1
|
Cao L, Yu B, Klauser PC, Zhang P, Li S, Wang L. Arginine Accelerates Sulfur Fluoride Exchange and Phosphorus Fluoride Exchange Reactions between Proteins. Angew Chem Int Ed Engl 2024:e202412843. [PMID: 39113386 DOI: 10.1002/anie.202412843] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Indexed: 10/17/2024]
Abstract
Sulfur fluoride exchange (SuFEx) and phosphorus fluoride exchange (PFEx) click chemistries are advancing research across multiple disciplines. By genetically incorporating latent bioreactive unnatural amino acids (Uaas), these chemistries have been integrated into proteins, enabling precise covalent linkages with biological macromolecules and paving the way for new applications. However, their suboptimal reaction rates in proteins limit effectiveness, and traditional catalytic methods for small molecules are often incompatible with biological systems or in vivo applications. We demonstrated that introducing an arginine adjacent to the latent bioreactive Uaa significantly boosts SuFEx and PFEx reaction rates between proteins. This method is effective across various Uaas, target residues, and protein environments. Notably, it also enables efficient SuFEx reactions in acidic conditions, common in certain cellular compartments and tumor microenvironments, which typically hinder SuFEx reactions. Furthermore, we developed the first covalent cell engager that substantially enhances natural killer cell activation through improved covalent interaction facilitated by arginine. These findings provide mechanistic insights and offer a biocompatible strategy to harness these robust chemistries for advancing biological research and developing new biotherapeutics.
Collapse
Affiliation(s)
- Li Cao
- Department of Pharmaceutical Chemistry, the, Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 94158, San Francisco, California, United States
| | - Bingchen Yu
- Department of Pharmaceutical Chemistry, the, Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 94158, San Francisco, California, United States
| | - Paul C Klauser
- Department of Pharmaceutical Chemistry, the, Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 94158, San Francisco, California, United States
| | - Pan Zhang
- Department of Pharmaceutical Chemistry, the, Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 94158, San Francisco, California, United States
| | - Shanshan Li
- Department of Pharmaceutical Chemistry, the, Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 94158, San Francisco, California, United States
| | - Lei Wang
- Department of Pharmaceutical Chemistry, the, Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 94158, San Francisco, California, United States
| |
Collapse
|
2
|
Cao L, Wang L. Biospecific Chemistry for Covalent Linking of Biomacromolecules. Chem Rev 2024; 124:8516-8549. [PMID: 38913432 PMCID: PMC11240265 DOI: 10.1021/acs.chemrev.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Interactions among biomacromolecules, predominantly noncovalent, underpin biological processes. However, recent advancements in biospecific chemistry have enabled the creation of specific covalent bonds between biomolecules, both in vitro and in vivo. This Review traces the evolution of biospecific chemistry in proteins, emphasizing the role of genetically encoded latent bioreactive amino acids. These amino acids react selectively with adjacent natural groups through proximity-enabled bioreactivity, enabling targeted covalent linkages. We explore various latent bioreactive amino acids designed to target different protein residues, ribonucleic acids, and carbohydrates. We then discuss how these novel covalent linkages can drive challenging protein properties and capture transient protein-protein and protein-RNA interactions in vivo. Additionally, we examine the application of covalent peptides as potential therapeutic agents and site-specific conjugates for native antibodies, highlighting their capacity to form stable linkages with target molecules. A significant focus is placed on proximity-enabled reactive therapeutics (PERx), a pioneering technology in covalent protein therapeutics. We detail its wide-ranging applications in immunotherapy, viral neutralization, and targeted radionuclide therapy. Finally, we present a perspective on the existing challenges within biospecific chemistry and discuss the potential avenues for future exploration and advancement in this rapidly evolving field.
Collapse
Affiliation(s)
- Li Cao
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| | - Lei Wang
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
3
|
Cao L, Yu B, Li S, Zhang P, Li Q, Wang L. Genetically Enabling Phosphorus Fluoride Exchange Click Chemistry in Proteins. Chem 2024; 10:1868-1884. [PMID: 38975291 PMCID: PMC11225796 DOI: 10.1016/j.chempr.2024.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Phosphorus Fluoride Exchange (PFEx), recently debuted in small molecules, represents the forefront of click chemistry. To explore PFEx's potential in biological settings, we developed amino acids PFY and PFK featuring phosphoramidofluoridates and incorporated them into proteins through genetic code expansion. PFY/PFK selectively reacted with nearby His, Tyr, Lys, or Cys in proteins, both in vitro and in living cells, demonstrating that proximity enabled PFEx reactivity without external reagents. The reaction with His showed unique pH-dependent properties and created thermally sensitive linkages. Additionally, Na2SiO3 enhanced PFEx reactions with Tyr and Cys. PFEx, by generating defined covalent P-N/O linkages, extends the utility of phosphorus linkages in proteins, aligning with nature's use of phosphate connectors in other biomolecules. More versatile and durable than SuFEx, PFEx in proteins expands the latent bioreactive arsenal for covalent protein engineering and will facilitate the broad application of this potent click chemistry in biological and biomedical fields.
Collapse
Affiliation(s)
- Li Cao
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- These authors contributed equally
| | - Bingchen Yu
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- These authors contributed equally
| | - Shanshan Li
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Pan Zhang
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qingke Li
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lei Wang
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- Lead contact
| |
Collapse
|
4
|
Yang A, Jude KM, Lai B, Minot M, Kocyla AM, Glassman CR, Nishimiya D, Kim YS, Reddy ST, Khan AA, Garcia KC. Deploying synthetic coevolution and machine learning to engineer protein-protein interactions. Science 2023; 381:eadh1720. [PMID: 37499032 PMCID: PMC10403280 DOI: 10.1126/science.adh1720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/16/2023] [Indexed: 07/29/2023]
Abstract
Fine-tuning of protein-protein interactions occurs naturally through coevolution, but this process is difficult to recapitulate in the laboratory. We describe a platform for synthetic protein-protein coevolution that can isolate matched pairs of interacting muteins from complex libraries. This large dataset of coevolved complexes drove a systems-level analysis of molecular recognition between Z domain-affibody pairs spanning a wide range of structures, affinities, cross-reactivities, and orthogonalities, and captured a broad spectrum of coevolutionary networks. Furthermore, we harnessed pretrained protein language models to expand, in silico, the amino acid diversity of our coevolution screen, predicting remodeled interfaces beyond the reach of the experimental library. The integration of these approaches provides a means of simulating protein coevolution and generating protein complexes with diverse molecular recognition properties for biotechnology and synthetic biology.
Collapse
Affiliation(s)
- Aerin Yang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin M. Jude
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ben Lai
- Toyota Technological Institute at Chicago, Chicago, IL 60637, USA
| | - Mason Minot
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Anna M. Kocyla
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caleb R. Glassman
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daisuke Nishimiya
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yoon Seok Kim
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sai T. Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Aly A. Khan
- Toyota Technological Institute at Chicago, Chicago, IL 60637, USA
- Departments of Pathology, and Family Medicine, University of Chicago, Chicago, IL 60637, USA
| | - K. Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Yu B, Cao L, Li S, Klauser PC, Wang L. The proximity-enabled sulfur fluoride exchange reaction in the protein context. Chem Sci 2023; 14:7913-7921. [PMID: 37502323 PMCID: PMC10370592 DOI: 10.1039/d3sc01921g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023] Open
Abstract
The proximity-enabled sulfur(vi) fluoride exchange (SuFEx) reaction generates specific covalent linkages between proteins in cells and in vivo, which opens innovative avenues for studying elusive protein-protein interactions and developing potent covalent protein drugs. To exploit the power and expand the applications of covalent proteins, covalent linkage formation between proteins is the critical step, for which fundamental kinetic and essential properties remain unexplored. Herein, we systematically studied SuFEx kinetics in different proteins and conditions. In contrast to in small molecules, SuFEx in interacting proteins conformed with a two-step mechanism involving noncovalent binding, followed by covalent bond formation, exhibiting nonlinear rate dependence on protein concentration. The protein SuFEx rate consistently changed with protein binding affinity as well as chemical reactivity of the functional group and was impacted by target residue identity and solution pH. In addition, kinetic analyses of nanobody SR4 binding with SARS-CoV-2 spike protein revealed that viral target mutations did not abolish covalent binding but decreased the SuFEx rate with affinity decrease. Moreover, off-target cross-linking of a SuFEx-capable nanobody in human serum was not detected, and the SuFEx-generated protein linkage was stable at cellular acidic pHs, suggesting SuFEx suitability for in vivo usage. These results advanced our understanding of SuFEx reactivity and kinetics in proteins, which is invaluable for ongoing exploration of SuFEx-enabled covalent proteins for basic biological research and creative biotherapeutics.
