on the tertiary structure of a protein often result in loose segmentation of its primary structure into stretches of slowly- and rapidly-evolving amino acids. This clustering can be exploited, and existing methods have done so by relying on local sequence conservation as a signature of selection to help identify functionally important regions within proteins. We invert this paradigm by leveraging the regional nature of protein structure and function to both illuminate and make use of genome-wide patterns of local sequence conservation. Results Our hypothesis is that the regional nature of structural and functional constraints will assert a positive autocorrelation on the evolutionary rates of neighboring sites, which, in a pairwise comparison of orthologous proteins, will manifest itself as the clustering of non-synonymous changes across the amino acid sequence. We introduce a dispersion ratio statistic to test this and related hypotheses. Using genome-wide interspecific comparisons of orthologous protein pairs, we reveal a strong log-linear relationship between the degree of clustering and the intensity of constraint. We further demonstrate how this relationship varies with the evolutionary distance between the species being compared. We provide some evidence that proteins with a history of positive selection deviate from genome-wide trends. Conclusions We find a significant association between the evolutionary rate of a protein and the degree to which non-synonymous changes cluster along its primary sequence. We show that clustering is a non-redundant predictor of evolutionary rate, and we speculate that conflicting signals of clustering and constraint may be indicative of a historical period of relaxed selection.
Collapse
Affiliation(s)
- Lisa G McFerrin
- Graduate program in Bioinformatics, North Carolina State University, Raleigh, NC 27695-7566, USA
| | | |
Collapse
|
12
|
Onimaru K, Shoguchi E, Kuratani S, Tanaka M. Development and evolution of the lateral plate mesoderm: comparative analysis of amphioxus and lamprey with implications for the acquisition of paired fins. Dev Biol 2011; 359:124-136. [PMID: 21864524 DOI: 10.1016/j.ydbio.2011.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 08/05/2011] [Accepted: 08/05/2011] [Indexed: 12/28/2022]
Abstract
Possession of paired appendages is regarded as a novelty that defines crown gnathostomes and allows sophisticated behavioral and locomotive patterns. During embryonic development, initiation of limb buds in the lateral plate mesoderm involves several steps. First, the lateral plate mesoderm is regionalized into the cardiac mesoderm (CM) and the posterior lateral plate mesoderm (PLPM). Second, in the PLPM, Hox genes are expressed in a collinear manner to establish positional values along the anterior-posterior axis. The developing PLPM splits into somatic and splanchnic layers. In the presumptive limb field of the somatic layer, expression of limb initiation genes appears. To gain insight into the evolutionary sequence leading to the emergence of paired appendages in ancestral vertebrates, we examined the embryonic development of the ventral mesoderm in the cephalochordate amphioxus Branchiostoma floridae and of the lateral plate mesoderm in the agnathan lamprey Lethenteron japonicum, and studied the expression patterns of cognates of genes known to be expressed in these mesodermal layers during amniote development. We observed that, although the amphioxus ventral mesoderm posterior to the pharynx was not regionalized into CM and posterior ventral mesoderm, the lateral plate mesoderm of lampreys was regionalized into CM and PLPM, as in gnathostomes. We also found nested expression of two Hox genes (LjHox5i and LjHox6w) in the PLPM of lamprey embryos. However, histological examination showed that the PLPM of lampreys was not separated into somatic and splanchnic layers. These findings provide insight into the sequential evolutionary changes that occurred in the ancestral lateral plate mesoderm leading to the emergence of paired appendages.
Collapse
Affiliation(s)
- Koh Onimaru
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Promotion Corporation, 1919-1 Tancha, Onna, Okinawa 904-0412, Japan.
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, Riken, 2-2-3 Minatojima minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Mikiko Tanaka
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
13
|
Chennamsetty N, Voynov V, Kayser V, Helk B, Trout BL. Prediction of protein binding regions. Proteins 2010; 79:888-97. [DOI: 10.1002/prot.22926] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/23/2010] [Accepted: 10/13/2010] [Indexed: 11/07/2022]
|
14
|
Abstract
Catalase is reported to be one of the target antigens for autoantibodies in various pathologies. To understand the mechanism of autoantibody production, we compared the several properties of autoantigenic epitopes (AE)-1 and -2 of mouse catalase, which reported to react with antibodies from sera of Helicobacter hepaticus-infected mice; AE-3 and -4 of rat catalase, which we found to be susceptible to autoimmunity; and antigenic epitope (E)-1 of H. pylori catalase, which is recognized by monoclonal antibodies produced by immunized mice. Amino acid sequences of AE-1 and -2 were similar among both mammalian and pathogenic microorganism catalases, whereas that of E-1 differed. Amino acid sequences of AE-3 and -4 were similar among mammalian catalases but differed from pathogenic microorganism catalases. Based on local relative rates of evolution, these vertebrate catalases were divided into 5 segments. E-1 included a faster evolving region, whereas AE-1 and -2 included a slowly evolving region; AE-3 and -4 comprised a slowly evolving patch within a faster evolving region. In conclusion, although AE-1 and -2 of catalase have been reported to contribute to autoimmune responses in animals infected with catalase-producing pathogens, AE-3 and -4 appear to have a different mechanism for autoantibody production.
Collapse
Affiliation(s)
- Hiromi Miura
- Department of Pharmacogenomics, School of Pharmaceutical Science, Showa University, Tokyo, Japan.
| | | | | |
Collapse
|
15
|
Bell RE, Ben-Tal N. In silico identification of functional protein interfaces. Comp Funct Genomics 2010; 4:420-3. [PMID: 18629079 PMCID: PMC2447364 DOI: 10.1002/cfg.309] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2003] [Revised: 06/03/2003] [Accepted: 06/03/2003] [Indexed: 12/02/2022] Open
Abstract
Proteins perform many of their biological roles through protein–protein, protein–DNA or protein–ligand interfaces. The identification of the amino acids comprising
these interfaces often enhances our understanding of the biological function of
the proteins. Many methods for the detection of functional interfaces have been developed,
and large-scale analyses have provided assessments of their accuracy. Among
them are those that consider the size of the protein interface, its amino acid composition
and its physicochemical and geometrical properties. Other methods to this
effect use statistical potential functions of pairwise interactions, and evolutionary
information. The rationale of the evolutionary approach is that functional and structural
constraints impose selective pressure; hence, biologically important interfaces
often evolve at a slower pace than do other external regions of the protein. Recently,
an algorithm, Rate4Site, and a web-server, ConSurf (http://consurf.tau.ac.il/), for
the identification of functional interfaces based on the evolutionary relations among
homologous proteins as reflected in phylogenetic trees, were developed in our laboratory.
The explicit use of the tree topology and branch lengths makes the method
remarkably accurate and sensitive. Here we demonstrate its potency in the identification
of the functional interfaces of a hypothetical protein, the structure of which was
determined as part of the international structural genomics effort. Finally, we propose
to combine complementary procedures, in order to enhance the overall performance
of methods for the identification of functional interfaces in proteins.
