1
|
Zhang L, Sun Y, Gao Z, Wang L, Jing M, Yan Z, Xu A, Yuan X, Zhang Y, Wu J, Zhang J, Yin Z, Huang Z. Construction of New MRI Contrast Agents for Spatiotemporal Visualization of Nitric Oxide in Ischemia/Reperfusion Organs. J Med Chem 2024; 67:18512-18525. [PMID: 39365559 DOI: 10.1021/acs.jmedchem.4c01813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Noninvasive and real-time nitric oxide (NO) visualization in vivo is still a challenge. Herein, we constructed a series of NO-responsive magnetic resonance imaging (MRI) contrast agents Gd1b-e by modifying Gd-DO3A using a bis-pyridyl-ethylamine side chain as a signal-amplifying moiety and o-phenylenediamine as a NO-responsive linker. It was found that Gd1b, d, and e can form macromolecular ternary complexes (Gd-Zn2+-HSA) with high longitudinal relaxivity (r1) (12.2-16.2 mM-1 s-1). Once reacting with NO, the o-phenylenediamine linker was hydrolyzed to produce a small molecular Gd complex with sharply decreased r1 (4.7-6.3 mM-1 s-1). Among them, Gd1d with a desirable pharmacokinetic profile (t1/2 = 5.91 h) could clearly distinguish the ischemia-reperfusion (IR) liver with excessive NO in rats. Meanwhile, the temporarily reduced amount of NO in the IR liver and brain by the NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl could enhance the signal of Gd1d, suggesting anticipated NO-responsive property. This research offers a new avenue for insight into the NO spatiotemporal property in multiple IR organs.
Collapse
Affiliation(s)
- Libang Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, P. R. China
| | - Yuze Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, P. R. China
| | - Zonglu Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, P. R. China
| | - Lin Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, P. R. China
| | - Mei Jing
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, P. R. China
| | - Zhengsheng Yan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, P. R. China
| | - Anning Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, P. R. China
| | - Xun Yuan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, P. R. China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, P. R. China
| | - Jianbing Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, P. R. China
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, P. R. China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, P. R. China
| | - Zhiqi Yin
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, P. R. China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, P. R. China
- School of Pharmacy, Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Key Laboratory of Active Components of Xinjiang Natural Medicine and Drug Release Technology, Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Xinjiang Medical University, Urumqi 830054, P. R. China
| |
Collapse
|
2
|
Dasmahapatra U, Maiti B, Alam MM, Chanda K. Anti-cancer property and DNA binding interaction of first row transition metal complexes: A decade update. Eur J Med Chem 2024; 275:116603. [PMID: 38936150 DOI: 10.1016/j.ejmech.2024.116603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
Metal ions carry out a wide variety of functions, including acid-base/redox catalysis, structural functions, signaling, and electron transport. Understanding the interactions of transition metal complexes with biomacromolecules is essential for biology, medicinal chemistry, and the production of synthetic metalloenzymes. After the coincidental discovery of cisplatin, importance of the metal complexes in biochemistry became a top priority for inquiry. In this review, a decade update on various synthetic strategies to first row transition metal complex and their interaction with DNA through non-covalent binding are explored. Moreover, this effort provides an excellent analysis on the efficacy of theoretical and practical approaches to the systematic generation of new non-platinum based metallodrugs for anti-cancer therapeutics.
Collapse
Affiliation(s)
- Upala Dasmahapatra
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - Barnali Maiti
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India.
| | - Mohammed Mujahid Alam
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Kaushik Chanda
- Department of Chemistry, Rabindranath Tagore University, Hojai, Assam, 782435, India.
| |
Collapse
|
3
|
Metsu D, Cinq-Frais C, Camare C, Caspar-Bauguil S, Galinier A. Zinc unbound concentration as an anchor to drive individualize repletion. Clin Nutr 2024; 43:1021-1023. [PMID: 38513551 DOI: 10.1016/j.clnu.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND AND AIMS Zinc (Zn) quantification is of particular interest in many clinical condition (e.g. inflammatory disease, critical care). Currently, Zn status is assessed by measuring plasma/serum concentration. This concentration corresponds to the sum of unbound Zn (Zn-Cu) and Zn highly bound to albumin (Zn-Cb). METHODS Using a pharmacokinetic approach to the interpretation of total Zn concentration (Zn-Ct), taking into account Zn-Cu and the influence of hypoalbuminemia on Zn-Cb, it is possible to improve the individualization of Zn repletion. RESULTS Therefore, during pregnancy and in certain inflammatory disease situations, repletion may not be necessary. However, as in critical care, it would be more appropriate to perform Zn-Cu assays to improve Zn repletion. CONCLUSION Coupled total and unbound Zn should be monitored in order to individualize Zn repletion.
Collapse
Affiliation(s)
- D Metsu
- Department of Clinical Laboratory, Montauban Hospital, Montauban, France; Institute of Metabolic and Cardiovascular Diseases (I2MC), Equipe MetaDiab, University of Toulouse, INSERM, University of Toulouse III - Paul Sabatier (UPS), Toulouse, France.
| | - C Cinq-Frais
- Department of Biochemistry, Toulouse University Hospital, Toulouse, France
| | - C Camare
- Department of Biochemistry, Toulouse University Hospital, Toulouse, France; Institute for Metabolic and Cardiovascular Diseases (I2MC), UMR 1297, INSERM, University of Toulouse III - Paul Sabatier (UPS), 31432 Toulouse, France
| | - S Caspar-Bauguil
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Equipe MetaDiab, University of Toulouse, INSERM, University of Toulouse III - Paul Sabatier (UPS), Toulouse, France; Department of Biochemistry, Toulouse University Hospital, Toulouse, France
| | - A Galinier
- Department of Biochemistry, Toulouse University Hospital, Toulouse, France; Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
4
|
Akawa OB, Okunlola FO, Alahmdi MI, Abo-Dya NE, Sidhom PA, Ibrahim MAA, Shibl MF, Khan S, Soliman MES. Multi-cavity molecular descriptor interconnections: Enhanced protocol for prediction of serum albumin drug binding. Eur J Pharm Biopharm 2024; 194:9-19. [PMID: 37984594 DOI: 10.1016/j.ejpb.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
The role of human serum albumin (HSA) in the transport of molecules predicates its involvement in the determination of drug distribution and metabolism. Optimization of ADME properties are analogous to HSA binding thus this is imperative to the drug discovery process. Currently, various in silico predictive tools exist to complement the drug discovery process, however, the prediction of possible ligand-binding sites on HSA has posed several challenges. Herein, we present a strong and deeper-than-surface case for the prediction of HSA-ligand binding sites using multi-cavity molecular descriptors by exploiting all experimentally available and crystallized HSA-bound drugs. Unlike previously proposed models found in literature, we established an in-depth correlation between the physicochemical properties of available crystallized HSA-bound drugs and different HSA binding site characteristics to precisely predict the binding sites of investigational molecules. Molecular descriptors such as the number of hydrogen bond donors (nHD), number of heteroatoms (nHet), topological polar surface area (TPSA), molecular weight (MW), and distribution coefficient (LogD) were correlated against HSA binding site characteristics, including hydrophobicity, hydrophilicity, enclosure, exposure, contact, site volume, and donor/acceptor ratio. Molecular descriptors nHD, TPSA, LogD, nHet, and MW were found to possess the most inherent capacities providing baseline information for the prediction of serum albumin binding site. We believe that these associations may form the bedrock for establishing a solid correlation between the physicochemical properties and Albumin binding site architecture. Information presented in this report would serve as critical in provisions of rational drug designing as well as drug delivery, bioavailability, and pharmacokinetics.