Collapse
Affiliation(s)
- Bingchen Yu
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco 555 Mission Bay Blvd. South San Francisco California 94158 USA
| | - Li Cao
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco 555 Mission Bay Blvd. South San Francisco California 94158 USA
| | - Shanshan Li
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco 555 Mission Bay Blvd. South San Francisco California 94158 USA
| | - Paul C Klauser
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco 555 Mission Bay Blvd. South San Francisco California 94158 USA
| | - Lei Wang
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco 555 Mission Bay Blvd. South San Francisco California 94158 USA
| |
Collapse
|
6
|
Zhou G, Wan WW, Wang W. Modular Peroxidase-Based Reporters for Detecting Protease Activity and Protein Interactions with Temporal Gating. J Am Chem Soc 2022; 144:22933-22940. [PMID: 36511757 PMCID: PMC10026560 DOI: 10.1021/jacs.2c08280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Enzymatic reporters have been widely applied to study various biological processes because they can amplify signal through enzymatic reactions and provide good sensitivity. However, there is still a need for modular motifs for designing a series of enzymatic reporters. Here, we report a modular peroxidase-based motif, named CLAPon, that features acid-base coil-caged enhanced ascorbate peroxidase (APEX). We demonstrate the modularity of CLAPon by designing a series of reporters for detecting protease activity and protein-protein interactions (PPIs). CLAPon for protease activity showed a 390-fold fluorescent signal increase upon tobacco etch virus protease cleavage. CLAPon for PPI detection (PPI-CLAPon) has two variants, PPI-CLAPon1.0 and 1.1. PPI-CLAPon1.0 showed a signal-to-noise ratio (SNR) of up to 107 for high-affinity PPI pairs and enabled imaging with sub-cellular spatial resolution. However, the more sensitive PPI-CLAPon1.1 is required for detecting low-affinity PPI pairs. PPI-CLAPon1.0 was further engineered to a reporter with light-dependent temporal gating, called LiPPI-CLAPon1.0, which can detect a 3-min calcium-dependent PPI with an SNR of 17. LiPPI-CLAPon enables PPI detection within a specific time window with rapid APEX activation and diverse readout. Lastly, PPI-CLAPon1.0 was designed to have chemical gating, providing more versatility to complement the LiPPI-CLAPon. These CLAPon-based reporter designs can be broadly applied to study various signaling processes that involve protease activity and PPIs and provide a versatile platform to design various genetically encoded reporters.
Collapse
Affiliation(s)
- Guanwei Zhou
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wei Wei Wan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wenjing Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Corresponding Author: Wenjing Wang,
| |
Collapse
|
7
|
Tan X, Yang J, Jiang J, Wang W, Ren J, Li Q, Xie Z, Chen X, Zhang L, Li W. Significant Growth Inhibition by a Bispecific Affibody Targeting Oncoprotein E7 in both HPV16 and 18 Positive Cervical Cancer in vitro and in vivo. Eur J Pharm Sci 2022; 172:106156. [PMID: 35245683 DOI: 10.1016/j.ejps.2022.106156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/11/2021] [Accepted: 12/30/2021] [Indexed: 12/01/2022]
Abstract
The infection with HPV 16 and 18 high-risk types account for more than 80 % of cervical cancer incidence, but there is still no targeted agent against HPV for cervical cancer therapy. Our previous study constructed a bispecific affibody Z16-18 targeting HPV16 and 18 early antigen 7 (E7, responsible for the infected cell malignant transformation). In the present study, we prepared Z16-18 in prokaryotic expression system and confirmed its significant growth inhibition both on SiHa (HPV16 positive) and HeLa (HPV18 positive) cervical cancer cells by arresting cell cycle at G0/G1 phase. The IC50 of Z16-18 on SiHa and HeLa were close in value. Z16-18 could specifically target E7 in both SiHa and HeLa, and exhibited prominent targeted enrichment on tumor tissues derived from SiHa or HeLa, resulting in the inhibition of tumourigenesis and tumour growth in vivo. Furthermore, Z16-18 could inhibit the interaction between E7 and pRb to block the E7-pRb carcinogenic pathway, resulting in the decreased release of E2F and the cell growth inhibition characterized by the decrease of CDK6 and Cyclin D1. This study provides a new strategy for targeted therapy based on affibody, and Z16-18 has great potential for utilisation and development as an agent targeting HPV16 and HPV18 related cervical cancer.
Collapse
Affiliation(s)
- Xiaochun Tan
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiani Yang
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Jiang
- Ningbo No.9 Hospital, Ningbo, Zhejiang, China
| | - Wenhuan Wang
- Department of Reproductive Genetics, Wenzhou Key Laboratory of Gynecology and Obstetrics, the Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), Wenzhou, Zhejiang, China
| | - Jiahuan Ren
- Department of General Surgery, the First Affliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qijia Li
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zixin Xie
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinan Chen
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lifang Zhang
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Wenshu Li
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
8
|
Yang B, Wang N, Schnier PD, Zheng F, Zhu H, Polizzi NF, Ittuveetil A, Saikam V, DeGrado WF, Wang Q, Wang PG, Wang L. Genetically Introducing Biochemically Reactive Amino Acids Dehydroalanine and Dehydrobutyrine in Proteins. J Am Chem Soc 2019; 141:7698-7703. [PMID: 31038942 DOI: 10.1021/jacs.9b02611] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Expansion of the genetic code with unnatural amino acids (Uaas) has significantly increased the chemical space available to proteins for exploitation. Due to the inherent limitation of translational machinery and the required compatibility with biological settings, function groups introduced via Uaas to date are restricted to chemically inert, bioorthogonal, or latent bioreactive groups. To break this barrier, here we report a new strategy enabling the specific incorporation of biochemically reactive amino acids into proteins. A latent bioreactive amino acid is genetically encoded at a position proximal to the target natural amino acid; they react via proximity-enabled reactivity, selectively converting the latter into a reactive residue in situ. Using this Genetically Encoded Chemical COnversion (GECCO) strategy and harnessing the sulfur-fluoride exchange (SuFEx) reaction between fluorosulfate-l-tyrosine and serine or threonine, we site-specifically generated the reactive dehydroalanine and dehydrobutyrine into proteins. GECCO works both inter- and intramolecularly, and is compatible with various proteins. We further labeled the resultant dehydroalanine-containing protein with thiol-saccharide to generate glycoprotein mimetics. GECCO represents a new solution for selectively introducing biochemically reactive amino acids into proteins and is expected to open new avenues for exploiting chemistry in live systems for biological research and engineering.
Collapse
Affiliation(s)
| | | | | | - Feng Zheng
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Hangzhou 310018 , China
| | - He Zhu
- Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | | | - Avinash Ittuveetil
- Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | - Varma Saikam
- Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | | | - Qian Wang
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Hangzhou 310018 , China
| | - Peng G Wang
- Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | | |
Collapse
|
9
|
Richards DA. Exploring alternative antibody scaffolds: Antibody fragments and antibody mimics for targeted drug delivery. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 30:35-46. [PMID: 30553519 DOI: 10.1016/j.ddtec.2018.10.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 05/20/2023]
Abstract
The field of targeted therapeutics has benefitted immeasurably from the development of high-affinity antibodies. These important ligands have facilitated the development of effective therapies, particularly when conjugated to potent cytotoxic payloads i.e. in antibody-drug conjugates (ADCs). The success of ADCs is evidenced by rapid adoption within the pharmaceuticals community; many major companies have dedicated ADC research programmes. However, despite the advantages, the field of ADCs has failed to live up to its full potential. Studies have emerged suggesting that traditional IgG scaffolds may not be the optimal format for targeted payload delivery. In response, the protein engineering community has begun to explore alternative high-binding protein scaffolds as antibody mimics. In this short review I will summarise the generation, modification, and application of emerging antibody fragments and synthetic antibody mimics, with a focus on their use as drug carriers. The review aims to highlight the advantages of antibody mimics, and how they could be employed to overcome the issues and limitations of traditional ADCs.
Collapse
Affiliation(s)
- Daniel A Richards
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| |
Collapse
|
10
|
Kangwa M, Yelemane V, Ponnurangam A, Fernández-Lahore M. An engineered Staphylococcal Protein A based ligand: Production, characterization and potential application for the capture of Immunoglobulin and Fc-fusion proteins. Protein Expr Purif 2018; 155:27-34. [PMID: 30445097 DOI: 10.1016/j.pep.2018.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/28/2022]
Abstract
In antibody purification processes, affinity chromatography has been used with Staphylococcus aureus protein A (SpA) as the main ligand. In this work, we present a novel Staphylococcal Protein A (AviPure thereafter), a synthetic ligand analogue based on native SpA B domain, with a molecular weight of approximately 14 kDa. The binding affinity of mAbs to AviPure was evaluated using Surface Plasmon Resonance (SPR) and affinity chromatography methods. The equilibrium dissociation constant (KD) between the AviPure and mAbs was systematically measured using 1:1 (Langmuir) model and found to be 4.7 × 10-8 M, with constant of dissociation at kd ≤ 1.0 × 10-3 s-1 and ka being 3.1 × 104 M-1 s-1. When immobilized on Sepharose, the AviPure ligand density was 429 nmol/g moist weight resin and was able to effectively bind immunoglobulin and Fc fragment samples with higher affinity and the most effective flow rate when using ligand - Sepharose beads was at 75 cm/h giving the dynamic binding capacity of 53 mg/mL and 91% recovery of IgG. Suitable ligands used in affinity purification should have a KD ≤ 10-6 M and a dissociation rate (ka) averaging 10-3 M-1 s-1 with the kd ranging between 103 - 108 M-1. Therefore, the AviPure ligand can be used as an alternative to the standard protein A ligand in the purification of mAbs and Fc-fused proteins.
