1
|
Goswami D, Arredondo SA, Betz W, Armstrong J, Kumar S, Zanghi G, Patel H, Camargo N, Oualim KMZ, Seilie AM, Schneider S, Murphy SC, Kappe SHI, Vaughan AM. A conserved Plasmodium nuclear protein is critical for late liver stage development. Commun Biol 2024; 7:1387. [PMID: 39455824 PMCID: PMC11511937 DOI: 10.1038/s42003-024-07063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Malaria, caused by Plasmodium parasites, imposes a significant health burden and live-attenuated parasites are being pursued as vaccines. Here, we report on the creation of a genetically attenuated parasite by the deletion of Plasmodium LINUP, encoding a liver stage nuclear protein. In the rodent parasite Plasmodium yoelii, LINUP expression was restricted to liver stage nuclei after the onset of liver stage schizogony. Compared to wildtype P. yoelii, P. yoelii LINUP gene deletion parasites (linup-) exhibited no phenotype in blood stages and mosquito stages but suffered developmental arrest late in liver stage schizogony with a pronounced defect in exo-erythrocytic merozoite formation. This defect caused severe attenuation of the liver stage-to-blood stage transition and immunization of mice with linup - parasites conferred robust protection against infectious sporozoite challenge. LINUP gene deletion in the human parasite Plasmodium falciparum also caused a severe defect in late liver stage differentiation. Importantly, P. falciparum linup - liver stages completely failed to transition from the liver stage to a viable blood stage infection in a humanized mouse model. These results suggest that P. falciparum LINUP is an ideal target for late liver stage attenuation that can be incorporated into a late liver stage-arresting replication competent whole parasite vaccine.
Collapse
Affiliation(s)
- Debashree Goswami
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
| | - Silvia A Arredondo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - William Betz
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Janna Armstrong
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Gigliola Zanghi
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Hardik Patel
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Kenza M Z Oualim
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Annette M Seilie
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Sophia Schneider
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Sean C Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Ghosh A, Mishra A, Devi R, Narwal SK, Nirdosh, Srivastava PN, Mishra S. A Micronemal Protein, Scot1, Is Essential for Apicoplast Biogenesis and Liver Stage Development in Plasmodium berghei. ACS Infect Dis 2024; 10:3013-3025. [PMID: 39037752 DOI: 10.1021/acsinfecdis.4c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Plasmodium sporozoites invade hepatocytes, transform into liver stages, and replicate into thousands of merozoites that infect erythrocytes and cause malaria. Proteins secreted from micronemes play an essential role in hepatocyte invasion, and unneeded micronemes are subsequently discarded for replication. The liver-stage parasites are potent immunogens that prevent malarial infection. Late liver stage-arresting genetically attenuated parasites (GAPs) exhibit greater protective efficacy than early GAP. However, the number of late liver-stage GAPs for generating GAPs with multiple gene deletions is limited. Here, we identified Scot1 (Sporozoite Conserved Orthologous Transcript 1), which was previously shown to be upregulated in sporozoites, and by endogenous tagging with mCherry, we demonstrated that it is expressed in the sporozoite and liver stages in micronemes. Using targeted gene deletion in Plasmodium berghei, we showed that Scot1 is essential for late liver-stage development. Scot1 KO sporozoites grew normally into liver stages but failed to initiate blood-stage infection in mice due to impaired apicoplast biogenesis and merozoite formation. Bioinformatic studies suggested that Scot1 is a metal-small-molecule carrier protein. Remarkably, supplementation with metals in the culture of infected Scot1 KO cells did not rescue their phenotype. Immunization with Scot1 KO sporozoites in C57BL/6 mice confers protection against malaria via infection. These proof-of-concept studies will enable the generation of P. falciparum Scot1 mutants that could be exploited to generate GAP malaria vaccines.
Collapse
Affiliation(s)
- Ankit Ghosh
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Akancha Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raksha Devi
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sunil Kumar Narwal
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Nirdosh
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pratik Narain Srivastava
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Satish Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Goswami D, Patel H, Betz W, Armstrong J, Camargo N, Patil A, Chakravarty S, Murphy SC, Sim BKL, Vaughan AM, Hoffman SL, Kappe SH. A replication competent Plasmodium falciparum parasite completely attenuated by dual gene deletion. EMBO Mol Med 2024; 16:723-754. [PMID: 38514791 PMCID: PMC11018819 DOI: 10.1038/s44321-024-00057-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
Vaccination with infectious Plasmodium falciparum (Pf) sporozoites (SPZ) administered with antimalarial drugs (PfSPZ-CVac), confers superior sterilizing protection against infection when compared to vaccination with replication-deficient, radiation-attenuated PfSPZ. However, the requirement for drug administration constitutes a major limitation for PfSPZ-CVac. To obviate this limitation, we generated late liver stage-arresting replication competent (LARC) parasites by deletion of the Mei2 and LINUP genes (mei2-/linup- or LARC2). We show that Plasmodium yoelii (Py) LARC2 sporozoites did not cause breakthrough blood stage infections and engendered durable sterilizing immunity against various infectious sporozoite challenges in diverse strains of mice. We next genetically engineered a PfLARC2 parasite strain that was devoid of extraneous DNA and produced cryopreserved PfSPZ-LARC2. PfSPZ-LARC2 liver stages replicated robustly in liver-humanized mice but displayed severe defects in late liver stage differentiation and did not form liver stage merozoites. This resulted in complete abrogation of parasite transition to viable blood stage infection. Therefore, PfSPZ-LARC2 is the next-generation vaccine strain expected to unite the safety profile of radiation-attenuated PfSPZ with the superior protective efficacy of PfSPZ-CVac.
Collapse
Affiliation(s)
- Debashree Goswami
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA
| | - Hardik Patel
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA
| | - William Betz
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA
| | - Janna Armstrong
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA
| | - Asha Patil
- Sanaria Inc., 9800 Medical Center Dr., Rockville, MD, 20850, USA
| | | | - Sean C Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - B Kim Lee Sim
- Sanaria Inc., 9800 Medical Center Dr., Rockville, MD, 20850, USA
| | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Stefan Hi Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Hesping E, Boddey JA. Whole-genome CRISPR screens to understand Apicomplexan-host interactions. Mol Microbiol 2024; 121:717-726. [PMID: 38225194 DOI: 10.1111/mmi.15221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/17/2024]
Abstract
Apicomplexan parasites are aetiological agents of numerous diseases in humans and livestock. Functional genomics studies in these parasites enable the identification of biological mechanisms and protein functions that can be targeted for therapeutic intervention. Recent improvements in forward genetics and whole-genome screens utilising CRISPR/Cas technology have revolutionised the functional analysis of genes during Apicomplexan infection of host cells. Here, we highlight key discoveries from CRISPR/Cas9 screens in Apicomplexa or their infected host cells and discuss remaining challenges to maximise this technology that may help answer fundamental questions about parasite-host interactions.
Collapse
Affiliation(s)
- Eva Hesping
- Infectious Diseases and Immune Defence Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Justin A Boddey
- Infectious Diseases and Immune Defence Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Thawornpan P, Nicholas J, Malee C, Kochayoo P, Wangriatisak K, Tianpothong P, Ntumngia FB, J. Barnes S, H. Adams J, Chootong P. Longitudinal analysis of antibody responses to Plasmodium vivax sporozoite antigens following natural infection. PLoS Negl Trop Dis 2024; 18:e0011907. [PMID: 38277340 PMCID: PMC10817200 DOI: 10.1371/journal.pntd.0011907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND P. vivax malaria is a major global health burden hindering social and economic development throughout many tropical and sub-tropical countries. Pre-erythrocytic (PE) vaccines emerge as an attractive approach for the control and elimination of malaria infection. Therefore, evaluating the magnitude, longevity and prevalence of naturally acquired IgG antibody responses against PE candidate antigens is useful for vaccine design. METHODOLOGY/PRINCIPAL FINDINGS The antigenicity of five recombinant PE antigens (PvCSP-VK210, PvSSP3, PvM2-MAEBL, PvCelTOS and PvSPECT1) was evaluated in plasma samples from individuals residing in low transmission areas in Thailand (Ranong and Chumphon Provinces). The samples were collected at the time of acute vivax malaria and 90, 270 and 360 days later. The prevalence, magnitude and longevity of total IgG and IgG subclasses were determined for each antigen using the longitudinal data. Our results showed that seropositivity of all tested PE antigens was detected during infection in at least some subjects; anti-PvCSP-VK210 and anti-PvCelTOS antibodies were the most frequent. Titers of these antibodies declined during the year of follow up, but notably seropositivity persisted. Among seropositive subjects at post-infection, high number of subjects possessed antibodies against PvCSP-VK210. Anti-PvSSP3 antibody responses had the longest half-life. IgG subclass profiling showed that the predominant subclasses were IgG1 and IgG3 (cytophilic antibodies), tending to remain detectable for at least 360 days after infection. CONCLUSIONS/SIGNIFICANCE The present study demonstrated the magnitude and longevity of serological responses to multiple PE antigens of P. vivax after natural infection. This knowledge could contribute to the design of an effective P. vivax vaccine.
Collapse
Affiliation(s)
- Pongsakorn Thawornpan
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Justin Nicholas
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Chayapat Malee
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Piyawan Kochayoo
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Kittikorn Wangriatisak
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Pachara Tianpothong
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Francis Babila Ntumngia
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Samantha J. Barnes
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - John H. Adams
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Patchanee Chootong
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
Douradinha B. Does hydrogen peroxide contribute to the immunity against Malaria induced by whole attenuated plasmodial sporozoites? Mol Biochem Parasitol 2023; 256:111589. [PMID: 37604406 DOI: 10.1016/j.molbiopara.2023.111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Plasmodium sporozoites can block apoptotic pathways within host hepatocytes, ensuring the survival of the parasite. However, attenuated plasmodial sporozoites are unable to prevent apoptosis, which provides many parasite antigens to immune cells. This exposure leads to protection against Malaria in both human and animal models. If these hosts are later inoculated with infectious sporozoites, apoptosis of infected hepatocytes will occur, preventing parasite development. Considering that hydrogen peroxide can induce apoptosis, it is plausible that it plays a role in the mechanisms associated with the protection mediated by attenuated plasmodial sporozoites. Based on published results that describe the relationship between Plasmodium, hydrogen peroxide, and apoptosis, a rational explanation can be provided for this hypothesis.
Collapse
Affiliation(s)
- Bruno Douradinha
- Nykode Therapeutics ASA, Oslo Science Park, Gaustadalléen 21, Oslo 0349, Norway.
| |
Collapse
|
7
|
Moita D, Rôla C, Nunes-Cabaço H, Nogueira G, Maia TG, Othman AS, Franke-Fayard B, Janse CJ, Mendes AM, Prudêncio M. The effect of dosage on the protective efficacy of whole-sporozoite formulations for immunization against malaria. NPJ Vaccines 2023; 8:182. [PMID: 37996533 PMCID: PMC10667361 DOI: 10.1038/s41541-023-00778-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Immunization with Plasmodium sporozoites, either attenuated or administered under the cover of an antimalarial drug, can induce strong protection against malaria in pre-clinical murine models, as well as in human trials. Previous studies have suggested that whole-sporozoite (WSpz) formulations based on parasites with longer liver stage development induce higher protection, but a comparative analysis of four different WSpz formulations has not been reported. We employed a rodent model of malaria to analyze the effect of immunization dosage on the protective efficacy of WSpz formulations consisting of (i) early liver arresting genetically attenuated parasites (EA-GAP) or (ii) radiation-attenuated sporozoites (RAS), (iii) late arresting GAP (LA-GAP), and (iv) sporozoites administered under chemoprophylaxis, that are eliminated upon release into the bloodstream (CPS). Our results show that, unlike all other WSpz formulations, EA-GAP fails to confer complete protection against an infectious challenge at any immunization dosage employed, suggesting that a minimum threshold of liver development is required to elicit fully effective immune responses. Moreover, while immunization with RAS, LA-GAP and CPS WSpz yields comparable, dosage-dependent protection, protection by EA-GAP WSpz peaks at an intermediate dosage and markedly decreases thereafter. In-depth immunological analyses suggest that effector CD8+ T cells elicited by EA-GAP WSpz immunization have limited developmental plasticity, with a potential negative impact on the functional versatility of memory cells and, thus, on protective immunity. Our findings point towards dismissing EA-GAP from prioritization for WSpz malaria vaccination and enhance our understanding of the complexity of the protection elicited by these WSpz vaccine candidates, guiding their future optimization.