Collapse
Affiliation(s)
- Oluwole B Akawa
- Molecular Bio-computational and Drug Design Laboratory, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban 4001, South Africa
| | - Felix O Okunlola
- Molecular Bio-computational and Drug Design Laboratory, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban 4001, South Africa
| | - Mohammed Issa Alahmdi
- Faculty of Science, Department of Chemistry, University of Tabuk, Tabuk 7149, Saudi Arabia
| | - Nader E Abo-Dya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tabuk University, Tabuk 71491, Saudi Arabia; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Peter A Sidhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Mahmoud A A Ibrahim
- Molecular Bio-computational and Drug Design Laboratory, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban 4001, South Africa; Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519
| | - Mohamed F Shibl
- Renewable Energy Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar
| | - Shahzeb Khan
- Centre for Pharmaceutical Engineering Science, Faculty of life Science, School of Pharmacy and Medical Sciences, University of Bradford UK, West Yorkshire, BD7 1DP, UK
| | - Mahmoud E S Soliman
- Molecular Bio-computational and Drug Design Laboratory, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban 4001, South Africa.
| |
Collapse
|
5
|
Gautam A, Gailer J. More Effective Mobilization of Hg 2+ from Human Serum Albumin Compared to Cd 2+ by L-Cysteine at Near-Physiological Conditions. TOXICS 2023; 11:599. [PMID: 37505565 PMCID: PMC10383730 DOI: 10.3390/toxics11070599] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/21/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
Although chronic low-level exposure to Hg2+ and Cd2+ causes human nephrotoxicity, the bioinorganic processes that deliver them to their target organs are poorly understood. Since the plasma protein human serum albumin (HSA) has distinct binding sites for these metal ions, we wanted to gain insight into these translocation processes and have employed size-exclusion chromatography coupled on-line to an inductively coupled plasma atomic emission spectrometer using phosphate-buffered saline mobile phases. When HSA 'labeled' with Hg2+ and Cd2+ (1:0.1:0.1) using 300 μM of L-methionine was analyzed, the co-elution of a single C, S, Cd, and Hg peak was observed, which implied the intact bis-metalated HSA complex. Since human plasma contains small molecular weight thiols and sulfur-containing metabolites, we analyzed the bis-metalated HSA complex with mobile phases containing 50-200 µM of L-cysteine (Cys), D,L-homocysteine (hCys), or glutathione (GSH), which provided insight into the comparative mobilization of each metal from their respective binding sites on HSA. Interestingly, 50 µM Cys, hCys, or GSH mobilized Hg2+ from its HSA binding site but only partially mobilized Cd2+ from its binding site. Since these findings were obtained at conditions simulating near-physiological conditions of plasma, they provide a feasible explanation for the higher 'mobility' of Hg2+ and its concomitant interaction with mammalian target organs compared to Cd2+. Furthermore, 50 µM Cys resulted in the co-elution of similar-sized Hg and Cd species, which provides a biomolecular explanation for the nephrotoxicity of Hg2+ and Cd2+.
Collapse
Affiliation(s)
- Astha Gautam
- Department of Chemistry, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Jürgen Gailer
- Department of Chemistry, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
6
|
Dorward AM, Stewart AJ, Pitt SJ. The role of Zn2+ in shaping intracellular Ca2+ dynamics in the heart. J Gen Physiol 2023; 155:e202213206. [PMID: 37326614 PMCID: PMC10276528 DOI: 10.1085/jgp.202213206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/18/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Increasing evidence suggests that Zn2+ acts as a second messenger capable of transducing extracellular stimuli into intracellular signaling events. The importance of Zn2+ as a signaling molecule in cardiovascular functioning is gaining traction. In the heart, Zn2+ plays important roles in excitation-contraction (EC) coupling, excitation-transcription coupling, and cardiac ventricular morphogenesis. Zn2+ homeostasis in cardiac tissue is tightly regulated through the action of a combination of transporters, buffers, and sensors. Zn2+ mishandling is a common feature of various cardiovascular diseases. However, the precise mechanisms controlling the intracellular distribution of Zn2+ and its variations during normal cardiac function and during pathological conditions are not fully understood. In this review, we consider the major pathways by which the concentration of intracellular Zn2+ is regulated in the heart, the role of Zn2+ in EC coupling, and discuss how Zn2+ dyshomeostasis resulting from altered expression levels and efficacy of Zn2+ regulatory proteins are key drivers in the progression of cardiac dysfunction.
Collapse
Affiliation(s)
- Amy M. Dorward
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Alan J. Stewart
- School of Medicine, University of St Andrews, St Andrews, UK
| | | |
Collapse
|
7
|
Merlino A. Metallodrug binding to serum albumin: Lessons from biophysical and structural studies. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Hall AG, King JC. The Molecular Basis for Zinc Bioavailability. Int J Mol Sci 2023; 24:ijms24076561. [PMID: 37047530 PMCID: PMC10095312 DOI: 10.3390/ijms24076561] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Zinc is an essential micronutrient, and its deficiency is perhaps the most prevalent and least understood worldwide. Recent advances have expanded the understanding of zinc’s unique chemistry and molecular roles in a vast array of critical functions. However, beyond the concept of zinc absorption, few studies have explored the molecular basis of zinc bioavailability that determines the proportion of dietary zinc utilized in zinc-dependent processes in the body. The purpose of this review is to merge the concepts of zinc molecular biology and bioavailability with a focus on the molecular determinants of zinc luminal availability, absorption, transport, and utilization.
Collapse
|
9
|
Gautam A, Gomez A, Mendoza Rengifo E, George GN, Pickering IJ, Gailer J. Structural Characterization of Toxicologically Relevant Cd 2+-L-Cysteine Complexes. TOXICS 2023; 11:294. [PMID: 37112521 PMCID: PMC10144473 DOI: 10.3390/toxics11040294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
The exposure of humans to Cd exerts adverse human health effects at low chronic exposure doses, but the underlying biomolecular mechanisms are incompletely understood. To gain insight into the toxicologically relevant chemistry of Cd2+ in the bloodstream, we employed an anion-exchange HPLC coupled to a flame atomic absorption spectrometer (FAAS) using a mobile phase of 100 mM NaCl with 5 mM Tris-buffer (pH 7.4) to resemble protein-free blood plasma. The injection of Cd2+ onto this HPLC-FAAS system was associated with the elution of a Cd peak that corresponded to [CdCl3]-/[CdCl4]2- complexes. The addition of 0.1-10 mM L-cysteine (Cys) to the mobile phase significantly affected the retention behavior of Cd2+, which was rationalized by the on-column formation of mixed CdCysxCly complexes. From a toxicological point of view, the results obtained with 0.1 and 0.2 mM Cys were the most relevant because they resembled plasma concentrations. The corresponding Cd-containing (~30 μM) fractions were analyzed by X-ray absorption spectroscopy and revealed an increased sulfur coordination to Cd2+ when the Cys concentration was increased from 0.1 to 0.2 mM. The putative formation of these toxicologically relevant Cd species in blood plasma was implicated in the Cd uptake into target organs and underscores the notion that a better understanding of the metabolism of Cd in the bloodstream is critical to causally link human exposure with organ-based toxicological effects.
Collapse
Affiliation(s)
- Astha Gautam
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Amanda Gomez
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Emérita Mendoza Rengifo
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Graham N. George
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Ingrid J. Pickering
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Jürgen Gailer
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
10
|
Karunasinghe N. Zinc in Prostate Health and Disease: A Mini Review. Biomedicines 2022; 10:biomedicines10123206. [PMID: 36551962 PMCID: PMC9775643 DOI: 10.3390/biomedicines10123206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction-With the high global prevalence of prostate cancer and associated mortalities, it is important to enhance current clinical practices for better prostate cancer outcomes. The current review is towards understanding the value of Zn towards this mission. Method-General information on Zn in biology and multiple aspects of Zn involvement in prostate health and disease were referred to in PubMed. Results-The most influential feature of Zn towards prostate health is its ability to retain sufficient citrate levels for a healthy prostate. Zn deficiencies were recorded in serum, hair, and prostate tissue of men with prostate cancer compared to non-cancer controls. Zn gut absorption, albumin binding, and storage compete with various factors. There are multiple associations of Zn cellular influx and efflux transporters, Zn finger proteins, matrix metalloproteinases, and Zn signaling with prostate cancer outcomes. Such Zn marker variations associated with prostate cancer recorded from biological matrices may improve algorithms for prostate cancer screening, prognosis, and management when coupled with standard clinical practices. Discussion-The influence of Zn in prostatic health and disease is multidimensional, therefore more personalized Zn requirements may be beneficial. Several opportunities exist to utilize and improve understanding of Zn associations with prostate health and disease.
Collapse
Affiliation(s)
- Nishi Karunasinghe
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
11
|
Al-Harthi S, Kharchenko V, Mandal P, Gourdoupis S, Jaremko Ł. Zinc ions prevent α-synuclein aggregation by enhancing chaperone function of human serum albumin. Int J Biol Macromol 2022; 222:2878-2887. [DOI: 10.1016/j.ijbiomac.2022.10.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/24/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
|
12
|
Regan-Smith S, Fritzen R, Hierons SJ, Ajjan RA, Blindauer CA, Stewart AJ. Strategies for Therapeutic Amelioration of Aberrant Plasma Zn2+ Handling in Thrombotic Disease: Targeting Fatty Acid/Serum Albumin-Mediated Effects. Int J Mol Sci 2022; 23:ijms231810302. [PMID: 36142215 PMCID: PMC9499645 DOI: 10.3390/ijms231810302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
The initiation, maintenance and regulation of blood coagulation is inexorably linked to the actions of Zn2+ in blood plasma. Zn2+ interacts with a variety of haemostatic proteins in the bloodstream including fibrinogen, histidine-rich glycoprotein (HRG) and high molecular weight kininogen (HMWK) to regulate haemostasis. The availability of Zn2+ to bind such proteins is controlled by human serum albumin (HSA), which binds 70–85% of plasma Zn2+ under basal conditions. HSA also binds and transports non-esterified fatty acids (NEFAs). Upon NEFA binding, there is a change in the structure of HSA which leads to a reduction in its affinity for Zn2+. This enables other plasma proteins to better compete for binding of Zn2+. In diseases where elevated plasma NEFA concentrations are a feature, such as obesity and diabetes, there is a concurrent increase in hypercoagulability. Evidence indicates that NEFA-induced perturbation of Zn2+-binding by HSA may contribute to the thrombotic complications frequently observed in these pathophysiological conditions. This review highlights potential interventions, both pharmaceutical and non-pharmaceutical that may be employed to combat this dysregulation. Lifestyle and dietary changes have been shown to reduce plasma NEFA concentrations. Furthermore, drugs that influence NEFA levels such as statins and fibrates may be useful in this context. In severely obese patients, more invasive therapies such as bariatric surgery may be useful. Finally, other potential treatments such as chelation therapies, use of cholesteryl transfer protein (CETP) inhibitors, lipase inhibitors, fatty acid inhibitors and other treatments are highlighted, which with additional research and appropriate clinical trials, could prove useful in the treatment and management of thrombotic disease through amelioration of plasma Zn2+ dysregulation in high-risk individuals.