Collapse
Affiliation(s)
- Rachel E Bell
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | | |
Collapse
|
16
|
Binkley J, Karra K, Kirby A, Hosobuchi M, Stone EA, Sidow A. ProPhylER: a curated online resource for protein function and structure based on evolutionary constraint analyses. Genome Res 2009; 20:142-54. [PMID: 19846609 DOI: 10.1101/gr.097121.109] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ProPhylER (Protein Phylogeny and Evolutionary Rates) is a next-generation curated proteome resource that uses comparative sequence analysis to predict constraint and mutation impact for eukaryotic proteins. Its purpose is to inform any research program for which protein function and structure are relevant, by the predictive power of evolutionary constraint analyses. ProPhylER currently has nearly 9000 clusters of related proteins, including more than 200,000 sequences. It serves data via two interfaces. The "ProPhylER Interface" displays predictive analyses in sequence space; the "CrystalPainter" maps evolutionary constraints onto solved protein structures. Here we summarize ProPhylER's data content and analysis pipeline, demonstrate the use of ProPhylER's interfaces, and evaluate ProPhylER's unique regional analysis of evolutionary constraint. The high accuracy of ProPhylER's regional analysis complements the high resolution of its single-site analysis to effectively guide and inform structure-function investigations and predict the impact of polymorphisms.
Collapse
Affiliation(s)
- Jonathan Binkley
- Stanford University School of Medicine, Departments of Pathology and Genetics, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Contemporary protein architectures can be regarded as molecular fossils, historical imprints that mark important milestones in the history of life. Whereas sequences change at a considerable pace, higher-order structures are constrained by the energetic landscape of protein folding, the exploration of sequence and structure space, and complex interactions mediated by the proteostasis and proteolytic machineries of the cell. The survey of architectures in the living world that was fuelled by recent structural genomic initiatives has been summarized in protein classification schemes, and the overall structure of fold space explored with novel bioinformatic approaches. However, metrics of general structural comparison have not yet unified architectural complexity using the 'shared and derived' tenet of evolutionary analysis. In contrast, a shift of focus from molecules to proteomes and a census of protein structure in fully sequenced genomes were able to uncover global evolutionary patterns in the structure of proteins. Timelines of discovery of architectures and functions unfolded episodes of specialization, reductive evolutionary tendencies of architectural repertoires in proteomes and the rise of modularity in the protein world. They revealed a biologically complex ancestral proteome and the early origin of the archaeal lineage. Studies also identified an origin of the protein world in enzymes of nucleotide metabolism harbouring the P-loop-containing triphosphate hydrolase fold and the explosive discovery of metabolic functions that recapitulated well-defined prebiotic shells and involved the recruitment of structures and functions. These observations have important implications for origins of modern biochemistry and diversification of life.
Collapse
|
18
|
Hittinger CT, Carroll SB. Evolution of an insect-specific GROUCHO-interaction motif in the ENGRAILED selector protein. Evol Dev 2008; 10:537-45. [PMID: 18803772 PMCID: PMC2597661 DOI: 10.1111/j.1525-142x.2008.00269.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Animal morphology evolves through alterations in the genetic regulatory networks that control development. Regulatory connections are commonly added, subtracted, or modified via mutations in cis-regulatory elements, but several cases are also known where transcription factors have gained or lost activity-modulating peptide motifs. In order to better assess the role of novel transcription factor peptide motifs in evolution, we searched for synapomorphic motifs in the homeotic selectors of Drosophila melanogaster and related insects. Here, we describe an evolutionarily novel GROUCHO (GRO)-interaction motif in the ENGRAILED (EN) selector protein. This "ehIFRPF" motif is not homologous to the previously characterized "engrailed homology 1" (eh1) GRO-interaction motif of EN. This second motif is an insect-specific "WRPW"-type motif that has been maintained by purifying selection in at least the dipteran/lepidopteran lineage. We demonstrate that this motif contributes to in vivo repression of the wingless (wg) target gene and to interaction with GRO in vitro. The acquisition and conservation of this auxiliary peptide motif shows how the number and activity of short peptide motifs can evolve in transcription factors while existing regulatory functions are maintained.
Collapse
Affiliation(s)
- Chris Todd Hittinger
- Laboratory of Genetics, Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706-1534, USA
| | | |
Collapse
|
19
|
Schmid K, Yang Z. The trouble with sliding windows and the selective pressure in BRCA1. PLoS One 2008; 3:e3746. [PMID: 19015730 PMCID: PMC2581807 DOI: 10.1371/journal.pone.0003746] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 10/31/2008] [Indexed: 11/18/2022] Open
Abstract
Sliding-window analysis has widely been used to uncover synonymous (silent, dS) and nonsynonymous (replacement, dN) rate variation along the protein sequence and to detect regions of a protein under selective constraint (indicated by dN<dS) or positive selection (indicated by dN>dS). The approach compares two or more protein-coding genes and plots estimates dˆS and dˆN from each sliding window along the sequence. Here we demonstrate that the approach produces artifactual trends of synonymous and nonsynonymous rate variation, with greater variation in dˆS than in dˆN. Such trends are generated even if the true dS and dN are constant along the whole protein and different codons are evolving independently. Many published tests of negative and positive selection using sliding windows that we have examined appear to be invalid because they fail to correct for multiple testing. Instead, likelihood ratio tests provide a more rigorous framework for detecting signals of natural selection affecting protein evolution. We demonstrate that a previous finding that a particular region of the BRCA1 gene experienced a synonymous rate reduction driven by purifying selection is likely an artifact of the sliding window analysis. We evaluate various sliding-window analyses in molecular evolution, population genetics, and comparative genomics, and argue that the approach is not generally valid if it is not known a priori that a trend exists and if no correction for multiple testing is applied.
Collapse
Affiliation(s)
- Karl Schmid
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | | |
Collapse
|
20
|
Spatuzza C, Schiavone M, Di Salle E, Janda E, Sardiello M, Fiume G, Fierro O, Simonetta M, Argiriou N, Faraonio R, Capparelli R, Quinto I, Scala G. Physical and functional characterization of the genetic locus of IBtk, an inhibitor of Bruton's tyrosine kinase: evidence for three protein isoforms of IBtk. Nucleic Acids Res 2008; 36:4402-16. [PMID: 18596081 PMCID: PMC2490745 DOI: 10.1093/nar/gkn413] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bruton's tyrosine kinase (Btk) is required for B-cell development. Btk deficiency causes X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (Xid) in mice. Btk lacks a negative regulatory domain and may rely on cytoplasmic proteins to regulate its activity. Consistently, we identified an inhibitor of Btk, IBtk, which binds to the PH domain of Btk and down-regulates the Btk kinase activity. IBtk is an evolutionary conserved protein encoded by a single genomic sequence at 6q14.1 cytogenetic location, a region of recurrent chromosomal aberrations in lymphoproliferative disorders; however, the physical and functional organization of IBTK is unknown. Here, we report that the human IBTK locus includes three distinct mRNAs arising from complete intron splicing, an additional polyadenylation signal and a second transcription start site that utilizes a specific ATG for protein translation. By northern blot, 5′RACE and 3′RACE we identified three IBTKα, IBTKβ and IBTKγ mRNAs, whose transcription is driven by two distinct promoter regions; the corresponding IBtk proteins were detected in human cells and mouse tissues by specific antibodies. These results provide the first characterization of the human IBTK locus and may assist in understanding the in vivo function of IBtk.