Collapse
Affiliation(s)
- Diana Moita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Rôla
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Helena Nunes-Cabaço
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Gonçalo Nogueira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Teresa G Maia
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Ahmad Syibli Othman
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, 21300, Terengganu, Malaysia
| | | | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - António M Mendes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
8
|
Douradinha B. Does attenuated plasmodial sporozoite-mediated protection require peroxynitrite? Trends Parasitol 2023; 39:808-811. [PMID: 37574429 DOI: 10.1016/j.pt.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/03/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023]
Abstract
Attenuated plasmodial sporozoite-induced immune response includes intrahepatic nitric oxide (NO) production, which promotes apoptosis of infected hepatocytes and consequent parasite clearance. NO in excess reacts with superoxide, forming peroxynitrite, a powerful cytotoxic agent. Here, I suggest that peroxynitrite proapoptotic action may contribute to the attenuated malarial sporozoite-mediated protection.
Collapse
Affiliation(s)
- Bruno Douradinha
- Nykode Therapeutics ASA, Oslo Science Park, Gaustadalléen 21, 0349 Oslo, Norway.
| |
Collapse
|
9
|
Hassert M, Arumugam S, Harty JT. Memory CD8+ T cell-mediated protection against liver-stage malaria. Immunol Rev 2023; 316:84-103. [PMID: 37014087 PMCID: PMC10524177 DOI: 10.1111/imr.13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
Nearly half of the world's population is at risk of malaria, a disease caused by the protozoan parasite Plasmodium, which is estimated to cause more than 240,000,000 infections and kill more than 600,000 people annually. The emergence of Plasmodia resistant to chemoprophylactic treatment highlights the urgency to develop more effective vaccines. In this regard, whole sporozoite vaccination approaches in murine models and human challenge studies have provided substantial insight into the immune correlates of protection from malaria. From these studies, CD8+ T cells have come to the forefront, being identified as critical for vaccine-mediated liver-stage immunity that can prevent the establishment of the symptomatic blood stages and subsequent transmission of infection. However, the unique biological characteristics required for CD8+ T cell protection from liver-stage malaria dictate that more work must be done to design effective vaccines. In this review, we will highlight a subset of studies that reveal basic aspects of memory CD8+ T cell-mediated protection from liver-stage malaria infection.
Collapse
Affiliation(s)
- Mariah Hassert
- Department of Pathology, University of Iowa- Carver College of Medicine, Iowa City, IA, USA
| | - Sahaana Arumugam
- Department of Pathology, University of Iowa- Carver College of Medicine, Iowa City, IA, USA
- Medical Scientist Training Program, University of Iowa- Carver College of Medicine, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa- Carver College of Medicine, Iowa City, IA, USA
| | - John T. Harty
- Department of Pathology, University of Iowa- Carver College of Medicine, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa- Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
10
|
Plasmodium 6-cysteine proteins determine the commitment of sporozoites to liver-infection. Parasitol Int 2023; 93:102700. [PMID: 36403748 DOI: 10.1016/j.parint.2022.102700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
Abstract
Plasmodium sporozoites travel a long way from the site where they are released by a mosquito bite to the liver, where they infect hepatocytes and develop into erythrocyte-invasive forms. The success of this infection depends on the ability of the sporozoites to correctly recognize the hepatocyte as a target and change their behavior from migration to infection. However, how this change is accomplished remains incompletely understood. In this paper, we report that 6-cysteine protein family members expressed in sporozoites including B9 are responsible for this ability. Experiments on parasites using double knockouts of B9 and SPECT2, which is essential for sporozoite to migrate through the hepatocyte, showed that the parasites lacked the capacity to stop migration. This finding suggests that interactions between these parasite proteins and hepatocyte-specific cell surface ligands mediate correct recognition of hepatocytes by sporozoites, which is an essential step in malaria transmission to humans.
Collapse
|
11
|
Richie TL, Church LWP, Murshedkar T, Billingsley PF, James ER, Chen MC, Abebe Y, KC N, Chakravarty S, Dolberg D, Healy SA, Diawara H, Sissoko MS, Sagara I, Cook DM, Epstein JE, Mordmüller B, Kapulu M, Kreidenweiss A, Franke-Fayard B, Agnandji ST, López Mikue MSA, McCall MBB, Steinhardt L, Oneko M, Olotu A, Vaughan AM, Kublin JG, Murphy SC, Jongo S, Tanner M, Sirima SB, Laurens MB, Daubenberger C, Silva JC, Lyke KE, Janse CJ, Roestenberg M, Sauerwein RW, Abdulla S, Dicko A, Kappe SHI, Lee Sim BK, Duffy PE, Kremsner PG, Hoffman SL. Sporozoite immunization: innovative translational science to support the fight against malaria. Expert Rev Vaccines 2023; 22:964-1007. [PMID: 37571809 PMCID: PMC10949369 DOI: 10.1080/14760584.2023.2245890] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
INTRODUCTION Malaria, a devastating febrile illness caused by protozoan parasites, sickened 247,000,000 people in 2021 and killed 619,000, mostly children and pregnant women in sub-Saharan Africa. A highly effective vaccine is urgently needed, especially for Plasmodium falciparum (Pf), the deadliest human malaria parasite. AREAS COVERED Sporozoites (SPZ), the parasite stage transmitted by Anopheles mosquitoes to humans, are the only vaccine immunogen achieving >90% efficacy against Pf infection. This review describes >30 clinical trials of PfSPZ vaccines in the U.S.A., Europe, Africa, and Asia, based on first-hand knowledge of the trials and PubMed searches of 'sporozoites,' 'malaria,' and 'vaccines.' EXPERT OPINION First generation (radiation-attenuated) PfSPZ vaccines are safe, well tolerated, 80-100% efficacious against homologous controlled human malaria infection (CHMI) and provide 18-19 months protection without boosting in Africa. Second generation chemo-attenuated PfSPZ are more potent, 100% efficacious against stringent heterologous (variant strain) CHMI, but require a co-administered drug, raising safety concerns. Third generation, late liver stage-arresting, replication competent (LARC), genetically-attenuated PfSPZ are expected to be both safe and highly efficacious. Overall, PfSPZ vaccines meet safety, tolerability, and efficacy requirements for protecting pregnant women and travelers exposed to Pf in Africa, with licensure for these populations possible within 5 years. Protecting children and mass vaccination programs to block transmission and eliminate malaria are long-term objectives.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sara A. Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Halimatou Diawara
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mahamadou S. Sissoko
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Issaka Sagara
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - David M. Cook
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Judith E. Epstein
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Mordmüller
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Melissa Kapulu
- Biosciences Department, Kenya Medical Research Institute KEMRI-Wellcome Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrea Kreidenweiss
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | | | - Selidji T. Agnandji
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | | | - Matthew B. B. McCall
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Laura Steinhardt
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Martina Oneko
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Ally Olotu
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - James G. Kublin
- Department of Global Health, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sean C. Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases and Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Said Jongo
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Marcel Tanner
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Matthew B. Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Claudia Daubenberger
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Joana C. Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kirsten E. Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chris J. Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert W. Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Salim Abdulla
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Alassane Dicko
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter G. Kremsner
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | | |
Collapse
|
12
|
Bajic M, Ravishankar S, Sheth M, Rowe LA, Pacheco MA, Patel DS, Batra D, Loparev V, Olsen C, Escalante AA, Vannberg F, Udhayakumar V, Barnwell JW, Talundzic E. The first complete genome of the simian malaria parasite Plasmodium brasilianum. Sci Rep 2022; 12:19802. [PMID: 36396703 PMCID: PMC9671904 DOI: 10.1038/s41598-022-20706-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
Naturally occurring human infections by zoonotic Plasmodium species have been documented for P. knowlesi, P. cynomolgi, P. simium, P. simiovale, P. inui, P. inui-like, P. coatneyi, and P. brasilianum. Accurate detection of each species is complicated by their morphological similarities with other Plasmodium species. PCR-based assays offer a solution but require prior knowledge of adequate genomic targets that can distinguish the species. While whole genomes have been published for P. knowlesi, P. cynomolgi, P. simium, and P. inui, no complete genome for P. brasilianum has been available. Previously, we reported a draft genome for P. brasilianum, and here we report the completed genome for P. brasilianum. The genome is 31.4 Mb in size and comprises 14 chromosomes, the mitochondrial genome, the apicoplast genome, and 29 unplaced contigs. The chromosomes consist of 98.4% nucleotide sites that are identical to the P. malariae genome, the closest evolutionarily related species hypothesized to be the same species as P. brasilianum, with 41,125 non-synonymous SNPs (0.0722% of genome) identified between the two genomes. Furthermore, P. brasilianum had 4864 (82.1%) genes that share 80% or higher sequence similarity with 4970 (75.5%) P. malariae genes. This was demonstrated by the nearly identical genomic organization and multiple sequence alignments for the merozoite surface proteins msp3 and msp7. We observed a distinction in the repeat lengths of the circumsporozoite protein (CSP) gene sequences between P. brasilianum and P. malariae. Our results demonstrate a 97.3% pairwise identity between the P. brasilianum and the P. malariae genomes. These findings highlight the phylogenetic proximity of these two species, suggesting that P. malariae and P. brasilianum are strains of the same species, but this could not be fully evaluated with only a single genomic sequence for each species.
Collapse
Affiliation(s)
- Marko Bajic
- grid.422961.a0000 0001 0029 6188Association of Public Health Laboratories, Silver Spring, MD USA ,grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | | | - Mili Sheth
- grid.416738.f0000 0001 2163 0069Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Lori A. Rowe
- grid.416738.f0000 0001 2163 0069Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA USA ,grid.265219.b0000 0001 2217 8588Virus Characterization Isolation Production and Sequencing Core, Tulane National Primate Research Center, Covington, LA USA
| | - M. Andreina Pacheco
- grid.264727.20000 0001 2248 3398Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA USA
| | - Dhruviben S. Patel
- grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Dhwani Batra
- grid.416738.f0000 0001 2163 0069Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Vladimir Loparev
- grid.416738.f0000 0001 2163 0069Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Christian Olsen
- grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Ananias A. Escalante
- grid.264727.20000 0001 2248 3398Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA USA
| | - Fredrik Vannberg
- grid.213917.f0000 0001 2097 4943Center for Integrative Genomics at Georgia Tech, Georgia Institute of Technology, Atlanta, GA USA
| | - Venkatachalam Udhayakumar
- grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - John W. Barnwell
- grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Eldin Talundzic
- grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| |
Collapse
|
13
|
Nunes-Cabaço H, Moita D, Prudêncio M. Five decades of clinical assessment of whole-sporozoite malaria vaccines. Front Immunol 2022; 13:977472. [PMID: 36159849 PMCID: PMC9493004 DOI: 10.3389/fimmu.2022.977472] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
In 1967, pioneering work by Ruth Nussenzweig demonstrated for the first time that irradiated sporozoites of the rodent malaria parasite Plasmodium berghei protected mice against a challenge with infectious parasites of the same species. This remarkable finding opened up entirely new prospects of effective vaccination against malaria using attenuated sporozoites as immunization agents. The potential for whole-sporozoite-based immunization in humans was established in a clinical study in 1973, when a volunteer exposed to X-irradiated P. falciparum sporozoites was found to be protected against malaria following challenge with a homologous strain of this parasite. Nearly five decades later, much has been achieved in the field of whole-sporozoite malaria vaccination, and multiple reports on the clinical evaluation of such candidates have emerged. However, this process has known different paces before and after the turn of the century. While only a few clinical studies were published in the 1970’s, 1980’s and 1990’s, remarkable progress was made in the 2000’s and beyond. This article reviews the history of the clinical assessment of whole-sporozoite malaria vaccines over the last forty-nine years, highlighting the impressive achievements made over the last few years, and discussing some of the challenges ahead.