Collapse
Affiliation(s)
| | - Remi Fritzen
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | | | - Ramzi A. Ajjan
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | | | - Alan J. Stewart
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
- Correspondence: ; Tel.: +44-(0)1334-463546
| |
Collapse
|
13
|
Al-Harthi S, Chandra K, Jaremko Ł. Lipoic Acid Restores Binding of Zinc Ions to Human Serum Albumin. Front Chem 2022; 10:942585. [PMID: 35898971 PMCID: PMC9309503 DOI: 10.3389/fchem.2022.942585] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022] Open
Abstract
Human serum albumin (HSA) is the main zinc(II) carrier in blood plasma. The HSA site with the strongest affinity for zinc(II), multi-metal binding site A, is disrupted by the presence of fatty acids (FAs). Therefore, the FA concentration in the blood influences zinc distribution, which may affect both normal physiological processes and a range of diseases. Based on the current knowledge of HSA’s structure and its coordination chemistry with zinc(II), we investigated zinc interactions and the effect of various FAs, including lipoic acid (LA), on the protein structure, stability, and zinc(II) binding. We combined NMR experiments and isothermal titration calorimetry to examine zinc(II) binding to HSA at a sub-atomic level in a quantitative manner as well as the effect of FAs. Free HSA results indicate the existence of one high-affinity zinc(II) binding site and multiple low-affinity sites. Upon the binding of FAs to HSA, we observed a range of behaviors in terms of zinc(II) affinity, depending on the type of FA. With FAs that disrupt zinc binding, the addition of LA restores HSA’s affinity for zinc ions to the levels seen with free defatted HSA, indicating the possible mechanism of LA, which is effective in the treatment of diabetes and cardiovascular diseases.
Collapse
|
14
|
Coverdale JPC, van den Berg HA, Khazaipoul S, Bridgewater HE, Stewart AJ, Blindauer CA. Albumin-mediated extracellular zinc speciation drives cellular zinc uptake. Chem Commun (Camb) 2022; 58:7384-7387. [PMID: 35695483 PMCID: PMC9244874 DOI: 10.1039/d2cc02278h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The role of the extracellular medium in influencing metal uptake into cells has not been described quantitatively. In a chemically-defined model system containing albumin, zinc influx into endothelial cells correlates with the extracellular free zinc concentration. Allosteric inhibition of zinc-binding to albumin by free fatty acids increased zinc flux. Fatty acids alter zinc speciation in plasma, increasing zinc influx into endothelial cells.![]()
Collapse
Affiliation(s)
- James P C Coverdale
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK. .,School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | | | - Siavash Khazaipoul
- School of Medicine, University of St. Andrews, St. Andrews, KY16 9TF, UK
| | | | - Alan J Stewart
- School of Medicine, University of St. Andrews, St. Andrews, KY16 9TF, UK
| | | |
Collapse
|
15
|
The (Bio)Chemistry of Non-Transferrin-Bound Iron. Molecules 2022; 27:molecules27061784. [PMID: 35335148 PMCID: PMC8951307 DOI: 10.3390/molecules27061784] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
In healthy individuals, virtually all blood plasma iron is bound by transferrin. However, in several diseases and clinical conditions, hazardous non-transferrin-bound iron (NTBI) species occur. NTBI represents a potentially toxic iron form, being a direct cause of oxidative stress in the circulating compartment and tissue iron loading. The accumulation of these species can cause cellular damage in several organs, namely, the liver, spleen, and heart. Despite its pathophysiological relevance, the chemical nature of NTBI remains elusive. This has precluded its use as a clinical biochemical marker and the development of targeted therapies. Herein, we make a critical assessment of the current knowledge of NTBI speciation. The currently accepted hypotheses suggest that NTBI is mostly iron bound to citric acid and iron bound to serum albumin, but the chemistry of this system remains fuzzy. We explore the complex chemistry of iron complexation by citric acid and its implications towards NTBI reactivity. Further, the ability of albumin to bind iron is revised and the role of protein post-translational modifications on iron binding is discussed. The characterization of the NTBI species structure may be the starting point for the development of a standardized analytical assay, the better understanding of these species’ reactivity or the identification of NTBI uptake mechanisms by different cell types, and finally, to the development of new therapies.
Collapse
|
16
|
Saha P, Moitra P, Bhattacharjee U, Bhattacharya S. Selective pathological and intracellular detection of human serum albumin by photophysical and electrochemical techniques using a FRET-based molecular probe. Biosens Bioelectron 2022; 203:114007. [DOI: 10.1016/j.bios.2022.114007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/25/2021] [Accepted: 01/13/2022] [Indexed: 12/31/2022]
|
17
|
Pessoa JC, Santos MF, Correia I, Sanna D, Sciortino G, Garribba E. Binding of vanadium ions and complexes to proteins and enzymes in aqueous solution. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214192] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Badawy MA, Yasseen BA, El-Messiery RM, Abdel-Rahman EA, Elkhodiry AA, Kamel AG, El-Sayed H, Shedra AM, Hamdy R, Zidan M, Al-Raawi D, Hammad M, Elsharkawy N, El Ansary M, Al-Halfawy A, Elhadad A, Hatem A, Abouelnaga S, Dugan LL, Ali SS. Neutrophil-mediated oxidative stress and albumin structural damage predict COVID-19-associated mortality. eLife 2021; 10:69417. [PMID: 34821549 PMCID: PMC8641949 DOI: 10.7554/elife.69417] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Human serum albumin (HSA) is the frontline antioxidant protein in blood with established anti-inflammatory and anticoagulation functions. Here, we report that COVID-19-induced oxidative stress inflicts structural damages to HSA and is linked with mortality outcome in critically ill patients. We recruited 39 patients who were followed up for a median of 12.5 days (1–35 days), among them 23 had died. Analyzing blood samples from patients and healthy individuals (n=11), we provide evidence that neutrophils are major sources of oxidative stress in blood and that hydrogen peroxide is highly accumulated in plasmas of non-survivors. We then analyzed electron paramagnetic resonance spectra of spin-labeled fatty acids (SLFAs) bound with HSA in whole blood of control, survivor, and non-survivor subjects (n=10–11). Non-survivors’ HSA showed dramatically reduced protein packing order parameter, faster SLFA correlational rotational time, and smaller S/W ratio (strong-binding/weak-binding sites within HSA), all reflecting remarkably fluid protein microenvironments. Following loading/unloading of 16-DSA, we show that the transport function of HSA may be impaired in severe patients. Stratified at the means, Kaplan–Meier survival analysis indicated that lower values of S/W ratio and accumulated H2O2 in plasma significantly predicted in-hospital mortality (S/W≤0.15, 81.8% (18/22) vs. S/W>0.15, 18.2% (4/22), p=0.023; plasma [H2O2]>8.6 μM, 65.2% (15/23) vs. 34.8% (8/23), p=0.043). When we combined these two parameters as the ratio ((S/W)/[H2O2]) to derive a risk score, the resultant risk score lower than the mean (<0.019) predicted mortality with high fidelity (95.5% (21/22) vs. 4.5% (1/22), log-rank χ2=12.1, p=4.9×10−4). The derived parameters may provide a surrogate marker to assess new candidates for COVID-19 treatments targeting HSA replacements and/or oxidative stress.
