1
|
Willis SA, Flannigan DJ. Influence of Photoemission Geometry on Timing and Efficiency in 4D Ultrafast Electron Microscopy. Chemphyschem 2025; 26:e202401032. [PMID: 39804845 DOI: 10.1002/cphc.202401032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/14/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Broader adoption of 4D ultrafast electron microscopy (UEM) for the study of chemical, materials, and quantum systems is being driven by development of new instruments as well as continuous improvement and characterization of existing technologies. Perhaps owing to the still-high barrier to entry, the full range of capabilities of laser-driven 4D UEM instruments has yet to be established, particularly when operated at extremely low beam currents (~fA). Accordingly, with an eye on beam stability, we have conducted particle tracing simulations of unconventional off-axis photoemission geometries in a UEM equipped with a thermionic-emission gun. Specifically, we have explored the impact of experimentally adjustable parameters on the time-of-flight (TOF), the collection efficiency (CE), and the temporal width of ultrashort photoelectron packets. The adjustable parameters include the Wehnelt aperture diameter (DW), the cathode set-back position (Ztip), and the position of the femtosecond laser on the Wehnelt aperture surface relative to the optic axis (Rphoto). Notable findings include significant sensitivity of TOF to DW and Ztip, as well as non-intuitive responses of CE and temporal width to varying Rphoto. As a means to improve accessibility, practical implications and recommendations are emphasized wherever possible.
Collapse
Affiliation(s)
- Simon A Willis
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN, 55455, USA
| | - David J Flannigan
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN, 55455, USA
| |
Collapse
|
2
|
Liu C, Ai F, Reisbick S, Zong A, Pofelski A, Han MG, Camino F, Jing C, Lomakin V, Zhu Y. Correlated spin-wave generation and domain-wall oscillation in a topologically textured magnetic film. NATURE MATERIALS 2025; 24:406-413. [PMID: 39870990 DOI: 10.1038/s41563-024-02085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/18/2024] [Indexed: 01/29/2025]
Abstract
Spin waves, or magnons, are essential for next-generation energy-efficient spintronics and magnonics. Yet, visualizing spin-wave dynamics at nanoscale and microwave frequencies remains a formidable challenge due to the lack of spin-sensitive, time-resolved microscopy. Here we report a breakthrough in imaging dipole-exchange spin waves in a ferromagnetic film owing to the development of laser-free ultrafast Lorentz electron microscopy, which is equipped with a microwave-mediated electron pulser for high spatiotemporal resolution. Using topological spin textures, we captured the emission, propagation, reflection and interference of spin waves from spin anti-vortices under radio-frequency excitations. Remarkably, we show that spin-wave generation is closely tied to the oscillatory motion of specific magnetic domain walls, providing the missing link between wave emission and wall dynamics near magnetic singularities. This work opens new possibilities in magnonics, offering a nanoscopic view of spin dynamics via transmission electron microscopy and enabling controlled excitation via radio-frequency fields for exploring non-equilibrium states in magnetic and multiferroic systems.
Collapse
Affiliation(s)
- Chuhang Liu
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
| | - Fangzhou Ai
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Spencer Reisbick
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA
| | - Alfred Zong
- Departments of Physics and Applied Physics, Stanford University, Stanford, CA, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Alexandre Pofelski
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA
| | - Myung-Geun Han
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA
| | - Fernando Camino
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA
| | | | - Vitaliy Lomakin
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Yimei Zhu
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA.
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
3
|
Mondal KP, Gaowei M, Echeverria E, Evans-Lutterodt K, Jordan-Sweet J, Juffmann T, Karkare S, Maxson J, van der Molen SJ, Pennington C, Saha P, Smedley J, Stam WG, Tromp RM. Pulsed laser deposition assisted epitaxial growth of cesium telluride photocathodes for high brightness electron sources. Sci Rep 2025; 15:3421. [PMID: 39870857 PMCID: PMC11772852 DOI: 10.1038/s41598-025-87602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/20/2025] [Indexed: 01/29/2025] Open
Abstract
The development of high-brightness electron sources is critical to state-of-the-art electron accelerator applications like X-ray free electron laser (XFEL) and ultra-fast electron microscopy. Cesium telluride is chosen as the electron source material for multiple cutting-edge XFEL facilities worldwide. This manuscript presents the first demonstration of the growth of highly crystalized and epitaxial cesium telluride thin films on 4H-SiC and graphene/4H-SiC substrates with ultrasmooth film surfaces. The ordering of the film was characterized by in situ reflection high energy electron diffraction and multiple X-ray diagnostics. The results of the quantum efficiency performance for epitaxial cesium telluride photocathodes are also reported.
Collapse
Affiliation(s)
| | - Mengjia Gaowei
- Brookhaven National Laboratory, Upton, NY, 11973-5000, USA.
| | - Elena Echeverria
- Cornell University Laboratory for Accelerator-Based Sciences and Education, Ithaca, NY, 14853, USA
| | | | - Jean Jordan-Sweet
- Brookhaven National Laboratory, Upton, NY, 11973-5000, USA
- IBM T. J. Watson Research Center, Yorktown Heights, NY, 10598, USA
| | - Thomas Juffmann
- Faculty of Physics, VCQ, University of Vienna, 1090, Vienna, Austria
- Max Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, 1030, Vienna, Austria
| | | | - Jared Maxson
- Cornell University Laboratory for Accelerator-Based Sciences and Education, Ithaca, NY, 14853, USA
| | - S J van der Molen
- Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, Leiden, The Netherlands
| | - Chad Pennington
- Cornell University Laboratory for Accelerator-Based Sciences and Education, Ithaca, NY, 14853, USA
| | - Pallavi Saha
- Brookhaven National Laboratory, Upton, NY, 11973-5000, USA
- Arizona State University, Tempe, AZ, 85287, USA
| | - John Smedley
- Brookhaven National Laboratory, Upton, NY, 11973-5000, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - W G Stam
- Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, Leiden, The Netherlands
| | - Rudolf M Tromp
- IBM T. J. Watson Research Center, Yorktown Heights, NY, 10598, USA
- Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, Leiden, The Netherlands
| |
Collapse
|
4
|
Nematulloev S, Nughays RO, Nematulloev S, Thomas S, Naphade DR, Anthopoulos T, Bakr OM, Alshareef HN, Mohammed OF. Nature of the carrier dynamics and contrast formation on the photoactive material surfaces: Insight from ultrafast imaging to DFT calculations. J Chem Phys 2024; 161:234702. [PMID: 39679511 DOI: 10.1063/5.0232253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024] Open
Abstract
Precise material design and surface engineering play a crucial role in enhancing the performance of optoelectronic devices. These efforts are undertaken to particularly control the optoelectronic properties and regulate charge carrier dynamics at the surface and interface. In this study, we used ultrafast scanning electron microscopy (USEM), which is a powerful and highly sensitive surface tool that provides unique information about the photoactive charge dynamics of material surfaces selectively and spontaneously in real time and space in high spatial and temporal resolution. Here, time-resolved images of CdTe (110), CdSe (100), GaAs (110), and other semiconductors revealed that the presence of oxide layers on the surface of materials leads to an increase in the work function (WF) and trap state densities upon optical excitation, leading to the formation of dark image contrast in USEM experiments. These findings were further supported by ab initio calculations, which confirmed the reliability of the observed changes in the excited surface WFs. Besides enhancing our understanding of surface charge dynamics, it also offers valuable insights into manipulating these properties. This study paves the way for precise control and the potential to design highly efficient light-harvesting devices.
Collapse
Affiliation(s)
- Sarvarkhodzha Nematulloev
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Razan O Nughays
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Saidkhodzha Nematulloev
- KAUST Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Simil Thomas
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Dipti R Naphade
- KAUST Solar Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Thomas Anthopoulos
- KAUST Solar Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osman M Bakr
- KAUST Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Husam N Alshareef
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Sharma R, Yang WCD. Perspective and prospects of in situ transmission/scanning transmission electron microscopy. Microscopy (Oxf) 2024; 73:79-100. [PMID: 38006307 DOI: 10.1093/jmicro/dfad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/01/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023] Open
Abstract
In situ transmission/scanning transmission electron microscopy (TEM/STEM) measurements have taken a central stage for establishing structure-chemistry-property relationship over the past couple of decades. The challenges for realizing 'a lab-in-gap', i.e. gap between the objective lens pole pieces, or 'a lab-on-chip', to be used to carry out experiments are being met through continuous instrumental developments. Commercially available TEM columns and sample holder, that have been modified for in situ experimentation, have contributed to uncover structural and chemical changes occurring in the sample when subjected to external stimulus such as temperature, pressure, radiation (photon, ions and electrons), environment (gas, liquid and magnetic or electrical field) or a combination thereof. Whereas atomic resolution images and spectroscopy data are being collected routinely using TEM/STEM, temporal resolution is limited to millisecond. On the other hand, better than femtosecond temporal resolution can be achieved using an ultrafast electron microscopy or dynamic TEM, but the spatial resolution is limited to sub-nanometers. In either case, in situ experiments generate large datasets that need to be transferred, stored and analyzed. The advent of artificial intelligence, especially machine learning platforms, is proving crucial to deal with this big data problem. Further developments are still needed in order to fully exploit our capability to understand, measure and control chemical and/or physical processes. We present the current state of instrumental and computational capabilities and discuss future possibilities.