Collapse
Affiliation(s)
- Martin Kangwa
- Downstream Bioprocessing Laboratory, Department of Life Sciences & Chemistry, Jacobs University, Campus Ring 1, D-28759, Bremen, Germany.
| | - Vikas Yelemane
- Downstream Bioprocessing Laboratory, Department of Life Sciences & Chemistry, Jacobs University, Campus Ring 1, D-28759, Bremen, Germany
| | - Adilah Ponnurangam
- Downstream Bioprocessing Laboratory, Department of Life Sciences & Chemistry, Jacobs University, Campus Ring 1, D-28759, Bremen, Germany
| | - Marcelo Fernández-Lahore
- Downstream Bioprocessing Laboratory, Department of Life Sciences & Chemistry, Jacobs University, Campus Ring 1, D-28759, Bremen, Germany.
| |
Collapse
|
11
|
Wang N, Yang B, Fu C, Zhu H, Zheng F, Kobayashi T, Liu J, Li S, Ma C, Wang PG, Wang Q, Wang L. Genetically Encoding Fluorosulfate-l-tyrosine To React with Lysine, Histidine, and Tyrosine via SuFEx in Proteins in Vivo. J Am Chem Soc 2018; 140:4995-4999. [PMID: 29601199 DOI: 10.1021/jacs.8b01087] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introducing new chemical reactivity into proteins in living cells would endow innovative covalent bonding ability to proteins for research and engineering in vivo. Latent bioreactive unnatural amino acids (Uaas) can be incorporated into proteins to react with target natural amino acid residues via proximity-enabled reactivity. To expand the diversity of proteins amenable to such reactivity in vivo, a chemical functionality that is biocompatible and able to react with multiple natural residues under physiological conditions is highly desirable. Here we report the genetic encoding of fluorosulfate-l-tyrosine (FSY), the first latent bioreactive Uaa that undergoes sulfur-fluoride exchange (SuFEx) on proteins in vivo. FSY was found nontoxic to Escherichia coli and mammalian cells; after being incorporated into proteins, it selectively reacted with proximal lysine, histidine, and tyrosine via SuFEx, generating covalent intraprotein bridge and interprotein cross-link of interacting proteins directly in living cells. The proximity-activatable reactivity, multitargeting ability, and excellent biocompatibility of FSY will be invaluable for covalent manipulation of proteins in vivo. Moreover, genetically encoded FSY hereby empowers general proteins with the next generation of click chemistry, SuFEx, which will afford broad utilities in chemical biology, drug discovery, and biotherapeutics.
Collapse
Affiliation(s)
- Nanxi Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States
| | - Bing Yang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States
| | - Caiyun Fu
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States.,College of Life Sciences , Zhejiang Sci-Tech University , Hangzhou 310018 , China
| | - He Zhu
- Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | - Feng Zheng
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Hangzhou 310018 , China
| | - Tomonori Kobayashi
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States
| | - Jun Liu
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States
| | - Shanshan Li
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States.,Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | - Cheng Ma
- Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | - Peng G Wang
- Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | - Qian Wang
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Hangzhou 310018 , China
| | - Lei Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States
| |
Collapse
|
12
|
Deonarain MP, Yahioglu G, Stamati I, Pomowski A, Clarke J, Edwards BM, Diez-Posada S, Stewart AC. Small-Format Drug Conjugates: A Viable Alternative to ADCs for Solid Tumours? Antibodies (Basel) 2018; 7:E16. [PMID: 31544868 PMCID: PMC6698822 DOI: 10.3390/antib7020016] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 12/16/2022] Open
Abstract
Antibody-Drug Conjugates (ADCs) have been through multiple cycles of technological innovation since the concept was first practically demonstrated ~40 years ago. Current technology is focusing on large, whole immunoglobulin formats (of which there are approaching 100 in clinical development), many with site-specifically conjugated payloads numbering 2 or 4. Despite the success of trastuzumab-emtansine in breast cancer, ADCs have generally failed to have an impact in solid tumours, leading many to explore alternative, smaller formats which have better penetrating properties as well as more rapid pharmacokinetics (PK). This review describes research and development progress over the last ~10 years obtained from the primary literature or conferences covering over a dozen different smaller format-drug conjugates from 80 kDa to around 1 kDa in total size. In general, these agents are potent in vitro, particularly more recent ones incorporating ultra-potent payloads such as auristatins or maytansinoids, but this potency profile changes when testing in vivo due to the more rapid clearance. Strategies to manipulate the PK properties, whilst retaining the more effective tumour penetrating properties could at last make small-format drug conjugates viable alternative therapeutics to the more established ADCs.
Collapse
Affiliation(s)
- Mahendra P Deonarain
- Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage Herts SG12FX, UK.
- Department of Chemistry, Imperial College London, Exhibition Road, London SW72AZ, UK.
| | - Gokhan Yahioglu
- Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage Herts SG12FX, UK.
- Department of Chemistry, Imperial College London, Exhibition Road, London SW72AZ, UK.
| | - Ioanna Stamati
- Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage Herts SG12FX, UK.
| | - Anja Pomowski
- Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage Herts SG12FX, UK.
| | - James Clarke
- Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage Herts SG12FX, UK.
| | - Bryan M Edwards
- Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage Herts SG12FX, UK.
| | - Soraya Diez-Posada
- Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage Herts SG12FX, UK.
| | - Ashleigh C Stewart
- Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage Herts SG12FX, UK.
| |
Collapse
|
13
|
Kim S, Sung BH, Kim SC, Lee HS. Genetic incorporation of l-dihydroxyphenylalanine (DOPA) biosynthesized by a tyrosine phenol-lyase. Chem Commun (Camb) 2018; 54:3002-3005. [PMID: 29508865 DOI: 10.1039/c8cc00281a] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
l-Dihydroxyphenylalanine (DOPA) was biosynthesized by a tyrosine-phenol lyase from catechol, pyruvate, and ammonia in Escherichia coli, and the biosynthesized amino acid was directly incorporated into proteins. Three biochemical experiments with mutant proteins containing DOPA confirmed the genetic incorporation of biosynthesized DOPA, and revealed its potential for various biochemical applications.
Collapse
Affiliation(s)
- Sanggil Kim
- Department of Chemistry, Sogang University, Seoul 121-742, Republic of Korea.
| | - Bong Hyun Sung
- Bioenergy and Biochemical Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, Seoul 121-742, Republic of Korea.
| |
Collapse
|
14
|
Spontaneous and specific chemical cross-linking in live cells to capture and identify protein interactions. Nat Commun 2017; 8:2240. [PMID: 29269770 PMCID: PMC5740110 DOI: 10.1038/s41467-017-02409-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022] Open
Abstract
Covalently locking interacting proteins in situ is an attractive strategy for addressing the challenge of identifying weak and transient protein interactions, yet it is demanding to execute chemical reactions in live systems in a biocompatible, specific, and autonomous manner. Harnessing proximity-enabled reactivity of an unnatural amino acid incorporated in the bait toward a target residue of unknown proteins, here we genetically encode chemical cross-linkers (GECX) to cross-link interacting proteins spontaneously and selectively in live cells. Obviating an external trigger for reactivity and affording residue specificity, GECX enables the capture of low-affinity protein binding (affibody with Z protein), elusive enzyme-substrate interaction (ubiquitin-conjugating enzyme UBE2D3 with substrate PCNA), and endogenous proteins interacting with thioredoxin in E. coli cells, allowing for mass spectrometric identification of interacting proteins and crosslinking sites. This live cell chemistry-based approach should be valuable for investigating currently intangible protein interactions in vivo for better understanding of biology in physiological settings. Proteins associate via weak and transient interactions that are challenging to identify in vivo. Here, the authors use a genetically encoded chemical cross-linker to covalently lock interacting proteins in live cells, allowing them to identify the captured proteins by mass spectrometry.
Collapse
|
15
|
Nilsson A, Lindgren J, Eriksson Karlström A. Intramolecular Thioether Crosslinking to Increase the Proteolytic Stability of Affibody Molecules. Chembiochem 2017; 18:2056-2062. [PMID: 28836374 DOI: 10.1002/cbic.201700350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Indexed: 11/12/2022]
Abstract
Protein therapeutics suffer from low oral bioavailability, mainly due to poor membrane permeability and digestion by gastrointestinal proteases. To improve proteolytic stability, intramolecular thioether crosslinks were introduced into a three-helix affibody molecule binding the human epidermal growth factor receptor (EGFR). Solid-phase peptide synthesis was used to produce an unmodified control protein domain and three different crosslinked protein domain variants: one with a thioether crosslink between the N-terminal lysine residue and a cysteine residue in the second loop region (denoted K4), a second with a crosslink between the C-terminal lysine residue and a cysteine residue in the first loop region (denoted K58), and a third with crosslinks in both positions (denoted K4K58). Circular dichroism (CD) and surface-plasmon-resonance-based (SPR-based) biosensor studies of the protein domains showed that the three-helix structure and high-affinity binding to EGFR were preserved in the crosslinked protein domains. In vitro digestion by gastrointestinal proteases demonstrated that the crosslinked protein domains showed increased stability towards pepsin and towards a combination of trypsin and chymotrypsin.