Collapse
|
14
|
Murphy SC, Vaughan AM, Kublin JG, Fishbauger M, Seilie AM, Cruz KP, Mankowski T, Firat M, Magee S, Betz W, Kain H, Camargo N, Haile MT, Armstrong J, Fritzen E, Hertoghs N, Kumar S, Sather DN, Pinder LF, Deye GA, Galbiati S, Geber C, Butts J, Jackson LA, Kappe SH. A genetically engineered Plasmodium falciparum parasite vaccine provides protection from controlled human malaria infection. Sci Transl Med 2022; 14:eabn9709. [PMID: 36001680 PMCID: PMC10423335 DOI: 10.1126/scitranslmed.abn9709] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Genetically engineered live Plasmodium falciparum sporozoites constitute a potential platform for creating consistently attenuated, genetically defined, whole-parasite vaccines against malaria through targeted gene deletions. Such genetically attenuated parasites (GAPs) do not require attenuation by irradiation or concomitant drug treatment. We previously developed a P. falciparum (Pf) GAP with deletions in P52, P36, and SAP1 genes (PfGAP3KO) and demonstrated its safety and immunogenicity in humans. Here, we further assessed safety, tolerability, and immunogenicity of the PfGAP3KO vaccine and tested its efficacy against controlled human malaria infection (CHMI) in malaria-naïve subjects. The vaccine was delivered by three (n = 6) or five (n = 8) immunizations with ~200 PfGAP3KO-infected mosquito bites per immunization. PfGAP3KO was safe and well tolerated with no breakthrough P. falciparum blood stage infections. Vaccine-related adverse events were predominately localized urticaria related to the numerous mosquito bites administered per vaccination. CHMI via bites with mosquitoes carrying fully infectious Pf NF54 parasites was carried out 1 month after the last immunization. Half of the study participants who received either three or five PfGAP3KO immunizations remained P. falciparum blood stage negative, as shown by a lack of detection of Plasmodium 18S rRNA in the blood for 28 days after CHMI. Six protected study participants received a second CHMI 6 months later, and one remained completely protected. Thus, the PfGAP3KO vaccine was safe and immunogenic and was capable of inducing protection against sporozoite infection. These results warrant further evaluation of PfGAP3KO vaccine efficacy in dose-range finding trials with an injectable formulation.
Collapse
Affiliation(s)
- Sean C. Murphy
- Department of Laboratory Medicine and Pathology and Center for Emerging and Re-emerging Infectious Diseases, University of Washington; Seattle, WA 98109
- Department of Microbiology, University of Washington; Seattle, WA 98109
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
- Department of Pediatrics, University of Washington; Seattle, WA 98105
| | - James G. Kublin
- Department of Global Health, University of Washington; Seattle, WA 98195
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center; Seattle, WA 98109
| | - Matthew Fishbauger
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Annette M. Seilie
- Department of Laboratory Medicine and Pathology and Center for Emerging and Re-emerging Infectious Diseases, University of Washington; Seattle, WA 98109
| | - Kurtis P. Cruz
- Department of Laboratory Medicine and Pathology and Center for Emerging and Re-emerging Infectious Diseases, University of Washington; Seattle, WA 98109
| | - Tracie Mankowski
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Melike Firat
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Sara Magee
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Will Betz
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Heather Kain
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Meseret T. Haile
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Janna Armstrong
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Emma Fritzen
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Nina Hertoghs
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - D. Noah Sather
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Leeya F. Pinder
- Department of Obstetrics and Gynecology, University of Washington; Seattle, WA 98195
| | - Gregory A. Deye
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD, United States
| | | | - Casey Geber
- The Emmes Company; Rockville, MD, United States
| | | | - Lisa A. Jackson
- Kaiser Permanente Washington Health Research Institute; Seattle, WA
| | - Stefan H.I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
- Department of Global Health, University of Washington; Seattle, WA 98195
- Department of Pediatrics, University of Washington; Seattle, WA 98105
| |
Collapse
|
15
|
An In Silico Analysis of Malaria Pre-Erythrocytic-Stage Antigens Interpreting Worldwide Genetic Data to Suggest Vaccine Candidate Variants and Epitopes. Microorganisms 2022; 10:microorganisms10061090. [PMID: 35744609 PMCID: PMC9231253 DOI: 10.3390/microorganisms10061090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023] Open
Abstract
Failure to account for genetic diversity of antigens during vaccine design may lead to vaccine escape. To evaluate the vaccine escape potential of antigens used in vaccines currently in development or clinical testing, we surveyed the genetic diversity, measured population differentiation, and performed in silico prediction and analysis of T-cell epitopes of ten such Plasmodium falciparum pre-erythrocytic-stage antigens using whole-genome sequence data from 1010 field isolates. Of these, 699 were collected in Africa (Burkina Faso, Cameroon, Guinea, Kenya, Malawi, Mali, and Tanzania), 69 in South America (Brazil, Colombia, French Guiana, and Peru), 59 in Oceania (Papua New Guinea), and 183 in Asia (Cambodia, Myanmar, and Thailand). Antigens surveyed include cell-traversal protein for ookinetes and sporozoites, circumsporozoite protein, liver-stage antigens 1 and 3, sporozoite surface proteins P36 and P52, sporozoite asparagine-rich protein-1, sporozoite microneme protein essential for cell traversal-2, and upregulated-in-infectious-sporozoite 3 and 4 proteins. The analyses showed that a limited number of these protein variants, when combined, would be representative of worldwide parasite populations. Moreover, predicted T-cell epitopes were identified that could be further explored for immunogenicity and protective efficacy. Findings can inform the rational design of a multivalent malaria vaccine.
Collapse
|
16
|
Goswami D, Kumar S, Betz W, Armstrong JM, Haile MT, Camargo N, Parthiban C, Seilie AM, Murphy SC, Vaughan AM, Kappe SH. A Plasmodium falciparum ATP binding cassette transporter is essential for liver stage entry into schizogony. iScience 2022; 25:104224. [PMID: 35521513 PMCID: PMC9061783 DOI: 10.1016/j.isci.2022.104224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/01/2022] [Accepted: 04/06/2022] [Indexed: 11/27/2022] Open
Abstract
Plasmodium sporozoites invade hepatocytes and transform into liver stages within a parasitophorous vacuole (PV). The parasites then grow and replicate their genome to form exoerythrocytic merozoites that infect red blood cells. We report that the human malaria parasite Plasmodium falciparum (Pf) expresses a C-type ATP-binding cassette transporter, Pf ABCC2, which marks the transition from invasive sporozoite to intrahepatocytic early liver stage. Using a humanized mouse infection model, we show that Pf ABCC2 localizes to the parasite plasma membrane in early and mid-liver stage parasites but is not detectable in late liver stages. Pf abcc2— sporozoites invade hepatocytes, form a PV, and transform into liver stage trophozoites but cannot transition to exoerythrocytic schizogony and fail to transition to blood stage infection. Thus, Pf ABCC2 is an expression marker for early phases of parasite liver infection and plays an essential role in the successful initiation of liver stage replication. Pf ABCC2 expression marks the transition from sporozoite to early liver stage Pf ABCC2 localizes to the early and mid-liver stage plasma membrane Pf ABCC2 is critical for initiation of exoerythrocytic schizogony Pf abcc2– liver stages fail to transition to blood stage infection
Collapse
|
17
|
van der Boor SC, van Gemert GJ, Hanssen AEJ, van Waardenburg YM, McCall MBB, Bousema T, de Wilt JHW, Sauerwein RW, Yang ASP. Mid-Liver Stage Arrest of Plasmodium falciparum Schizonts in Primary Porcine Hepatocytes. Front Cell Infect Microbiol 2022; 12:834850. [PMID: 35252038 PMCID: PMC8892583 DOI: 10.3389/fcimb.2022.834850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
During co-evolution Plasmodium parasites and vertebrates went through a process of selection resulting in defined and preferred parasite-host combinations. As such, Plasmodium falciparum (Pf) sporozoites can infect human hepatocytes while seemingly incompatible with host cellular machinery of other species. The compatibility between parasite invasion ligands and their respective human hepatocyte receptors plays a key role in Pf host selectivity. However, it is unclear whether the ability of Pf sporozoites to mature in cross-species infection also plays a role in host tropism. Here we used fresh hepatocytes isolated from porcine livers to study permissiveness to Pf sporozoite invasion and development. We monitored intra-hepatic development via immunofluorescence using anti-HSP70, MSP1, EXP1, and EXP2 antibodies. Our data shows that Pf sporozoites can invade non-human hepatocytes and undergo partial maturation with a significant decrease in schizont numbers between day three and day five. A possible explanation is that Pf sporozoites fail to form a parasitophorous vacuolar membrane (PVM) during invasion. Indeed, the observed aberrant EXP1 and EXP2 staining supports the presence of an atypical PVM. Functions of the PVM include the transport of nutrients, export of waste, and offering a protective barrier against intracellular host effectors. Therefore, an atypical PVM likely results in deficiencies that may detrimentally impact parasite development at multiple levels. In summary, despite successful invasion of porcine hepatocytes, Pf development arrests at mid-stage, possibly due to an inability to mobilize critical nutrients across the PVM. These findings underscore the potential of a porcine liver model for understanding the importance of host factors required for Pf mid-liver stage development.
Collapse
Affiliation(s)
- Saskia C. van der Boor
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Geert-Jan van Gemert
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alex E. J. Hanssen
- Animal Research Facility, Radboud University Medical Center, Nijmegen, Netherlands
| | - Youri M. van Waardenburg
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Matthew B. B. McCall
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Teun Bousema
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Robert W. Sauerwein
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
- TropIQ Health Sciences, Nijmegen, Netherlands
| | - Annie S. P. Yang
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
18
|
Live attenuated vaccines, a favorable strategy to provide long-term immunity against protozoan diseases. Trends Parasitol 2021; 38:316-334. [PMID: 34896016 DOI: 10.1016/j.pt.2021.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/25/2022]
Abstract
The control of diseases caused by protozoan parasites is one of the United Nations' Sustainable Development Goals. In recent years much research effort has gone into developing a new generation of live attenuated vaccines (LAVs) against malaria, Chagas disease and leishmaniasis. However, there is a bottleneck related to their biosafety, production, and distribution that slows downs further development. The success of irradiated or genetically attenuated sporozoites against malaria, added to the first LAV against leishmaniasis to be evaluated in clinical trials, is indicative that the drawbacks of LAVs are gradually being overcome. However, whether persistence of LAVs is a prerequisite for sustained long-term immunity remains to be clarified, and the procedures necessary for clinical evaluation of vaccine candidates need to be standardized.
Collapse
|
19
|
Kolli SK, Salman AM, Ramesar J, Chevalley-Maurel S, Kroeze H, Geurten FGA, Miyazaki S, Mukhopadhyay E, Marin-Mogollon C, Franke-Fayard B, Hill AVS, Janse CJ. Screening of viral-vectored P. falciparum pre-erythrocytic candidate vaccine antigens using chimeric rodent parasites. PLoS One 2021; 16:e0254498. [PMID: 34252120 PMCID: PMC8274855 DOI: 10.1371/journal.pone.0254498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 11/19/2022] Open
Abstract
To screen for additional vaccine candidate antigens of Plasmodium pre-erythrocytic stages, fourteen P. falciparum proteins were selected based on expression in sporozoites or their role in establishment of hepatocyte infection. For preclinical evaluation of immunogenicity of these proteins in mice, chimeric P. berghei sporozoites were created that express the P. falciparum proteins in sporozoites as an additional copy gene under control of the uis4 gene promoter. All fourteen chimeric parasites produced sporozoites but sporozoites of eight lines failed to establish a liver infection, indicating a negative impact of these P. falciparum proteins on sporozoite infectivity. Immunogenicity of the other six proteins (SPELD, ETRAMP10.3, SIAP2, SPATR, HT, RPL3) was analyzed by immunization of inbred BALB/c and outbred CD-1 mice with viral-vectored (ChAd63 or ChAdOx1, MVA) vaccines, followed by challenge with chimeric sporozoites. Protective immunogenicity was determined by analyzing parasite liver load and prepatent period of blood stage infection after challenge. Of the six proteins only SPELD immunized mice showed partial protection. We discuss both the low protective immunogenicity of these proteins in the chimeric rodent malaria challenge model and the negative effect on P. berghei sporozoite infectivity of several P. falciparum proteins expressed in the chimeric sporozoites.