Collapse
Affiliation(s)
- Renu Sharma
- Materials Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Wei-Chang David Yang
- Materials Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| |
Collapse
|
6
|
Sun X, Williams J, Sharma S, Kunjir S, Morris D, Zhao S, Ruan CY. Precision-controlled ultrafast electron microscope platforms. A case study: Multiple-order coherent phonon dynamics in 1T-TaSe 2 probed at 50 fs-10 fm scales. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:024305. [PMID: 38566810 PMCID: PMC10987196 DOI: 10.1063/4.0000242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
We report on the first detailed beam tests attesting the fundamental principle behind the development of high-current-efficiency ultrafast electron microscope systems where a radio frequency (RF) cavity is incorporated as a condenser lens in the beam delivery system. To allow for the experiment to be carried out with a sufficient resolution to probe the performance at the emittance floor, a new cascade loop RF controller system is developed to reduce the RF noise floor. Temporal resolution at 50 fs in full-width-at-half-maximum and detection sensitivity better than 1% are demonstrated on exfoliated 1T-TaSe2 system under a moderate repetition rate. To benchmark the performance, multi-terahertz edge-mode coherent phonon excitation is employed as the standard candle. The high temporal resolution and the significant visibility to very low dynamical contrast in diffraction signals via high-precision phase-space manipulation give strong support to the working principle for the new high-brightness femtosecond electron microscope systems.
Collapse
Affiliation(s)
- Xiaoyi Sun
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Joseph Williams
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Sachin Sharma
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Shriraj Kunjir
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824, USA
| | - Dan Morris
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824, USA
| | - Shen Zhao
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824, USA
| | - Chong-Yu Ruan
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
7
|
Khanyile BS, Numan N, Simo A, Nkosi M, Mtshali CB, Khumalo Z, Madiba IG, Mabakachaba B, Swart H, Coetsee-Hugo E, Duvenhage MM, Lee E, Henini M, Gibaud A, Chaker M, Rezaee P, Lethole N, Akbari M, Morad R, Maaza M. Towards Room Temperature Thermochromic Coatings with controllable NIR-IR modulation for solar heat management & smart windows applications. Sci Rep 2024; 14:2818. [PMID: 38307893 PMCID: PMC10837131 DOI: 10.1038/s41598-024-52021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/12/2024] [Indexed: 02/04/2024] Open
Abstract
Solar heat management & green air-conditioning are among the major technologies that could mitigate heat islands phenomenon while minimizing significantly the CO2 global foot-print within the building & automotive sectors. Chromogenic materials in general, and thermochromic smart coatings especially are promising candidates that consent a noteworthy dynamic solar radiation Infrared (NIR-IR) regulation and hence an efficient solar heat management especially with the expected increase of the global seasonal temperature. Within this contribution, two major challenging bottlenecks in vanadium oxide based smart coatings were addressed. It is validated for the first time that the NIR-IR modulation of the optical transmission (∆TTRANS = T(T〈TMIT) - T(T〉TMIT) of Vanadium oxide based smart coatings can be controlled & tuned. This upmost challenging bottle-neck controllability/tunability is confirmed via a genuine approach alongside to a simultaneous drastic reduction of the phase transition temperature TMIT from 68.8 °C to nearly room temperature. More precisely, a substantial thermochromism in multilayered V2O5/V/V2O5 stacks equivalent to that of standard pure VO2 thin films but with a far lower transition temperature, is reported. Such a multilayered V2O5/V/V2O5 thermochromic system exhibited a net control & tunability of the optical transmission modulation in the NIR-IR (∆TTRANS) via the nano-scaled thickness' control of the intermediate Vanadium layer. In addition, the control of ∆TTRANS is accompanied by a tremendous diminution of the thermochromic transition temperature from the elevated bulk value of 68.8 °C to the range of 27.5-37.5 ºC. The observed remarkable and reversible thermochromism in such multilayered nano-scaled system of V2O5/V/V2O5 is likely to be ascribed to a noteworthy interfacial diffusion, and an indirect doping by alkaline ions diffusing from the borosilicate substrate. It is hoped that the current findings would contribute in advancing thermochromic smart window technology and their applications for solar heat management in glass windows in general, skyscraper especially & in the automotive industry. If so, this would open a path to a sustainable green air-conditioning with zero-energy input.
Collapse
Affiliation(s)
- B S Khanyile
- MRD-Tandetron Accelerator & Nanosciences African Network, iThemba LABS-National Research Foundation, P O Box 722, Somerset West, 7129, Western Cape Province, South Africa.
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, 003, South Africa.
| | - N Numan
- MRD-Tandetron Accelerator & Nanosciences African Network, iThemba LABS-National Research Foundation, P O Box 722, Somerset West, 7129, Western Cape Province, South Africa
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, 003, South Africa
| | - A Simo
- MRD-Tandetron Accelerator & Nanosciences African Network, iThemba LABS-National Research Foundation, P O Box 722, Somerset West, 7129, Western Cape Province, South Africa
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, 003, South Africa
| | - M Nkosi
- MRD-Tandetron Accelerator & Nanosciences African Network, iThemba LABS-National Research Foundation, P O Box 722, Somerset West, 7129, Western Cape Province, South Africa
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, 003, South Africa
| | - C B Mtshali
- MRD-Tandetron Accelerator & Nanosciences African Network, iThemba LABS-National Research Foundation, P O Box 722, Somerset West, 7129, Western Cape Province, South Africa
| | - Z Khumalo
- MRD-Tandetron Accelerator & Nanosciences African Network, iThemba LABS-National Research Foundation, P O Box 722, Somerset West, 7129, Western Cape Province, South Africa
| | - I G Madiba
- MRD-Tandetron Accelerator & Nanosciences African Network, iThemba LABS-National Research Foundation, P O Box 722, Somerset West, 7129, Western Cape Province, South Africa
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, 003, South Africa
| | - B Mabakachaba
- MRD-Tandetron Accelerator & Nanosciences African Network, iThemba LABS-National Research Foundation, P O Box 722, Somerset West, 7129, Western Cape Province, South Africa
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, 003, South Africa
- Physics Department, University of the Western Cape, P.O. Box 1906, Bellville, 7535, South Africa
| | - H Swart
- Faculty of Natural and Agricultural Sciences, Physics Department, University of the Free State, P.O. Box 339, Bloemfontein, 9300, Republic of South Africa
| | - E Coetsee-Hugo
- Faculty of Natural and Agricultural Sciences, Physics Department, University of the Free State, P.O. Box 339, Bloemfontein, 9300, Republic of South Africa
| | - Mart-Mari Duvenhage
- Faculty of Natural and Agricultural Sciences, Physics Department, University of the Free State, P.O. Box 339, Bloemfontein, 9300, Republic of South Africa
| | - E Lee
- Faculty of Natural and Agricultural Sciences, Physics Department, University of the Free State, P.O. Box 339, Bloemfontein, 9300, Republic of South Africa
| | - M Henini
- School of Physics & Astronomy, Nottingham University, Nottingham, NG7 2RD7, UK
| | - A Gibaud
- IMMM, UMR 6283 CNRS, Bd O. Messiaen, University of Le Maine, 72085, Le Mans Cedex 09, France
| | - M Chaker
- INRS-Energie et Matériaux, 1650 Lionel-Boulet, Varennes, Québec, J3X 1S2, Canada
| | - P Rezaee
- MRD-Tandetron Accelerator & Nanosciences African Network, iThemba LABS-National Research Foundation, P O Box 722, Somerset West, 7129, Western Cape Province, South Africa
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, 003, South Africa
| | - N Lethole
- Department Physics, University of Fort Hare, Alice, Eastern Cape Province, South Africa
| | - M Akbari
- MRD-Tandetron Accelerator & Nanosciences African Network, iThemba LABS-National Research Foundation, P O Box 722, Somerset West, 7129, Western Cape Province, South Africa
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, 003, South Africa
| | - R Morad
- MRD-Tandetron Accelerator & Nanosciences African Network, iThemba LABS-National Research Foundation, P O Box 722, Somerset West, 7129, Western Cape Province, South Africa
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, 003, South Africa
| | - M Maaza
- MRD-Tandetron Accelerator & Nanosciences African Network, iThemba LABS-National Research Foundation, P O Box 722, Somerset West, 7129, Western Cape Province, South Africa.
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, 003, South Africa.
| |
Collapse
|
8
|
Roy Moulik S, Lai Y, Amini A, Soucy P, Beyerlein KR, Liang J. Spatial-temporal characterization of photoemission in a streak-mode dynamic transmission electron microscope. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:014303. [PMID: 38406321 PMCID: PMC10894042 DOI: 10.1063/4.0000219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/28/2024] [Indexed: 02/27/2024]
Abstract
A long-standing motivation driving high-speed electron microscopy development is to capture phase transformations and material dynamics in real time with high spatial and temporal resolution. Current dynamic transmission electron microscopes (DTEMs) are limited to nanosecond temporal resolution and the ability to capture only a few frames of a transient event. With the motivation to overcome these limitations, we present our progress in developing a streak-mode DTEM (SM-DTEM) and demonstrate the recovery of picosecond images with high frame sequence depth. We first demonstrate that a zero-dimensional (0D) SM-DTEM can provide temporal information on any local region of interest with a 0.37 μm diameter, a 20-GHz sampling rate, and 1200 data points in the recorded trace. We use this method to characterize the temporal profile of the photoemitted electron pulse, finding that it deviates from the incident ultraviolet laser pulse and contains an unexpected peak near its onset. Then, we demonstrate a two-dimensional (2D) SM-DTEM, which uses compressed-sensing-based tomographic imaging to recover a full spatiotemporal photoemission profile over a 1.85-μm-diameter field of view with nanoscale spatial resolution, 370-ps inter-frame interval, and 140-frame sequence depth in a 50-ns time window. Finally, a perspective is given on the instrumental modifications necessary to further develop this promising technique with the goal of decreasing the time to capture a 2D SM-DTEM dataset.