Collapse
Affiliation(s)
- Anders Nilsson
- KTH Royal Institute of Technology, School of Biotechnology, Division of Protein Technology, AlbaNova University Center, 106 91, Stockholm, Sweden
| | - Joel Lindgren
- KTH Royal Institute of Technology, School of Biotechnology, Division of Protein Technology, AlbaNova University Center, 106 91, Stockholm, Sweden
| | - Amelie Eriksson Karlström
- KTH Royal Institute of Technology, School of Biotechnology, Division of Protein Technology, AlbaNova University Center, 106 91, Stockholm, Sweden
| |
Collapse
|
16
|
Haberkorn U, Mier W, Kopka K, Herold-Mende C, Altmann A, Babich J. Identification of Ligands and Translation to Clinical Applications. J Nucl Med 2017; 58:27S-33S. [DOI: 10.2967/jnumed.116.186791] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/15/2017] [Indexed: 12/16/2022] Open
|
17
|
Xuan W, Shao S, Schultz PG. Protein Crosslinking by Genetically Encoded Noncanonical Amino Acids with Reactive Aryl Carbamate Side Chains. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611841] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Weimin Xuan
- Department of Chemistry; the Scripps Research Institute; 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Sida Shao
- Department of Chemistry; the Scripps Research Institute; 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Peter G. Schultz
- Department of Chemistry; the Scripps Research Institute; 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
18
|
Xuan W, Shao S, Schultz PG. Protein Crosslinking by Genetically Encoded Noncanonical Amino Acids with Reactive Aryl Carbamate Side Chains. Angew Chem Int Ed Engl 2017; 56:5096-5100. [PMID: 28371162 DOI: 10.1002/anie.201611841] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/06/2017] [Indexed: 01/08/2023]
Abstract
The use of genetically encoded noncanonical amino acids (ncAAs) to construct crosslinks within or between proteins has emerged as a useful method to enhance protein stability, investigate protein-protein interactions, and improve the pharmacological properties of proteins. We report ncAAs with aryl carbamate side chains (PheK and FPheK) that can react with proximal nucleophilic residues to form intra- or intermolecular protein crosslinks. We evolved a pyrrolysyl-tRNA synthetase that incorporates site-specifically PheK and FPheK into proteins in both E. coli and mammalian cells. PheK and FPheK when incorporated into proteins showed good stability during protein expression and purification. FPheK reacted with adjacent Lys, Cys, and Tyr residues in thioredoxin in high yields. In addition, crosslinks could be formed between FPheK and Lys residue of two interacting proteins, including the heavy chain and light chain of an antibody Fab.
Collapse
Affiliation(s)
- Weimin Xuan
- Department of Chemistry, the Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Sida Shao
- Department of Chemistry, the Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peter G Schultz
- Department of Chemistry, the Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
19
|
Woldring DR, Holec PV, Stern LA, Du Y, Hackel BJ. A Gradient of Sitewise Diversity Promotes Evolutionary Fitness for Binder Discovery in a Three-Helix Bundle Protein Scaffold. Biochemistry 2017; 56:1656-1671. [PMID: 28248518 DOI: 10.1021/acs.biochem.6b01142] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Engineered proteins provide clinically and industrially impactful molecules and utility within fundamental research, yet inefficiencies in discovering lead variants with new desired functionality, while maintaining stability, hinder progress. Improved function, which can result from a few strategic mutations, is fundamentally separate from discovering novel function, which often requires large leaps in sequence space. While a highly diverse combinatorial library covering immense sequence space would empower protein discovery, the ability to sample only a minor subset of sequence space and the typical destabilization of random mutations preclude this strategy. A balance must be reached. At library scale, compounding several destabilizing mutations renders many variants unable to properly fold and devoid of function. Broadly searching sequence space while reducing the level of destabilization may enhance evolution. We exemplify this balance with affibody, a three-helix bundle protein scaffold. Using natural ligand data sets, stability and structural computations, and deep sequencing of thousands of binding variants, a protein library was designed on a sitewise basis with a gradient of mutational levels across 29% of the protein. In direct competition of biased and uniform libraries, both with 1 × 109 variants, for discovery of 6 × 104 ligands (5 × 103 clusters) toward seven targets, biased amino acid frequency increased ligand discovery 13 ± 3-fold. Evolutionarily favorable amino acids, both globally and site-specifically, are further elucidated. The sitewise amino acid bias aids evolutionary discovery by reducing the level of mutant destabilization as evidenced by a midpoint of denaturation (62 ± 4 °C) 15 °C higher than that of unbiased mutants (47 ± 11 °C; p < 0.001). Sitewise diversification, identified by high-throughput evolution and rational library design, improves discovery efficiency.
Collapse
Affiliation(s)
- Daniel R Woldring
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities , 421 Washington Avenue Southeast, Minneapolis, Minnesota 55455, United States
| | - Patrick V Holec
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities , 421 Washington Avenue Southeast, Minneapolis, Minnesota 55455, United States
| | - Lawrence A Stern
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities , 421 Washington Avenue Southeast, Minneapolis, Minnesota 55455, United States
| | - Yang Du
- Molecular and Cellular Physiology, Stanford University , 279 Campus Drive, Stanford, California 94305, United States
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities , 421 Washington Avenue Southeast, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
20
|
In vivo evaluation of a novel format of a bivalent HER3-targeting and albumin-binding therapeutic affibody construct. Sci Rep 2017; 7:43118. [PMID: 28230065 PMCID: PMC5322329 DOI: 10.1038/srep43118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/19/2017] [Indexed: 01/21/2023] Open
Abstract
Overexpression of human epidermal growth factor receptor 3 (HER3) is involved in resistance to several therapies for malignant tumours. Currently, several anti-HER3 monoclonal antibodies are under clinical development. We introduce an alternative approach to HER3-targeted therapy based on engineered scaffold proteins, i.e. affibody molecules. We designed a small construct (22.5 kDa, denoted 3A3), consisting of two high-affinity anti-HER3 affibody molecules flanking an albumin-binding domain ABD, which was introduced for prolonged residence in circulation. In vitro, 3A3 efficiently inhibited growth of HER3-expressing BxPC-3 cells. Biodistribution in mice was measured using 3A3 that was site-specifically labelled with 111In via a DOTA chelator. The residence time of 111In-DOTA-3A3 in blood was extended when compared with the monomeric affibody molecule. 111In-DOTA-3A3 accumulated specifically in HER3-expressing BxPC-3 xenografts in mice. However, 111In-DOTA-3A3 cleared more rapidly from blood than a size-matched control construct 111In-DOTA-TAT, most likely due to sequestering of 3A3 by mErbB3, the murine counterpart of HER3. Repeated dosing and increase of injected protein dose decreased uptake of 111In-DOTA-3A3 in mErbB3-expressing tissues. Encouragingly, growth of BxPC-3 xenografts in mice was delayed in an experimental (pilot-scale) therapy study using 3A3. We conclude that the 3A3 affibody format seems promising for treatment of HER3-overexpressing tumours.
Collapse
|
21
|
Kobayashi T, Hoppmann C, Yang B, Wang L. Using Protein-Confined Proximity To Determine Chemical Reactivity. J Am Chem Soc 2016; 138:14832-14835. [PMID: 27797495 DOI: 10.1021/jacs.6b08656] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemical reactivity is essential for functional modification of biomolecules with small molecules and the development of covalent drugs. The reactivity between a chemical functional group of a small molecule and that of a large biomolecule cannot be reliably predicted from the reactivity of the corresponding functional groups separately installed on two small molecules, because the proximity effect on reactivity resulting from the binding of the small molecule to the biomolecule is challenging to achieve by mixing two small molecules. Here we present a new strategy to determine the chemical reactivity of two functional groups in the context of close proximity afforded by proteins. The functional groups to be tested were separately installed at the interface of two interacting proteins in the format of amino acid side chains via the expansion of the genetic code. Reaction of the two functional groups resulted in covalent cross-linking of interacting proteins, readily detectable by gel electrophoresis. Using this strategy, we evolved new synthetases to genetically encode Nε-fluoroacetyllysine (FAcK), an isosteric fluorine analogue of acetyllysine. We demonstrated that fluoroacetamide installed on FAcK, previously thought inert to biological functional groups, actually reacted with the thiol group of cysteine when in proximity. This strategy should be valuable for accurately evaluating chemical reactivity of small molecules toward large biomolecules, which will help avoid undesired side reactions of drugs and expand the repertoire of functional groups to covalently target biomolecules.