Collapse
Affiliation(s)
- Carmen Spatuzza
- Department of Experimental and Clinical Medicine, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cooper GM, Brown CD. Qualifying the relationship between sequence conservation and molecular function. Genome Res 2008; 18:201-5. [PMID: 18245453 DOI: 10.1101/gr.7205808] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Quantification of evolutionary constraints via sequence conservation can be leveraged to annotate genomic functional sequences. Recent efforts addressing the converse of this relationship have identified many sites in metazoan genomes with molecular function but without detectable conservation between related species. Here, we discuss explanations and implications for these results considering both practical and theoretical issues. In particular, phylogenetic scope influences the relationship between sequence conservation and function. Comparisons of distantly related species can detect constraint with high specificity due to the loss of conserved neutral sequence, but sensitivity is sacrificed as a result of functional changes related to lineage-specific biology. The strength of natural selection operating on functional sequence is also important. Mutations to functional sequences that result in small fitness effects are subject to weaker constraints. Therefore, particularly when comparing highly divergent species, functional sequences that are degenerate or biologically redundant will be prone to turnover, wherein functional sequences are replaced by effectively equivalent, but nonorthologous counterparts. Finally, considering the size and complexity of metazoan genomes and the fact that many nonconserved sequences are associated with sequence-degenerate, low-level molecular functions, we find it likely that there exist many biochemically functional sequences that are not under constraint. This hypothesis does not lead to the conclusion that huge amounts of vertebrate genomes are functionally important, but rather that such "functionality" represents molecular noise that has weak or no effect on organismal phenotypes.
Collapse
Affiliation(s)
- Gregory M Cooper
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
22
|
Hughes I, Binkley J, Hurle B, Green ED, Sidow A, Ornitz DM. Identification of the Otopetrin Domain, a conserved domain in vertebrate otopetrins and invertebrate otopetrin-like family members. BMC Evol Biol 2008; 8:41. [PMID: 18254951 PMCID: PMC2268672 DOI: 10.1186/1471-2148-8-41] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 02/06/2008] [Indexed: 11/30/2022] Open
Abstract
Background Otopetrin 1 (Otop1) encodes a multi-transmembrane domain protein with no homology to known transporters, channels, exchangers, or receptors. Otop1 is necessary for the formation of otoconia and otoliths, calcium carbonate biominerals within the inner ear of mammals and teleost fish that are required for the detection of linear acceleration and gravity. Vertebrate Otop1 and its paralogues Otop2 and Otop3 define a new gene family with homology to the invertebrate Domain of Unknown Function 270 genes (DUF270; pfam03189). Results Multi-species comparison of the predicted primary sequences and predicted secondary structures of 62 vertebrate otopetrin, and arthropod and nematode DUF270 proteins, has established that the genes encoding these proteins constitute a single family that we renamed the Otopetrin Domain Protein (ODP) gene family. Signature features of ODP proteins are three "Otopetrin Domains" that are highly conserved between vertebrates, arthropods and nematodes, and a highly constrained predicted loop structure. Conclusion Our studies suggest a refined topologic model for ODP insertion into the lipid bilayer of 12 transmembrane domains, and highlight conserved amino-acid residues that will aid in the biochemical examination of ODP family function. The high degree of sequence and structural similarity of the ODP proteins may suggest a conserved role in the intracellular trafficking of calcium and the formation of biominerals.
Collapse
Affiliation(s)
- Inna Hughes
- Department of Developmental Biology, Washington University School of Medicine, St, Louis, MO 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Maffini M, Denes V, Sonnenschein C, Soto A, Geck P. APRIN is a unique Pds5 paralog with features of a chromatin regulator in hormonal differentiation. J Steroid Biochem Mol Biol 2008; 108:32-43. [PMID: 17997301 PMCID: PMC3966471 DOI: 10.1016/j.jsbmb.2007.05.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 05/28/2007] [Indexed: 11/26/2022]
Abstract
Activation of steroid receptors results in global changes of gene expression patterns. Recent studies showed that steroid receptors control only a portion of their target genes directly, by promoter binding. The majority of the changes are indirect, through chromatin rearrangements. The mediators that relay the hormonal signals to large-scale chromatin changes are, however, unknown. We report here that APRIN, a novel hormone-induced nuclear phosphoprotein has the characteristics of a chromatin regulator and may link endocrine pathways to chromatin. We showed earlier that APRIN is involved in the hormonal regulation of proliferative arrest in cancer cells. To investigate its function we cloned and characterized APRIN orthologs and performed homology and expression studies. APRIN is a paralog of the cohesin-associated Pds5 gene lineage and arose by gene-duplication in early vertebrates. The conservation and domain differences we found suggest, however, that APRIN acquired novel chromatin-related functions (e.g. the HMG-like domains in APRIN, the hallmarks of chromatin regulators, are absent in the Pds5 family). Our results suggest that in interphase nuclei APRIN localizes in the euchromatin/heterochromatin interface and we also identified its DNA-binding and nuclear import signal domains. The results indicate that APRIN, in addition to its Pds5 similarity, has the features and localization of a hormone-induced chromatin regulator.
Collapse
Affiliation(s)
| | | | | | | | - Peter Geck
- To whom correspondence should be addressed: Peter Geck, M.D., Department of Anatomy and Cellular Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, Tel: (617) 636-2796, Fax: (617) 636-6536, E-mail:
| |
Collapse
|
24
|
Jackson PJ, Douglas NR, Chai B, Binkley J, Sidow A, Barsh GS, Millhauser GL. Structural and molecular evolutionary analysis of Agouti and Agouti-related proteins. CHEMISTRY & BIOLOGY 2006; 13:1297-305. [PMID: 17185225 PMCID: PMC2907901 DOI: 10.1016/j.chembiol.2006.10.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 09/20/2006] [Accepted: 10/11/2006] [Indexed: 10/23/2022]
Abstract
Agouti (ASIP) and Agouti-related protein (AgRP) are endogenous antagonists of melanocortin receptors that play critical roles in the regulation of pigmentation and energy balance, respectively, and which arose from a common ancestral gene early in vertebrate evolution. The N-terminal domain of ASIP facilitates antagonism by binding to an accessory receptor, but here we show that the N-terminal domain of AgRP has the opposite effect and acts as a prodomain that negatively regulates antagonist function. Computational analysis reveals similar patterns of evolutionary constraint in the ASIP and AgRP C-terminal domains, but fundamental differences between the N-terminal domains. These studies shed light on the relationships between regulation of pigmentation and body weight, and they illustrate how evolutionary structure function analysis can reveal both unique and common mechanisms of action for paralogous gene products.
Collapse
Affiliation(s)
- Pilgrim J. Jackson
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| | - Nick R. Douglas
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| | - Biaoxin Chai
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0682
| | - Jonathan Binkley
- Department of Pathology, Stanford University Medical Center, Stanford, California 94305
| | - Arend Sidow
- Department of Genetics, Stanford University Medical Center, Stanford, California 94305
- Department of Pathology, Stanford University Medical Center, Stanford, California 94305
| | - Gregory S. Barsh
- Department of Genetics, Stanford University Medical Center, Stanford, California 94305
- Department of Pediatrics, Stanford University Medical Center, Stanford, California 94305
| | - Glenn L. Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| |
Collapse
|
25
|
Lin RJ, Blumenkranz MS, Binkley J, Wu K, Vollrath D. A novel His158Arg mutation in TIMP3 causes a late-onset form of Sorsby fundus dystrophy. Am J Ophthalmol 2006; 142:839-48. [PMID: 16989765 DOI: 10.1016/j.ajo.2006.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 05/27/2006] [Accepted: 06/01/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE To describe the phenotype and genotype of a family with suspected Sorsby fundus dystrophy (SFD). DESIGN Case reports and results of deoxyribonucleic acid (DNA) analysis. METHODS Clinical features were determined by complete ophthalmologic examination or by review of medical records. Mutational analysis of the tissue inhibitor of metalloproteinase (TIMP)3 gene was performed by DNA resequencing. Biochemical properties of the mutant TIMP3 protein were studied, and phylogenetic and molecular modeling analyses of TIMP proteins were performed. RESULTS Fundi of four affected family members demonstrated active or regressed bilateral choroidal neovascularization, whereas another affected individual displayed severe diffuse pigmentary degeneration associated with nyctalopia characteristic of SFD. Onset of disease occurred in the fifth to seventh decades of life. A heterozygous His158Arg mutation was found in seven affected family members and was absent from an unaffected member and 98 unrelated controls. Bioinformatic analyses indicate that histidine 158 is an evolutionarily conserved residue in most vertebrate TIMP homologs and predict that substitution by arginine disrupts TIMP3 function. The mutant protein appears to be expressed by fibroblasts from an affected family member. Molecular modeling suggests that TIMP3 residue 158 may be part of a protein-protein interaction interface. CONCLUSION A novel mutation in TIMP3 causes a late-onset form of SFD in this family. His158Arg is the first reported TIMP3 SFD coding sequence mutation that does not create an unpaired cysteine. Further study of this unusual mutation may provide insight into the mechanism of SFD pathogenesis.