Collapse
Affiliation(s)
- Surendra Kumar Kolli
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Ahmed M. Salman
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Jai Ramesar
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Hans Kroeze
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Fiona G. A. Geurten
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Shinya Miyazaki
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Ekta Mukhopadhyay
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | - Adrian V. S. Hill
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Chris J. Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
20
|
Sylvester K, Maher SP, Posfai D, Tran MK, Crawford MC, Vantaux A, Witkowski B, Kyle DE, Derbyshire ER. Characterization of the Tubovesicular Network in Plasmodium vivax Liver Stage Hypnozoites and Schizonts. Front Cell Infect Microbiol 2021; 11:687019. [PMID: 34195101 PMCID: PMC8236947 DOI: 10.3389/fcimb.2021.687019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/24/2021] [Indexed: 12/04/2022] Open
Abstract
Plasmodium is a genus of apicomplexan parasites which replicate in the liver before causing malaria. Plasmodium vivax can also persist in the liver as dormant hypnozoites and cause clinical relapse upon activation, but the molecular mechanisms leading to activation have yet to be discovered. In this study, we use high-resolution microscopy to characterize temporal changes of the P. vivax liver stage tubovesicular network (TVN), a parasitophorous vacuole membrane (PVM)-derived network within the host cytosol. We observe extended membrane clusters, tubules, and TVN-derived vesicles present throughout P. vivax liver stage development. Additionally, we demonstrate an unexpected presence of the TVN in hypnozoites and observe some association of this network to host nuclei. We also reveal that the host water and solute channel aquaporin-3 (AQP3) associates with TVN-derived vesicles and extended membrane clusters. AQP3 has been previously shown to localize to the PVM of P. vivax hypnozoites and liver schizonts but has not yet been shown in association to the TVN. Our results highlight host-parasite interactions occur in both dormant and replicating liver stage P. vivax forms and implicate AQP3 function during this time. Together, these findings enhance our understanding of P. vivax liver stage biology through characterization of the TVN with an emphasis on the presence of this network in dormant hypnozoites.
Collapse
Affiliation(s)
- Kayla Sylvester
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Steven P Maher
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Dora Posfai
- Chemistry Department, Duke University, Durham, NC, United States
| | - Michael K Tran
- Chemistry Department, Duke University, Durham, NC, United States
| | | | - Amélie Vantaux
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh, Cambodia
| | - Benoît Witkowski
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh, Cambodia
| | - Dennis E Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Emily R Derbyshire
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States.,Chemistry Department, Duke University, Durham, NC, United States
| |
Collapse
|
21
|
Sena-dos-Santos C, Braga-da-Silva C, Marques D, Azevedo dos Santos Pinheiro J, Ribeiro-dos-Santos Â, Cavalcante GC. Unraveling Cell Death Pathways during Malaria Infection: What Do We Know So Far? Cells 2021; 10:479. [PMID: 33672278 PMCID: PMC7926694 DOI: 10.3390/cells10020479] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Abstract
Malaria is a parasitic disease (caused by different Plasmodium species) that affects millions of people worldwide. The lack of effective malaria drugs and a vaccine contributes to this disease, continuing to cause major public health and socioeconomic problems, especially in low-income countries. Cell death is implicated in malaria immune responses by eliminating infected cells, but it can also provoke an intense inflammatory response and lead to severe malaria outcomes. The study of the pathophysiological role of cell death in malaria in mammalians is key to understanding the parasite-host interactions and design prophylactic and therapeutic strategies for malaria. In this work, we review malaria-triggered cell death pathways (apoptosis, autophagy, necrosis, pyroptosis, NETosis, and ferroptosis) and we discuss their potential role in the development of new approaches for human malaria therapies.
Collapse
Affiliation(s)
- Camille Sena-dos-Santos
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
| | - Cíntia Braga-da-Silva
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
| | - Diego Marques
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
| | - Jhully Azevedo dos Santos Pinheiro
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
| | - Ândrea Ribeiro-dos-Santos
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
- Programa de Pós-Graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66.075-110, Brazil
| | - Giovanna C. Cavalcante
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
| |
Collapse
|
22
|
Attenuation Methods for Live Vaccines. Methods Mol Biol 2020. [PMID: 32959252 DOI: 10.1007/978-1-0716-0795-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Vaccination was developed by Edward Jenner in 1796. Since then, vaccination and vaccine development research has been a hotspot of research in the scientific community. Various ways of vaccine development are successfully employed in mass production of vaccines. One of the most successful ways to generate vaccines is the method of virulence attenuation in pathogens. The attenuated strains of viruses, bacteria, and parasites are used as vaccines which elicit robust immune response and confers protection against virulent pathogens. This chapter brings together the most common and efficient ways of generating live attenuated vaccine strains in viruses, bacteria, and parasites.
Collapse
|
23
|
Briquet S, Lawson-Hogban N, Peronet R, Mécheri S, Vaquero C. A genetically hmgb2 attenuated blood stage P. berghei induces crossed-long live protection. PLoS One 2020; 15:e0232183. [PMID: 32379764 PMCID: PMC7205229 DOI: 10.1371/journal.pone.0232183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/08/2020] [Indexed: 01/16/2023] Open
Abstract
Due to the lack of efficiency to control malaria elicited by sub-unit vaccine preparations, vaccination with live-attenuated Plasmodium parasite as reported 70 years ago with irradiated sporozoites regained recently a significant interest. The complex life cycle of the parasite and the different stages of development between mammal host and anopheles do not help to propose an easy vaccine strategy. In order to achieve a complete long-lasting protection against Plasmodium infection and disease, we considered a genetically attenuated blood stage parasite in the hmgb2 gene coding for the high-mobility-group-box 2 (HMGB2). This Plasmodium protein belongs to the HMGB family and hold as the mammal proteins, a double life since it acts first as a nuclear factor involved in chromatin remodelling and transcription regulation and second, when secreted as an active pro-inflammatory alarmin protein. Even though the number of reports on whole living attenuated blood stage parasites is limited when compared to attenuated sporozoites, the results reported with Plasmodium KO parasites are very encouraging. In this report, we present a novel strategy based on pre-immunization with Δhmgb2PbNK65 parasitized red blood cells that confer long-lasting protection in a murine experimental cerebral malaria model against two highly pathogenic homologous and heterologous parasites.
Collapse
Affiliation(s)
- Sylvie Briquet
- Sorbonne Université, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- INSERM, U1135, CIMI-Paris, Paris, France
- CNRS, ERL 8255, CIMI-Paris, Paris, France
| | - Nadou Lawson-Hogban
- Sorbonne Université, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- INSERM, U1135, CIMI-Paris, Paris, France
- CNRS, ERL 8255, CIMI-Paris, Paris, France
| | - Roger Peronet
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris, France
- Centre National de Recherche Scientifique ou CNRS, Unité de Recherche Associée 2581, Paris, France
| | - Salaheddine Mécheri
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris, France
- Centre National de Recherche Scientifique ou CNRS, Unité de Recherche Associée 2581, Paris, France
| | - Catherine Vaquero
- Sorbonne Université, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- INSERM, U1135, CIMI-Paris, Paris, France
- CNRS, ERL 8255, CIMI-Paris, Paris, France
- * E-mail:
| |
Collapse
|
24
|
Molina-Franky J, Cuy-Chaparro L, Camargo A, Reyes C, Gómez M, Salamanca DR, Patarroyo MA, Patarroyo ME. Plasmodium falciparum pre-erythrocytic stage vaccine development. Malar J 2020; 19:56. [PMID: 32013956 PMCID: PMC6998842 DOI: 10.1186/s12936-020-3141-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/25/2020] [Indexed: 12/13/2022] Open
Abstract
Worldwide strategies between 2010 and 2017 aimed at controlling malarial parasites (mainly Plasmodium falciparum) led to a reduction of just 18% regarding disease incidence rates. Many biologically-derived anti-malarial vaccine candidates have been developed to date; this has involved using many experimental animals, an immense amount of work and the investment of millions of dollars. This review provides an overview of the current state and the main results of clinical trials for sporozoite-targeting vaccines (i.e. the parasite stage infecting the liver) carried out by research groups in areas having variable malaria transmission rates. However, none has led to promising results regarding the effective control of the disease, thereby making it necessary to complement such efforts at finding/introducing new vaccine candidates by adopting a multi-epitope, multi-stage approach, based on minimal subunits of the main sporozoite proteins involved in the invasion of the liver.
Collapse
Affiliation(s)
- Jessica Molina-Franky
- Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia.,Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Laura Cuy-Chaparro
- Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia.,Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Anny Camargo
- Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia.,Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - César Reyes
- PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia.,Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia.,3D Structures Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Marcela Gómez
- Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia.,Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - David Ricardo Salamanca
- Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia.,Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia. .,Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia.
| | - Manuel Elkin Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia. .,Medical School, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
25
|
The parasitophorous vacuole of the blood-stage malaria parasite. Nat Rev Microbiol 2020; 18:379-391. [PMID: 31980807 DOI: 10.1038/s41579-019-0321-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2019] [Indexed: 12/31/2022]
Abstract
The pathology of malaria is caused by infection of red blood cells with unicellular Plasmodium parasites. During blood-stage development, the parasite replicates within a membrane-bound parasitophorous vacuole. A central nexus for host-parasite interactions, this unique parasite shelter functions in nutrient acquisition, subcompartmentalization and the export of virulence factors, making its functional molecules attractive targets for the development of novel intervention strategies to combat the devastating impact of malaria. In this Review, we explore the origin, development, molecular composition and functions of the parasitophorous vacuole of Plasmodium blood stages. We also discuss the relevance of the malaria parasite's intravacuolar lifestyle for successful erythrocyte infection and provide perspectives for future research directions in parasitophorous vacuole biology.
Collapse
|
26
|
Goh YS, McGuire D, Rénia L. Vaccination With Sporozoites: Models and Correlates of Protection. Front Immunol 2019; 10:1227. [PMID: 31231377 PMCID: PMC6560154 DOI: 10.3389/fimmu.2019.01227] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/14/2019] [Indexed: 12/14/2022] Open
Abstract
Despite continuous efforts, the century-old goal of eradicating malaria still remains. Multiple control interventions need to be in place simultaneously to achieve this goal. In addition to effective control measures, drug therapies and insecticides, vaccines are critical to reduce mortality and morbidity. Hence, there are numerous studies investigating various malaria vaccine candidates. Most of the malaria vaccine candidates are subunit vaccines. However, they have shown limited efficacy in Phase II and III studies. To date, only whole parasite formulations have been shown to induce sterile immunity in human. In this article, we review and discuss the recent developments in vaccination with sporozoites and the mechanisms of protection involved.
Collapse
Affiliation(s)
- Yun Shan Goh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Biopolis, Singapore, Singapore
| | - Daniel McGuire
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Biopolis, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Laurent Rénia
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Biopolis, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
27
|
Kurup SP, Anthony SM, Hancox LS, Vijay R, Pewe LL, Moioffer SJ, Sompallae R, Janse CJ, Khan SM, Harty JT. Monocyte-Derived CD11c + Cells Acquire Plasmodium from Hepatocytes to Prime CD8 T Cell Immunity to Liver-Stage Malaria. Cell Host Microbe 2019; 25:565-577.e6. [PMID: 30905437 DOI: 10.1016/j.chom.2019.02.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/04/2018] [Accepted: 02/07/2019] [Indexed: 01/16/2023]
Abstract
Plasmodium sporozoites inoculated by mosquitoes migrate to the liver and infect hepatocytes prior to release of merozoites that initiate symptomatic blood-stage malaria. Plasmodium parasites are thought to be restricted to hepatocytes throughout this obligate liver stage of development, and how liver-stage-expressed antigens prime productive CD8 T cell responses remains unknown. We found that a subset of liver-infiltrating monocyte-derived CD11c+ cells co-expressing F4/80, CD103, CD207, and CSF1R acquired parasites during the liver stage of malaria, but only after initial hepatocyte infection. These CD11c+ cells found in the infected liver and liver-draining lymph nodes exhibited transcriptionally and phenotypically enhanced antigen-presentation functions and primed protective CD8 T cell responses against Plasmodium liver-stage-restricted antigens. Our findings highlight a previously unrecognized aspect of Plasmodium biology and uncover the fundamental mechanism by which CD8 T cell responses are primed against liver-stage malaria antigens.