Collapse
Affiliation(s)
- Tomonori Kobayashi
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California, San Francisco , 555 Mission Bay Boulevard South, San Francisco, California 94158, United States
| | - Christian Hoppmann
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California, San Francisco , 555 Mission Bay Boulevard South, San Francisco, California 94158, United States
| | - Bing Yang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California, San Francisco , 555 Mission Bay Boulevard South, San Francisco, California 94158, United States
| | - Lei Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California, San Francisco , 555 Mission Bay Boulevard South, San Francisco, California 94158, United States
| |
Collapse
|
22
|
Genetically encoding new bioreactivity. N Biotechnol 2016; 38:16-25. [PMID: 27721014 DOI: 10.1016/j.nbt.2016.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/25/2016] [Accepted: 10/05/2016] [Indexed: 12/25/2022]
Abstract
The genetic code can be expanded to include unnatural amino acids (Uaas) by engineering orthogonal components involved in protein translation. To be compatible with live cells, side chains of Uaas have been limited to either chemically inert or bio-orthogonal (i.e., nonreactive toward biomolecules) functionalities. To introduce bioreactivity into live systems, the genetic code has recently been engineered to encode a new class of Uaas, the bioreactive Uaas. These Uaas, after being incorporated into proteins, specifically react with target natural amino acid residues via proximity-enabled bioreactivity, enabling the selective formation of new covalent linkages within and between proteins both in vitro and in live systems. The new covalent bonding ability has been harnessed within proteins to enhance photostability, increase thermostability, staple proteins recombinantly, and build optical nano-switches, and between proteins to pinpoint ligand-receptor interaction, target native receptors irreversibly, and generate covalent macromolecular inhibitors. These diverse bioreactivities, inaccessible to natural proteins, thus open doors to novel protein engineering and provide new avenues for biological studies, biotherapeutics and synthetic biology.
Collapse
|
23
|
Xuan W, Li J, Luo X, Schultz PG. Genetic Incorporation of a Reactive Isothiocyanate Group into Proteins. Angew Chem Int Ed Engl 2016; 55:10065-8. [DOI: 10.1002/anie.201604891] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/17/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Weimin Xuan
- Department of Chemistry The Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Jack Li
- Department of Chemistry The Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Xiaozhou Luo
- Department of Chemistry The Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Peter G. Schultz
- Department of Chemistry The Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
24
|
Xuan W, Li J, Luo X, Schultz PG. Genetic Incorporation of a Reactive Isothiocyanate Group into Proteins. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604891] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Weimin Xuan
- Department of Chemistry The Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Jack Li
- Department of Chemistry The Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Xiaozhou Luo
- Department of Chemistry The Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Peter G. Schultz
- Department of Chemistry The Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
25
|
Fleetwood F, Güler R, Gordon E, Ståhl S, Claesson-Welsh L, Löfblom J. Novel affinity binders for neutralization of vascular endothelial growth factor (VEGF) signaling. Cell Mol Life Sci 2016; 73:1671-83. [PMID: 26552422 PMCID: PMC11108507 DOI: 10.1007/s00018-015-2088-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/19/2015] [Accepted: 11/03/2015] [Indexed: 02/06/2023]
Abstract
Angiogenesis denotes the formation of new blood vessels from pre-existing vasculature. Progression of diseases such as cancer and several ophthalmological disorders may be promoted by excess angiogenesis. Novel therapeutics to inhibit angiogenesis and diagnostic tools for monitoring angiogenesis during therapy, hold great potential for improving treatment of such diseases. We have previously generated so-called biparatopic Affibody constructs with high affinity for the vascular endothelial growth factor receptor-2 (VEGFR2), which recognize two non-overlapping epitopes in the ligand-binding site on the receptor. Affibody molecules have previously been demonstrated suitable for imaging purposes. Their small size also makes them attractive for applications where an alternative route of administration is beneficial, such as topical delivery using eye drops. In this study, we show that decreasing linker length between the two Affibody domains resulted in even slower dissociation from the receptor. The new variants of the biparatopic Affibody bound to VEGFR2-expressing cells, blocked VEGFA binding, and inhibited VEGFA-induced signaling of VEGFR2 over expressing cells. Moreover, the biparatopic Affibody inhibited sprout formation of endothelial cells in an in vitro angiogenesis assay with similar potency as the bivalent monoclonal antibody ramucirumab. This study demonstrates that the biparatopic Affibody constructs show promise for future therapeutic as well as in vivo imaging applications.
Collapse
Affiliation(s)
- Filippa Fleetwood
- Division of Protein Technology, School of Biotechnology, KTH, Royal Institute of Technology, AlbaNova University Center, 106 91, Stockholm, Sweden
| | - Rezan Güler
- Division of Protein Technology, School of Biotechnology, KTH, Royal Institute of Technology, AlbaNova University Center, 106 91, Stockholm, Sweden
| | - Emma Gordon
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv. 20, Uppsala, Sweden
| | - Stefan Ståhl
- Division of Protein Technology, School of Biotechnology, KTH, Royal Institute of Technology, AlbaNova University Center, 106 91, Stockholm, Sweden
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv. 20, Uppsala, Sweden
| | - John Löfblom
- Division of Protein Technology, School of Biotechnology, KTH, Royal Institute of Technology, AlbaNova University Center, 106 91, Stockholm, Sweden.
| |
Collapse
|
26
|
Artificial affinity proteins as ligands of immunoglobulins. Biomolecules 2015; 5:60-75. [PMID: 25647098 PMCID: PMC4384111 DOI: 10.3390/biom5010060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/17/2014] [Accepted: 01/23/2015] [Indexed: 12/17/2022] Open
Abstract
A number of natural proteins are known to have affinity and specificity for immunoglobulins. Some of them are widely used as reagents for detection or capture applications, such as Protein G and Protein A. However, these natural proteins have a defined spectrum of recognition that may not fit specific needs. With the development of combinatorial protein engineering and selection techniques, it has become possible to design artificial affinity proteins with the desired properties. These proteins, termed alternative scaffold proteins, are most often chosen for their stability, ease of engineering and cost-efficient recombinant production in bacteria. In this review, we focus on alternative scaffold proteins for which immunoglobulin binders have been identified and characterized.
Collapse
|
27
|
Chen XH, Xiang Z, Hu YS, Lacey VK, Cang H, Wang L. Genetically encoding an electrophilic amino acid for protein stapling and covalent binding to native receptors. ACS Chem Biol 2014; 9:1956-61. [PMID: 25010185 PMCID: PMC4168779 DOI: 10.1021/cb500453a] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
Covalent bonds can be generated within
and between proteins by
an unnatural amino acid (Uaa) reacting with a natural residue through
proximity-enabled bioreactivity. Until now, Uaas have been developed
to react mainly with cysteine in proteins. Here we genetically encoded
an electrophilic Uaa capable of reacting with histidine and lysine,
thereby expanding the diversity of target proteins and the scope of
the proximity-enabled protein cross-linking technology. In addition
to efficient cross-linking of proteins inter- and intramolecularly,
this Uaa permits direct stapling of a protein α-helix in a recombinant
manner and covalent binding of native membrane receptors in live cells.
The target diversity, recombinant stapling, and covalent targeting
of endogenous proteins enabled by this versatile Uaa should prove
valuable in developing novel research tools, biological diagnostics,
and therapeutics by exploiting covalent protein linkages for specificity,
irreversibility, and stability.
Collapse
Affiliation(s)
- Xiao-Hua Chen
- The Jack
H. Skirball Center for Chemical Biology and Proteomics and ‡Waitt Advanced
Biophotonics Center, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Zheng Xiang
- The Jack
H. Skirball Center for Chemical Biology and Proteomics and ‡Waitt Advanced
Biophotonics Center, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Ying S. Hu
- The Jack
H. Skirball Center for Chemical Biology and Proteomics and ‡Waitt Advanced
Biophotonics Center, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Vanessa K. Lacey
- The Jack
H. Skirball Center for Chemical Biology and Proteomics and ‡Waitt Advanced
Biophotonics Center, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Hu Cang
- The Jack
H. Skirball Center for Chemical Biology and Proteomics and ‡Waitt Advanced
Biophotonics Center, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Lei Wang
- The Jack
H. Skirball Center for Chemical Biology and Proteomics and ‡Waitt Advanced
Biophotonics Center, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
28
|
Procko E, Berguig GY, Shen BW, Song Y, Frayo S, Convertine AJ, Margineantu D, Booth G, Correia BE, Cheng Y, Schief WR, Hockenbery DM, Press OW, Stoddard BL, Stayton PS, Baker D. A computationally designed inhibitor of an Epstein-Barr viral Bcl-2 protein induces apoptosis in infected cells. Cell 2014; 157:1644-1656. [PMID: 24949974 PMCID: PMC4079535 DOI: 10.1016/j.cell.2014.04.034] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 03/13/2014] [Accepted: 04/15/2014] [Indexed: 11/25/2022]
Abstract
Because apoptosis of infected cells can limit virus production and spread, some viruses have co-opted prosurvival genes from the host. This includes the Epstein-Barr virus (EBV) gene BHRF1, a homolog of human Bcl-2 proteins that block apoptosis and are associated with cancer. Computational design and experimental optimization were used to generate a novel protein called BINDI that binds BHRF1 with picomolar affinity. BINDI recognizes the hydrophobic cleft of BHRF1 in a manner similar to other Bcl-2 protein interactions but makes many additional contacts to achieve exceptional affinity and specificity. BINDI induces apoptosis in EBV-infected cancer lines, and when delivered with an antibody-targeted intracellular delivery carrier, BINDI suppressed tumor growth and extended survival in a xenograft disease model of EBV-positive human lymphoma. High-specificity-designed proteins that selectively kill target cells may provide an advantage over the toxic compounds used in current generation antibody-drug conjugates.