Collapse
Affiliation(s)
- Samik Roy Moulik
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X1P7, Canada
| | - Yingming Lai
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X1P7, Canada
| | - Aida Amini
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X1P7, Canada
| | - Patrick Soucy
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X1P7, Canada
| | - Kenneth R. Beyerlein
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X1P7, Canada
| | - Jinyang Liang
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X1P7, Canada
| |
Collapse
|
9
|
Zhou F, Liu H, Zajac M, Hwangbo K, Jiang Q, Chu JH, Xu X, Arslan I, Gage TE, Wen H. Ultrafast Nanoimaging of Spin-Mediated Shear Waves in an Acoustic Cavity. NANO LETTERS 2023; 23:10213-10220. [PMID: 37910440 DOI: 10.1021/acs.nanolett.3c02747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Strong spin-lattice coupling in van der Waals (vdW) magnets shows potential for innovative magneto-mechanical applications. Here, nanoscale and picosecond imaging by ultrafast electron microscopy reveal heterogeneous spin-mediated coherent acoustic phonon dynamics in a thin-film cavity of the vdW antiferromagnet FePS3. The harmonics of the interlayer shear acoustic modes are observed, in which the even and odd harmonics exhibit distinct nanoscopic dynamics. Corroborated by acoustic wave simulation, the role of defects in forming even harmonics is elucidated. Above the Néel temperature (TN), the interlayer shear acoustic harmonics are suppressed, while the in-plane traveling wave is predominantly excited. The dominant acoustic dynamics shifts from the out-of-plane shear to the in-plane traveling wave across TN, demonstrating that magnetic properties can influence phonon scattering pathways. The spatiotemporally resolved structural characterization provides valuable nanoscopic insights for interlayer-shear-mode-based acoustic cavities, opening up possibilities for magneto-mechanical applications of vdW magnets.
Collapse
Affiliation(s)
- Faran Zhou
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Haihua Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Marc Zajac
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Kyle Hwangbo
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Qianni Jiang
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Jiun-Haw Chu
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Xiaodong Xu
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Ilke Arslan
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Thomas E Gage
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Haidan Wen
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
10
|
Kempers ST, Borrelli S, Kieft ER, van Doorn HA, Mutsaers PHA, Luiten OJ. Photodiode-based time zero determination for ultrafast electron microscopy. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:064301. [PMID: 37941992 PMCID: PMC10629968 DOI: 10.1063/4.0000218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
Pump-probe experiments in ultrafast electron microscopy require temporal overlap between the pump and probe pulses. Accurate measurements of the time delay between them allows for the determination of the time zero, the moment in time where both pulses perfectly overlap. In this work, we present the use of a photodiode-based alignment method for these time zero measurements. The cheap and easy-to-use device consists of a photodiode in a sample holder and enables us to temporally align individual, single-electron pulses with femtosecond laser pulses. In a first device, a temporal resolution of 24 ps is obtained, limited by the photodiode design. Future work will utilize a smaller photodiode with a lower capacitance, which will increase the temporal resolution and add spatial resolution as well. This upgrade will bring the method toward the micrometer and picosecond spatiotemporal resolution.
Collapse
Affiliation(s)
- S. T. Kempers
- Eindhoven University of Technology, Coherence and Quantum Technology, 5600 MB Eindhoven, the Netherlands
| | - S. Borrelli
- Eindhoven University of Technology, Coherence and Quantum Technology, 5600 MB Eindhoven, the Netherlands
| | - E. R. Kieft
- Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GC Eindhoven, The Netherlands
| | - H. A. van Doorn
- Eindhoven University of Technology, Coherence and Quantum Technology, 5600 MB Eindhoven, the Netherlands
| | - P. H. A. Mutsaers
- Eindhoven University of Technology, Coherence and Quantum Technology, 5600 MB Eindhoven, the Netherlands
| | - O. J. Luiten
- Eindhoven University of Technology, Coherence and Quantum Technology, 5600 MB Eindhoven, the Netherlands
| |
Collapse
|
11
|
Holstad TS, Dresselhaus-Marais LE, Ræder TM, Kozioziemski B, van Driel T, Seaberg M, Folsom E, Eggert JH, Knudsen EB, Nielsen MM, Simons H, Haldrup K, Poulsen HF. Real-time imaging of acoustic waves in bulk materials with X-ray microscopy. Proc Natl Acad Sci U S A 2023; 120:e2307049120. [PMID: 37725646 PMCID: PMC10523471 DOI: 10.1073/pnas.2307049120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/07/2023] [Indexed: 09/21/2023] Open
Abstract
The dynamics of lattice vibrations govern many material processes, such as acoustic wave propagation, displacive phase transitions, and ballistic thermal transport. The maximum velocity of these processes and their effects is determined by the speed of sound, which therefore defines the temporal resolution (picoseconds) needed to resolve these phenomena on their characteristic length scales (nanometers). Here, we present an X-ray microscope capable of imaging acoustic waves with subpicosecond resolution within mm-sized crystals. We directly visualize the generation, propagation, branching, and energy dissipation of longitudinal and transverse acoustic waves in diamond, demonstrating how mechanical energy thermalizes from picosecond to microsecond timescales. Bulk characterization techniques capable of resolving this level of structural detail have previously been available on millisecond time scales-orders of magnitude too slow to capture these fundamental phenomena in solid-state physics and geoscience. As such, the reported results provide broad insights into the interaction of acoustic waves with the structure of materials, and the availability of ultrafast time-resolved dark-field X-ray microscopy opens a vista of new opportunities for 3D imaging of materials dynamics on their intrinsic submicrosecond time scales.
Collapse
Affiliation(s)
- Theodor S. Holstad
- Department of Physics, Technical University of Denmark, Kongens Lyngby2800, Denmark
| | - Leora E. Dresselhaus-Marais
- Department of Materials Science & Engineering, Stanford University, Stanford, CA94305
- SLAC National Accelerator Laboratory, Menlo Park, CA94025-7015
- Physics Division, Lawrence Livermore National Laboratory, Livermore, CA94550-9234
| | - Trygve Magnus Ræder
- Department of Physics, Technical University of Denmark, Kongens Lyngby2800, Denmark
| | - Bernard Kozioziemski
- Physics Division, Lawrence Livermore National Laboratory, Livermore, CA94550-9234
| | - Tim van Driel
- SLAC National Accelerator Laboratory, Menlo Park, CA94025-7015
| | - Matthew Seaberg
- SLAC National Accelerator Laboratory, Menlo Park, CA94025-7015
| | - Eric Folsom
- Physics Division, Lawrence Livermore National Laboratory, Livermore, CA94550-9234
| | - Jon H. Eggert
- Physics Division, Lawrence Livermore National Laboratory, Livermore, CA94550-9234
| | | | | | - Hugh Simons
- Department of Physics, Technical University of Denmark, Kongens Lyngby2800, Denmark
| | - Kristoffer Haldrup
- Department of Physics, Technical University of Denmark, Kongens Lyngby2800, Denmark
| | | |
Collapse
|
12
|
Reisbick SA, Zhu Y. Artifact Elimination in Ultrafast Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:435-436. [PMID: 37613579 DOI: 10.1093/micmic/ozad067.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Spencer A Reisbick
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Yimei Zhu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
| |
Collapse
|
13
|
Willis SA, Flannigan DJ. Stable Photoemission from the Wehnelt Aperture Surface in 4D Ultrafast Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1842-1844. [PMID: 37612902 DOI: 10.1093/micmic/ozad067.1103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Simon A Willis
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, United States
- Minnesota Institute of Ultrafast Science, University of Minnesota, Minneapolis, MN, United States
| | - David J Flannigan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, United States
- Minnesota Institute of Ultrafast Science, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
14
|
Reisbick SA, Pofelski A, Han MG, Liu C, Montgomery E, Jing C, Sawada H, Zhu Y. Characterization of transverse electron pulse trains using RF powered traveling wave metallic comb striplines. Ultramicroscopy 2023; 249:113733. [PMID: 37030159 DOI: 10.1016/j.ultramic.2023.113733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/20/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Advancements in ultrafast electron microscopy have allowed elucidation of spatially selective structural dynamics. However, as the spatial resolution and imaging capabilities have made progress, quantitative characterization of the electron pulse trains has not been reported at the same rate. In fact, inexperienced users have difficulty replicating the technique because only a few dedicated microscopes have been characterized thoroughly. Systems replacing laser driven photoexcitation with electrically driven deflectors especially suffer from a lack of quantified characterization because of the limited quantity. The primary advantages to electrically driven systems are broader frequency ranges, ease of use and simple synchronization to electrical pumping. Here, we characterize the technical parameters for electrically driven UEM including the shape, size and duration of the electron pulses using low and high frequency chopping methods. At high frequencies, pulses are generated by sweeping the electron beam across a chopping aperture. For low frequencies, the beam is continuously forced off the optic axis by a DC potential, then momentarily aligned by a countering pulse. Using both methods, we present examples that measure probe durations of 2 ns and 10 ps for the low and high frequency techniques, respectively. We also discuss how the implementation of a pulsed probe affects STEM imaging conditions by adjusting the first condenser lens.