Collapse
Affiliation(s)
- Samarchith P Kurup
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Scott M Anthony
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Lisa S Hancox
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Rahul Vijay
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Lecia L Pewe
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Steven J Moioffer
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Ramakrishna Sompallae
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA; Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA 52242, USA
| | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center (LUMC), 2333ZA Leiden, the Netherlands
| | - Shahid M Khan
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center (LUMC), 2333ZA Leiden, the Netherlands
| | - John T Harty
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA; Department of Pathology, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
28
|
Siau A, Huang X, Loh HP, Zhang N, Meng W, Sze SK, Renia L, Preiser P. Immunomic Identification of Malaria Antigens Associated With Protection in Mice. Mol Cell Proteomics 2019; 18:837-853. [PMID: 30718293 DOI: 10.1074/mcp.ra118.000997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/22/2019] [Indexed: 11/06/2022] Open
Abstract
Efforts to develop vaccines against malaria represent a major research target. The observations that 1) sterile protection can be obtained when the host is exposed to live parasites and 2) the immunity against blood stage parasite is principally mediated by protective antibodies suggest that a protective vaccine is feasible. However, only a small number of proteins have been investigated so far and most of the Plasmodium proteome has yet to be explored. To date, only few immunodominant antigens have emerged for testing in clinical trials but no formulation has led to substantial protection in humans. The nature of parasite molecules associated with protection remains elusive. Here, immunomic screening of mice immune sera with different protection efficiencies against the whole parasite proteome allowed us to identify a large repertoire of antigens validated by screening a library expressing antigens. The calculation of weighted scores reflecting the likelihood of protection of each antigen using five predictive criteria derived from immunomic and proteomic data sets, highlighted a priority list of protective antigens. Altogether, the approach sheds light on conserved antigens across Plasmodium that are amenable to targeting by the host immune system upon merozoite invasion and blood stage development. Most of these antigens have preliminary protection data but have not been widely considered as candidate for vaccine trials, opening new perspectives that overcome the limited choice of immunodominant, poorly protective vaccines currently being the focus of malaria vaccine researches.
Collapse
Affiliation(s)
- Anthony Siau
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore;.
| | - Ximei Huang
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore;; From the ‡Nanyang Technological University, School of Biological Sciences, Singapore
| | - Han Ping Loh
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore;; From the ‡Nanyang Technological University, School of Biological Sciences, Singapore
| | - Neng Zhang
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore
| | - Wei Meng
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore
| | - Siu Kwan Sze
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore
| | - Laurent Renia
- §Singapore Immunology Network (SIgN), A*STAR, Biopolis, Singapore
| | - Peter Preiser
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore;.
| |
Collapse
|
29
|
Arredondo SA, Swearingen KE, Martinson T, Steel R, Dankwa DA, Harupa A, Camargo N, Betz W, Vigdorovich V, Oliver BG, Kangwanrangsan N, Ishino T, Sather N, Mikolajczak S, Vaughan AM, Torii M, Moritz RL, Kappe SHI. The Micronemal Plasmodium Proteins P36 and P52 Act in Concert to Establish the Replication-Permissive Compartment Within Infected Hepatocytes. Front Cell Infect Microbiol 2018; 8:413. [PMID: 30547015 PMCID: PMC6280682 DOI: 10.3389/fcimb.2018.00413] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022] Open
Abstract
Within the liver, Plasmodium sporozoites traverse cells searching for a "suitable" hepatocyte, invading these cells through a process that results in the formation of a parasitophorous vacuole (PV), within which the parasite undergoes intracellular replication as a liver stage. It was previously established that two members of the Plasmodium s48/45 protein family, P36 and P52, are essential for productive invasion of host hepatocytes by sporozoites as their simultaneous deletion results in growth-arrested parasites that lack a PV. Recent studies point toward a pathway of entry possibly involving the interaction of P36 with hepatocyte receptors EphA2, CD81, and SR-B1. However, the relationship between P36 and P52 during sporozoite invasion remains unknown. Here we show that parasites with a single P52 or P36 gene deletion each lack a PV after hepatocyte invasion, thereby pheno-copying the lack of a PV observed for the P52/P36 dual gene deletion parasite line. This indicates that both proteins are equally important in the establishment of a PV and act in the same pathway. We created a Plasmodium yoelii P36mCherry tagged parasite line that allowed us to visualize the subcellular localization of P36 and found that it partially co-localizes with P52 in the sporozoite secretory microneme organelles. Furthermore, through co-immunoprecipitation studies in vivo, we determined that P36 and P52 form a protein complex in sporozoites, indicating a concerted function for both proteins within the PV formation pathway. However, upon sporozoite stimulation, only P36 was released as a secreted protein while P52 was not. Our results support a model in which the putatively glycosylphosphatidylinositol (GPI)-anchored P52 may serve as a scaffold to facilitate the interaction of secreted P36 with the host cell during sporozoite invasion of hepatocytes.
Collapse
Affiliation(s)
- Silvia A. Arredondo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | | | - Thomas Martinson
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Ryan Steel
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Dorender A. Dankwa
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Anke Harupa
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - William Betz
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Vladimir Vigdorovich
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Brian G. Oliver
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Niwat Kangwanrangsan
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tomoko Ishino
- Department of Molecular Parasitology, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Japan
| | - Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Sebastian Mikolajczak
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Motomi Torii
- Department of Molecular Parasitology, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Japan
| | | | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| |
Collapse
|
30
|
Mendes AM, Machado M, Gonçalves-Rosa N, Reuling IJ, Foquet L, Marques C, Salman AM, Yang ASP, Moser KA, Dwivedi A, Hermsen CC, Jiménez-Díaz B, Viera S, Santos JM, Albuquerque I, Bhatia SN, Bial J, Angulo-Barturen I, Silva JC, Leroux-Roels G, Janse CJ, Khan SM, Mota MM, Sauerwein RW, Prudêncio M. A Plasmodium berghei sporozoite-based vaccination platform against human malaria. NPJ Vaccines 2018; 3:33. [PMID: 30155278 PMCID: PMC6109154 DOI: 10.1038/s41541-018-0068-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/21/2018] [Accepted: 05/31/2018] [Indexed: 12/15/2022] Open
Abstract
There is a pressing need for safe and highly effective Plasmodium falciparum (Pf) malaria vaccines. The circumsporozoite protein (CS), expressed on sporozoites and during early hepatic stages, is a leading target vaccine candidate, but clinical efficacy has been modest so far. Conversely, whole-sporozoite (WSp) vaccines have consistently shown high levels of sterilizing immunity and constitute a promising approach to effective immunization against malaria. Here, we describe a novel WSp malaria vaccine that employs transgenic sporozoites of rodent P. berghei (Pb) parasites as cross-species immunizing agents and as platforms for expression and delivery of PfCS (PbVac). We show that both wild-type Pb and PbVac sporozoites unabatedly infect and develop in human hepatocytes while unable to establish an infection in human red blood cells. In a rabbit model, similarly susceptible to Pb hepatic but not blood infection, we show that PbVac elicits cross-species cellular immune responses, as well as PfCS-specific antibodies that efficiently inhibit Pf sporozoite liver invasion in human hepatocytes and in mice with humanized livers. Thus, PbVac is safe and induces functional immune responses in preclinical studies, warranting clinical testing and development. A genetically engineered parasite, related to malaria-causing Plasmodium falciparum, excels as a vaccine in preclinical tests. A team led by Miguel Prudêncio, of the University of Lisbon, Portugal, developed a genetically altered vaccine candidate based on Plasmodium berghei, which is pathogenic to rodents but, in humans, fails to progress from a harmless, transient liver infection to causing full, blood-borne malaria. The candidate expresses a human form of ‘circumsporozoite protein,’ a known antigen, and is designed to provoke a more comprehensive immune response as it presents a whole pathogen to the host. In preclinical tests, the candidate generated antibodies able to neutralize infection in human hepatocytes and also provoked a cellular immune response in rabbits. The team’s candidate proved safe and efficacious, warranting further trials and clinical testing.
Collapse
Affiliation(s)
- António M Mendes
- 1Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Marta Machado
- 1Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Nataniel Gonçalves-Rosa
- 1Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Isaie J Reuling
- 2Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein 28, Microbiology 268, 6500 HB Nijmegen, The Netherlands
| | - Lander Foquet
- 3Center for Vaccinology, Ghent University and Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.,Departments of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Cláudia Marques
- 1Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Ahmed M Salman
- 5Leiden Malaria Research Group, Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.,6The Jenner Institute, Nuffield Department of Medicine, University of Oxford, ORCRB, Roosevelt Drive, Oxford, OX3 7DQ UK
| | - Annie S P Yang
- 2Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein 28, Microbiology 268, 6500 HB Nijmegen, The Netherlands
| | - Kara A Moser
- 7Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Ankit Dwivedi
- 7Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Cornelus C Hermsen
- 2Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein 28, Microbiology 268, 6500 HB Nijmegen, The Netherlands
| | - Belén Jiménez-Díaz
- 8Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa, 2, 28760 Tres Cantos, Madrid Spain
| | - Sara Viera
- 8Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa, 2, 28760 Tres Cantos, Madrid Spain
| | - Jorge M Santos
- 1Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal.,12Present Address: Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, 02115 Boston, MA USA
| | - Inês Albuquerque
- 1Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Sangeeta N Bhatia
- 9Health Sciences and Technology/Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - John Bial
- 10Yecuris Corporation, PO Box 4645, Tualatin, OR 97062 USA
| | - Iñigo Angulo-Barturen
- 8Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa, 2, 28760 Tres Cantos, Madrid Spain
| | - Joana C Silva
- 7Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA.,11Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Geert Leroux-Roels
- 3Center for Vaccinology, Ghent University and Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Chris J Janse
- 5Leiden Malaria Research Group, Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Shahid M Khan
- 5Leiden Malaria Research Group, Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Maria M Mota
- 1Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Robert W Sauerwein
- 2Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein 28, Microbiology 268, 6500 HB Nijmegen, The Netherlands
| | - Miguel Prudêncio
- 1Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
31
|
Langlois AC, Marinach C, Manzoni G, Silvie O. Plasmodium sporozoites can invade hepatocytic cells independently of the Ephrin receptor A2. PLoS One 2018; 13:e0200032. [PMID: 29975762 PMCID: PMC6033427 DOI: 10.1371/journal.pone.0200032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/18/2018] [Indexed: 12/20/2022] Open
Abstract
Sporozoite forms of the malaria parasite Plasmodium are transmitted by mosquitoes and first infect the liver for an initial round of replication before parasite proliferation in the blood. The molecular mechanisms involved during sporozoite invasion of hepatocytes remain poorly understood. In previous studies, two receptors of the Hepatitis C virus (HCV), the tetraspanin CD81 and the Scavenger Receptor BI (SR-BI), were shown to play an important role during entry of Plasmodium sporozoites into hepatocytic cells. In contrast to HCV entry, which requires both CD81 and SR-BI together with additional host factors, CD81 and SR-BI operate independently during malaria liver infection, as sporozoites can use CD81 and/or SR-BI, depending on the Plasmodium species, to invade hepatocytes. However, the molecular function of CD81 and SR-BI during parasite entry remains unknown. Another HCV entry factor, the Ephrin receptor A2 (EphA2), was recently reported to play a key role as a host cell entry factor during malaria liver infection. Here, we investigated the contribution of EphA2 during CD81-dependent and SR-BI-dependent sporozoite infection. Using small interfering RNA (siRNA) and antibodies against EphA2, combined with direct detection of parasites by flow cytometry or microscopy, we show that blocking EphA2 has no significant impact on P. yoelii or P. berghei host cell infection, irrespective of the entry route. Thus, our findings argue against an important role of EphA2 during malaria liver infection.
Collapse
Affiliation(s)
- Anne-Claire Langlois
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Carine Marinach
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Giulia Manzoni
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Olivier Silvie
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| |
Collapse
|
32
|
A Plasmodium Parasite with Complete Late Liver Stage Arrest Protects against Preerythrocytic and Erythrocytic Stage Infection in Mice. Infect Immun 2018; 86:IAI.00088-18. [PMID: 29440367 DOI: 10.1128/iai.00088-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 02/05/2018] [Indexed: 01/28/2023] Open
Abstract
Genetically attenuated malaria parasites (GAP) that arrest during liver stage development are powerful immunogens and afford complete and durable protection against sporozoite infection. Late liver stage-arresting GAP provide superior protection against sporozoite challenge in mice compared to early live stage-arresting attenuated parasites. However, very few late liver stage-arresting GAP have been generated to date. Therefore, identification of additional loci that are critical for late liver stage development and can be used to generate novel late liver stage-arresting GAPs is of importance. We further explored genetic attenuation in Plasmodium yoelii by combining two gene deletions, PlasMei2 and liver-specific protein 2 (LISP2), that each cause late liver stage arrest with various degrees of infrequent breakthrough to blood stage infection. The dual gene deletion resulted in a synthetic lethal phenotype that caused complete attenuation in a highly susceptible mouse strain. P. yoeliiplasmei2-lisp2- arrested late in liver stage development and did not persist in livers beyond 3 days after infection. Immunization with this GAP elicited robust protective antibody responses in outbred and inbred mice against sporozoites, liver stages, and blood stages as well as eliciting protective liver-resident T cells. The immunization afforded protection against both sporozoite challenge and blood stage challenge. These findings provide evidence that completely attenuated late liver stage-arresting GAP are achievable via the synthetic lethal approach and might enable a path forward for the creation of a completely attenuated late liver stage-arresting P. falciparum GAP.