Collapse
Affiliation(s)
| | - Basma A Yasseen
- Research Department, Children's Cancer Hospital, Cairo, Egypt
| | - Riem M El-Messiery
- Infectious Disease Unit, Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Engy A Abdel-Rahman
- Research Department, Children's Cancer Hospital, Cairo, Egypt.,Pharmacology Department, Faculty of Medicine, Assuit University, Assuit, Egypt
| | - Aya A Elkhodiry
- Research Department, Children's Cancer Hospital, Cairo, Egypt
| | - Azza G Kamel
- Research Department, Children's Cancer Hospital, Cairo, Egypt
| | - Hajar El-Sayed
- Research Department, Children's Cancer Hospital, Cairo, Egypt
| | - Asmaa M Shedra
- Research Department, Children's Cancer Hospital, Cairo, Egypt
| | - Rehab Hamdy
- Research Department, Children's Cancer Hospital, Cairo, Egypt
| | - Mona Zidan
- Research Department, Children's Cancer Hospital, Cairo, Egypt
| | - Diaa Al-Raawi
- Research Department, Children's Cancer Hospital, Cairo, Egypt
| | - Mahmoud Hammad
- Pediatric Oncology Department, National Cancer Institute, Cairo University and Children's Cancer Hospital, Cairo, Egypt
| | - Nahla Elsharkawy
- Clinical pathology department, National Cancer Institute, Cairo University and Children's Cancer Hospital, Cairo, Egypt
| | - Mohamed El Ansary
- Department of Intensive Care, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Al-Halfawy
- Department of Pulmonary Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Alaa Elhadad
- Pediatric Oncology Department, National Cancer Institute, Cairo University and Children's Cancer Hospital, Cairo, Egypt
| | - Ashraf Hatem
- Department of Chest Diseases, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sherif Abouelnaga
- Pediatric Oncology Department, National Cancer Institute, Cairo University and Children's Cancer Hospital, Cairo, Egypt
| | - Laura L Dugan
- Division of Geriatric Medicine, Department of Medicine, Vanderbilt University Medical Center; and VATennessee Valley Geriatric Research, Education and Clinical Center (GRECC), Nashville, United States
| | - Sameh Saad Ali
- Research Department, Children's Cancer Hospital, Cairo, Egypt
| |
Collapse
|
19
|
Grüngreiff K, Gottstein T, Reinhold D, Blindauer CA. Albumin Substitution in Decompensated Liver Cirrhosis: Don't Forget Zinc. Nutrients 2021; 13:4011. [PMID: 34836265 PMCID: PMC8618355 DOI: 10.3390/nu13114011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Decompensated liver cirrhosis has a dismal prognosis, with patients surviving on average for 2-4 years after the first diagnosis of ascites. Albumin is an important tool in the therapy of cirrhotic ascites. By virtue of its oncotic properties, it reduces the risk of cardiovascular dysfunction after paracentesis. Treatment with albumin also counteracts the development of hepatorenal syndrome and spontaneous bacterial peritonitis. More recently, the positive impact of long-term albumin supplementation in liver disease, based on its pleiotropic non-oncotic activities, has been recognized. These include transport of endo- and exogenous substances, anti-inflammatory, antioxidant and immunomodulatory activities, and stabilizing effects on the endothelium. Besides the growing recognition that effective albumin therapy requires adjustment of the plasma level to normal physiological values, the search for substances with adjuvant activities is becoming increasingly important. More than 75% of patients with decompensated liver cirrhosis do not only present with hypoalbuminemia but also with zinc deficiency. There is a close relationship between albumin and the essential trace element zinc. First and foremost, albumin is the main carrier of zinc in plasma, and is hence critical for systemic distribution of zinc. In this review, we discuss important functions of albumin in the context of metabolic, immunological, oxidative, transport, and distribution processes, alongside crucial functions and effects of zinc and their mutual dependencies. In particular, we focus on the major role of chronic inflammatory processes in pathogenesis and progression of liver cirrhosis and how albumin therapy and zinc supplementation may affect these processes.
Collapse
Affiliation(s)
- Kurt Grüngreiff
- Clinic of Gastroenterology, City Hospital Magdeburg GmbH, 39130 Magdeburg, Germany;
| | - Thomas Gottstein
- Clinic of Gastroenterology, City Hospital Magdeburg GmbH, 39130 Magdeburg, Germany;
| | - Dirk Reinhold
- Medical Faculty, Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University, 39120 Magdeburg, Germany;
| | | |
Collapse
|
20
|
A correlation of thermodynamic parameters with size of copper-chelated albumin aggregates. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Structural and Biochemical Features of Human Serum Albumin Essential for Eukaryotic Cell Culture. Int J Mol Sci 2021; 22:ijms22168411. [PMID: 34445120 PMCID: PMC8395139 DOI: 10.3390/ijms22168411] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022] Open
Abstract
Serum albumin physically interacts with fatty acids, small molecules, metal ions, and several other proteins. Binding with a plethora of bioactive substances makes it a critical transport molecule. Albumin also scavenges the reactive oxygen species that are harmful to cell survival. These properties make albumin an excellent choice to promote cell growth and maintain a variety of eukaryotic cells under in vitro culture environment. Furthermore, purified recombinant human serum albumin is mostly free from impurities and modifications, providing a perfect choice as an additive in cell and tissue culture media while avoiding any regulatory constraints. This review discusses key features of human serum albumin implicated in cell growth and survival under in vitro conditions.
Collapse
|
22
|
Köhler A, Job L, Worek F, Skerra A. Inhibition of an organophosphate-detoxifying bacterial phosphotriesterase by albumin and plasma thiol components. Toxicol Lett 2021; 350:194-201. [PMID: 34303790 DOI: 10.1016/j.toxlet.2021.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 11/28/2022]
Abstract
The phosphotriesterase of the bacterium Brevundimonas diminuta (BdPTE) is a naturally occurring enzyme that catalyzes the hydrolysis of organophosphate (OP) nerve agents as well as pesticides and offers a potential treatment of corresponding intoxications. While BdPTE mutants with improved catalytic efficiencies against several OPs have been described, unexpectedly, less efficient breakdown of an OP was observed upon application in an animal model compared with in vitro measurements. Here, we describe detailed inhibition studies with the high-activity BdPTE mutant 10-2C3(C59M/C227A) by human plasma components, indicating that this enzyme is inhibited by serum albumin. The inhibitory activity is mediated by depletion of crucial zinc ions from the BdPTE active site, either via the known high-affinity zinc binding site of albumin or via chemical complex formation with its free thiol side chain at position Cys34. Albumin pre-charged with zinc ions or carrying a chemically blocked Cys34 side chain showed significantly reduced inhibitory activity; in fact, the combination of both measures completely abolished BdPTE inhibition. Consequently, the available zinc ion concentration in blood plays an important role for BdPTE activity in vivo and should be taken into account for therapeutic development and application of a catalytic OP scavenger.
Collapse
Affiliation(s)
- Anja Köhler
- Chair of Biological Chemistry, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany; Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937 Munich, Germany.
| | - Laura Job
- Chair of Biological Chemistry, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany.
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937 Munich, Germany.
| | - Arne Skerra
- Chair of Biological Chemistry, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany.
| |
Collapse
|
23
|
Tang N, Liu J, Cheng Y. Effects of zinc binding on the binding of epigallocatechin gallate (green tea) to bovine serum albumin and myoglobin. Food Chem 2021; 357:129750. [PMID: 33872867 DOI: 10.1016/j.foodchem.2021.129750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/29/2021] [Accepted: 04/04/2021] [Indexed: 10/21/2022]
Abstract
Serum albumin as a zinc carrier binds 80% plasma zinc to facilitate zinc absorption. Epigallocatechin gallate (EGCG, green tea) is reported to bind to serum albumin to perform its biological functions in vivo. However, the available information on how zinc binding affects the binding of EGCG to proteins or how EGCG binding affects the binding of zinc to proteins are very limited. In the present study, the effects of zinc binding on the binding of EGCG to bovine serum albumin and myoglobin were investigated using isothermal titration calorimetry, fluorescence quenching and molecular docking. The obtained results suggested that binding of zinc to bovine serum albumin and myoglobin could increase the EGCG binding affinity of proteins as indicated by the thermodynamic parameters. In addition, the formation of protein/zinc complex shifted the EGCG binding site of proteins. For myoglobin, the electron transfer from EGCG to myoglobin was facilitated by zinc binding induced stronger EGCG binding to myoglobin. Such study provides very fundamental and useful knowledge for zinc and EGCG nutrition.
Collapse
Affiliation(s)
- Ning Tang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| | - Jiachen Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Yongqiang Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| |
Collapse
|
24
|
Chirayil S, Jordan VC, Martins AF, Paranawithana N, Ratnakar SJ, Sherry AD. Manganese(II)-Based Responsive Contrast Agent Detects Glucose-Stimulated Zinc Secretion from the Mouse Pancreas and Prostate by MRI. Inorg Chem 2021; 60:2168-2177. [PMID: 33507742 PMCID: PMC8112388 DOI: 10.1021/acs.inorgchem.0c02688] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Mn(II)-based zinc-sensitive MRI contrast agent, MnPyC3A-BPEN, was prepared, characterized, and applied in imaging experiments to detect glucose-stimulated zinc secretion (GSZS) from the mouse pancreas and prostate in vivo. Thermodynamic and kinetic stability tests showed that MnPyC3A-BPEN has superior kinetic inertness compared to GdDTPA, is less susceptible to transmetalation in the presence of excess Zn2+ ions, and less susceptible to transchelation by albumin. In comparison with other gadolinium-based zinc sensors bearing a single zinc binding moiety, MnPyC3A-BPEN appears to be a reliable alternative for imaging β-cell function in the pancreas and glucose-stimulated zinc secretion from the prostate.