Collapse
|
15
|
Flannigan DJ, VandenBussche EJ. Pulsed-beam transmission electron microscopy and radiation damage. Micron 2023; 172:103501. [PMID: 37390662 DOI: 10.1016/j.micron.2023.103501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
We review the use of pulsed electron-beams in transmission electron microscopes (TEMs) for the purpose of mitigating specimen damage. We begin by placing the importance of TEMs with respect to materials characterization into proper context, and we provide a brief overview of established methods for reducing or eliminating the deleterious effects of beam-induced damage. We then introduce the concept of pulsed-beam TEM, and we briefly describe the basic methods and instrument configurations used to create so-called temporally structured electron beams. Following a brief overview of the use of high-dose-rate pulsed-electron beams in cancer radiation therapy, we review historical speculations and more recent compelling but mostly anecdotal findings of a pulsed-beam TEM damage effect. This is followed by an in-depth technical review of recent works seeking to establish cause-and-effect relationships, to conclusively uncover the presence of an effect, and to explore the practicality of the approach. These studies, in particular, provide the most compelling evidence to date that using a pulsed electron beam in the TEM is indeed a viable way to mitigate damage. Throughout, we point out current gaps in understanding, and we conclude with a brief perspective of current needs and future directions.
Collapse
Affiliation(s)
- David J Flannigan
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455, USA; Minnesota Institute for Ultrafast Science, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Elisah J VandenBussche
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455, USA; Minnesota Institute for Ultrafast Science, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
16
|
Du DX, Simjanoska M, Fitzpatrick AWP. Four-dimensional microED of conformational dynamics in protein microcrystals on the femto-to-microsecond timescales. J Struct Biol 2023; 215:107941. [PMID: 36773734 DOI: 10.1016/j.jsb.2023.107941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
As structural determination of protein complexes approaches atomic resolution, there is an increasing focus on conformational dynamics. Here we conceptualize the combination of two techniques which have become established in recent years: microcrystal electron diffraction and ultrafast electron microscopy. We show that the extremely low dose of pulsed photoemission still enables microED due to the strength of the electron bunching from diffraction of the protein crystals. Indeed, ultrafast electron diffraction experiments on protein crystals have already been demonstrated to be effective in measuring intermolecular forces in protein microcrystals. We discuss difficulties that may arise in the acquisition and processing of data and the overall feasibility of the experiment, paying specific attention to dose and signal-to-noise ratio. In doing so, we outline a detailed workflow that may be effective in minimizing the dose on the specimen. A series of model systems that would be good candidates for initial experiments is provided.
Collapse
Affiliation(s)
- Daniel X Du
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Marija Simjanoska
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Anthony W P Fitzpatrick
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
17
|
Di Giulio V, García de Abajo FJ. Optical-cavity mode squeezing by free electrons. NANOPHOTONICS 2022; 11:4659-4670. [PMID: 36482983 PMCID: PMC9709710 DOI: 10.1515/nanoph-2022-0481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/24/2022] [Indexed: 06/17/2023]
Abstract
The generation of nonclassical light states bears a paramount importance in quantum optics and is largely relying on the interaction between intense laser pulses and nonlinear media. Recently, electron beams, such as those used in ultrafast electron microscopy to retrieve information from a specimen, have been proposed as a tool to manipulate both bright and dark confined optical excitations, inducing semiclassical states of light that range from coherent to thermal mixtures. Here, we show that the ponderomotive contribution to the electron-cavity interaction, which we argue to be significant for low-energy electrons subject to strongly confined near-fields, can actually create a more general set of optical states, including coherent and squeezed states. The postinteraction electron spectrum further reveals signatures of the nontrivial role played by A 2 terms in the light-matter coupling Hamiltonian, particularly when the cavity is previously excited by either chaotic or coherent illumination. Our work introduces a disruptive approach to the creation of nontrivial quantum cavity states for quantum information and optics applications, while it suggests unexplored possibilities for electron beam shaping.
Collapse
Affiliation(s)
- Valerio Di Giulio
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860Castelldefels, Barcelona, Spain
| | - F. Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860Castelldefels, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010,Barcelona, Spain
| |
Collapse
|
18
|
Picher M, Sinha SK, LaGrange T, Banhart F. Analytics at the nanometer and nanosecond scales by short electron pulses in an electron microscope. CHEMTEXTS 2022. [DOI: 10.1007/s40828-022-00169-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Curtis WA, Willis SA, Flannigan DJ. Single-photoelectron collection efficiency in 4D ultrafast electron microscopy. Phys Chem Chem Phys 2022; 24:14044-14054. [PMID: 35640169 DOI: 10.1039/d2cp01250b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In femtosecond (fs) 4D ultrafast electron microscopy (UEM), a tradeoff is made between photoelectrons per packet and time resolution. One consequence of this can be longer-than-desirable acquisition times for low-density packets, and particularly for low repetition rates when complete photothermal dissipation is required. Thus, gaining an understanding of photoelectron trajectories in the gun region is important for identifying factors that limit collection efficiency (CE; fraction of photoelectrons that enter the illumination system). Here, we continue our work on the systematic study of photoelectron trajectories in the gun region of a Thermo Fisher/FEI Tecnai Femto UEM, focusing specifically on CE in the single-electron regime. Using General Particle Tracer, calculated field maps, and the exact architecture of the Tecnai Femto UEM, we simulated the effects of fs laser parameters and key gun elements on CE. The results indicate CE strongly depends upon the laser spot size on the source, the (unbiased) Wehnelt aperture diameter, and the incident photon energy. The CE dispersion with laser spot size is found to be strongly dependent on aperture diameter, being nearly dispersionless for the largest apertures. A gun crossover is also observed, with the beam-waist position being dependent on the aperture diameter, further illustrating that the Wehnelt aperture acts as a simple, fixed electrostatic lens in UEM mode. This work provides further insights into the operational aspects of fs 4D UEM.
Collapse
Affiliation(s)
- Wyatt A Curtis
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455, USA. .,Minnesota Institute for Ultrafast Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Simon A Willis
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455, USA. .,Minnesota Institute for Ultrafast Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - David J Flannigan
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455, USA. .,Minnesota Institute for Ultrafast Science, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
20
|
Chen J, Flannigan DJ. A quantitative method for in situ pump-beam metrology in 4D ultrafast electron microscopy. Ultramicroscopy 2022; 234:113485. [PMID: 35151041 DOI: 10.1016/j.ultramic.2022.113485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/28/2022] [Accepted: 02/05/2022] [Indexed: 11/17/2022]
Abstract
We report a method for measuring spot size and focusing conditions of the femtosecond (fs) excitation laser in situ at the specimen location in 4D ultrafast electron microscopy (UEM). The method makes use of threshold laser ablation behaviors of thin amorphous carbon membranes. For Gaussian beam profiles and for ablation threshold fluence values, we analytically derive expressions describing the relationship between ablated hole size and the actual laser spot size. Using these expressions, we developed experimental procedures for characterizing the shape and spot size of the pump beam at the specimen. We demonstrate the viability of the approach for incident excitation wavelengths of 343 nm and 515 nm, thus illustrating the applicability of the method to a range of optical wavelengths without modification. Further, we show that by measuring ablated hole size as a function of focusing condition, a full metrological characterization of the Gaussian beam propagation properties can be performed. Finally, we find good agreement for spot sizes determined with this method and with those determined by extrapolation from measurements taken outside the microscope column. Overall, this method is a simple, cost-effective means for accurate and precise determination of key pump-beam parameters in situ at the specimen location in UEM experiments.
Collapse
Affiliation(s)
- Jialiang Chen
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455, United States
| | - David J Flannigan
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455, United States.
| |
Collapse
|
21
|
Parzyck CT, Galdi A, Nangoi JK, DeBenedetti WJI, Balajka J, Faeth BD, Paik H, Hu C, Arias TA, Hines MA, Schlom DG, Shen KM, Maxson JM. Single-Crystal Alkali Antimonide Photocathodes: High Efficiency in the Ultrathin Limit. PHYSICAL REVIEW LETTERS 2022; 128:114801. [PMID: 35363005 DOI: 10.1103/physrevlett.128.114801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The properties of photoemission electron sources determine the ultimate performance of a wide class of electron accelerators and photon detectors. To date, all high-efficiency visible-light photocathode materials are either polycrystalline or exhibit intrinsic surface disorder, both of which limit emitted electron beam brightness. In this Letter, we demonstrate the synthesis of epitaxial thin films of Cs_{3}Sb on 3C-SiC (001) using molecular-beam epitaxy. Films as thin as 4 nm have quantum efficiencies exceeding 2% at 532 nm. We also find that epitaxial films have an order of magnitude larger quantum efficiency at 650 nm than comparable polycrystalline films on Si. Additionally, these films permit angle-resolved photoemission spectroscopy measurements of the electronic structure, which are found to be in good agreement with theory. Epitaxial films open the door to dramatic brightness enhancements via increased efficiency near threshold, reduced surface disorder, and the possibility of engineering new photoemission functionality at the level of single atomic layers.