Collapse
Affiliation(s)
- Ruth J Lin
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | | | | | | | | |
Collapse
|
26
|
Glaser F, Rosenberg Y, Kessel A, Pupko T, Ben-Tal N. The ConSurf-HSSP database: the mapping of evolutionary conservation among homologs onto PDB structures. Proteins 2006; 58:610-7. [PMID: 15614759 DOI: 10.1002/prot.20305] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The HSSP (Homology-Derived Secondary Structure of Proteins) database provides multiple sequence alignments (MSAs) for proteins of known three-dimensional (3D) structure in the Protein Data Bank (PDB). The database also contains an estimate of the degree of evolutionary conservation at each amino acid position. This estimate, which is based on the relative entropy, correlates with the functional importance of the position; evolutionarily conserved positions (i.e., positions with limited variability and low entropy) are occasionally important to maintain the 3D structure and biological function(s) of the protein. We recently developed the Rate4Site algorithm for scoring amino acid conservation based on their calculated evolutionary rate. This algorithm takes into account the phylogenetic relationships between the homologs and the stochastic nature of the evolutionary process. Here we present the ConSurf-HSSP database of Rate4Site estimates of the evolutionary rates of the amino acid positions, calculated using HSSP's MSAs. The database provides precalculated evolutionary rates for nearly all of the PDB. These rates are projected, using a color code, onto the protein structure, and can be viewed online using the ConSurf server interface. To exemplify the database, we analyzed in detail the conservation pattern obtained for pyruvate kinase and compared the results with those observed using the relative entropy scores of the HSSP database. It is reassuring to know that the main functional region of the enzyme is detectable using both conservation scores. Interestingly, the ConSurf-HSSP calculations mapped additional functionally important regions, which are moderately conserved and were overlooked by the original HSSP estimate. The ConSurf-HSSP database is available online (http://consurf-hssp.tau.ac.il).
Collapse
Affiliation(s)
- Fabian Glaser
- Department of Biochemistry, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
27
|
Muppirala UK, Li Z. A simple approach for protein structure discrimination based on the network pattern of conserved hydrophobic residues. Protein Eng Des Sel 2006; 19:265-75. [PMID: 16565147 DOI: 10.1093/protein/gzl009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Evolutionarily conserved hydrophobic residues at the core of protein structures are generally assumed to play a structural role in protein folding and stability. Recent studies have implicated that their importance to protein structures is uneven, with a few of them being crucial and the rest of them being secondary. In this work, we explored the possibility of employing this feature of native structures for discriminating non-native structures from native ones. First, we developed a network tool to quantitatively measure the structural contributions of individual amino acid residues. We systematically applied this method to diverse fold-type sets of native proteins. It was confirmed that this method could grasp the essential structural features of native proteins. Next, we applied it to a number of decoy sets of proteins. The results indicate that such an approach indeed identified non-native structures in most test cases. This finding should be of help for the investigation of the fundamental problem of protein structure prediction.
Collapse
Affiliation(s)
- Usha K Muppirala
- Bioinformatics Program, University of the Sciences in Philadelphia Philadelphia, PA 19104, USA
| | | |
Collapse
|
28
|
García P, Frampton J. The transcription factor B-Myb is essential for S-phase progression and genomic stability in diploid and polyploid megakaryocytes. J Cell Sci 2006; 119:1483-93. [PMID: 16551698 DOI: 10.1242/jcs.02870] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The cell-cycle-regulated Myb-family transcription factor B-Myb is crucial during S phase in many diploid cell types. We have examined the expression and function of B-Myb in megakaryocytic differentiation, during which cells progress from a diploid to a polyploid state. In contrast to terminal differentiation of most haematopoietic cells, during which B-myb is rapidly downregulated, differentiation of megakaryocytes is accompanied by continued B-myb RNA and protein expression. Overexpression of B-Myb in a megakaryoblastic cell line resulted in an increase in the number of cells entering S phase and, upon induction of differentiation, the fraction of cells actively endoreplicating increased. By contrast, reduction of B-Myb levels using short interfering (si)RNA resulted in a decline in S-phase progression during both normal and endoreplicative DNA synthesis. This effect correlated with aberrant localisation of initiation of DNA replication within the nucleus and an increased fraction of cells in mitosis. Chromosomal fragmentation and other aberrations, including shorter, thicker chromatids, end-to-end fusion, and loss of a chromatid, suggest that reduced B-Myb activity is also associated with structural chromosomal instability.
Collapse
Affiliation(s)
- Paloma García
- Institute for Biomedical Research, Birmingham University Medical School, Edgbaston, Birmingham, B15 2TT, UK
| | | |
Collapse
|
29
|
Sardiello M, Annunziata I, Roma G, Ballabio A. Sulfatases and sulfatase modifying factors: an exclusive and promiscuous relationship. Hum Mol Genet 2005; 14:3203-17. [PMID: 16174644 DOI: 10.1093/hmg/ddi351] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sulfatases catalyze the hydrolysis of sulfate ester bonds from a wide variety of substrates. Several human inherited diseases are caused by the deficiency of individual sulfatases, while in patients with multiple sulfatase deficiency mutations in the Sulfatase Modifying Factor 1 (SUMF1) gene cause a defect in the post-translational modification of a cysteine residue into C(alpha)-formylglycine (FGly) at the active site of all sulfatases. This unique modification mechanism, which is required for catalytic activity, has been highly conserved during evolution. Here, we used a genomic approach to investigate the relationship between sulfatases and their modifying factors in humans and several model systems. First, we determined the complete catalog of human sulfatases, which comprises 17 members (versus 14 in rodents) including four novel ones (ARSH, ARSI, ARSJ and ARSK). Secondly, we showed that the active site, which is the target of the post-translational modification, is the most evolutionarily constrained region of sulfatases and shows intraspecies sequence convergence. Exhaustive sequence analyses of available proteomes indicate that sulfatases are the only likely targets of their modifying factors. Thirdly, we showed that sulfatases and ectonucleotide pyrophosphatases share significant homology at their active sites, suggesting a common evolutionary origin as well as similar catalytic mechanisms. Most importantly, gene association studies performed on prokaryotes suggested the presence of at least two additional mechanisms of cysteine-to-FGly conversion, which do not require SUMF1. These results may have important implications in the study of diseases caused by sulfatase deficiencies and in the development of therapeutic strategies.