Collapse
Affiliation(s)
- Sara Chirayil
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Veronica Clavijo Jordan
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - André F Martins
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Werner Siemens Imaging Center, Eberhard Karls University Tübingen, Tübingen 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen 72076, Germany
- Department of Chemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Namini Paranawithana
- Department of Chemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - S James Ratnakar
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - A Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Chemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
25
|
Sánchez-Aparicio JE, Tiessler-Sala L, Velasco-Carneros L, Roldán-Martín L, Sciortino G, Maréchal JD. BioMetAll: Identifying Metal-Binding Sites in Proteins from Backbone Preorganization. J Chem Inf Model 2020; 61:311-323. [PMID: 33337144 DOI: 10.1021/acs.jcim.0c00827] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With a large amount of research dedicated to decoding how metallic species bind to proteins, in silico methods are interesting allies for experimental procedures. To date, computational predictors mostly work by identifying the best possible sequence or structural match of the target protein with metal-binding templates. These approaches are fundamentally focused on the first coordination sphere of the metal. Here, we present the BioMetAll predictor that is based on a different postulate: the formation of a potential metal-binding site is related to the geometric organization of the protein backbone. We first report the set of convenient geometric descriptors of the backbone needed for the algorithm and their parameterization from a statistical analysis. Then, the successful benchmark of BioMetAll on a set of more than 90 metal-binding X-ray structures is presented. Because BioMetAll allows structural predictions regardless of the exact geometry of the side chains, it appears extremely valuable for systems whose structures (either experimental or theoretical) are not optimal for metal-binding sites. We report here its application on three different challenging cases: (i) the modulation of metal-binding sites during conformational transition in human serum albumin, (ii) the identification of possible routes of metal migration in hemocyanins, and (iii) the prediction of mutations to generate convenient metal-binding sites for de novo biocatalysts. This study shows that BioMetAll offers a versatile platform for numerous fields of research at the interface between inorganic chemistry and biology and allows to highlight the role of the preorganization of the protein backbone as a marker for metal binding. BioMetAll is an open-source application available at https://github.com/insilichem/biometall.
Collapse
Affiliation(s)
- José-Emilio Sánchez-Aparicio
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Laura Tiessler-Sala
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Lorea Velasco-Carneros
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Lorena Roldán-Martín
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Giuseppe Sciortino
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdanyola del Vallés, Barcelona, Spain.,Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Jean-Didier Maréchal
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdanyola del Vallés, Barcelona, Spain
| |
Collapse
|
26
|
A combined molecular dynamics and quantum mechanics study on the interaction of Fe3+ and human serum albumin relevant to iron overload disease. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Linking molecular targets of Cd in the bloodstream to organ-based adverse health effects. J Inorg Biochem 2020; 216:111279. [PMID: 33413916 DOI: 10.1016/j.jinorgbio.2020.111279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022]
Abstract
The chronic exposure of human populations to toxic metals remains a global public health concern. Although chronic Cd exposure is linked to kidney damage, osteoporosis and cancer, the underlying biomolecular mechanisms remain incompletely understood. Since other diseases could also be causally linked to chronic Cd exposure, a systems toxicology-based approach is needed to gain new insight into the underlying exposure-disease relationship. This approach requires one to integrate the cascade of dynamic bioinorganic chemistry events that unfold in the bloodstream after Cd enters with toxicological events that unfold in target organs over time. To this end, we have conducted a systematic literature search to identify all molecular targets of Cd in plasma and in red blood cells (RBCs). Based on this information it is impossible to describe the metabolism of Cd and the toxicological relevance of it binding to molecular targets in/on RBCs is elusive. Perhaps most importantly, the role that peptides, amino acids and inorganic ions, including HCO3-, Cl- and HSeO3- play in terms of mediating the translocation of Cd to target organs and its detoxification is poorly understood. Causally linking human exposure to this metal with diseases requires a much better integration of the bioinorganic chemistry of Cd that unfolds in the bloodstream with target organs. This from a public health point of view important goal will require collaborations between scientists from different disciplines to untangle the complex mechanisms which causally link Cd exposure to disease.
Collapse
|
28
|
Zinc enhances carnosine inhibitory effect against structural and functional age-related protein alterations in an albumin glycoxidation model. Biometals 2020; 33:353-364. [PMID: 32997290 DOI: 10.1007/s10534-020-00254-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022]
Abstract
Age-related complications including protein alterations seen in diabetes and Alzheimer's disease are a major issue due to their accumulation and deleterious effects. This report aims to investigate the effect of zinc supplementation on the anti-glycoxidation activity of carnosine on the in vitro model of albumin-based protein modification. Besides, the therapeutic effect of this combination was tested through the addition of the molecules in tandem (co-treatment) or post initiation (post-treatment) of the protein modification process. Glycation was induced via the addition of glucose to which carnosine (5 mM) alone or with various zinc concentrations (125, 250, and 500 μM) were added either at 0 h or 24 h post-glycation induction. On the other hand, protein oxidation was induced using chloramine T (20 mM) and treated in the same way with carnosine and zinc. The different markers of glycation (advanced glycation end products (AGEs), dityrosine, and beta-sheet formation (aggregation)) and oxidation (AOPP, advanced oxidation protein products) were estimated via fluorescence and colorimetric assays. Zinc addition induced a significant enhancement of carnosine activity by reducing albumin modification that outperformed aminoguanidine both in the co- and post-treatment protocols. Zinc demonstrated a supplementary effect in combination with carnosine highlighting its potential in the protection against age-related protein modifications processes such as the ones found in diabetes.
Collapse
|
29
|
Sciortino G, Sanna D, Lubinu G, Maréchal J, Garribba E. Unveiling VIVO2+Binding Modes to Human Serum Albumins by an Integrated Spectroscopic–Computational Approach. Chemistry 2020; 26:11316-11326. [DOI: 10.1002/chem.202001492] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/02/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Giuseppe Sciortino
- Department de QuímicaUniversitat Autònoma de Barcelona 08193 Cerdanyola del Vallés, Barcelona Spain
- Dipartimento di Chimica e FarmaciaUniversità di Sassari Via Vienna 2 07100 Sassari Italy
| | - Daniele Sanna
- Istituto di Chimica BiomolecolareConsiglio Nazionale delle Ricerche Trav. La Crucca 3 07100 Sassari Italy
| | - Giuseppe Lubinu
- Dipartimento di Chimica e FarmaciaUniversità di Sassari Via Vienna 2 07100 Sassari Italy
| | - Jean‐Didier Maréchal
- Department de QuímicaUniversitat Autònoma de Barcelona 08193 Cerdanyola del Vallés, Barcelona Spain
| | - Eugenio Garribba
- Dipartimento di Chimica e FarmaciaUniversità di Sassari Via Vienna 2 07100 Sassari Italy
| |
Collapse
|
30
|
Coverdale JPC, Barnett JP, Adamu AH, Griffiths EJ, Stewart AJ, Blindauer CA. A metalloproteomic analysis of interactions between plasma proteins and zinc: elevated fatty acid levels affect zinc distribution. Metallomics 2019; 11:1805-1819. [PMID: 31612889 DOI: 10.1039/c9mt00177h] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Serum albumin is a highly abundant plasma protein associated with the transport of metal ions, pharmaceuticals, fatty acids and a variety of small molecules in the blood. Once thought of as a molecular 'sponge', mounting evidence suggests that the albumin-facilitated transport of chemically diverse entities is not independent. One such example is the transport of Zn2+ ions and non-esterified 'free' fatty acids (FFAs) by albumin, both of which bind at high affinity sites located in close proximity. Our previous research suggests that their transport in blood plasma is linked via an allosteric mechanism on serum albumin. In direct competition, albumin-bound FFAs significantly decrease the binding capacity of albumin for Zn2+, with one of the predicted consequences being a change in plasma/serum zinc speciation. Using liquid chromatography (LC), ICP-MS and fluorescence assays, our work provides a quantitative assessment of this phenomenon, and finds that in the presence of high FFA concentrations encountered in various physiological conditions, a significant proportion of albumin-bound Zn2+ is re-distributed amongst plasma/serum proteins. Using peptide mass fingerprinting and immunodetection, we identify candidate acceptor proteins for Zn2+ liberated from albumin. These include histidine-rich glycoprotein (HRG), a multifunctional protein associated with the regulation of blood coagulation, and members of the complement system involved in the innate immune response. Our findings highlight how FFA-mediated changes in extracellular metal speciation might contribute to the progression of certain pathological conditions.