Collapse
Affiliation(s)
- Erik Procko
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Geoffrey Y. Berguig
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Betty W. Shen
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Yifan Song
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Shani Frayo
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | - Garrett Booth
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Yuanhua Cheng
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | | | - Oliver W. Press
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Patrick S. Stayton
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
29
|
Mechanistic and high-throughput approaches for the design of molecular imaging probes and targeted therapeutics. Clin Transl Imaging 2014. [DOI: 10.1007/s40336-014-0048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Xiang Z, Lacey VK, Ren H, Xu J, Burban DJ, Jennings PA, Wang L. Proximity-Enabled Protein Crosslinking through Genetically Encoding Haloalkane Unnatural Amino Acids. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201308794] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
31
|
Xiang Z, Lacey VK, Ren H, Xu J, Burban DJ, Jennings PA, Wang L. Proximity-enabled protein crosslinking through genetically encoding haloalkane unnatural amino acids. Angew Chem Int Ed Engl 2014; 53:2190-3. [PMID: 24449339 DOI: 10.1002/anie.201308794] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Indexed: 11/06/2022]
Abstract
The selective generation of covalent bonds between and within proteins would provide new avenues for studying protein function and engineering proteins with new properties. New covalent bonds were genetically introduced into proteins by enabling an unnatural amino acid (Uaa) to selectively react with a proximal natural residue. This proximity-enabled bioreactivity was expanded to a series of haloalkane Uaas. Orthogonal tRNA/synthetase pairs were evolved to incorporate these Uaas, which only form a covalent thioether bond with cysteine when positioned in close proximity. By using the Uaa and cysteine, spontaneous covalent bond formation was demonstrated between an affibody and its substrate Z protein, thereby leading to irreversible binding, and within the affibody to increase its thermostability. This strategy of proximity-enabled protein crosslinking (PEPC) may be generally expanded to target different natural amino acids, thus providing diversity and flexibility in covalent bond formation for protein research and protein engineering.
Collapse
Affiliation(s)
- Zheng Xiang
- The Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037 (USA) http://wang.salk.edu/
| | | | | | | | | | | | | |
Collapse
|
32
|
Steemson JD, Baake M, Rakonjac J, Arcus VL, Liddament MT. Tracking molecular recognition at the atomic level with a new protein scaffold based on the OB-fold. PLoS One 2014; 9:e86050. [PMID: 24465865 PMCID: PMC3896448 DOI: 10.1371/journal.pone.0086050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/05/2013] [Indexed: 11/19/2022] Open
Abstract
The OB-fold is a small, versatile single-domain protein binding module that occurs in all forms of life, where it binds protein, carbohydrate, nucleic acid and small-molecule ligands. We have exploited this natural plasticity to engineer a new class of non-immunoglobulin alternatives to antibodies with unique structural and biophysical characteristics. We present here the engineering of the OB-fold anticodon recognition domain from aspartyl tRNA synthetase taken from the thermophile Pyrobaculum aerophilum. For this single-domain scaffold we have coined the term OBody. Starting from a naïve combinatorial library, we engineered an OBody with 3 nM affinity for hen egg-white lysozyme, by optimising the affinity of a naïve OBody 11,700-fold over several affinity maturation steps, using phage display. At each maturation step a crystal structure of the engineered OBody in complex with hen egg-white lysozyme was determined, showing binding elements in atomic detail. These structures have given us an unprecedented insight into the directed evolution of affinity for a single antigen on the molecular scale. The engineered OBodies retain the high thermal stability of the parental OB-fold despite mutation of up to 22% of their residues. They can be expressed in soluble form and also purified from bacteria at high yields. They also lack disulfide bonds. These data demonstrate the potential of OBodies as a new scaffold for the engineering of specific binding reagents and provide a platform for further development of future OBody-based applications.
Collapse
Affiliation(s)
- John D. Steemson
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
| | - Matthias Baake
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
| | - Jasna Rakonjac
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | - Vickery L. Arcus
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
| | | |
Collapse
|
33
|
Adding an unnatural covalent bond to proteins through proximity-enhanced bioreactivity. Nat Methods 2013; 10:885-8. [PMID: 23913257 DOI: 10.1038/nmeth.2595] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/28/2013] [Indexed: 01/03/2023]
Abstract
Natural proteins often rely on the disulfide bond to covalently link side chains. Here we genetically introduce a new type of covalent bond into proteins by enabling an unnatural amino acid to react with a proximal cysteine. We demonstrate the utility of this bond for enabling irreversible binding between an affibody and its protein substrate, capturing peptide-protein interactions in mammalian cells, and improving the photon output of fluorescent proteins.
Collapse
|
34
|
Suárez-Diez M, Pujol AM, Matzapetakis M, Jaramillo A, Iranzo O. Computational protein design with electrostatic focusing: experimental characterization of a conditionally folded helical domain with a reduced amino acid alphabet. Biotechnol J 2013; 8:855-64. [PMID: 23788466 DOI: 10.1002/biot.201200380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 04/22/2013] [Accepted: 06/03/2013] [Indexed: 11/12/2022]
Abstract
Automated methodologies to design synthetic proteins from first principles use energy computations to estimate the ability of the sequences to adopt a targeted structure. This approach is still far from systematically producing native-like sequences, due, most likely, to inaccuracies when modeling the interactions between the protein and its aqueous environment. This is particularly challenging when engineering small protein domains (with less polar pair interactions than with the solvent). We have re-designed a three-helix bundle, domain B, using a fixed backbone and a four amino acid alphabet. We have enlarged the rotamer library with conformers that increase the weight of electrostatic interactions within the design process without altering the energy function used to compute the folding free energy. Our synthetic sequences show less than 15% similarity to any Swissprot sequence. We have characterized our sequences in different solvents using circular dichroism and nuclear magnetic resonance. The targeted structure achieved is dependent on the solvent used. This method can be readily extended to larger domains. Our method will be useful for the engineering of proteins that become active only in a given solvent and for designing proteins in the context of hydrophobic solvents, an important fraction of the situations in the cell.
Collapse
Affiliation(s)
- Maria Suárez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
35
|
New concepts and aids to facilitate crystallization. Curr Opin Struct Biol 2013; 23:409-16. [PMID: 23578532 DOI: 10.1016/j.sbi.2013.03.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 03/08/2013] [Accepted: 03/13/2013] [Indexed: 12/20/2022]
Abstract
Novel tools and technologies are required to obtain structural information of difficult to crystallize complex biological systems such as membrane proteins, multiprotein assemblies, transient conformational states and intrinsically disordered proteins. One promising approach is to select a high affinity and specificity-binding partner (crystallization chaperone), form a complex with the protein of interest and crystallize the complex. Often the chaperone reduces the conformational freedom of the target protein and additionally facilitates the formation of well-ordered crystals. This review provides an update on the recent successes in chaperone-assisted crystallography. We also stress the importance of synergistic approaches involving protein engineering, crystallization chaperones and crystallization additives. Recent examples demonstrate that investment in such approaches can be key to success.
Collapse
|
36
|
Gilbreth RN, Koide S. Structural insights for engineering binding proteins based on non-antibody scaffolds. Curr Opin Struct Biol 2012; 22:413-20. [PMID: 22749196 DOI: 10.1016/j.sbi.2012.06.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/25/2012] [Accepted: 06/01/2012] [Indexed: 11/18/2022]
Abstract
Engineered binding proteins derived from non-antibody scaffolds constitute an increasingly prominent class of reagents in both research and therapeutic applications. The growing number of crystal structures of these 'alternative' scaffold-based binding proteins in complex with their targets illustrate the mechanisms of molecular recognition that are common among these systems and those unique to each. This information is useful for critically assessing and improving/expanding engineering strategies. Furthermore, the structural features of these synthetic proteins produced under tightly controlled, directed evolution deepen our understanding of the underlying principles governing molecular recognition.