Collapse
Affiliation(s)
- M Sardiello
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | | | | | | |
Collapse
|
30
|
Flannick J, Batzoglou S. Using multiple alignments to improve seeded local alignment algorithms. Nucleic Acids Res 2005; 33:4563-77. [PMID: 16100379 PMCID: PMC1185574 DOI: 10.1093/nar/gki767] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 07/06/2005] [Accepted: 07/27/2005] [Indexed: 11/23/2022] Open
Abstract
Multiple alignments among genomes are becoming increasingly prevalent. This trend motivates the development of tools for efficient homology search between a query sequence and a database of multiple alignments. In this paper, we present an algorithm that uses the information implicit in a multiple alignment to dynamically build an index that is weighted most heavily towards the promising regions of the multiple alignment. We have implemented Typhon, a local alignment tool that incorporates our indexing algorithm, which our test results show to be more sensitive than algorithms that index only a sequence. This suggests that when applied on a whole-genome scale, Typhon should provide improved homology searches in time comparable to existing algorithms.
Collapse
Affiliation(s)
- Jason Flannick
- Department of Computer Science, Stanford University, Stanford, CA 94304, USA.
| | | |
Collapse
|
31
|
Stone EA, Sidow A. Physicochemical constraint violation by missense substitutions mediates impairment of protein function and disease severity. Genome Res 2005; 15:978-86. [PMID: 15965030 PMCID: PMC1172042 DOI: 10.1101/gr.3804205] [Citation(s) in RCA: 290] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We find that the degree of impairment of protein function by missense variants is predictable by comparative sequence analysis alone. The applicable range of impairment is not confined to binary predictions that distinguish normal from deleterious variants, but extends continuously from mild to severe effects. The accuracy of predictions is strongly dependent on sequence variation and is highest when diverse orthologs are available. High predictive accuracy is achieved by quantification of the physicochemical characteristics in each position of the protein, based on observed evolutionary variation. The strong relationship between physicochemical characteristics of a missense variant and impairment of protein function extends to human disease. By using four diverse proteins for which sufficient comparative sequence data are available, we show that grades of disease, or likelihood of developing cancer, correlate strongly with physicochemical constraint violation by causative amino acid variants.
Collapse
Affiliation(s)
- Eric A Stone
- Department of Statistics, Stanford University, Stanford, California 94305-5324, USA
| | | |
Collapse
|
32
|
Kashuk CS, Stone EA, Grice EA, Portnoy ME, Green ED, Sidow A, Chakravarti A, McCallion AS. Phenotype-genotype correlation in Hirschsprung disease is illuminated by comparative analysis of the RET protein sequence. Proc Natl Acad Sci U S A 2005; 102:8949-54. [PMID: 15956201 PMCID: PMC1157046 DOI: 10.1073/pnas.0503259102] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability to discriminate between deleterious and neutral amino acid substitutions in the genes of patients remains a significant challenge in human genetics. The increasing availability of genomic sequence data from multiple vertebrate species allows inclusion of sequence conservation and physicochemical properties of residues to be used for functional prediction. In this study, the RET receptor tyrosine kinase serves as a model disease gene in which a broad spectrum (> or = 116) of disease-associated mutations has been identified among patients with Hirschsprung disease and multiple endocrine neoplasia type 2. We report the alignment of the human RET protein sequence with the orthologous sequences of 12 non-human vertebrates (eight mammalian, one avian, and three teleost species), their comparative analysis, the evolutionary topology of the RET protein, and predicted tolerance for all published missense mutations. We show that, although evolutionary conservation alone provides significant information to predict the effect of a RET mutation, a model that combines comparative sequence data with analysis of physiochemical properties in a quantitative framework provides far greater accuracy. Although the ability to discern the impact of a mutation is imperfect, our analyses permit substantial discrimination between predicted functional classes of RET mutations and disease severity even for a multigenic disease such as Hirschsprung disease.
Collapse
Affiliation(s)
- Carl S Kashuk
- McKusick-Nathans Institute of Genetic Medicine and Department of Comparative Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Greaves R, Warwicker J. Active site identification through geometry-based and sequence profile-based calculations: burial of catalytic clefts. J Mol Biol 2005; 349:547-57. [PMID: 15882869 DOI: 10.1016/j.jmb.2005.04.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 03/30/2005] [Accepted: 04/08/2005] [Indexed: 12/30/2022]
Abstract
Electrostatics calculations with proteins that are uniformly charged over volume can aid enzyme/non-enzyme discrimination. For known enzymes, such methods locate active sites to within 5% on the enzyme surface, in 77% of a test set. We now report that removing the dielectric boundary improves active site location to 80%, with optimal discrimination between enzymes and non-enzymes of around 80% specificity and 80% sensitivity. This calculation quantifies burial of solvent-accessible regions. Many of the true enzymes incorrectly assigned as non-enzymes have active sites at subunit boundaries. These are missed in monomer-based calculations. Catalytic and non-catalytic antibodies are studied in this context of active/binding site burial. Whilst catalytic antibodies, on average, have marginally higher active site burial than non-catalytic antibodies, these values are generally smaller than for non-antibody enzymes, possibly contributing to their relatively low turnover. Prediction of active site location improves further when sequence profile-based weights replace the uniform charge distribution, so that a combination of burial and amino acid conservation is assessed. Accuracy rises to 93% of active sites to within 5%, in the test set, for the optimal profile weights scheme. The equivalent value in a separate validation set is 89% to within 5%. Enzyme/non-enzyme and enzyme functional site predictions are made for structural genomics proteins, suggesting that a substantial majority of these are non-enzymes.
Collapse
Affiliation(s)
- Richard Greaves
- Faculty of Life Sciences, Jackson's Mill, University of Manchester, P.O. Box 88, Sackville Street, Manchester M60 1QD, UK
| | | |
Collapse
|
34
|
Affiliation(s)
- Joseph S Lipsick
- Department of Pathology and Department of Genetics, Program in Cancer Biology, Stanford University, Stanford, CA 94305-5324, USA
| |
Collapse
|
35
|
Davidson CJ, Tirouvanziam R, Herzenberg LA, Lipsick JS. Functional evolution of the vertebrate Myb gene family: B-Myb, but neither A-Myb nor c-Myb, complements Drosophila Myb in hemocytes. Genetics 2005; 169:215-29. [PMID: 15489525 PMCID: PMC1448883 DOI: 10.1534/genetics.104.034132] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Accepted: 10/07/2004] [Indexed: 11/18/2022] Open
Abstract
The duplication of genes and genomes is believed to be a major force in the evolution of eukaryotic organisms. However, different models have been presented about how duplicated genes are preserved from elimination by purifying selection. Preservation of one of the gene copies due to rare mutational events that result in a new gene function (neofunctionalization) necessitates that the other gene copy retain its ancestral function. Alternatively, preservation of both gene copies due to rapid divergence of coding and noncoding regions such that neither retains the complete function of the ancestral gene (subfunctionalization) may result in a requirement for both gene copies for organismal survival. The duplication and divergence of the tandemly arrayed homeotic clusters have been studied in considerable detail and have provided evidence in support of the subfunctionalization model. However, the vast majority of duplicated genes are not clustered tandemly, but instead are dispersed in syntenic regions on different chromosomes, most likely as a result of genome-wide duplications and rearrangements. The Myb oncogene family provides an interesting opportunity to study a dispersed multigene family because invertebrates possess a single Myb gene, whereas all vertebrate genomes examined thus far contain three different Myb genes (A-Myb, B-Myb, and c-Myb). A-Myb and c-Myb appear to have arisen by a second round of gene duplication, which was preceded by the acquisition of a transcriptional activation domain in the ancestral A-Myb/c-Myb gene generated from the initial duplication of an ancestral B-Myb-like gene. B-Myb appears to be essential in all dividing cells, whereas A-Myb and c-Myb display tissue-specific requirements during spermatogenesis and hematopoiesis, respectively. We now report that the absence of Drosophila Myb (Dm-Myb) causes a failure of larval hemocyte proliferation and lymph gland development, while Dm-Myb(-/-) hemocytes from mosaic larvae reveal a phagocytosis defect. In addition, we show that vertebrate B-Myb, but neither vertebrate A-Myb nor c-Myb, can complement these hemocyte proliferation defects in Drosophila. Indeed, vertebrate A-Myb and c-Myb cause lethality in the presence or absence of endogenous Dm-Myb. These results are consistent with a neomorphic origin of an ancestral A-Myb/c-Myb gene from a duplicated B-Myb-like gene. In addition, our results suggest that B-Myb and Dm-Myb share essential conserved functions that are required for cell proliferation. Finally, these experiments demonstrate the utility of genetic complementation in Drosophila to explore the functional evolution of duplicated genes in vertebrates.