Collapse
Affiliation(s)
- C T Parzyck
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA
| | - A Galdi
- Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, New York 14853, USA
| | - J K Nangoi
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA
| | - W J I DeBenedetti
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - J Balajka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - B D Faeth
- Platform for the Accelerated Realization, Analysis, and Discovery of Interface Materials (PARADIM), Cornell University, Ithaca, New York 14853, USA
| | - H Paik
- Platform for the Accelerated Realization, Analysis, and Discovery of Interface Materials (PARADIM), Cornell University, Ithaca, New York 14853, USA
| | - C Hu
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA
| | - T A Arias
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA
| | - M A Hines
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - D G Schlom
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, USA
- Leibniz-Institut für Kristallzüchtung, Max-Born-Straße 2, 12489 Berlin, Germany
| | - K M Shen
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, USA
| | - J M Maxson
- Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
22
|
Fu X, Sun Z, Ji S, Liu F, Feng M, Yoo BK, Zhu Y. Nanoscale-Femtosecond Imaging of Evanescent Surface Plasmons on Silver Film by Photon-Induced Near-Field Electron Microscopy. NANO LETTERS 2022; 22:2009-2015. [PMID: 35226510 DOI: 10.1021/acs.nanolett.1c04774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface plasmons on silver nanostructures have a broad range of tunable resonance properties in visible and near-infrared regimes, which possess wide applications in nanophotonics and optoelectronics. Here we use a femtosecond laser to excite surface plasmons on a silver film and trace the subsequent transient dynamics via photon-induced near-field electron microscopy (PINEM). A polarization experiment of PINEM demonstrates a conspicuous polarization dependence of the transient surface plasmon field on the silver film; however, unlike silver nanowires and nanorods, there is no polarization dependence for the PINEM intensity. This compelling finding suggests a thin film platform can be more easily used to identify the temporal and spatial overlaps between the pump laser and probe electron pulses in 4D ultrafast electron microscopy (UEM). Our work illustrates the femtosecond excitation and transient behavior of the surface plasmons on silver film and paves a universal, simple way for identifying the time zero in 4D UEM.
Collapse
Affiliation(s)
- Xuewen Fu
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071, China
| | - Zepeng Sun
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071, China
| | - Shaozheng Ji
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071, China
| | - Fang Liu
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071, China
| | - Min Feng
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071, China
| | - Byung-Kuk Yoo
- Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Yimei Zhu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
23
|
Zhang M, Guo Z, Mi X, Li Z, Liu Y. Ultrafast Imaging of Molecular Dynamics Using Ultrafast Low-Frequency Lasers, X-ray Free Electron Lasers, and Electron Pulses. J Phys Chem Lett 2022; 13:1668-1680. [PMID: 35147438 DOI: 10.1021/acs.jpclett.1c03916] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The requirement of high space-time resolution and brightness is a great challenge for imaging atomic motion and making molecular movies. Important breakthroughs in ultrabright tabletop laser, X-ray, and electron sources have enabled the direct imaging of evolving molecular structures in chemical processes, and recent experimental advances in preparing ultrafast laser and electron pulses resulted in molecular imaging with femtosecond time resolution. This Perspective presents an overview of the versatile imaging methods of molecular dynamics. High-order harmonic generation imaging and photoelectron diffraction imaging are based on laser-induced ionization and rescattering processes. Coulomb explosion imaging retrieves molecular structural information by detecting the momentum vectors of fragmented ions. Diffraction imaging encodes molecular structural and electronic information in reciprocal space. We also present various applications of these ultrafast imaging methods in resolving laser-induced nuclear and electronic dynamics.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Zhengning Guo
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Xiaoyu Mi
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Zheng Li
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Yangtze Delta Institute of Optoelectronics, Peking University, Nantong 226010, China
| | - Yunquan Liu
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871, China
| |
Collapse
|
24
|
Kumar S, Kaur S, Seem K, Kumar S, Mohapatra T. Understanding 3D Genome Organization and Its Effect on Transcriptional Gene Regulation Under Environmental Stress in Plant: A Chromatin Perspective. Front Cell Dev Biol 2021; 9:774719. [PMID: 34957106 PMCID: PMC8692796 DOI: 10.3389/fcell.2021.774719] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/23/2021] [Indexed: 01/17/2023] Open
Abstract
The genome of a eukaryotic organism is comprised of a supra-molecular complex of chromatin fibers and intricately folded three-dimensional (3D) structures. Chromosomal interactions and topological changes in response to the developmental and/or environmental stimuli affect gene expression. Chromatin architecture plays important roles in DNA replication, gene expression, and genome integrity. Higher-order chromatin organizations like chromosome territories (CTs), A/B compartments, topologically associating domains (TADs), and chromatin loops vary among cells, tissues, and species depending on the developmental stage and/or environmental conditions (4D genomics). Every chromosome occupies a separate territory in the interphase nucleus and forms the top layer of hierarchical structure (CTs) in most of the eukaryotes. While the A and B compartments are associated with active (euchromatic) and inactive (heterochromatic) chromatin, respectively, having well-defined genomic/epigenomic features, TADs are the structural units of chromatin. Chromatin architecture like TADs as well as the local interactions between promoter and regulatory elements correlates with the chromatin activity, which alters during environmental stresses due to relocalization of the architectural proteins. Moreover, chromatin looping brings the gene and regulatory elements in close proximity for interactions. The intricate relationship between nucleotide sequence and chromatin architecture requires a more comprehensive understanding to unravel the genome organization and genetic plasticity. During the last decade, advances in chromatin conformation capture techniques for unravelling 3D genome organizations have improved our understanding of genome biology. However, the recent advances, such as Hi-C and ChIA-PET, have substantially increased the resolution, throughput as well our interest in analysing genome organizations. The present review provides an overview of the historical and contemporary perspectives of chromosome conformation capture technologies, their applications in functional genomics, and the constraints in predicting 3D genome organization. We also discuss the future perspectives of understanding high-order chromatin organizations in deciphering transcriptional regulation of gene expression under environmental stress (4D genomics). These might help design the climate-smart crop to meet the ever-growing demands of food, feed, and fodder.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Simardeep Kaur
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | |
Collapse
|
25
|
Curtis WA, Flannigan DJ. Toward Å-fs-meV resolution in electron microscopy: systematic simulation of the temporal spread of single-electron packets. Phys Chem Chem Phys 2021; 23:23544-23553. [PMID: 34648611 DOI: 10.1039/d1cp03518e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Though efforts to improve the temporal resolution of transmission electron microscopes (TEMs) have waxed and waned for decades, with relatively recent advances routinely reaching sub-picosecond scales, fundamental and practical challenges have hindered the advance of combined Å-fs-meV resolutions, particularly for core-loss spectroscopy and real-space imaging. This is due in no small part to the complexity of the approach required to access timescales upon which electrons, atoms, molecules, and materials first begin to respond and transform - attoseconds to picoseconds. Here we present part of a larger effort devoted to systematically mapping the instrument parameter space of a TEM modified to reach ultrafast timescales. With General Particle Tracer, we studied the statistical temporal distributions of single-electron packets as a function of various fs pulsed-laser parameters and electron-gun configurations and fields for the exact architecture and dimensions of a Thermo Fisher Tecnai Femto ultrafast electron microscope. We focused on easily-adjustable parameters, such as laser pulse duration, laser spot size, photon energy, Wehnelt aperture diameter, and photocathode size. In addition to establishing trends and dispersion behaviors, we identify regimes within which packet duration can be 100s of fs and approach the 300 fs laser limit employed here. Overall, the results provide a detailed picture of the temporal behavior of single-electron packets in the Tecnai Femto gun region, forming the initial contribution of a larger effort.
Collapse
Affiliation(s)
- Wyatt A Curtis
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN, 55455, USA.
| | - David J Flannigan
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
26
|
Pei L, Li G, Lindsey K, Zhang X, Wang M. Plant 3D genomics: the exploration and application of chromatin organization. THE NEW PHYTOLOGIST 2021; 230:1772-1786. [PMID: 33560539 PMCID: PMC8252774 DOI: 10.1111/nph.17262] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/01/2021] [Indexed: 05/29/2023]
Abstract
Eukaryotic genomes are highly folded for packing into higher-order chromatin structures in the nucleus. With the emergence of state-of-the-art chromosome conformation capture methods and microscopic imaging techniques, the spatial organization of chromatin and its functional implications have been interrogated. Our knowledge of 3D chromatin organization in plants has improved dramatically in the past few years, building on the early advances in animal systems. Here, we review recent advances in 3D genome mapping approaches, our understanding of the sophisticated organization of spatial structures, and the application of 3D genomic principles in plants. We also discuss directions for future developments in 3D genomics in plants.
Collapse
Affiliation(s)
- Liuling Pei
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| | - Guoliang Li
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of InformaticsHuazhong Agricultural UniversityWuhanHubei430070China
| | - Keith Lindsey
- Department of BiosciencesDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| |
Collapse
|
27
|
Ben Hayun A, Reinhardt O, Nemirovsky J, Karnieli A, Rivera N, Kaminer I. Shaping quantum photonic states using free electrons. SCIENCE ADVANCES 2021; 7:eabe4270. [PMID: 33692108 PMCID: PMC7946371 DOI: 10.1126/sciadv.abe4270] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/25/2021] [Indexed: 05/29/2023]
Abstract
It is a long-standing goal to create light with unique quantum properties such as squeezing and entanglement. We propose the generation of quantum light using free-electron interactions, going beyond their already ubiquitous use in generating classical light. This concept is motivated by developments in electron microscopy, which recently demonstrated quantum free-electron interactions with light in photonic cavities. Such electron microscopes provide platforms for shaping quantum states of light through a judicious choice of the input light and electron states. Specifically, we show how electron energy combs implement photon displacement operations, creating displaced-Fock and displaced-squeezed states. We develop the theory for consecutive electron-cavity interactions with a common cavity and show how to generate any target Fock state. Looking forward, exploiting the degrees of freedom of electrons, light, and their interaction may achieve complete control over the quantum state of the generated light, leading to novel light statistics and correlations.