Collapse
Affiliation(s)
- Ryan N Gilbreth
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
37
|
Kimura RH, Teed R, Hackel BJ, Pysz MA, Chuang CZ, Sathirachinda A, Willmann JK, Gambhir SS. Pharmacokinetically stabilized cystine knot peptides that bind alpha-v-beta-6 integrin with single-digit nanomolar affinities for detection of pancreatic cancer. Clin Cancer Res 2011; 18:839-49. [PMID: 22173551 DOI: 10.1158/1078-0432.ccr-11-1116] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Detection of pancreatic cancer remains a high priority and effective diagnostic tools are needed for clinical applications. Many cancer cells overexpress integrin α(v)β(6), a cell surface receptor being evaluated as a novel clinical biomarker. EXPERIMENTAL DESIGN To validate this molecular target, several highly stable cystine knot peptides were engineered by directed evolution to bind specifically and with high affinity (3-6 nmol/L) to integrin α(v)β(6). The binders do not cross-react with related integrin α(v)β(5), integrin α(5)β(1), or tumor-angiogenesis-associated integrin, α(v)β(3). RESULTS Positron emission tomography showed that these disulfide-stabilized peptides rapidly accumulate at tumors expressing integrin α(v)β(6). Clinically relevant tumor-to-muscle ratios of 7.7 ± 2.4 to 11.3 ± 3.0 were achieved within 1 hour after radiotracer injection. Minimization of off-target dosing was achieved by reformatting α(v)β(6)-binding activities across various natural and pharmacokinetically stabilized cystine knot scaffolds with different amino acid content. We show that the primary sequence of a peptide scaffold directs its pharmacokinetics. Scaffolds with high arginine or glutamic acid content suffered high renal retention of more than 75% injected dose per gram (%ID/g). Substitution of these amino acids with renally cleared amino acids, notably serine, led to significant decreases in renal accumulation of less than 20%ID/g 1 hour postinjection (P < 0.05, n = 3). CONCLUSIONS We have engineered highly stable cystine knot peptides with potent and specific integrin α(v)β(6)-binding activities for cancer detection. Pharmacokinetic engineering of scaffold primary sequence led to significant decreases in off-target radiotracer accumulation. Optimization of binding affinity, specificity, stability, and pharmacokinetics will facilitate translation of cystine knots for cancer molecular imaging.
Collapse
Affiliation(s)
- Richard H Kimura
- Canary Center for Cancer, Early Detection, Molecular Imaging Program, Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Computational Design of a DNA- and Fc-Binding Fusion Protein. Adv Bioinformatics 2011; 2011:457578. [PMID: 21941539 PMCID: PMC3173724 DOI: 10.1155/2011/457578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/16/2011] [Accepted: 06/22/2011] [Indexed: 12/23/2022] Open
Abstract
Computational design of novel proteins with well-defined functions is an ongoing topic in computational biology. In this work, we generated and optimized a new synthetic fusion protein using an evolutionary approach. The optimization was guided by directed evolution based on hydrophobicity scores, molecular weight, and secondary structure predictions. Several methods were used to refine the models built from the resulting sequences. We have successfully combined two unrelated naturally occurring binding sites, the immunoglobin Fc-binding site of the Z domain and the DNA-binding motif of MyoD bHLH, into a novel stable protein.
Collapse
|
39
|
McLellan JS, Correia BE, Chen M, Yang Y, Graham BS, Schief WR, Kwong PD. Design and characterization of epitope-scaffold immunogens that present the motavizumab epitope from respiratory syncytial virus. J Mol Biol 2011; 409:853-66. [PMID: 21549714 PMCID: PMC3107930 DOI: 10.1016/j.jmb.2011.04.044] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/15/2011] [Accepted: 04/15/2011] [Indexed: 10/18/2022]
Abstract
Respiratory syncytial virus (RSV) is a major cause of respiratory tract infections in infants, but an effective vaccine has not yet been developed. An ideal vaccine would elicit protective antibodies while avoiding virus-specific T-cell responses, which have been implicated in vaccine-enhanced disease with previous RSV vaccines. We propose that heterologous proteins designed to present RSV-neutralizing antibody epitopes and to elicit cognate antibodies have the potential to fulfill these vaccine requirements, as they can be fashioned to be free of viral T-cell epitopes. Here we present the design and characterization of three epitope-scaffolds that present the epitope of motavizumab, a potent neutralizing antibody that binds to a helix-loop-helix motif in the RSV fusion glycoprotein. Two of the epitope-scaffolds could be purified, and one epitope-scaffold based on a Staphylococcus aureus protein A domain bound motavizumab with kinetic and thermodynamic properties consistent with the free epitope-scaffold being stabilized in a conformation that closely resembled the motavizumab-bound state. This epitope-scaffold was well folded as assessed by circular dichroism and isothermal titration calorimetry, and its crystal structure (determined in complex with motavizumab to 1.9 Å resolution) was similar to the computationally designed model, with all hydrogen-bond interactions critical for binding to motavizumab preserved. Immunization of mice with this epitope-scaffold failed to elicit neutralizing antibodies but did elicit sera with F binding activity. The elicitation of F binding antibodies suggests that some of the design criteria for eliciting protective antibodies without virus-specific T-cell responses are being met, but additional optimization of these novel immunogens is required.
Collapse
Affiliation(s)
- Jason S McLellan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
de Marco A. Biotechnological applications of recombinant single-domain antibody fragments. Microb Cell Fact 2011; 10:44. [PMID: 21658216 PMCID: PMC3123181 DOI: 10.1186/1475-2859-10-44] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/09/2011] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Single-domain antibody fragments possess structural features, such as a small dimension, an elevated stability, and the singularity of recognizing epitopes non-accessible for conventional antibodies that make them interesting for several research and biotechnological applications. RESULTS The discovery of the single-domain antibody's potentials has stimulated their use in an increasing variety of fields. The rapid accumulation of articles describing new applications and further developments of established approaches has made it, therefore, necessary to update the previous reviews with a new and more complete summary of the topic. CONCLUSIONS Beside the necessary task of updating, this work analyses in detail some applicative aspects of the single-domain antibodies that have been overseen in the past, such as their efficacy in affinity chromatography, as co-crystallization chaperones, protein aggregation controllers, enzyme activity tuners, and the specificities of the unconventional single-domain fragments.
Collapse
Affiliation(s)
- Ario de Marco
- University of Nova Gorica (UNG), Vipavska 13, PO Box 301-SI-5000, Rožna Dolina (Nova Gorica), Slovenia.
| |
Collapse
|
41
|
Smith TAD. Towards detecting the HER-2 receptor and metabolic changes induced by HER-2-targeted therapies using medical imaging. Br J Radiol 2010; 83:638-44. [PMID: 20675463 DOI: 10.1259/bjr/31053812] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
HER-2/neu (a receptor for human epidermal growth factor) is involved in cell survival, proliferation, angiogenesis and invasiveness. It is overexpressed in about 25% of breast cancers. Overexpression of HER-2 is associated with response to the anti-HER-2 antibody trastuzumab (herceptin). However, HER-2 expression can be heterogeneous within the primary tumour and can also exhibit discordant expression between a primary tumour and its metastases, bringing into question the practice of HER-2 screening to determine whether a patient is a candidate for trastuzumab using material obtained only from the primary tumour. Medical imaging modalities using HER-2-targeted tracers (or contrast agents) facilitate a global approach to the determination of HER-2 expression across all detectable tumour lesions, and could provide a more reliable indication of the patient's likely response to trastuzumab treatment. Here, I review the development and pre-clinical (and occasional clinical) assessment of HER-2-targeted tracers. I discuss studies in which established imaging tracers, such as (11)C-choline, have been used to determine response to trastuzumab in a range of medical imaging modalities, including positron emission tomography (PET), single photon emission tomography (SPECT), MRI and optical imaging.
Collapse
Affiliation(s)
- T A D Smith
- School of Medical Sciences, Biomedical Physics Building, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
42
|
Grimm S, Lundberg E, Yu F, Shibasaki S, Vernet E, Skogs M, Nygren PÅ, Gräslund T. Selection and characterisation of affibody molecules inhibiting the interaction between Ras and Raf in vitro. N Biotechnol 2010; 27:766-73. [PMID: 20674812 DOI: 10.1016/j.nbt.2010.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 07/16/2010] [Accepted: 07/23/2010] [Indexed: 10/19/2022]
Abstract
Development of molecules with the ability to selectively inhibit particular protein-protein interactions is important in providing tools for understanding cell biology. In this work, we describe efforts to select small Ras- and Raf-specific three-helix bundle affibody binding proteins capable of inhibiting the interaction between H-Ras and Raf-1, from a combinatorial library displayed on bacteriophage. Target-specific variants with typically high nanomolar or low micromolar affinities (K(D)) could be selected successfully against both proteins, as shown by dot blot, ELISA and real-time biospecific interaction analyses. Affibody molecule variants selected against H-Ras were shown to bind epitopes overlapping each other at a site that differed from that at which H-Ras interacts with Raf-1. In contrast, an affibody molecule isolated during selection against Raf-1 was shown to effectively inhibit the interaction between H-Ras and Raf-1 in a dose-dependent manner. Possible intracellular applications of the selected affibody molecules are discussed.