Collapse
Affiliation(s)
- Colin J Davidson
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
36
|
Hamilton BA. alpha-Synuclein A53T substitution associated with Parkinson disease also marks the divergence of Old World and New World primates. Genomics 2004; 83:739-42. [PMID: 15028296 DOI: 10.1016/j.ygeno.2003.09.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Revised: 09/10/2003] [Accepted: 09/11/2003] [Indexed: 10/26/2022]
Abstract
The alpha-synuclein mutation Ala53Thr is associated with increased oligomerization, toxicity, and early onset Parkinson disease in humans, but 53Thr is the normal residue in other species. Comparative sequencing of SNCA genes shows that 53Ala marks the divergence of Old World and New World primates, in an otherwise constrained protein region. These results have implications for interpreting Parkinson disease models and suggest that other long-lived mammals have different mechanisms to forestall alpha-synucleinopathy.
Collapse
Affiliation(s)
- Bruce A Hamilton
- Department of Medicine and Department of Cellular and Molecular Medicine, University of California at San Diego School of Medicine, La Jolla, CA 92093-0644, USA.
| |
Collapse
|
37
|
Donahue CP, Kosik KS. Distribution pattern of Notch3 mutations suggests a gain-of-function mechanism for CADASIL. Genomics 2004; 83:59-65. [PMID: 14667809 DOI: 10.1016/s0888-7543(03)00206-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mutations in Notch3 cause the syndrome CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy). The mechanism by which these mutations result in a CADASIL phenotype has been widely speculated upon. A first step toward understanding a disease mechanism is to learn whether the mutations result in the loss of Notch3 function, in particular, its role in signaling or in the gain of a novel function. Notch3 genomic sequences were analyzed for sites of conservation across species. We present here a bioinformatic analysis of the Notch paralogs and orthologs that suggest that CADASIL mutations result in a gain of function. This finding diminishes the likelihood that a Notch3 signaling deficit is responsible for the phenotype and increases the likelihood that CADASIL joins the growing list of neurological diseases with protein deposits due to misfolding and aggregation.
Collapse
MESH Headings
- Animals
- CpG Islands/genetics
- Dementia, Multi-Infarct/genetics
- Dementia, Multi-Infarct/pathology
- Dementia, Multi-Infarct/physiopathology
- Exons/genetics
- Gene Frequency
- Humans
- Mice
- Mutation
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- Rats
- Receptor, Notch1
- Receptor, Notch2
- Receptor, Notch3
- Receptor, Notch4
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Receptors, Notch
- Repetitive Sequences, Nucleic Acid/genetics
- Signal Transduction/genetics
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Christine P Donahue
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
38
|
Beall EL, Bell M, Georlette D, Botchan MR. Dm-myb mutant lethality in Drosophila is dependent upon mip130: positive and negative regulation of DNA replication. Genes Dev 2004; 18:1667-80. [PMID: 15256498 PMCID: PMC478189 DOI: 10.1101/gad.1206604] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gene amplification at the chorion loci in Drosophila ovarian follicle cells is a model for the developmental regulation of DNA replication. Previously, we showed that the Drosophila homolog of the Myb oncoprotein family (DmMyb) is tightly associated with four additional proteins and that DmMyb is required for this replication-mediated amplification. Here we used targeted mutagenesis to generate a mutant in the largest subunit of the DmMyb complex, the Aly and Lin-9 family member, Myb-interacting protein 130 (Mip130). We found that mip130 mutant females are sterile and display inappropriate bromodeoxyuridine (BrdU) incorporation throughout the follicle cell nuclei at stages undergoing gene amplification. Whereas mutations in Dm-myb are lethal, mutations in mip130 are viable. Surprisingly, Dm-myb mip130 double mutants are also viable and display the same phenotypes as mip130 mutants alone. This suggests that Mip130 activity without DmMyb counteraction may be responsible for the Dm-myb mutant lethality. RNA interference (RNAi) to selectively remove each DmMyb complex member revealed that DmMyb protein levels are dependent upon the presence of several of the complex members. Together, these data support a model in which DmMyb activates a repressive complex containing Mip130 into a complex competent to support replication at specific loci in a temporally and developmentally proscribed manner.
Collapse
Affiliation(s)
- Eileen L Beall
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
39
|
Bate P, Warwicker J. Enzyme/non-enzyme discrimination and prediction of enzyme active site location using charge-based methods. J Mol Biol 2004; 340:263-76. [PMID: 15201051 DOI: 10.1016/j.jmb.2004.04.070] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 04/29/2004] [Accepted: 04/29/2004] [Indexed: 11/27/2022]
Abstract
Calculations of charge interactions complement analysis of a characterised active site, rationalising pH-dependence of activity and transition state stabilisation. Prediction of active site location through large DeltapK(a)s or electrostatic strain is relevant for structural genomics. We report a study of ionisable groups in a set of 20 enzymes, finding that false positives obscure predictive potential. In a larger set of 156 enzymes, peaks in solvent-space electrostatic properties are calculated. Both electric field and potential match well to active site location. The best correlation is found with electrostatic potential calculated from uniform charge density over enzyme volume, rather than from assignment of a standard atom-specific charge set. Studying a shell around each molecule, for 77% of enzymes the potential peak is within that 5% of the shell closest to the active site centre, and 86% within 10%. Active site identification by largest cleft, also with projection onto a shell, gives 58% of enzymes for which the centre of the largest cleft lies within 5% of the active site, and 70% within 10%. Dielectric boundary conditions emphasise clefts in the uniform charge density method, which is suited to recognition of binding pockets embedded within larger clefts. The variation of peak potential with distance from active site, and comparison between enzyme and non-enzyme sets, gives an optimal threshold distinguishing enzyme from non-enzyme. We find that 87% of the enzyme set exceeds the threshold as compared to 29% of the non-enzyme set. Enzyme/non-enzyme homologues, "structural genomics" annotated proteins and catalytic/non-catalytic RNAs are studied in this context.
Collapse
Affiliation(s)
- Paul Bate
- Biomolecular Sciences Department, University of Manchester Institute of Science and Technology, Sackville Street, Manchester M60 1QD, UK
| | | |
Collapse
|
40
|
Jobb G, von Haeseler A, Strimmer K. TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 2004; 4:18. [PMID: 15222900 PMCID: PMC459214 DOI: 10.1186/1471-2148-4-18] [Citation(s) in RCA: 789] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Accepted: 06/28/2004] [Indexed: 11/23/2022] Open
Abstract
Background Most analysis programs for inferring molecular phylogenies are difficult to use, in particular for researchers with little programming experience. Results TREEFINDER is an easy-to-use integrative platform-independent analysis environment for molecular phylogenetics. In this paper the main features of TREEFINDER (version of April 2004) are described. TREEFINDER is written in ANSI C and Java and implements powerful statistical approaches for inferring gene tree and related analyzes. In addition, it provides a user-friendly graphical interface and a phylogenetic programming language. Conclusions TREEFINDER is a versatile framework for analyzing phylogenetic data across different platforms that is suited both for exploratory as well as advanced studies.