Collapse
Affiliation(s)
- A Ben Hayun
- Department of Electrical Engineering and Solid State Institute, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - O Reinhardt
- Department of Electrical Engineering and Solid State Institute, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - J Nemirovsky
- Department of Electrical Engineering and Solid State Institute, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - A Karnieli
- Sackler School of Physics, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - N Rivera
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - I Kaminer
- Department of Electrical Engineering and Solid State Institute, Technion, Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
28
|
Du DX, Reisbick SA, Flannigan DJ. UEMtomaton: A Source-Available Platform to Aid in Start-up of Ultrafast Electron Microscopy Labs. Ultramicroscopy 2021; 223:113235. [PMID: 33647871 DOI: 10.1016/j.ultramic.2021.113235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/11/2021] [Accepted: 02/20/2021] [Indexed: 10/22/2022]
Abstract
The steady rise in the number of ultrafast electron microscopy (UEM) labs, in addition to the opacity and lack of detailed descriptions of current approaches that would enable point-by-point construction, has created an opportunity for sharing common methods and instrumentation for (for example) automating data acquisition to assist in efficient lab start-up and to learn about common and robust protocols. In the spirit of open sharing of methods, we provide here a description of an entry-level method and user interface (UI) for automating UEM experiments, and we provide access to the source code and scripts (source-available) for ease of implementation or as a starting reference point for those entering or seeking to enter the field (https://github.com/CEMSFlannigan/UEMtomaton/releases/tag/v1.0). Core instrumentation and physical connections in the UEM lab at Minnesota are described. Interface communication schemes consisting of duo server-client pairs between critical components - the optical delay stage and the UEM digital camera - are presented, with emphasis placed on describing the logic and communications sequence designed to conduct automated series acquisitions. An application designed and programmed with C++/CLI as Windows Forms in Microsoft Visual Studio - dubbed UEMtomaton - is also presented. Key to the UI layout is centralization of the automation tasks and establishment of communication within the software rather than by interfacing with each individual workstation. It is our hope that this note provides useful insight for current and future UEM researchers, particularly with respect to generalizability and portability of the approach to emerging labs. We note that while this basic, entry-level approach is certainly not the most sophisticated or comprehensive of those currently in use, we feel there is nevertheless value in clearly communicating a proven straightforward method to hopefully lower the barrier to entry into the field.
Collapse
Affiliation(s)
- Daniel X Du
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - Spencer A Reisbick
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - David J Flannigan
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
29
|
Ponce A, Aguilar JA, Tate J, Yacamán MJ. Advances in the electron diffraction characterization of atomic clusters and nanoparticles. NANOSCALE ADVANCES 2021; 3:311-325. [PMID: 36131739 PMCID: PMC9417509 DOI: 10.1039/d0na00590h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/15/2020] [Indexed: 06/15/2023]
Abstract
Nanoparticles and metallic clusters continue to make a remarkable impact on novel and emerging technologies. In recent years, there have been impressive advances in the controlled synthesis of clusters and their advanced characterization. One of the most common ways to determine the structures of nanoparticles and clusters is by means of X-ray diffraction methods. However, this requires the clusters to crystallize in a similar way to those used in protein studies, which is not possible in many cases. Novel methods based on electron diffraction have been used to efficiently study individual nanoparticles and clusters and these can overcome the obstacles commonly encountered during X-ray diffraction methods without the need for large crystals. These novel methodologies have improved with advances in electron microscopy instrumentation and electron detection. Here, we review advanced methodologies for characterizing metallic nanoparticles and clusters using a variety of electron diffraction procedures. These include selected area electron diffraction, nanobeam diffraction, coherent electron diffraction, precession electron diffraction, scanning transmission electron microcopy diffraction, and high throughput data analytics, which leverage deep learning to reduce the propensity for data errors and translate nanometer and atomic scale measurements into material data.
Collapse
Affiliation(s)
- Arturo Ponce
- Department of Physics and Astronomy, The University of Texas at San Antonio San Antonio Texas 78249 USA
| | - Jeffery A Aguilar
- Idaho National Laboratory, Nuclear Science and Technology Division Idaho Falls Idaho 83415 USA
- Lockheed Martin Space, Advanced Technology Center Palo Alto California 94304 USA
| | - Jess Tate
- University of Utah, Scientific Computing Imaging Institute, Department of Electrical and Computer Engineering Salt Lake City Utah USA
| | - Miguel José Yacamán
- Department of Applied Physics and Materials Science, Center for Materials Interfaces in Research and Applications, Northern Arizona University Flagstaff AZ USA
| |
Collapse
|
30
|
Chen Q, Dwyer C, Sheng G, Zhu C, Li X, Zheng C, Zhu Y. Imaging Beam-Sensitive Materials by Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907619. [PMID: 32108394 DOI: 10.1002/adma.201907619] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/20/2019] [Indexed: 05/15/2023]
Abstract
Electron microscopy allows the extraction of multidimensional spatiotemporally correlated structural information of diverse materials down to atomic resolution, which is essential for figuring out their structure-property relationships. Unfortunately, the high-energy electrons that carry this important information can cause damage by modulating the structures of the materials. This has become a significant problem concerning the recent boost in materials science applications of a wide range of beam-sensitive materials, including metal-organic frameworks, covalent-organic frameworks, organic-inorganic hybrid materials, 2D materials, and zeolites. To this end, developing electron microscopy techniques that minimize the electron beam damage for the extraction of intrinsic structural information turns out to be a compelling but challenging need. This article provides a comprehensive review on the revolutionary strategies toward the electron microscopic imaging of beam-sensitive materials and associated materials science discoveries, based on the principles of electron-matter interaction and mechanisms of electron beam damage. Finally, perspectives and future trends in this field are put forward.
Collapse
Affiliation(s)
- Qiaoli Chen
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Christian Dwyer
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Guan Sheng
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Chongzhi Zhu
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaonian Li
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Changlin Zheng
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200438, China
| | - Yihan Zhu
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
31
|
Zhao J, Bakr OM, Mohammed OF. Ultrafast electron imaging of surface charge carrier dynamics at low voltage. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:021001. [PMID: 32266302 PMCID: PMC7105398 DOI: 10.1063/4.0000007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
The performance of optoelectronic devices strongly depends on charge carrier dynamics on top of surfaces of the absorber layers. Unfortunately, this information cannot be selectively probed using conventional ultrafast laser spectroscopic methods, due to the large penetration depth (tens of nm to μm) of the photon pulses in the pump-probe configurations. Therefore, ultrafast time-resolved approaches that can directly and selectively visualize the behavior of the surface carrier dynamics are urgently needed. Here, we introduce a novel methodology of low-voltage scanning ultrafast electron microscopy that can take ultrafast time-resolved images (snapshots) of the surface of materials at the sub-nanometer level. By this approach, the surface of the photoactive materials is optically excited and imaged, using a pulsed low-voltage electron beam (1 keV) that interacts with the surface to generate secondary electrons with an energy of a few eV, and that are emitted only from the top surface of materials, providing direct information about the carrier dynamics and the localization of electron/holes in real space and time. An outlook on the potential applications of this low voltage approach in different disciplines will also be discussed.
Collapse
Affiliation(s)
- Jianfeng Zhao
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Osman M Bakr
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Omar F Mohammed
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
32
|
Du DX, Flannigan DJ. Imaging phonon dynamics with ultrafast electron microscopy: Kinematical and dynamical simulations. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:024103. [PMID: 32341940 PMCID: PMC7166119 DOI: 10.1063/1.5144682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
Ultrafast x-ray and electron scattering techniques have proven to be useful for probing the transient elastic lattice deformations associated with photoexcited coherent acoustic phonons. Indeed, femtosecond electron imaging using an ultrafast electron microscope (UEM) has been used to directly image the influence of nanoscale structural and morphological discontinuities on the emergence, propagation, dispersion, and decay behaviors in a variety of materials. Here, we describe our progress toward the development of methods ultimately aimed at quantifying acoustic-phonon properties from real-space UEM images via conventional image simulation methods extended to the associated strain-wave lattice deformation symmetries and extents. Using a model system consisting of pristine single-crystal Ge and a single, symmetric Lamb-type guided-wave mode, we calculate the transient strain profiles excited in a wedge specimen and then apply both kinematical- and dynamical-scattering methods to simulate the resulting UEM bright-field images. While measurable contrast strengths arising from the phonon wavetrains are found for optimally oriented specimens using both approaches, incorporation of dynamical scattering effects via a multi-slice method returns better qualitative agreement with experimental observations. Contrast strengths arising solely from phonon-induced local lattice deformations are increased by nearly an order of magnitude when incorporating multiple electron scattering effects. We also explicitly demonstrate the effects of changes in global specimen orientation on the observed contrast strength, and we discuss the implications for increasing the sophistication of the model with respect to quantification of phonon properties from UEM images.