Collapse
Affiliation(s)
- Sebastian Grimm
- Division of Molecular Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Feldwisch J, Tolmachev V, Lendel C, Herne N, Sjöberg A, Larsson B, Rosik D, Lindqvist E, Fant G, Höidén-Guthenberg I, Galli J, Jonasson P, Abrahmsén L. Design of an optimized scaffold for affibody molecules. J Mol Biol 2010; 398:232-47. [PMID: 20226194 DOI: 10.1016/j.jmb.2010.03.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/26/2010] [Accepted: 03/03/2010] [Indexed: 12/15/2022]
Abstract
Affibody molecules are non-immunoglobulin-derived affinity proteins based on a three-helical bundle protein domain. Here, we describe the design process of an optimized Affibody molecule scaffold with improved properties and a surface distinctly different from that of the parental scaffold. The improvement was achieved by applying an iterative process of amino acid substitutions in the context of the human epidermal growth factor receptor 2 (HER2)-specific Affibody molecule Z(HER2:342). Replacements in the N-terminal region, loop 1, helix 2 and helix 3 were guided by extensive structural modeling using the available structures of the parent Z domain and Affibody molecules. The effect of several single substitutions was analyzed followed by combination of up to 11 different substitutions. The two amino acid substitutions N23T and S33K accounted for the most dramatic improvements, including increased thermal stability with elevated melting temperatures of up to +12 degrees C. The optimized scaffold contains 11 amino acid substitutions in the nonbinding surface and is characterized by improved thermal and chemical stability, as well as increased hydrophilicity, and enables generation of identical Affibody molecules both by chemical peptide synthesis and by recombinant bacterial expression. A HER2-specific Affibody tracer, [MMA-DOTA-Cys61]-Z(HER2:2891)-Cys (ABY-025), was produced by conjugating MMA-DOTA (maleimide-monoamide-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) to the peptide produced either chemically or in Escherichia coli. ABY-025 showed high affinity and specificity for HER2 (equilibrium dissociation constant, K(D), of 76 pM) and detected HER2 in tissue sections of SKOV-3 xenograft and human breast tumors. The HER2-binding capacity was fully retained after three cycles of heating to 90 degrees C followed by cooling to room temperature. Furthermore, the binding surfaces of five Affibody molecules targeting other proteins (tumor necrosis factor alpha, insulin, Taq polymerase, epidermal growth factor receptor or platelet-derived growth factor receptor beta) were grafted onto the optimized scaffold, resulting in molecules with improved thermal stability and a more hydrophilic nonbinding surface.
Collapse
|
44
|
Holm L, Moody P, Howarth M. Electrophilic affibodies forming covalent bonds to protein targets. J Biol Chem 2009; 284:32906-13. [PMID: 19759009 DOI: 10.1074/jbc.m109.034322] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antibody affinity limits sensitivity of detection in many areas of biology and medicine. High affinity usually depends on achieving the optimal combination of the natural 20 amino acids in the antibody binding site. Here, we investigate the effect on recognition of protein targets of placing an unnatural electrophile adjacent to the target binding site. We positioned a weak electrophile, acrylamide, near the binding site between an affibody, a non-immunoglobulin binding scaffold, and its protein target. The proximity between cysteine, lysine, or histidine on the target protein drove covalent bond formation to the electrophile on the affibody. Covalent bonds did not form to a non-interacting point mutant of the target, and there was minimal cross-reactivity with serum, cell lysate, or when imaging at the cell surface. Electrophilic affibodies showed more stable protein imaging at the surface of mammalian cells, and the sensitivity of protein detection in an immunoassay improved by two orders of magnitude. Thus electrophilic affibodies combined good specificity with improved detection of protein targets.
Collapse
Affiliation(s)
- Lotta Holm
- Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | |
Collapse
|
45
|
Grönwall C, Ståhl S. Engineered affinity proteins—Generation and applications. J Biotechnol 2009; 140:254-69. [DOI: 10.1016/j.jbiotec.2009.01.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 12/05/2008] [Accepted: 01/26/2009] [Indexed: 12/11/2022]
|
46
|
Sennhauser G, Grütter MG. Chaperone-assisted crystallography with DARPins. Structure 2008; 16:1443-53. [PMID: 18940601 DOI: 10.1016/j.str.2008.08.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 08/14/2008] [Accepted: 08/18/2008] [Indexed: 11/29/2022]
Abstract
The structure of proteins that are difficult to crystallize can often be solved by forming a noncovalent complex with a helper protein--a crystallization "chaperone." Although several such applications have been described to date, their handling usually is still very laborious. A valuable addition to the present repertoire of binding proteins is the recently developed designed ankyrin repeat protein (DARPin) technology. DARPins are built based on the natural ankyrin repeat protein fold with randomized surface residue positions allowing specific binding to virtually any target protein. The broad potential of these binding proteins for X-ray crystallography is illustrated by five cocrystal structures that have been determined recently comprising target proteins from distinct families, namely a sugar binding protein, two kinases, a caspase, and a membrane protein. This article reviews the opportunities of this technology for structural biology and the structural aspects of the DARPin-protein complexes.
Collapse
Affiliation(s)
- Gaby Sennhauser
- Department of Biochemistry, University of Zürich, CH-8057 Zürich, Switzerland
| | | |
Collapse
|
47
|
Nygren PÅ. Alternative binding proteins: Affibody binding proteins developed from a small three-helix bundle scaffold. FEBS J 2008; 275:2668-76. [DOI: 10.1111/j.1742-4658.2008.06438.x] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
48
|
Ryabov Y, Fushman D. Structural assembly of multidomain proteins and protein complexes guided by the overall rotational diffusion tensor. J Am Chem Soc 2007; 129:7894-902. [PMID: 17550252 PMCID: PMC2532536 DOI: 10.1021/ja071185d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a simple and robust approach that uses the overall rotational diffusion tensor as a structural constraint for domain positioning in multidomain proteins and protein-protein complexes. This method offers the possibility to use NMR relaxation data for detailed structure characterization of such systems provided the structures of individual domains are available. The proposed approach extends the concept of using long-range information contained in the overall rotational diffusion tensor. In contrast to the existing approaches, we use both the principal axes and principal values of protein's rotational diffusion tensor to determine not only the orientation but also the relative positioning of the individual domains in a protein. This is achieved by finding the domain arrangement in a molecule that provides the best possible agreement with all components of the overall rotational diffusion tensor derived from experimental data. The accuracy of the proposed approach is demonstrated for two protein systems with known domain arrangement and parameters of the overall tumbling: the HIV-1 protease homodimer and Maltose Binding Protein. The accuracy of the method and its sensitivity to domain positioning are also tested using computer-generated data for three protein complexes, for which the experimental diffusion tensors are not available. In addition, the proposed method is applied here to determine, for the first time, the structure of both open and closed conformations of a Lys48-linked diubiquitin chain, where domain motions render impossible accurate structure determination by other methods. The proposed method opens new avenues for improving structure characterization of proteins in solution.
Collapse
Affiliation(s)
| | - David Fushman
- Corresponding author: David Fushman, 1115 Biomolecular Sciences Bldg (#296), Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742-3360, Tel: (301) 405 3461, Fax: (301) 314 0386, E-mail:
| |
Collapse
|
49
|
Binz HK, Plückthun A. Engineered proteins as specific binding reagents. Curr Opin Biotechnol 2007; 16:459-69. [PMID: 16005204 DOI: 10.1016/j.copbio.2005.06.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 06/10/2005] [Accepted: 06/24/2005] [Indexed: 11/20/2022]
Abstract
Over the past 30 years, monoclonal antibodies have become the standard binding proteins and currently find applications in research, diagnostics and therapy. Yet, monoclonal antibodies now face strong competition from synthetic antibody libraries in combination with powerful library selection technologies. More recently, an increased understanding of other natural binding proteins together with advances in protein engineering, selection and evolution technologies has also triggered the exploration of numerous other protein architectures for the generation of designed binding molecules. Valuable protein-binding scaffolds have been obtained and represent promising alternatives to antibodies for biotechnological and, potentially, clinical applications.
Collapse
Affiliation(s)
- H Kaspar Binz
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | |
Collapse
|
50
|
Tolmachev V, Orlova A, Nilsson FY, Feldwisch J, Wennborg A, Abrahmsén L. Affibody molecules: potential for in vivo imaging of molecular targets for cancer therapy. Expert Opin Biol Ther 2007; 7:555-68. [PMID: 17373906 DOI: 10.1517/14712598.7.4.555] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Targeting radionuclide imaging of tumor-associated antigens may help to select patients who will benefit from a particular biological therapy. Affibody molecules are a novel class of small (approximately 7 kDa) phage display-selected affinity proteins, based on the B-domain scaffold of staphylococcal protein A. A large library (3 x 10(9) variants) has enabled selection of high-affinity (up to 22 pM) binders for a variety of tumor-associated antigens. The small size of Affibody molecules provides rapid tumor localization and fast clearance from nonspecific compartments. Preclinical studies have demonstrated the potential of Affibody molecules for specific and high-contrast radionuclide imaging of HER2 in vivo, and pilot clinical data using indium-111 and gallium-68 labeled anti-HER2 Affibody tracer have confirmed its utility for radionuclide imaging in cancer patients.
Collapse
|