Collapse
Affiliation(s)
| | - James P Barnett
- Department of Life Sciences, Birmingham City University, Edgbaston, B15 3TN, UK
| | - Adamu H Adamu
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Ellie J Griffiths
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Alan J Stewart
- School of Medicine, University of St Andrews, St Andrews, KY16 9TF, UK
| | | |
Collapse
|
31
|
Barszcz M, Taciak M, Tuśnio A, Čobanová K, Grešáková L. The effect of organic and inorganic zinc source, used in combination with potato fiber, on growth, nutrient digestibility and biochemical blood profile in growing pigs. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Khadke NB, Patil AA, Patil DY, Borhade AV. Isophthaloyl-Based Selective Fluorescence Receptor for Zn (II) Ion in Semi-Aqueous Medium. J Fluoresc 2019; 29:837-843. [PMID: 31309389 DOI: 10.1007/s10895-019-02385-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 05/06/2019] [Indexed: 12/23/2022]
Abstract
A novel Isophthaloyl-based symmetrical (12E,21E)-N1',N3'-bis(2-hydroxybenzylidene) isophthalohydrazide, receptor (1) was synthesized and characterized using various spectroscopic technique. The reorganization ability of receptor (1) was evaluated in semi-aqueous medium and shows significant enhancement in fluorescence intensity for Zn (II) ion over various metal ions in CH3CN:H2O (1:1, v/v). The 1:2 binding stoichiometry between receptor (1) and Zn (II) ion was established using Job's plot and the proposed complex structure was calculated by applying Density Functional Theory (DFT) method. The binding constant (Ka) of receptor (1) with Zn (II) ion was established with the Benesi-Hildebrand plot, Scatchard and Connor's plot and the values are 1.00 × 104 M-1, 1.05× 104 M-1 and 1.05× 104 M-1 respectively. The limit of detection (LOD) and limit of quantification (LOQ) of receptor (1) and Zn (II) ion was 0.292 μM and 0.974 μM respectively. The binding mode was due to photo-induced electron transfer (PET) and the coordination of Zn (II) ion with C = N hydroxyl group of receptor (1). Electrochemical analysis of metal free receptor (1) and with Zn (II) ion also confirmed the formation of complex.
Collapse
Affiliation(s)
- N B Khadke
- Science Department, Government Residential Women's Polytechnic College, Latur, 413512, India
| | - A A Patil
- Department of Applied Science and Mathematics, K. K. W Institute of Engineering Education and Research, Nashik,, 422003, India
| | - D Y Patil
- Department of Applied Science and Mathematics, K. K. W Institute of Engineering Education and Research, Nashik,, 422003, India
| | - A V Borhade
- Department of Applied Science and Mathematics, K. K. W Institute of Engineering Education and Research, Nashik,, 422003, India.
| |
Collapse
|
33
|
Kumar R, Sharma A, Singh H, Suating P, Kim HS, Sunwoo K, Shim I, Gibb BC, Kim JS. Revisiting Fluorescent Calixarenes: From Molecular Sensors to Smart Materials. Chem Rev 2019; 119:9657-9721. [DOI: 10.1021/acs.chemrev.8b00605] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Rajesh Kumar
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Amit Sharma
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Hardev Singh
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Paolo Suating
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Hyeong Seok Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Kyoung Sunwoo
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Inseob Shim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Bruce C. Gibb
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
34
|
Nemashkalova EL, Permyakov EA, Uversky VN, Permyakov SE, Litus EA. Effect of Cu 2+ and Zn 2+ ions on human serum albumin interaction with plasma unsaturated fatty acids. Int J Biol Macromol 2019; 131:505-509. [PMID: 30880051 DOI: 10.1016/j.ijbiomac.2019.03.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 01/15/2023]
Abstract
Human serum albumin (HSA) serves as a depot and carrier of multiple unrelated ligands including several participants of the pathogenesis of Alzheimer's disease (AD), such as amyloid β peptide (Aβ), Zn2+/Cu2+ ions, docosahexaenoic (DHA), linoleic (LA), and oleic (OA) acids. To explore the interplay between HSA interaction with Zn2+/Cu2+ and the plasma unsaturated fatty acids (DHA, LA, OA, and arachidonic acid (ArA)), we have studied the metal dependence of the fatty acid (FA) binding capacity of HSA (nmax) and structural consequences of the HSA-FA interactions. HSA loading with Zn2+ decreases nmax value by 0.3-1.5, while its saturation with Cu2+ causes the FA-dependent nmax changes by up to 0.9. The Cu2+-induced decline in nmax value for DHA is due to conformational rearrangements in HSA molecule. In other cases, the changes in nmax are attributed to steric hindarance/facilitation of the HSA-FA interaction because of the protein multimerization/monomerization, as confirmed by chemical crosslinking. The surface hydrophobicity of HSA is Cu2+-, Zn2+-, and FA-dependent and decreases upon the FA binding, according to bis-ANS fluorescence data. Overall, Zn2+ or Cu2+ binding selectively affect HSA interaction with the FAs studied, in part due to changes in quaternary structure of the protein.
Collapse
Affiliation(s)
- Ekaterina L Nemashkalova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Institutskaya str., 7, Pushchino, Moscow region 142290, Russia
| | - Eugene A Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Institutskaya str., 7, Pushchino, Moscow region 142290, Russia
| | - Vladimir N Uversky
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Institutskaya str., 7, Pushchino, Moscow region 142290, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Sergei E Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Institutskaya str., 7, Pushchino, Moscow region 142290, Russia
| | - Ekaterina A Litus
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Institutskaya str., 7, Pushchino, Moscow region 142290, Russia.
| |
Collapse
|
35
|
Parodi A, Miao J, Soond SM, Rudzińska M, Zamyatnin AA. Albumin Nanovectors in Cancer Therapy and Imaging. Biomolecules 2019; 9:E218. [PMID: 31195727 PMCID: PMC6627831 DOI: 10.3390/biom9060218] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
Albumin nanovectors represent one of the most promising carriers recently generated because of the cost-effectiveness of their fabrication, biocompatibility, safety, and versatility in delivering hydrophilic and hydrophobic therapeutics and diagnostic agents. In this review, we describe and discuss the recent advances in how this technology has been harnessed for drug delivery in cancer, evaluating the commonly used synthesis protocols and considering the key factors that determine the biological transport and the effectiveness of such technology. With this in mind, we highlight how clinical and experimental albumin-based delivery nanoplatforms may be designed for tackling tumor progression or improving the currently established diagnostic procedures.
Collapse
Affiliation(s)
- Alessandro Parodi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia.
| | - Jiaxing Miao
- Ohio State University, 410 W 10th Ave. Columbus, 43210, Ohio, USA.
| | - Surinder M Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia.
| | - Magdalena Rudzińska
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia.
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
36
|
Al-Harthi S, Lachowicz JI, Nowakowski ME, Jaremko M, Jaremko Ł. Towards the functional high-resolution coordination chemistry of blood plasma human serum albumin. J Inorg Biochem 2019; 198:110716. [PMID: 31153112 DOI: 10.1016/j.jinorgbio.2019.110716] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022]
Abstract
Human serum albumin (HSA) is a monomeric, globular, multi-carrier and the most abundant protein in the blood. HSA displays multiple ligand binding sites with extraordinary binding capacity for a wide range of ions and molecules. For decades, HSA's ability to bind to various ligands has led many scientists to study its physiological properties and protein structure; indeed, a better understanding of HSA-ligand interactions in human blood, at the atomic level, will likely foster the development of more potent, and overall more performant, diagnostic and therapeutic tools against serious human disorders such as diabetes, cardiovascular disorders, and cancer. Here, we present a concise overview of the current knowledge of HSA's structural characteristics, and its coordination chemistry with transition metal ions, within the scope and limitations of current techniques and biophysical methods to reach atomic resolution in solution and in blood serum. We also highlight the overwhelming need of a detailed atomistic understanding of HSA dynamic structures and interactions that are transient, weak, multi-site and multi-step, and allosterically affected by each other. Considering the fact that HSA is a current clinical tool for drug delivery systems and a potential contender as molecular cargo and nano-vehicle used in biophysical, clinical and industrial fields, we underline the emerging need for novel approaches to target the dynamic functional coordination chemistry of the human blood serum albumin in solution, at the atomic level.