Collapse
Affiliation(s)
| | - David J. Flannigan
- Author to whom correspondence should be addressed:. Tel.: +1 612-625-3867
| |
Collapse
|
33
|
Lau JW, Schliep KB, Katz MB, Gokhale VJ, Gorman JJ, Jing C, Liu A, Zhao Y, Montgomery E, Choe H, Rush W, Kanareykin A, Fu X, Zhu Y. Laser-free GHz stroboscopic transmission electron microscope: Components, system integration, and practical considerations for pump-probe measurements. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:021301. [PMID: 32113442 PMCID: PMC11210549 DOI: 10.1063/1.5131758] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
A 300 keV transmission electron microscope was modified to produce broadband pulsed beams that can be, in principle, between 40 MHz and 12 GHz, corresponding to temporal resolution in the nanosecond to picosecond range without an excitation laser. The key enabling technology is a pair of phase-matched modulating and de-modulating traveling wave metallic comb striplines (pulsers). An initial temporal resolution of 30 ps was achieved with a strobe frequency of 6.0 GHz. The placement of the pulsers, mounted immediately below the gun, allows for preservation of all optical configurations, otherwise available to the unmodified instrument, and therefore makes such a post-modified instrument for dual-use, i.e., both pulsed-beam mode (i.e., stroboscopic time-resolved) and conventional continuous waveform mode. In this article, we describe the elements inserted into the beam path, challenges encountered during integration with an in-service microscope, and early results from an electric-field-driven pump-probe experiment. We conclude with ideas for making this class of instruments broadly applicable for examining cyclical and repeatable phenomena.
Collapse
Affiliation(s)
- June W. Lau
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Karl B. Schliep
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Michael B. Katz
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Vikrant J. Gokhale
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Jason J. Gorman
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Chunguang Jing
- Euclid Techlabs, LLC, 365 Remington Blvd., Bolingbrook, Illinois 60440, USA
| | - Ao Liu
- Euclid Techlabs, LLC, 365 Remington Blvd., Bolingbrook, Illinois 60440, USA
| | - Yubin Zhao
- Euclid Techlabs, LLC, 365 Remington Blvd., Bolingbrook, Illinois 60440, USA
| | - Eric Montgomery
- Euclid Techlabs, LLC, 365 Remington Blvd., Bolingbrook, Illinois 60440, USA
| | - Hyeokmin Choe
- Euclid Techlabs, LLC, 365 Remington Blvd., Bolingbrook, Illinois 60440, USA
| | - Wade Rush
- Euclid Techlabs, LLC, 365 Remington Blvd., Bolingbrook, Illinois 60440, USA
| | - Alexei Kanareykin
- Euclid Techlabs, LLC, 365 Remington Blvd., Bolingbrook, Illinois 60440, USA
| | - Xuewen Fu
- Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Yimei Zhu
- Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
34
|
Garg M, Kern K. Attosecond coherent manipulation of electrons in tunneling microscopy. Science 2020; 367:411-415. [DOI: 10.1126/science.aaz1098] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/30/2019] [Indexed: 01/24/2023]
Affiliation(s)
- M. Garg
- Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany
| | - K. Kern
- Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany
- Institut de Physique, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
35
|
Gogate MR. New perspectives on the nature and imaging of active site in small metallic particles: I. Geometric effects. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1692002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Ren J, Wang Y, Yao Y, Wang Y, Fei X, Qi P, Lin S, Kaplan DL, Buehler MJ, Ling S. Biological Material Interfaces as Inspiration for Mechanical and Optical Material Designs. Chem Rev 2019; 119:12279-12336. [DOI: 10.1021/acs.chemrev.9b00416] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yu Wang
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Yuan Yao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yang Wang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Xiang Fei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ping Qi
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Shihui Lin
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Markus J. Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
37
|
Jing C, Zhu Y, Liu A, Schliep K, Fu X, Zhao Y, Montgomery E, Rush W, Kanareykin A, Katz M, Lau J. Tunable electron beam pulser for picoseconds stroboscopic microscopy in transmission electron microscopes. Ultramicroscopy 2019; 207:112829. [PMID: 31476611 PMCID: PMC11210548 DOI: 10.1016/j.ultramic.2019.112829] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/13/2019] [Accepted: 08/21/2019] [Indexed: 11/19/2022]
Abstract
For two decades, time-resolved transmission electron microscopes (TEM) have relied on pulsed-laser photoemission to generate electron bunches to explore sub-microsecond to sub-picosecond dynamics. Despite the vast successes of photoemission time-resolved TEMs, laser-based systems are inherently complex, thus tend not to be turn-key. In this paper, we report on the successful retrofit of a commercial 200 keV TEM, without an external laser, capable of producing continuously tunable pulsed electron beams with repetition rates from 0.1 GHz up to 12 GHz and a tunable bunch length from tens of nanoseconds down to 10 ps. This innovation enables temporal access into previously inaccessible regimes: i.e., high repetition rate stroboscopic experiments. Combination of a pair of RF-driven traveling wave stripline elements, quadrupole magnets, and a variable beam aperture enables operation of the instrument in (1) continuous waveform (CW) mode as though the instrument was never modified (i.e. convention TEM operation mode, where the electrons from the emission cathode randomly arrive at the sample without resolvable time information), (2) stroboscopic (pump-probe) mode, and (3) pulsed beam mode for dose rate sensitive materials. To assess the effect of a pulsed beam on image quality, we examined Au nanoparticles using bright field, high-resolution TEM imaging and selected area diffraction in both continuous and pulsed-beam mode. In comparison of conventional TEMs, the add-on beam pulser enables the observation of ultrafast dynamic behavior in materials that are reversible under synchronized excitation.
Collapse
Affiliation(s)
- Chunguang Jing
- Euclid Techlabs, LLC, 365 Remington Blvd, Bolingbrook, USA.
| | - Yimei Zhu
- Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973, USA.
| | - Ao Liu
- Euclid Techlabs, LLC, 365 Remington Blvd, Bolingbrook, USA
| | - Karl Schliep
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Xuewen Fu
- Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Yubin Zhao
- Euclid Techlabs, LLC, 365 Remington Blvd, Bolingbrook, USA
| | | | - Wade Rush
- Euclid Techlabs, LLC, 365 Remington Blvd, Bolingbrook, USA
| | | | - Michael Katz
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - June Lau
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
38
|
Zhu C, Zheng D, Wang H, Zhang M, Li Z, Sun S, Xu P, Tian H, Li Z, Yang H, Li J. Development of analytical ultrafast transmission electron microscopy based on laser-driven Schottky field emission. Ultramicroscopy 2019; 209:112887. [PMID: 31739190 DOI: 10.1016/j.ultramic.2019.112887] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/29/2019] [Accepted: 11/09/2019] [Indexed: 10/25/2022]
Abstract
A new design scheme for ultrafast transmission electron microscopy (UTEM) has been developed based on a Schottky-type field emission gun (FEG) at the Institute of Physics, Chinese Academy of Sciences (IOP CAS). In this UTEM setup, electron pulse emission is achieved by integrating a laser port between the electron gun and the column and the resulting microscope can operate in either continuous or pulsed mode. In pulsed mode, the optimized electron beam properties are an energy width of ~0.65 eV, micrometer-scale coherence lengths and sub-picosecond pulse durations. The potential applications of this UTEM, which include electron diffraction, high-resolution imaging, electron energy loss spectroscopy, and photon-induced near-field electron microscopy, are demonstrated using ultrafast electron pulses. Furthermore, we use a nanosecond laser (~10 ns) to show that the laser-driven FEG can support high-quality TEM imaging and electron holography when using a stroboscopic configuration. Our results also indicate that FEG-based ultrafast electron sources may enable high-performance analytical UTEM.
Collapse
Affiliation(s)
- Chunhui Zhu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Dingguo Zheng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Hong Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Ming Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhongwen Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shuaishuai Sun
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peng Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huanfang Tian
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zian Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huaixin Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China; Yangtze River Delta Physics Research Center Co., Ltd., Liyang, Jiangsu, 213300, China; Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Jianqi Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China; Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China.
| |
Collapse
|
39
|
VandenBussche EJ, Flannigan DJ. Reducing Radiation Damage in Soft Matter with Femtosecond-Timed Single-Electron Packets. NANO LETTERS 2019; 19:6687-6694. [PMID: 31433192 DOI: 10.1021/acs.nanolett.9b03074] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite the development of a myriad of mitigation methods, radiation damage continues to be a major limiting factor in transmission electron microscopy. Intriguing results have been reported using pulsed-laser driven and chopped electron beams for modulated dose delivery, but the underlying relationships and effects remain unclear. Indeed, delivering precisely timed single-electron packets to the specimen has yet to be systematically explored, and no direct comparisons to conventional methods within a common parameter space have been made. Here, using a model linear saturated hydrocarbon (n-hexatriacontane, C36H74), we show that precisely timed delivery of each electron to the specimen, with a well-defined and uniform time between arrival, leads to a repeatable reduction in damage compared to conventional ultralow-dose methods for the same dose rate and the same accumulated dose. Using a femtosecond pulsed laser to confine the probability of electron emission to a 300 fs temporal window, we find damage to be sensitively dependent on the time between electron arrival (controlled with the laser repetition rate) and on the number of electrons per packet (controlled with the laser-pulse energy). Relative arrival times of 5, 20, and 100 μs were tested for electron packets comprised of, on average, 1, 5, and 20 electrons. In general, damage increased with decreasing time between electrons and, more substantially, with increasing electron number. Further, we find that improvements relative to conventional methods vanish once a threshold number of electrons per packet is reached. The results indicate that precise electron-by-electron dose delivery leads to a repeatable reduction in irreversible structural damage, and the systematic studies indicate this arises from control of the time between sequential electrons arriving within the same damage radius, all else being equal.