Collapse
Affiliation(s)
- Gangolf Jobb
- Department of Statistics, University of Munich, Ludwigstr. 33, D-80539 Munich, Germany
| | - Arndt von Haeseler
- Department of Computer Science, University of Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
- John von Neumann Institute for Computing, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Korbinian Strimmer
- Department of Statistics, University of Munich, Ludwigstr. 33, D-80539 Munich, Germany
| |
Collapse
|
41
|
Brudno M, Poliakov A, Salamov A, Cooper GM, Sidow A, Rubin EM, Solovyev V, Batzoglou S, Dubchak I. Automated whole-genome multiple alignment of rat, mouse, and human. Genome Res 2004; 14:685-92. [PMID: 15060011 PMCID: PMC383314 DOI: 10.1101/gr.2067704] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have built a whole-genome multiple alignment of the three currently available mammalian genomes using a fully automated pipeline that combines the local/global approach of the Berkeley Genome Pipeline and the LAGAN program. The strategy is based on progressive alignment and consists of two main steps: (1) alignment of the mouse and rat genomes, and (2) alignment of human to either the mouse-rat alignments from step 1, or the remaining unaligned mouse and rat sequences. The resulting alignments demonstrate high sensitivity, with 87% of all human gene-coding areas aligned in both mouse and rat. The specificity is also high: <7% of the rat contigs are aligned to multiple places in human, and 97% of all alignments with human sequence >100 kb agree with a three-way synteny map built independently, using predicted exons in the three genomes. At the nucleotide level <1% of the rat nucleotides are mapped to multiple places in the human sequence in the alignment, and 96.5% of human nucleotides within all alignments agree with the synteny map. The alignments are publicly available online, with visualization through the novel Multi-VISTA browser that we also present.
Collapse
Affiliation(s)
- Michael Brudno
- Department of Computer Science, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Eraly SA, Bush KT, Sampogna RV, Bhatnagar V, Nigam SK. The molecular pharmacology of organic anion transporters: from DNA to FDA? Mol Pharmacol 2004; 65:479-87. [PMID: 14978224 DOI: 10.1124/mol.65.3.479] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal organic anion secretion has been implicated in numerous clinically significant drug interactions and adverse reactions, indicating the importance of a detailed understanding of this pathway for the development of optimum therapeutics. With the cloning of multiple genes encoding organic anion transporters (OATs), the study of organic anion secretion has entered the molecular age. In this review, we focus on various aspects of the molecular biology and pharmacology of the OATs, including discussion of their structural biology, genomic organization in pairs, developmental regulation, toxicology, and pharmacogenetics. We propose functional, pathophysiological, and evolutionary hypotheses to help explain recent experimental and genomic data.
Collapse
Affiliation(s)
- Satish A Eraly
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0693, USA
| | | | | | | | | |
Collapse
|
43
|
Ichihara H, Daiyasu H, Toh H. How does a topological inversion change the evolutionary constraints on membrane proteins? Protein Eng Des Sel 2004; 17:235-44. [PMID: 15067108 DOI: 10.1093/protein/gzh031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The members of the aquaporin family and those of the ClC chloride ion channel family consist of two-fold tandem repeats. The orientation of the N-terminal domain against membrane is opposite to that of the C-terminal domain. Several lines of evidence suggest that the extracellular and the cytoplasmic environments impose different evolutionary constraints on proteins (e.g. positive-inside rule). Therefore, the different constraints would affect the corresponding regions of the two domains, which are exposed to the different environments. To examine this hypothesis, the N- and the C-terminal domains were aligned and the difference in residue composition or conservation pattern between the two domains was calculated at each alignment site by several methods. Then, the residues corresponding to the sites exhibiting significant difference were mapped onto the tertiary structure. In spite of the difference in the methods, the mapped residues clustered on the pore surface of the channel; in contrast, the number of the residues mapped on the extracellular or cytoplasmic sides of the proteins was small. A minor modification of the methods improved the sensitivity to detect sites related to the positive-inside rule. The results support our hypothesis about the relationship between the topological inversion and the different constraints.
Collapse
Affiliation(s)
- Hisako Ichihara
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | |
Collapse
|
44
|
Aburomia R, Khaner O, Sidow A. Functional evolution in the ancestral lineage of vertebrates or when genomic complexity was wagging its morphological tail. JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2003; 3:45-52. [PMID: 12836684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Early vertebrate evolution is characterized by a significant increase of organismal complexity over a relatively short time span. We present quantitative evidence for a high rate of increase in morphological complexity during early vertebrate evolution. Possible molecular evolutionary mechanisms that underlie this increase in complexity fall into a small number of categories, one of which is gene duplication and subsequent structural or regulatory neofunctionalization. We discuss analyses of two gene families whose regulatory and structural evolution shed light on the connection between gene duplication and increases in organismal complexity.
Collapse
Affiliation(s)
- Rami Aburomia
- Department of Pathology, Stanford University Medical Center, Room 248B, 300 Pasteur Drive, Stanford, CA 94305-5324, USA
| | | | | |
Collapse
|
45
|
Inagaki Y, Blouin C, Susko E, Roger AJ. Assessing functional divergence in EF-1alpha and its paralogs in eukaryotes and archaebacteria. Nucleic Acids Res 2003; 31:4227-37. [PMID: 12853641 PMCID: PMC165955 DOI: 10.1093/nar/gkg440] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A number of methods have recently been published that use phylogenetic information extracted from large multiple sequence alignments to detect sites that have changed properties in related protein families. In this study we use such methods to assess functional divergence between eukaryotic EF-1alpha (eEF-1alpha), archaebacterial EF-1alpha (aEF-1alpha) and two eukaryote-specific EF-1alpha paralogs-eukaryotic release factor 3 (eRF3) and Hsp70 subfamily B suppressor 1 (HBS1). Overall, the evolutionary modes of aEF-1alpha, HBS1 and eRF3 appear to significantly differ from that of eEF-1alpha. However, functionally divergent (FD) sites detected between aEF-1alpha and eEF-1alpha only weakly overlap with sites implicated as putative EF-1beta or aminoacyl-tRNA (aa-tRNA) binding residues in EF-1alpha, as expected based on the shared ancestral primary translational functions of these two orthologs. In contrast, FD sites detected between eEF-1alpha and its paralogs significantly overlap with the putative EF-1beta and/or aa-tRNA binding sites in EF-1alpha. In eRF3 and HBS1, these sites appear to be released from functional constraints, indicating that they bind neither eEF-1beta nor aa-tRNA. These results are consistent with experimental observations that eRF3 does not bind to aa-tRNA, but do not support the 'EF-1alpha-like' function recently proposed for HBS1. We re-assess the available genetic data for HBS1 in light of our analyses, and propose that this protein may function in stop codon-independent peptide release.