Collapse
Affiliation(s)
- Samah Al-Harthi
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), 23955-6900 Thuwal, Saudi Arabia
| | - Joanna Izabela Lachowicz
- Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Cittadella Universitaria, I-09042 Monserrato, Cagliari, Italy
| | - Michal Eligiusz Nowakowski
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), 23955-6900 Thuwal, Saudi Arabia; Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Mariusz Jaremko
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), 23955-6900 Thuwal, Saudi Arabia
| | - Łukasz Jaremko
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), 23955-6900 Thuwal, Saudi Arabia.
| |
Collapse
|
37
|
Luzuriaga MA, Benjamin CE, Gaertner MW, Lee H, Herbert FC, Mallick S, Gassensmith JJ. ZIF-8 Degrades in Cell Media, Serum, and Some-But Not All-Common Laboratory Buffers. Supramol Chem 2019; 31:485-490. [PMID: 31892768 DOI: 10.1080/10610278.2019.1616089] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The emergence of drug delivery using water stable metal-organic frameworks has elicited a lot of interest in their biocompatibility. However, few studies have been conducted on their stability in common buffers, cell media, and blood proteins. For these studies, single crystal ZIF-8 approximately 1 um in diameter were synthesized, incubated with common laboratory buffers, cell media, and serum, and then characterized by PXRD, IR, DLS, and SEM. Time-resolved SEM and PXRD demonstrate that buffers containing phosphate and bicarbonate alter the appearance and composition of ZIF-8; however, cargo inside the ZIF-8 does not appear to leak out, in most of these buffers, even when the ZIF-8 itself is displaced by phosphates. On the other hand, blood proteins in serum dissolve ZIF-8, causing trapped biomolecules to escape. The study presented here suggests that ZIF-8 can undergo dramatic surface chemistry changes that may affect the interpretation of cellular uptake and cargo release data. On the other hand, it provides a rational explanation as to how ZIF-8 neatly dissolves in vivo.
Collapse
Affiliation(s)
- Michael A Luzuriaga
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Candace E Benjamin
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Michael W Gaertner
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Hamilton Lee
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Fabian C Herbert
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Snipta Mallick
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States.,Department of Biomedical Engineering, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| |
Collapse
|
38
|
Treviño S, Díaz A, Sánchez-Lara E, Sanchez-Gaytan BL, Perez-Aguilar JM, González-Vergara E. Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biol Trace Elem Res 2019; 188:68-98. [PMID: 30350272 PMCID: PMC6373340 DOI: 10.1007/s12011-018-1540-6] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Vanadium compounds have been primarily investigated as potential therapeutic agents for the treatment of various major health issues, including cancer, atherosclerosis, and diabetes. The translation of vanadium-based compounds into clinical trials and ultimately into disease treatments remains hampered by the absence of a basic pharmacological and metabolic comprehension of such compounds. In this review, we examine the development of vanadium-containing compounds in biological systems regarding the role of the physiological environment, dosage, intracellular interactions, metabolic transformations, modulation of signaling pathways, toxicology, and transport and tissue distribution as well as therapeutic implications. From our point of view, the toxicological and pharmacological aspects in animal models and humans are not understood completely, and thus, we introduced them in a physiological environment and dosage context. Different transport proteins in blood plasma and mechanistic transport determinants are discussed. Furthermore, an overview of different vanadium species and the role of physiological factors (i.e., pH, redox conditions, concentration, and so on) are considered. Mechanistic specifications about different signaling pathways are discussed, particularly the phosphatases and kinases that are modulated dynamically by vanadium compounds because until now, the focus only has been on protein tyrosine phosphatase 1B as a vanadium target. Particular emphasis is laid on the therapeutic ability of vanadium-based compounds and their role for the treatment of diabetes mellitus, specifically on that of vanadate- and polioxovanadate-containing compounds. We aim at shedding light on the prevailing gaps between primary scientific data and information from animal models and human studies.
Collapse
Affiliation(s)
- Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Eduardo Sánchez-Lara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Brenda L. Sanchez-Gaytan
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Jose Manuel Perez-Aguilar
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Enrique González-Vergara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| |
Collapse
|
39
|
Rabbani G, Ahn SN. Structure, enzymatic activities, glycation and therapeutic potential of human serum albumin: A natural cargo. Int J Biol Macromol 2019; 123:979-990. [DOI: 10.1016/j.ijbiomac.2018.11.053] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/07/2018] [Accepted: 11/11/2018] [Indexed: 12/26/2022]
|
40
|
Adam N, Adam C, Keskitalo M, Pfeuffer-Rooschüz J, Panak PJ. Interaction of Cm(III) with human serum albumin studied by time-resolved laser fluorescence spectroscopy and NMR. J Inorg Biochem 2018; 192:45-51. [PMID: 30594865 DOI: 10.1016/j.jinorgbio.2018.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/16/2018] [Accepted: 12/15/2018] [Indexed: 10/27/2022]
Abstract
The complexation of Cm(III) with human serum albumin (HSA) was investigated using time-resolved laser fluorescence spectroscopy (TRLFS). The Cm(III) HSA species is dominating the speciation between pH 7.0 and 9.3. The first coordination sphere is composed by three to four H2O molecules and five to six coordinating ligands from the protein. For the complex formation at pH 8.0 a conditional stability constant of logK = 6.16 ± 0.50 was determined. Furthermore, information on the Cm(III) HSA binding site were obtained. With increasing Cu(II) concentration the Cm(III) HSA complexation is suppressed whereas the addition of Zn(II) has no effect. This points to the complexation of Cm(III) at the N-terminal binding site (NTS) which is the primary Cu(II) binding site. NMR experiments with Cu(II), Eu(III) and Am(III) HSA show a decrease of the peak assigned to the His C2 proton of His 3, which is part of the NTS, with increasing metal ion concentration. This confirms the complexation of Eu(III) and Am(III) at the Cu(II) binding site NTS. The results presented in this study contribute to a better understanding of relevant biochemical reactions of incorporated actinides.
Collapse
Affiliation(s)
- Nicole Adam
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, 76021 Karlsruhe, Germany.
| | - Christian Adam
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Markus Keskitalo
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, 76021 Karlsruhe, Germany; Department of Chemistry - Radiochemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Jonathan Pfeuffer-Rooschüz
- University of Heidelberg, Institute of Physical Chemistry, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Petra J Panak
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, 76021 Karlsruhe, Germany; University of Heidelberg, Institute of Physical Chemistry, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| |
Collapse
|
41
|
Martins AF, Clavijo Jordan V, Bochner F, Chirayil S, Paranawithana N, Zhang S, Lo ST, Wen X, Zhao P, Neeman M, Sherry AD. Imaging Insulin Secretion from Mouse Pancreas by MRI Is Improved by Use of a Zinc-Responsive MRI Sensor with Lower Affinity for Zn 2+ Ions. J Am Chem Soc 2018; 140:17456-17464. [PMID: 30484648 DOI: 10.1021/jacs.8b07607] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It has been demonstrated that divalent zinc ions packaged with insulin in β-cell granules can be detected by MRI during glucose-stimulated insulin secretion using a gadolinium-based Zn2+-sensitive agent. This study was designed to evaluate whether a simpler agent design having single Zn2+-sensing moieties but with variable Zn2+ binding affinities might also detect insulin secretion from the pancreas. Using an implanted MR-compatible window designed to hold the pancreas in a fixed position for imaging, we now demonstrate that focally intense "hot spots" can be detected in the tail of the pancreas using these agents after administration of glucose to stimulate insulin secretion. Histological staining of the same tissue verified that the hot spots identified by imaging correspond to clusters of islets, perhaps reflecting first-responder islets that are most responsive to a sudden increase in glucose. A comparison of images obtained when using a high-affinity Zn2+ sensor versus a lower-affinity sensor showed that the lower-affinity sensors produced the best image contrast. An equilibrium model that considers all possible complexes formed between Zn2+, the GdL sensor, and HSA predicts that a GdL sensor with lower affinity for Zn2+ generates a lower background signal from endogenous Zn2+ prior to glucose-stimulated insulin secretion (GSIS) and that the weaker binding affinity agent is more responsive to a further increase in Zn2+ concentration near β-cells after GSIS. These model predictions are consistent with the in vivo imaging observations.