Collapse
|
33
|
Zuck M, Austin LS, Danziger SA, Aitchison JD, Kaushansky A. The Promise of Systems Biology Approaches for Revealing Host Pathogen Interactions in Malaria. Front Microbiol 2017; 8:2183. [PMID: 29201016 PMCID: PMC5696578 DOI: 10.3389/fmicb.2017.02183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022] Open
Abstract
Despite global eradication efforts over the past century, malaria remains a devastating public health burden, causing almost half a million deaths annually (WHO, 2016). A detailed understanding of the mechanisms that control malaria infection has been hindered by technical challenges of studying a complex parasite life cycle in multiple hosts. While many interventions targeting the parasite have been implemented, the complex biology of Plasmodium poses a major challenge, and must be addressed to enable eradication. New approaches for elucidating key host-parasite interactions, and predicting how the parasite will respond in a variety of biological settings, could dramatically enhance the efficacy and longevity of intervention strategies. The field of systems biology has developed methodologies and principles that are well poised to meet these challenges. In this review, we focus our attention on the Liver Stage of the Plasmodium lifecycle and issue a “call to arms” for using systems biology approaches to forge a new era in malaria research. These approaches will reveal insights into the complex interplay between host and pathogen, and could ultimately lead to novel intervention strategies that contribute to malaria eradication.
Collapse
Affiliation(s)
- Meghan Zuck
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States
| | - Laura S Austin
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States
| | - Samuel A Danziger
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States.,Institute for Systems Biology, Seattle, WA, United States
| | - John D Aitchison
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States.,Institute for Systems Biology, Seattle, WA, United States
| | - Alexis Kaushansky
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
34
|
Haeberlein S, Chevalley-Maurel S, Ozir-Fazalalikhan A, Koppejan H, Winkel BMF, Ramesar J, Khan SM, Sauerwein RW, Roestenberg M, Janse CJ, Smits HH, Franke-Fayard B. Protective immunity differs between routes of administration of attenuated malaria parasites independent of parasite liver load. Sci Rep 2017; 7:10372. [PMID: 28871201 PMCID: PMC5583236 DOI: 10.1038/s41598-017-10480-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/10/2017] [Indexed: 12/27/2022] Open
Abstract
In humans and murine models of malaria, intradermal immunization (ID-I) with genetically attenuated sporozoites that arrest in liver induces lower protective immunity than intravenous immunization (IV-I). It is unclear whether this difference is caused by fewer sporozoites migrating into the liver or by suboptimal hepatic and injection site-dependent immune responses. We therefore developed a Plasmodium yoelii immunization/boost/challenge model to examine parasite liver loads as well as hepatic and lymph node immune responses in protected and unprotected ID-I and IV-I animals. Despite introducing the same numbers of genetically attenuated parasites in the liver, ID-I resulted in lower sterile protection (53-68%) than IV-I (93-95%). Unprotected mice developed less sporozoite-specific CD8+ and CD4+ effector T-cell responses than protected mice. After immunization, ID-I mice showed more interleukin-10-producing B and T cells in livers and skin-draining lymph nodes, but fewer hepatic CD8 memory T cells and CD8+ dendritic cells compared to IV-I mice. Our results indicate that the lower protection efficacy obtained by intradermal sporozoite administration is not linked to low hepatic parasite numbers as presumed before, but correlates with a shift towards regulatory immune responses. Overcoming these immune suppressive responses is important not only for live-attenuated malaria vaccines but also for other live vaccines administered in the skin.
Collapse
Affiliation(s)
- Simone Haeberlein
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.,Institute of Parasitology, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Séverine Chevalley-Maurel
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Arifa Ozir-Fazalalikhan
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Hester Koppejan
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Beatrice M F Winkel
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Jai Ramesar
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Shahid M Khan
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Geert-Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.,Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Blandine Franke-Fayard
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
35
|
Demarta-Gatsi C, Peronet R, Smith L, Thiberge S, Ménard R, Mécheri S. Immunological memory to blood-stage malaria infection is controlled by the histamine releasing factor (HRF) of the parasite. Sci Rep 2017; 7:9129. [PMID: 28831137 PMCID: PMC5567273 DOI: 10.1038/s41598-017-09684-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/28/2017] [Indexed: 02/07/2023] Open
Abstract
While most subunit malaria vaccines provide only limited efficacy, pre-erythrocytic and erythrocytic genetically attenuated parasites (GAP) have been shown to confer complete sterilizing immunity. We recently generated a Plasmodium berghei (PbNK65) parasite that lacks a secreted factor, the histamine releasing factor (HRF) (PbNK65 hrfΔ), and induces in infected mice a self-resolving blood stage infection accompanied by a long lasting immunity. Here, we explore the immunological mechanisms underlying the anti-parasite protective properties of the mutant PbNK65 hrfΔ and demonstrate that in addition to an up-regulation of IL-6 production, CD4+ but not CD8+ T effector lymphocytes are indispensable for the clearance of malaria infection. Maintenance of T cell-associated protection is associated with the reduction in CD4+PD-1+ and CD8+PD-1+ T cell numbers. A higher number of central and effector memory B cells in mutant-infected mice also plays a pivotal role in protection. Importantly, we also demonstrate that prior infection with WT parasites followed by a drug cure does not prevent the induction of PbNK65 hrfΔ-induced protection, suggesting that such protection in humans may be efficient even in individuals that have been infected and who repeatedly received antimalarial drugs.
Collapse
Affiliation(s)
- Claudia Demarta-Gatsi
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, F-75015, France.,CNRS ERL9195, Paris, F-75015, France.,INSERM U1201, Paris, F-75015, France
| | - Roger Peronet
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, F-75015, France.,CNRS ERL9195, Paris, F-75015, France.,INSERM U1201, Paris, F-75015, France
| | - Leanna Smith
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, F-75015, France.,CNRS ERL9195, Paris, F-75015, France.,INSERM U1201, Paris, F-75015, France
| | - Sabine Thiberge
- Institut Pasteur, Unité de Biologie et Génétique du Paludisme, F-75015, Paris, France
| | - Robert Ménard
- Institut Pasteur, Unité de Biologie et Génétique du Paludisme, F-75015, Paris, France
| | - Salaheddine Mécheri
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, F-75015, France. .,CNRS ERL9195, Paris, F-75015, France. .,INSERM U1201, Paris, F-75015, France.
| |
Collapse
|
36
|
Vaughan AM, Kappe SHI. Malaria Parasite Liver Infection and Exoerythrocytic Biology. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a025486. [PMID: 28242785 DOI: 10.1101/cshperspect.a025486] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In their infection cycle, malaria parasites undergo replication and population expansions within the vertebrate host and the mosquito vector. Host infection initiates with sporozoite invasion of hepatocytes, followed by a dramatic parasite amplification event during liver stage parasite growth and replication within hepatocytes. Each liver stage forms up to 90,000 exoerythrocytic merozoites, which are in turn capable of initiating a blood stage infection. Liver stages not only exploit host hepatocyte resources for nutritional needs but also endeavor to prevent hepatocyte cell death and detection by the host's immune system. Research over the past decade has identified numerous parasite factors that play a critical role during liver infection and has started to delineate a complex web of parasite-host interactions that sustain successful parasite colonization of the mammalian host. Targeting the parasites' obligatory infection of the liver as a gateway to the blood, with drugs and vaccines, constitutes the most effective strategy for malaria eradication, as it would prevent clinical disease and onward transmission of the parasite.
Collapse
Affiliation(s)
- Ashley M Vaughan
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington 98109
| | - Stefan H I Kappe
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington 98109.,Department of Global Health, University of Washington, Seattle, Washington 98195
| |
Collapse
|
37
|
Kreutzfeld O, Müller K, Matuschewski K. Engineering of Genetically Arrested Parasites (GAPs) For a Precision Malaria Vaccine. Front Cell Infect Microbiol 2017; 7:198. [PMID: 28620583 PMCID: PMC5450620 DOI: 10.3389/fcimb.2017.00198] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/04/2017] [Indexed: 01/08/2023] Open
Abstract
Continuous stage conversion and swift changes in the antigenic repertoire in response to acquired immunity are hallmarks of complex eukaryotic pathogens, including Plasmodium species, the causative agents of malaria. Efficient elimination of Plasmodium liver stages prior to blood infection is one of the most promising malaria vaccine strategies. Here, we describe different genetically arrested parasites (GAPs) that have been engineered in Plasmodium berghei, P. yoelii and P. falciparum and compare their vaccine potential. A better understanding of the immunological mechanisms of prime and boost by arrested sporozoites and experimental strategies to enhance vaccine efficacy by further engineering existing GAPs into a more immunogenic form hold promise for continuous improvements of GAP-based vaccines. A critical hurdle for vaccines that elicit long-lasting protection against malaria, such as GAPs, is safety and efficacy in vulnerable populations. Vaccine research should focus on solutions toward turning malaria into a vaccine-preventable disease, which would offer an exciting new path of malaria control.
Collapse
Affiliation(s)
- Oriana Kreutzfeld
- Department of Molecular Parasitology, Institute of Biology, Humboldt UniversityBerlin, Germany
| | - Katja Müller
- Department of Molecular Parasitology, Institute of Biology, Humboldt UniversityBerlin, Germany
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt UniversityBerlin, Germany
| |
Collapse
|
38
|
Manzoni G, Marinach C, Topçu S, Briquet S, Grand M, Tolle M, Gransagne M, Lescar J, Andolina C, Franetich JF, Zeisel MB, Huby T, Rubinstein E, Snounou G, Mazier D, Nosten F, Baumert TF, Silvie O. Plasmodium P36 determines host cell receptor usage during sporozoite invasion. eLife 2017; 6:e25903. [PMID: 28506360 PMCID: PMC5470872 DOI: 10.7554/elife.25903] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/10/2017] [Indexed: 12/28/2022] Open
Abstract
Plasmodium sporozoites, the mosquito-transmitted forms of the malaria parasite, first infect the liver for an initial round of replication before the emergence of pathogenic blood stages. Sporozoites represent attractive targets for antimalarial preventive strategies, yet the mechanisms of parasite entry into hepatocytes remain poorly understood. Here we show that the two main species causing malaria in humans, Plasmodium falciparum and Plasmodium vivax, rely on two distinct host cell surface proteins, CD81 and the Scavenger Receptor BI (SR-BI), respectively, to infect hepatocytes. By contrast, CD81 and SR-BI fulfil redundant functions during infection by the rodent parasite P. berghei. Genetic analysis of sporozoite factors reveals the 6-cysteine domain protein P36 as a major parasite determinant of host cell receptor usage. Our data provide molecular insights into the invasion pathways used by different malaria parasites to infect hepatocytes, and establish a functional link between a sporozoite putative ligand and host cell receptors.