Collapse
Affiliation(s)
- Yuji Inagaki
- Program in Evolutionary Biology, Canadian Institute for Advanced Research and Genome Atlantic, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada.
| | | | | | | |
Collapse
|
46
|
Ota M, Kinoshita K, Nishikawa K. Prediction of catalytic residues in enzymes based on known tertiary structure, stability profile, and sequence conservation. J Mol Biol 2003; 327:1053-64. [PMID: 12662930 DOI: 10.1016/s0022-2836(03)00207-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The catalytic or functionally important residues of a protein are known to exist in evolutionarily constrained regions. However, the patterns of residue conservation alone are sometimes not very informative, depending on the homologous sequences available for a given query protein. Here, we present an integrated method to locate the catalytic residues in an enzyme from its sequence and structure. Mutations of functional residues usually decrease the activity, but concurrently often increase stability. Also, catalytic residues tend to occupy partially buried sites in holes or clefts on the molecular surface. After confirming these general tendencies by carrying out statistical analyses on 49 representative enzymes, these data together with amino acid conservation were evaluated. This novel method exhibited better sensitivity in the prediction accuracy than traditional methods that consider only the residue conservation. We applied it to some so-called "hypothetical" proteins, with known structures but undefined functions. The relationships among the catalytic, conserved, and destabilizing residues in enzymatic proteins are discussed.
Collapse
Affiliation(s)
- Motonori Ota
- National Institute of Genetics, Yata, Mishima, 411-8540, Shizuoka, Japan.
| | | | | |
Collapse
|
47
|
Brudno M, Do CB, Cooper GM, Kim MF, Davydov E, Green ED, Sidow A, Batzoglou S. LAGAN and Multi-LAGAN: efficient tools for large-scale multiple alignment of genomic DNA. Genome Res 2003; 13:721-31. [PMID: 12654723 PMCID: PMC430158 DOI: 10.1101/gr.926603] [Citation(s) in RCA: 766] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2002] [Accepted: 12/11/2002] [Indexed: 11/25/2022]
Abstract
To compare entire genomes from different species, biologists increasingly need alignment methods that are efficient enough to handle long sequences, and accurate enough to correctly align the conserved biological features between distant species. We present LAGAN, a system for rapid global alignment of two homologous genomic sequences, and Multi-LAGAN, a system for multiple global alignment of genomic sequences. We tested our systems on a data set consisting of greater than 12 Mb of high-quality sequence from 12 vertebrate species. All the sequence was derived from the genomic region orthologous to an approximately 1.5-Mb region on human chromosome 7q31.3. We found that both LAGAN and Multi-LAGAN compare favorably with other leading alignment methods in correctly aligning protein-coding exons, especially between distant homologs such as human and chicken, or human and fugu. Multi-LAGAN produced the most accurate alignments, while requiring just 75 minutes on a personal computer to obtain the multiple alignment of all 12 sequences. Multi-LAGAN is a practical method for generating multiple alignments of long genomic sequences at any evolutionary distance. Our systems are publicly available at http://lagan.stanford.edu.
Collapse
Affiliation(s)
- Michael Brudno
- Department of Computer Science, Stanford University, Stanford, California 94305-9010, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Ko DC, Binkley J, Sidow A, Scott MP. The integrity of a cholesterol-binding pocket in Niemann-Pick C2 protein is necessary to control lysosome cholesterol levels. Proc Natl Acad Sci U S A 2003; 100:2518-25. [PMID: 12591949 PMCID: PMC151373 DOI: 10.1073/pnas.0530027100] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2003] [Indexed: 11/18/2022] Open
Abstract
The neurodegenerative disease Niemann-Pick Type C2 (NPC2) results from mutations in the NPC2 (HE1) gene that cause abnormally high cholesterol accumulation in cells. We find that purified NPC2, a secreted soluble protein, binds cholesterol specifically with a much higher affinity (K(d) = 30-50 nM) than previously reported. Genetic and biochemical studies identified single amino acid changes that prevent both cholesterol binding and the restoration of normal cholesterol levels in mutant cells. The amino acids that affect cholesterol binding surround a hydrophobic pocket in the NPC2 protein structure, identifying a candidate sterol-binding location. On the basis of evolutionary analysis and mutagenesis, three other regions of the NPC2 protein emerged as important, including one required for efficient secretion.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acids/metabolism
- Animals
- Binding Sites
- CHO Cells
- Carrier Proteins
- Cells, Cultured
- Cholesterol/chemistry
- Cholesterol/metabolism
- Chromatography, Gel
- Cricetinae
- Culture Media, Conditioned/pharmacology
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Evolution, Molecular
- Fibroblasts/metabolism
- Filipin/chemistry
- Glycoproteins/chemistry
- Glycoproteins/physiology
- Humans
- Kinetics
- Mice
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Plasmids/metabolism
- Protein Binding
- Protein Conformation
- Protein Structure, Tertiary
- Sequence Homology, Amino Acid
- Software
- Time Factors
- Vesicular Transport Proteins
Collapse
Affiliation(s)
- Dennis C Ko
- Department of Developmental Biology, Beckman Center B300, 279 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | | | | | | |
Collapse
|
49
|
Blouin C, Boucher Y, Roger AJ. Inferring functional constraints and divergence in protein families using 3D mapping of phylogenetic information. Nucleic Acids Res 2003; 31:790-7. [PMID: 12527789 PMCID: PMC140515 DOI: 10.1093/nar/gkg151] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Comparative sequence analysis has been used to study specific questions about the structure and function of proteins for many years. Here we propose a knowledge-based framework in which the maximum likelihood rate of evolution is used to quantify the level of constraint on the identity of a site. We demonstrate that site-rate mapping on 3D structures using datasets of rhodopsin-like G-protein receptors and alpha- and beta-tubulins provides an excellent tool for pinpointing the functional features shared between orthologous and paralogous proteins. In addition, functional divergence within protein families can be inferred by examining the differences in the site rates, the differences in the chemical properties of the side chains or amino acid usage between aligned sites. Two novel analytical methods are introduced to characterize rate- independent functional divergence. These are tested using a dataset of two classes of HMG-CoA reductases for which only one class can perform both the forward and reverse reaction. We show that functionally divergent sites occur in a cluster of sites interacting with the catalytic residues and that this information should facilitate the design of experimental strategies to directly test functional properties of residues.
Collapse
Affiliation(s)
- Christian Blouin
- Canadian Institute for Advanced Research, Program in Evolutionary Biology, Genome Atlantic, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada.
| | | | | |
Collapse
|
50
|
Alexandre G, Zhulin IB. Different evolutionary constraints on chemotaxis proteins CheW and CheY revealed by heterologous expression studies and protein sequence analysis. J Bacteriol 2003; 185:544-52. [PMID: 12511501 PMCID: PMC145311 DOI: 10.1128/jb.185.2.544-552.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CheW and CheY are single-domain proteins from a signal transduction pathway that transmits information from transmembrane receptors to flagellar motors in bacterial chemotaxis. In various bacterial and archaeal species, the cheW and cheY genes are usually encoded within homologous chemotaxis operons. We examined evolutionary changes in these two proteins from distantly related proteobacterial species, Escherichia coli and Azospirillum brasilense. We analyzed the functions of divergent CheW and CheY proteins from A. brasilense by heterologous expression in E. coli wild-type and mutant strains. Both proteins were able to specifically inhibit chemotaxis of a wild-type E. coli strain; however, only CheW from A. brasilense was able to restore signal transduction in a corresponding mutant of E. coli. Detailed protein sequence analysis of CheW and CheY homologs from the two species revealed substantial differences in the types of amino acid substitutions in the two proteins. Multiple, but conservative, substitutions were found in CheW homologs. No severe mismatches were found between the CheW homologs in positions that are known to be structurally or functionally important. Substitutions in CheY homologs were found to be less conservative and occurred in positions that are critical for interactions with other components of the signal transduction pathway. Our findings suggest that proteins from the same cellular pathway encoded by genes from the same operon have different evolutionary constraints on their structures that reflect differences in their functions.
Collapse
Affiliation(s)
- Gladys Alexandre
- School of Biology, Georgia Institute of Technology, Atlanta 30332-0230, USA
| | | |
Collapse
|