Collapse
Affiliation(s)
- André F Martins
- Department of Chemistry and Biochemistry , University of Texas at Dallas , Richardson , Texas 75080 , United States.,Advanced Imaging Research Center , University of Texas Southwestern Medical Center , Dallas , Texas 75390-8568 , United States
| | - Veronica Clavijo Jordan
- Advanced Imaging Research Center , University of Texas Southwestern Medical Center , Dallas , Texas 75390-8568 , United States
| | - Filip Bochner
- Department of Biological Regulation , The Weizmann Institute of Science , 7610001 Rehovot , Israel
| | - Sara Chirayil
- Advanced Imaging Research Center , University of Texas Southwestern Medical Center , Dallas , Texas 75390-8568 , United States
| | - Namini Paranawithana
- Department of Chemistry and Biochemistry , University of Texas at Dallas , Richardson , Texas 75080 , United States
| | - Shanrong Zhang
- Advanced Imaging Research Center , University of Texas Southwestern Medical Center , Dallas , Texas 75390-8568 , United States
| | - Su-Tang Lo
- Advanced Imaging Research Center , University of Texas Southwestern Medical Center , Dallas , Texas 75390-8568 , United States
| | - Xiaodong Wen
- Advanced Imaging Research Center , University of Texas Southwestern Medical Center , Dallas , Texas 75390-8568 , United States
| | - Piyu Zhao
- Department of Chemistry and Biochemistry , University of Texas at Dallas , Richardson , Texas 75080 , United States
| | - Michal Neeman
- Department of Biological Regulation , The Weizmann Institute of Science , 7610001 Rehovot , Israel
| | - A Dean Sherry
- Department of Chemistry and Biochemistry , University of Texas at Dallas , Richardson , Texas 75080 , United States.,Advanced Imaging Research Center , University of Texas Southwestern Medical Center , Dallas , Texas 75390-8568 , United States
| |
Collapse
|
42
|
DFT Protocol for EPR Prediction of Paramagnetic Cu(II) Complexes and Application to Protein Binding Sites. MAGNETOCHEMISTRY 2018. [DOI: 10.3390/magnetochemistry4040055] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
With the aim to provide a general protocol to interpret electron paramagnetic resonance (EPR) spectra of paramagnetic copper(II) coordination compounds, density functional theory (DFT) calculations of spin Hamiltonian parameters g and A for fourteen Cu(II) complexes with different charges, donor sets, and geometry were carried out using ORCA software. The performance of eleven functionals was tested, and on the basis of the mean absolute percent deviation (MAPD) and standard deviation (SD), the ranking of the functionals for Az is: B3LYP > B3PW91 ~ B3P86 > PBE0 > CAM-B3LYP > TPSSh > BH and HLYP > B2PLYP > MPW1PW91 > ω-B97x-D >> M06; and for gz is: PBE0 > BH and HLYP > B2PLYP > ω-B97x-D > B3PW91~B3LYP~B3P86 > CAM-B3LYP > TPSSh~MPW1PW91 >> M06. With B3LYP the MAPD with respect to A z exp t l is 8.6% with a SD of 4.2%, while with PBE0 the MAPD with respect to g z exp t l is 2.9% with a SD of 1.1%. The results of the validation confirm the fundamental role of the second order spin-orbit contribution to Az. The computational procedure was applied to predict the values of gz and Az of the adducts formed by Cu(II) with albumin and two fragments of prion protein, 106–126 and 180–193.
Collapse
|
43
|
Sarpong-Kumankomah S, Gibson MA, Gailer J. Organ damage by toxic metals is critically determined by the bloodstream. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
44
|
Coverdale JPC, Khazaipoul S, Arya S, Stewart AJ, Blindauer CA. Crosstalk between zinc and free fatty acids in plasma. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:532-542. [PMID: 30266430 PMCID: PMC6372834 DOI: 10.1016/j.bbalip.2018.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/23/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
Abstract
In mammalian blood plasma, serum albumin acts as a transport protein for free fatty acids, other lipids and hydrophobic molecules including neurodegenerative peptides, and essential metal ions such as zinc to allow their systemic distribution. Importantly, binding of these chemically extremely diverse entities is not independent, but linked allosterically. One particularly intriguing allosteric link exists between free fatty acid and zinc binding. Albumin thus mediates crosstalk between energy status/metabolism and organismal zinc handling. In recognition of the fact that even small changes in extracellular zinc concentration and speciation modulate the function of many cell types, the albumin-mediated impact of free fatty acid concentration on zinc distribution may be significant for both normal physiological processes including energy metabolism, insulin activity, heparin neutralisation, blood coagulation, and zinc signalling, and a range of disease states, including metabolic syndrome, cardiovascular disease, myocardial ischemia, diabetes, and thrombosis. Serum albumin binds and transports both free fatty acids and Zn2+ ions Elevated plasma free fatty acids impair Zn2+ binding by albumin through an allosteric mechanism The resulting changes in plasma zinc speciation are thought to impact blood coagulation and may promote thrombosis Increased free Zn2+ may lead to enhanced zinc export from plasma and dysregulation of zinc homeostasis in multiple tissues
Collapse
Affiliation(s)
| | | | - Swati Arya
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | - Alan J Stewart
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | | |
Collapse
|
45
|
Tan Q, Liu Z, Li H, Liu Y, Xia Z, Xiao Y, Usman M, Du Y, Bi H, Wei L. Hormesis of mercuric chloride-human serum albumin adduct on N9 microglial cells via the ERK/MAPKs and JAK/STAT3 signaling pathways. Toxicology 2018; 408:62-69. [DOI: 10.1016/j.tox.2018.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/07/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022]
|
46
|
Zn 2+ detection by MRI using Ln 3+ -based complexes: The central role of coordination chemistry. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Coverdale JPC, Katundu KGH, Sobczak AIS, Arya S, Blindauer CA, Stewart AJ. Ischemia-modified albumin: Crosstalk between fatty acid and cobalt binding. Prostaglandins Leukot Essent Fatty Acids 2018; 135:147-157. [PMID: 30103926 PMCID: PMC6109191 DOI: 10.1016/j.plefa.2018.07.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023]
Abstract
Myocardial ischemia is difficult to diagnose effectively with still few well-defined biochemical markers for identification in advance, or in the absence of myocardial necrosis. "Ischemia-modified albumin" (IMA), a form of albumin displaying reduced cobalt-binding affinity, is significantly elevated in ischemic patients, and the albumin cobalt-binding (ACB) assay can measure its level indirectly. Elucidating the molecular mechanism underlying the identity of IMA and the ACB assay hinges on understanding metal-binding properties of albumin. Albumin binds most metal ions and harbours four primary metal binding sites: site A, site B, the N-terminal site (NTS), and the free thiol at Cys34. Previous efforts to clarify the identity of IMA and the causes for its reduced cobalt-binding capacity were focused on the NTS site, but the degree of N-terminal modification could not be correlated to the presence of ischemia. More recent work suggested that Co2+ ions as used in the ACB assay bind preferentially to site B, then to site A, and finally to the NTS. This insight paved the way for a new consistent molecular basis of the ACB assay: albumin is also the main plasma carrier for free fatty acids (FFAs), and binding of a fatty acid to the high-affinity site FA2 results in conformational changes in albumin which prevent metal binding at site A and partially at site B. Thus, this review advances the hypothesis that high IMA levels in myocardial ischemia and many other conditions originate from high plasma FFA levels hampering the binding of Co2+ to sites A and/or B. This is supported by biophysical studies and the co-association of a range of pathological conditions with positive ACB assays and high plasma FFA levels.
Collapse
Affiliation(s)
| | - Kondwani G H Katundu
- School of Medicine, University of St Andrews, St Andrews, United Kingdom; College of Medicine, University of Malawi, Blantyre, Malawi
| | - Amélie I S Sobczak
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Swati Arya
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | | | - Alan J Stewart
- School of Medicine, University of St Andrews, St Andrews, United Kingdom.
| |
Collapse
|
48
|
Iqbal S, Qais FA, Alam MM, Naseem I. Effect of glycation on human serum albumin–zinc interaction: a biophysical study. J Biol Inorg Chem 2018; 23:447-458. [DOI: 10.1007/s00775-018-1554-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/12/2018] [Indexed: 12/13/2022]
|
49
|
Afonso CB, Sousa BC, Pitt AR, Spickett CM. A mass spectrometry approach for the identification and localization of small aldehyde modifications of proteins. Arch Biochem Biophys 2018; 646:38-45. [PMID: 29580947 DOI: 10.1016/j.abb.2018.03.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/29/2022]
Abstract
Lipids containing polyunsaturated fatty acids are primary targets of oxidation, which produces reactive short-chain aldehydes that can covalently modify proteins, a process called lipoxidation. Improved mass spectrometry (MS) methods for the analysis of these adducts in complex biological systems are needed. Lysozyme and human serum albumin (HSA) were used as model proteins to investigate lipoxidation products formed by two short-chain aldehydes, acrolein and pentanal, which are unsaturated and saturated aldehydes respectively. The adducts formed were stabilized by NaBH4 or NaBH3CN reduction and analysed by MS. Analysis of intact modified lysozyme showed a pentanal modification resulting from Schiff's base formation (+70 Da), and up to 8 acrolein adducts, all resulting from Michael addition (+58 Da). Analysis of tryptic digests identified specific histidine, cysteine and lysine residues modified in both lysozyme and HSA, and determined characteristic amino acid-specific fragmentations. Eight different internal fragment ions were found that could be used as general diagnostic ions for pentanal- and acrolein-modified amino acids. The combined use of intact protein analysis and LC-MS/MS methods provided a powerful tool for the identification and localization of aldehyde-protein adducts, and the diagnostic ions will facilitate the development of targeted MS methods for analysis of adducts in more complex samples.
Collapse
Affiliation(s)
- Catarina B Afonso
- School of Life and Health Sciences, Aston Triangle, Aston University, Birmingham, UK
| | - Bebiana C Sousa
- School of Life and Health Sciences, Aston Triangle, Aston University, Birmingham, UK
| | - Andrew R Pitt
- School of Life and Health Sciences, Aston Triangle, Aston University, Birmingham, UK
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston Triangle, Aston University, Birmingham, UK.
| |
Collapse
|
50
|
The role of zinc and its compounds in leukemia. J Biol Inorg Chem 2018; 23:347-362. [DOI: 10.1007/s00775-018-1545-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/09/2018] [Indexed: 12/23/2022]
|