Collapse
Affiliation(s)
- Giulia Manzoni
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Carine Marinach
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Selma Topçu
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Sylvie Briquet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Morgane Grand
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Matthieu Tolle
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Marion Gransagne
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Julien Lescar
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Chiara Andolina
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jean-François Franetich
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Mirjam B Zeisel
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Thierry Huby
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Institute of Cardiometabolism and Nutrition, UMR_S 1166, Paris, France
| | - Eric Rubinstein
- INSERM, U935, Villejuif, France
- Université Paris Sud, Institut André Lwoff, Villejuif, France
| | - Georges Snounou
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Dominique Mazier
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
- Assistance Publique Hôpitaux de Paris, Centre Hospitalo-Universitaire Pitié-Salpêtrière, Paris, France
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Thomas F Baumert
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hopitaux Universitaires de Strasbourg, Strasbourg, France
| | - Olivier Silvie
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| |
Collapse
|
39
|
Santos JM, Egarter S, Zuzarte-Luís V, Kumar H, Moreau CA, Kehrer J, Pinto A, da Costa M, Franke-Fayard B, Janse CJ, Frischknecht F, Mair GR. Malaria parasite LIMP protein regulates sporozoite gliding motility and infectivity in mosquito and mammalian hosts. eLife 2017; 6:e24109. [PMID: 28525314 PMCID: PMC5438254 DOI: 10.7554/elife.24109] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/29/2017] [Indexed: 12/11/2022] Open
Abstract
Gliding motility allows malaria parasites to migrate and invade tissues and cells in different hosts. It requires parasite surface proteins to provide attachment to host cells and extracellular matrices. Here, we identify the Plasmodium protein LIMP (the name refers to a gliding phenotype in the sporozoite arising from epitope tagging of the endogenous protein) as a key regulator for adhesion during gliding motility in the rodent malaria model P. berghei. Transcribed in gametocytes, LIMP is translated in the ookinete from maternal mRNA, and later in the sporozoite. The absence of LIMP reduces initial mosquito infection by 50%, impedes salivary gland invasion 10-fold, and causes a complete absence of liver invasion as mutants fail to attach to host cells. GFP tagging of LIMP caused a limping defect during movement with reduced speed and transient curvature changes of the parasite. LIMP is an essential motility and invasion factor necessary for malaria transmission.
Collapse
Affiliation(s)
- Jorge M Santos
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, Lisbon, Portugal
| | - Saskia Egarter
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Vanessa Zuzarte-Luís
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, Lisbon, Portugal
| | - Hirdesh Kumar
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Catherine A Moreau
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Jessica Kehrer
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Andreia Pinto
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, Lisbon, Portugal
| | - Mário da Costa
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, Lisbon, Portugal
| | - Blandine Franke-Fayard
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Friedrich Frischknecht
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Gunnar R Mair
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, Lisbon, Portugal
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| |
Collapse
|
40
|
A novel Pfs38 protein complex on the surface of Plasmodium falciparum blood-stage merozoites. Malar J 2017; 16:79. [PMID: 28202027 PMCID: PMC5312596 DOI: 10.1186/s12936-017-1716-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/28/2017] [Indexed: 11/10/2022] Open
Abstract
Background The Plasmodium genome encodes for a number of 6-Cys proteins that contain a module of six cysteine residues forming three intramolecular disulphide bonds. These proteins have been well characterized at transmission as well as hepatic stages of the parasite life cycle. In the present study, a large complex of 6-Cys proteins: Pfs41, Pfs38 and Pfs12 and three other merozoite surface proteins: Glutamate-rich protein (GLURP), SERA5 and MSP-1 were identified on the Plasmodium falciparum merozoite surface. Methods Recombinant 6-cys proteins i.e. Pfs38, Pfs12, Pfs41 as well as PfMSP-165 were expressed and purified using Escherichia coli expression system and antibodies were raised against each of these proteins. These antibodies were used to immunoprecipitate the native proteins and their associated partners from parasite lysate. ELISA, Far western, surface plasmon resonance and glycerol density gradient fractionation were carried out to confirm the respective interactions. Furthermore, erythrocyte binding assay with 6-cys proteins were undertaken to find out their possible role in host-parasite infection and seropositivity was assessed using Indian and Liberian sera. Results Immunoprecipitation of parasite-derived polypeptides, followed by LC–MS/MS analysis, identified a large Pfs38 complex comprising of 6-cys proteins: Pfs41, Pfs38, Pfs12 and other merozoite surface proteins: GLURP, SERA5 and MSP-1. The existence of such a complex was further corroborated by several protein–protein interaction tools, co-localization and co-sedimentation analysis. Pfs38 protein of Pfs38 complex binds to host red blood cells (RBCs) directly via glycophorin A as a receptor. Seroprevalence analysis showed that of the six antigens, prevalence varied from 40 to 99%, being generally highest for MSP-165 and GLURP proteins. Conclusions Together the data show the presence of a large Pfs38 protein-associated complex on the parasite surface which is involved in RBC binding. These results highlight the complex molecular interactions among the P. falciparum merozoite surface proteins and advocate the development of a multi-sub-unit malaria vaccine based on some of these protein complexes on merozoite surface. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1716-0) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
The s48/45 six-cysteine proteins: mediators of interaction throughout the Plasmodium life cycle. Int J Parasitol 2016; 47:409-423. [PMID: 27899328 DOI: 10.1016/j.ijpara.2016.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/01/2016] [Accepted: 10/05/2016] [Indexed: 01/05/2023]
Abstract
During their life cycle Plasmodium parasites rely upon an arsenal of proteins that establish key interactions with the host and vector, and between the parasite sexual stages, with the purpose of ensuring infection, reproduction and proliferation. Among these is a group of secreted or membrane-anchored proteins known as the six-cysteine (6-cys) family. This is a small but important family with only 14 members thus far identified, each stage-specifically expressed during the parasite life cycle. 6-cys proteins often localise at the parasite surface or interface with the host and vector, and are conserved in different Plasmodium species. The unifying feature of the family is the s48/45 domain, presumably involved in adhesion and structurally related to Ephrins, the ligands of Eph receptors. The most prominent s48/45 members are currently under functional investigation and are being pursued as vaccine candidates. In this review, we examine what is known about the 6-cys family, their structure and function, and discuss future research directions.
Collapse
|
42
|
Cao Y, Bansal GP, Merino K, Kumar N. Immunological Cross-Reactivity between Malaria Vaccine Target Antigen P48/45 in Plasmodium vivax and P. falciparum and Cross-Boosting of Immune Responses. PLoS One 2016; 11:e0158212. [PMID: 27438603 PMCID: PMC4954667 DOI: 10.1371/journal.pone.0158212] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 06/13/2016] [Indexed: 01/25/2023] Open
Abstract
In general, malaria immunity has been suggested to be species specific with very little, if any, known cross-reactivity between Plasmodium vivax and P. falciparum, both of which are responsible for >90% of human malaria, and co-endemic in many countries. It is therefore believed that species-specific immunity may be needed to target different species of Plasmodium. Pfs48/45 and Pvs48/45 are well established targets in the sexual stages of the malaria parasites, and are being pursued for the development of transmission blocking vaccines. Comparison of their sequences reveals 61% and 55% identity at the DNA and protein level, respectively raising the possibility that these two target antigens might share cross-reacting epitopes. Having succeeded in expressing recombinant Pfs48/45 and Pvs48/45 proteins, we hypothesized that these proteins will not only exhibit immunological cross–reactivity but also cross-boost immune responses. Mice were immunized with purified recombinant proteins using CFA, Montanide ISA-51 and alum as adjuvants, and the sera were analyzed by ELISA, Western blotting and indirect fixed and live IFA to address the hypothesis. Our studies revealed that Pvs48/45-immune sera showed strong cross-reactivity to full length Pfs48/45 protein, and the majority of this cross reactivity was in the amino-terminal and carboxyl-terminal sub-fragments of Pfs48/45. In cross-boosting experiments Pfs48/45 and Pvs48/45 antigens were able to cross-boost each other in mouse immunization studies. Additionally we also noticed an effect of adjuvants in the overall magnitude of observed cross-reactivity. These studies may have significant implications for immunity targeting transmission of both the species of malaria parasites.
Collapse
Affiliation(s)
- Yi Cao
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne Infectious Disease Research Center, Tulane University, New Orleans, Louisiana, 70112, United States of America
| | - Geetha P. Bansal
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne Infectious Disease Research Center, Tulane University, New Orleans, Louisiana, 70112, United States of America
| | - Kristen Merino
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne Infectious Disease Research Center, Tulane University, New Orleans, Louisiana, 70112, United States of America
| | - Nirbhay Kumar
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne Infectious Disease Research Center, Tulane University, New Orleans, Louisiana, 70112, United States of America
- * E-mail:
| |
Collapse
|
43
|
van der Velden M, Rijpma SR, Verweij V, van Gemert GJ, Chevalley-Maurel S, van de Vegte-Bolmer M, Franke-Fayard BM, Russel FGM, Janse CJ, Sauerwein RW, Koenderink JB. Protective Efficacy Induced by Genetically Attenuated Mid-to-Late Liver-Stage Arresting Plasmodium berghei Δmrp2 Parasites. Am J Trop Med Hyg 2016; 95:378-82. [PMID: 27296385 DOI: 10.4269/ajtmh.16-0226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/04/2016] [Indexed: 01/05/2023] Open
Abstract
Whole parasite immunization strategies employing genetically attenuated parasites (GAP), which arrest during liver-stage development, have been applied successfully for induction of sterile malaria protection in rodents. Recently, we generated a Plasmodium berghei GAP-lacking expression of multidrug resistance-associated protein (MRP2) (PbΔmrp2) that was capable of partial schizogony in hepatocytes but showed complete growth arrest. Here, we investigated the protective efficacy after intravenous (IV) immunization of BALB/c and C57BL/6J mice with PbΔmrp2 sporozoites. Low-dose immunization using 400 PbΔmrp2 sporozoites induced 100% sterile protection in BALB/c mice after IV challenge with 10,000 wild-type sporozoites. In addition, almost full protection (90%) was obtained after three immunizations with 10,000 sporozoites in C57BL/6J mice. Parasite liver loads in nonprotected PbΔmrp2-challenged C57BL/6J mice were reduced by 86% ± 5% on average compared with naive control mice. The mid-to-late arresting PbΔmrp2 GAP was equipotent in induction of protective immunity to the early arresting PbΔb9Δslarp GAP. The combined data support a clear basis for further exploration of Plasmodium falciparum parasites lacking mrp2 as a suitable GAP vaccine candidate.
Collapse
Affiliation(s)
- Maarten van der Velden
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sanna R Rijpma
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vivienne Verweij
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Séverine Chevalley-Maurel
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Blandine M Franke-Fayard
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan B Koenderink
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
44
|
Protective efficacy and safety of liver stage attenuated malaria parasites. Sci Rep 2016; 6:26824. [PMID: 27241521 PMCID: PMC4886212 DOI: 10.1038/srep26824] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/09/2016] [Indexed: 12/15/2022] Open
Abstract
During the clinically silent liver stage of a Plasmodium infection the parasite replicates from a single sporozoite into thousands of merozoites. Infection of humans and rodents with large numbers of sporozoites that arrest their development within the liver can cause sterile protection from subsequent infections. Disruption of genes essential for liver stage development of rodent malaria parasites has yielded a number of attenuated parasite strains. A key question to this end is how increased attenuation relates to vaccine efficacy. Here, we generated rodent malaria parasite lines that arrest during liver stage development and probed the impact of multiple gene deletions on attenuation and protective efficacy. In contrast to P. berghei strain ANKA LISP2(-) or uis3(-) single knockout parasites, which occasionally caused breakthrough infections, the double mutant lacking both genes was completely attenuated even when high numbers of sporozoites were administered. However, different vaccination protocols showed that LISP2(-) parasites protected better than uis3(-) and double mutants. Hence, deletion of several genes can yield increased safety but might come at the cost of protective efficacy.
Collapse
|
45
|
Mac-Daniel L, Buckwalter MR, Gueirard P, Ménard R. Myeloid Cell Isolation from Mouse Skin and Draining Lymph Node Following Intradermal Immunization with Live Attenuated Plasmodium Sporozoites. J Vis Exp 2016. [PMID: 27286053 DOI: 10.3791/53796] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Malaria infection begins when the sporozoite stage of Plasmodium is inoculated into the skin of a mammalian host through a mosquito bite. The highly motile parasite not only reaches the liver to invade hepatocytes and transform into erythrocyte-infective form. It also migrates into the skin and to the proximal lymph node draining the injection site, where it can be recognized and degraded by resident and/or recruited myeloid cells. Intravital imaging reported the early recruitment of brightly fluorescent Lys-GFP positive leukocytes in the skin and the interactions between sporozoites and CD11c(+) cells in the draining lymph node. We present here an efficient procedure to recover, identify and enumerate the myeloid cell subsets that are recruited to the mouse skin and draining lymph node following intradermal injection of immunizing doses of sporozoites in a murine model. Phenotypic characterization using multi-parametric flow cytometry provides a reliable assay to assess early dynamic cellular changes during inflammatory response to Plasmodium infection.
Collapse
Affiliation(s)
| | | | | | - Robert Ménard
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur;
| |
Collapse
|
46
|
Kakani P, Suman S, Gupta L, Kumar S. Ambivalent Outcomes of Cell Apoptosis: A Barrier or Blessing in Malaria Progression. Front Microbiol 2016; 7:302. [PMID: 27014225 PMCID: PMC4791532 DOI: 10.3389/fmicb.2016.00302] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 02/24/2016] [Indexed: 12/20/2022] Open
Abstract
The life cycle of Plasmodium in two evolutionary distant hosts, mosquito, and human, is a complex process. It is regulated at various stages of developments by a number of diverged mechanisms that ultimately determine the outcome of the disease. During the development processes, Plasmodium invades a variety of cells in two hosts. The invaded cells tend to undergo apoptosis and are subsequently removed from the system. This process also eliminates numerous parasites along with these apoptotic cells as a part of innate defense against the invaders. Plasmodium should escape the invaded cell before it undergoes apoptosis or it should manipulate host cell apoptosis for its survival. Interestingly, both these phenomena are evident in Plasmodium at different stages of development. In addition, the parasite also exhibits altruistic behavior and triggers its own killing for the selection of the best ‘fit’ progeny, removal of the ‘unfit’ parasites to conserve the nutrients and to support the host survival. Thus, the outcomes of cell apoptosis are ambivalent, favorable as well as unfavorable during malaria progression. Here we discuss that the manipulation of host cell apoptosis might be helpful in the regulation of Plasmodium development and will open new frontiers in the field of malaria research.
Collapse
Affiliation(s)
- Parik Kakani
- Molecular Parasitology and Vector Biology Lab, Department of Biological Sciences, Birla Institute of Technology and Science Pilani, India
| | - Sneha Suman
- Molecular Parasitology and Vector Biology Lab, Department of Biological Sciences, Birla Institute of Technology and Science Pilani, India
| | - Lalita Gupta
- Molecular Parasitology and Vector Biology Lab, Department of Biological Sciences, Birla Institute of Technology and Science Pilani, India
| | - Sanjeev Kumar
- Molecular Parasitology and Vector Biology Lab, Department of Biological Sciences, Birla Institute of Technology and Science Pilani, India
| |
Collapse
|
47
|
Kaushansky A, Douglass AN, Arang N, Vigdorovich V, Dambrauskas N, Kain HS, Austin LS, Sather DN, Kappe SHI. Malaria parasites target the hepatocyte receptor EphA2 for successful host infection. Science 2015; 350:1089-92. [PMID: 26612952 DOI: 10.1126/science.aad3318] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The invasion of a suitable host hepatocyte by mosquito-transmitted Plasmodium sporozoites is an essential early step in successful malaria parasite infection. Yet precisely how sporozoites target their host cell and facilitate productive infection remains largely unknown. We found that the hepatocyte EphA2 receptor was critical for establishing a permissive intracellular replication compartment, the parasitophorous vacuole. Sporozoites productively infected hepatocytes with high EphA2 expression, and the deletion of EphA2 protected mice from liver infection. Lack of host EphA2 phenocopied the lack of the sporozoite proteins P52 and P36. Our data suggest that P36 engages EphA2, which is likely to be a key step in establishing the permissive replication compartment.
Collapse
Affiliation(s)
- Alexis Kaushansky
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Avenue North, No. 500, Seattle, WA 98109, USA.
| | - Alyse N Douglass
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Avenue North, No. 500, Seattle, WA 98109, USA
| | - Nadia Arang
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Avenue North, No. 500, Seattle, WA 98109, USA
| | - Vladimir Vigdorovich
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Avenue North, No. 500, Seattle, WA 98109, USA
| | - Nicholas Dambrauskas
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Avenue North, No. 500, Seattle, WA 98109, USA
| | - Heather S Kain
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Avenue North, No. 500, Seattle, WA 98109, USA
| | - Laura S Austin
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Avenue North, No. 500, Seattle, WA 98109, USA. Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - D Noah Sather
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Avenue North, No. 500, Seattle, WA 98109, USA
| | - Stefan H I Kappe
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Avenue North, No. 500, Seattle, WA 98109, USA. Department of Global Health, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
48
|
Tailoring a Combination Preerythrocytic Malaria Vaccine. Infect Immun 2015; 84:622-34. [PMID: 26667840 PMCID: PMC4771343 DOI: 10.1128/iai.01063-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/27/2015] [Indexed: 12/20/2022] Open
Abstract
The leading malaria vaccine candidate, RTS,S, based on the Plasmodium falciparum circumsporozoite protein (CSP), will likely be the first publicly adopted malaria vaccine. However, this and other subunit vaccines, such as virus-vectored thrombospondin-related adhesive protein (TRAP), provide only intermediate to low levels of protection. In this study, the Plasmodium berghei homologues of antigens CSP and TRAP are combined. TRAP is delivered using adenovirus- and vaccinia virus-based vectors in a prime-boost regime. Initially, CSP is also delivered using these viral vectors; however, a reduction of anti-CSP antibodies is seen when combined with virus-vectored TRAP, and the combination is no more protective than either subunit vaccine alone. Using an adenovirus-CSP prime, protein-CSP boost regime, however, increases anti-CSP antibody titers by an order of magnitude, which is maintained when combined with virus-vectored TRAP. This combination regime using protein CSP provided 100% protection in C57BL/6 mice compared to no protection using virus-vectored TRAP alone and 40% protection using adenovirus-CSP prime and protein-CSP boost alone. This suggests that a combination of CSP and TRAP subunit vaccines could enhance protection against malaria.
Collapse
|
49
|
Singer M, Marshall J, Heiss K, Mair GR, Grimm D, Mueller AK, Frischknecht F. Zinc finger nuclease-based double-strand breaks attenuate malaria parasites and reveal rare microhomology-mediated end joining. Genome Biol 2015; 16:249. [PMID: 26573820 PMCID: PMC4647826 DOI: 10.1186/s13059-015-0811-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/22/2015] [Indexed: 02/06/2023] Open
Abstract
Background Genome editing of malaria parasites is key to the generation of live attenuated parasites used in experimental vaccination approaches. DNA repair in Plasmodium generally occurs only through homologous recombination. This has been used to generate transgenic parasites that lack one to three genes, leading to developmental arrest in the liver and allowing the host to launch a protective immune response. While effective in principle, this approach is not safe for use in humans as single surviving parasites can still cause disease. Here we use zinc-finger nucleases to generate attenuated parasite lines lacking an entire chromosome arm, by a timed induction of a double-strand break. Rare surviving parasites also allow the investigation of unconventional DNA repair mechanisms in a rodent malaria parasite. Results A single, zinc-finger nuclease-induced DNA double-strand break results in the generation of attenuated parasite lines that show varying degrees of developmental arrest, protection efficacy in an immunisation regime and safety, depending on the timing of zinc-finger nuclease expression within the life cycle. We also identify DNA repair by microhomology-mediated end joining with as little as four base pairs, resulting in surviving parasites and thus breakthrough infections. Conclusions Malaria parasites can repair DNA double-strand breaks with surprisingly small mini-homology domains located across the break point. Timely expression of zinc-finger nucleases could be used to generate a new generation of attenuated parasite lines lacking hundreds of genes. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0811-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mirko Singer
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| | - Jennifer Marshall
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Kirsten Heiss
- Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.,MalVa GmbH, Heidelberg, Germany
| | - Gunnar R Mair
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Dirk Grimm
- Virology, Center for Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Ann-Kristin Mueller
- Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.,German Center for Infectious Diseases, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| |
Collapse
|
50
|
Rijpma SR, van der Velden M, González-Pons M, Annoura T, van Schaijk BCL, van Gemert GJ, van den Heuvel JJMW, Ramesar J, Chevalley-Maurel S, Ploemen IH, Khan SM, Franetich JF, Mazier D, de Wilt JHW, Serrano AE, Russel FGM, Janse CJ, Sauerwein RW, Koenderink JB, Franke-Fayard BM. Multidrug ATP-binding cassette transporters are essential for hepatic development of Plasmodium sporozoites. Cell Microbiol 2015; 18:369-83. [PMID: 26332724 DOI: 10.1111/cmi.12517] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/11/2015] [Accepted: 08/24/2015] [Indexed: 12/23/2022]
Abstract
Multidrug resistance-associated proteins (MRPs) belong to the C-family of ATP-binding cassette (ABC) transport proteins and are known to transport a variety of physiologically important compounds and to be involved in the extrusion of pharmaceuticals. Rodent malaria parasites encode a single ABC transporter subfamily C protein, whereas human parasites encode two: MRP1 and MRP2. Although associated with drug resistance, their biological function and substrates remain unknown. To elucidate the role of MRP throughout the parasite life cycle, Plasmodium berghei and Plasmodium falciparum mutants lacking MRP expression were generated. P. berghei mutants lacking expression of the single MRP as well as P. falciparum mutants lacking MRP1, MRP2 or both proteins have similar blood stage growth kinetics and drug-sensitivity profiles as wild type parasites. We show that MRP1-deficient parasites readily invade primary human hepatocytes and develop into mature liver stages. In contrast, both P. falciparum MRP2-deficient parasites and P. berghei mutants lacking MRP protein expression abort in mid to late liver stage development, failing to produce mature liver stages. The combined P. berghei and P. falciparum data are the first demonstration of a critical role of an ABC transporter during Plasmodium liver stage development.
Collapse
Affiliation(s)
- Sanna R Rijpma
- Department of Pharmacology and Toxicology, Radboud University Medical Centre, Geert-Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Maarten van der Velden
- Department of Pharmacology and Toxicology, Radboud University Medical Centre, Geert-Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Maria González-Pons
- Department of Microbiology and Medical Zoology, University of Puerto Rico, School of Medicine, PR 00936-5067, San Juan, Puerto Rico, USA
| | - Takeshi Annoura
- Department of Tropical Medicine, The Jikei University School of Medicine, Post code 105-8461, Nishi-shinbashi 3-25-8, Minato-ku, Tokyo, Japan
| | - Ben C L van Schaijk
- Department of Medical Microbiology, Radboud University Medical Centre, Geert-Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud University Medical Centre, Geert-Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Jeroen J M W van den Heuvel
- Department of Pharmacology and Toxicology, Radboud University Medical Centre, Geert-Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Jai Ramesar
- Department of Parasitology, Center of Infectious Diseases, Leiden Malaria Research Group, Leiden, The Netherlands
| | - Severine Chevalley-Maurel
- Department of Parasitology, Center of Infectious Diseases, Leiden Malaria Research Group, Leiden, The Netherlands
| | - Ivo H Ploemen
- Department of Medical Microbiology, Radboud University Medical Centre, Geert-Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Shahid M Khan
- Department of Tropical Medicine, The Jikei University School of Medicine, Post code 105-8461, Nishi-shinbashi 3-25-8, Minato-ku, Tokyo, Japan
| | - Jean-Francois Franetich
- AP-HP, Groupe hospitalier Pitié-Salpêtrière, Service Parasitologie-Mycologie, 47-83 Boulevard de l'Hôpital, 75651, Paris, France
| | - Dominique Mazier
- AP-HP, Groupe hospitalier Pitié-Salpêtrière, Service Parasitologie-Mycologie, 47-83 Boulevard de l'Hôpital, 75651, Paris, France.,CIMI-Paris (UPMC UMRS CR7 - Inserm U1135 - CNRS ERL 8255), Paris, France
| | - Johannes H W de Wilt
- Department of Surgery, Radboud University Medical Centre, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Adelfa E Serrano
- Department of Microbiology and Medical Zoology, University of Puerto Rico, School of Medicine, PR 00936-5067, San Juan, Puerto Rico, USA
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud University Medical Centre, Geert-Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Chris J Janse
- Department of Parasitology, Center of Infectious Diseases, Leiden Malaria Research Group, Leiden, The Netherlands
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud University Medical Centre, Geert-Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Jan B Koenderink
- Department of Pharmacology and Toxicology, Radboud University Medical Centre, Geert-Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Blandine M Franke-Fayard
- Department of Parasitology, Center of Infectious Diseases, Leiden Malaria Research Group, Leiden, The Netherlands
| |
Collapse
|