Collapse
Affiliation(s)
- Elisah J VandenBussche
- Department of Chemical Engineering and Materials Science , University of Minnesota , 421 Washington Avenue SE , Minneapolis , Minnesota 55455 , United States
| | - David J Flannigan
- Department of Chemical Engineering and Materials Science , University of Minnesota , 421 Washington Avenue SE , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
40
|
Zhao L, Wang Z, Tang H, Wang R, Cheng Y, Lu C, Jiang T, Zhu P, Hu L, Song W, Wang H, Qiu J, Kostin R, Jing C, Antipov S, Wang P, Qi J, Cheng Y, Xiang D, Zhang J. Terahertz Oscilloscope for Recording Time Information of Ultrashort Electron Beams. PHYSICAL REVIEW LETTERS 2019; 122:144801. [PMID: 31050450 DOI: 10.1103/physrevlett.122.144801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 05/09/2023]
Abstract
We propose and demonstrate a terahertz (THz) oscilloscope for recording time information of an ultrashort electron beam. By injecting a laser-driven THz pulse with circular polarization into a dielectric tube, the electron beam is swept helically such that the time information is uniformly encoded into the angular distribution that allows one to characterize both the temporal profile and timing jitter of an electron beam. The dynamic range of the measurement in such a configuration is significantly increased compared to deflection with a linearly polarized THz pulse. With this THz oscilloscope, nearly 50-fold longitudinal compression of a relativistic electron beam to about 15 fs (rms) is directly visualized with its arrival time determined with 3 fs accuracy. This technique bridges the gap between streaking of photoelectrons with optical lasers and deflection of relativistic electron beams with radio-frequency deflectors, and should have wide applications in many ultrashort electron-beam-based facilities.
Collapse
Affiliation(s)
- Lingrong Zhao
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhe Wang
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Heng Tang
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Wang
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yun Cheng
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Lu
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Jiang
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengfei Zhu
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Long Hu
- Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an, Shanxi 710024, China
| | - Wei Song
- Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an, Shanxi 710024, China
| | - Huida Wang
- Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an, Shanxi 710024, China
| | - Jiaqi Qiu
- Nuctech Company Limited, Beijing 100084, China
| | - Roman Kostin
- Euclid Techlabs LLC, Bolingbrook, Illinois 60440, USA
| | | | | | - Peng Wang
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jia Qi
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Ya Cheng
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Dao Xiang
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
- Tsung-Dao Lee Institute, Shanghai 200240, China
| | - Jie Zhang
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
41
|
Houdellier F, Caruso GM, Weber S, Hÿtch MJ, Gatel C, Arbouet A. Optimization of off-axis electron holography performed with femtosecond electron pulses. Ultramicroscopy 2019; 202:26-32. [PMID: 30933740 DOI: 10.1016/j.ultramic.2019.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 11/25/2022]
Abstract
We report on electron holography experiments performed with femtosecond electron pulses in an ultrafast coherent Transmission Electron Microscope based on a laser-driven cold field emission gun. We first discuss the experimental requirements related to the long acquisition times imposed by the low emission/probe current available in these instruments. The experimental parameters are first optimized and electron holograms are then acquired in vacuum and on a nano-object showing that useful physical properties can nevertheless be extracted from the hologram phase in pulsed condition. Finally, we show that the acquisition of short exposure time holograms assembled in a stack, combined with a computer-assisted shift compensation of usual instabilities encountered in holography, such as beam and biprism wire instabilities, can yield electron holograms acquired with a much better contrast paving the way to ultrafast time-resolved electron holography.
Collapse
Affiliation(s)
- F Houdellier
- CEMES-CNRS, Université de Toulouse, Toulouse, France.
| | - G M Caruso
- CEMES-CNRS, Université de Toulouse, Toulouse, France
| | - S Weber
- CEMES-CNRS, Université de Toulouse, Toulouse, France
| | - M J Hÿtch
- CEMES-CNRS, Université de Toulouse, Toulouse, France
| | - C Gatel
- CEMES-CNRS, Université de Toulouse, Toulouse, France
| | - A Arbouet
- CEMES-CNRS, Université de Toulouse, Toulouse, France.
| |
Collapse
|
42
|
Chen B, Fu X, Lysevych M, Tan HH, Jagadish C. Four-Dimensional Probing of Phase-Reaction Dynamics in Au/GaAs Nanowires. NANO LETTERS 2019; 19:781-786. [PMID: 30677299 DOI: 10.1021/acs.nanolett.8b03870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanoeutectic phase reaction covers the fundamental study of a chemical and physical reaction of multiple phases at the nanoscale. Here, we report the direct visualization of phase-reaction dynamics in Au/GaAs nanowires (NWs) using four-dimensional (4D) electron microscopy. The NW phase reactions were initiated with a pump laser pulse, while the following dynamics in the Au/GaAs NW was probed by a precisely time-delayed electron pulse. Single-pulse imaging reveals that the cubic zinc-blende NW presents a transient length increase within the time duration of ∼150 ns, giving the appearance of intermediate phase reactions at an early stage. A final length reduction of the NW is observed after the phase reactions have fully ended. In contrast, only length reduction is seen throughout the entire process in GaAs/AlGaAs core-shell and hexagonal wurtzite GaAs NWs. The reasons for the above intriguing phenomena are discussed. The eutectic-related phenomena in both zinc-blende and wurtzite materials offer a comprehensive understanding of phase-reaction dynamics in polytypic structures commonly available in compound semiconductors.
Collapse
Affiliation(s)
- Bin Chen
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Xuewen Fu
- Condensed Matter Physics & Materials Science Department , Brookhaven National Laboratory , Upton , New York 11973 , United States
| | | | | | | |
Collapse
|
43
|
Xu X, Isik T, Kundu S, Ortalan V. Investigation of laser-induced inter-welding between Au and Ag nanoparticles and the plasmonic properties of welded dimers. NANOSCALE 2018; 10:23050-23058. [PMID: 30511072 DOI: 10.1039/c8nr07718e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Noble metallic nanoparticles with unique plasmonic properties are useful in a variety of applications including bio-imaging, sensing, cancer therapy, etc. The properties of metallic nanoparticles can be tuned in multiple ways, among which laser welding is a highly efficient method. In this study, laser-induced inter-welding of Ag-Au nanoparticle (NP) dimers was investigated using in situ transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX). For the first time, the welding process was directly visualized. The structural and compositional evolution of Ag-Au dimers was studied in detail, and several typical nanostructures formed during the welding process, including two types of core-shell structures, were discovered. Based on these observations, we proposed a complete mechanism explaining how welding proceeds under the influence of a laser. Finite difference time domain (FDTD) simulations demonstrated that the plasmonic properties of welded Ag-Au dimers were different from those of pure Au-Au or Ag-Ag dimers and can be tuned by forming shells, alloying or changing the size ratio of Ag and Au NPs.
Collapse
Affiliation(s)
- Xiaohui Xu
- School of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
44
|
Barlow Myers CW, Pine NJ, Bryan WA. Femtosecond transmission electron microscopy for nanoscale photonics: a numerical study. NANOSCALE 2018; 10:20628-20639. [PMID: 30387797 DOI: 10.1039/c8nr06235h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recent developments in ultrafast electron microscopy have shown that spatial and temporal information can be collected simultaneously on very small and fast scales. In the present work, an instrumental design study with application to nanoscale dynamics, we optimize the conditions for a femtosecond transmission electron microscope (fs-TEM). The fs-TEM numerically studied employs a metallic nanotip source, electrostatic acceleration, magnetic lenses, a condenser-objective around the sample and a temporal compressor, and considers space-charge effects during propagation. We find a spatial resolution of the order of 1 nm and a temporal resolution of below 10 fs will be feasible for pulses comprised of on average 20 electrons. The influence of a transverse electric field at the sample plane is modelled, indicating 1 V μm-1 can be resolved, corresponding to a surface charge density of 10e per μm2, comparable to fields generated in light-driven electronics and ultrafast nanoplasmonics. The realisation of such an instrument is anticipated to facilitate unprecedented elucidation of laser-initiated physical, chemical and biological structural dynamics on atomic time- and length-scales.
Collapse
Affiliation(s)
- C W Barlow Myers
- Department of Physics, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| | | | | |
Collapse
|
45
|
VandenBussche EJ, Flannigan DJ. Sources of error in Debye-Waller-effect measurements relevant to studies of photoinduced structural dynamics. Ultramicroscopy 2018; 196:111-120. [PMID: 30352384 DOI: 10.1016/j.ultramic.2018.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/23/2018] [Accepted: 10/04/2018] [Indexed: 10/28/2022]
Abstract
We identify and quantify several practical effects likely to be present in both static and ultrafast electron-scattering experiments that may interfere with the Debye-Waller (DW) effect. Using 120-nm thick, small-grained, polycrystalline aluminum foils as a test system, we illustrate the impact of specimen tilting, in-plane translation, and changes in z height on Debye-Scherrer-ring intensities. We find that tilting by less than one degree can result in statistically-significant changes in diffracted-beam intensities for large specimen regions containing > 105 nanocrystalline grains. We demonstrate that, in addition to effective changes in the field of view with tilting, slight texturing of the film can result in deviations from expected DW-effect behavior. Further, we find that in-plane translations of as little as 20 nm also produce statistically-significant intensity changes, while normalization to total image counts eliminates such effects arising from changes in z height. The results indicate that the use of polycrystalline films in ultrafast electron-scattering experiments can greatly reduce the negative impacts of these effects as compared to single-crystal specimens, though it does not entirely eliminate them. Thus, it is important to account for such effects when studying thin-foil specimens having relatively short reciprocal-lattice rods.
Collapse
Affiliation(s)
- Elisah J VandenBussche
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, MN 55455, United States
| | - David J Flannigan
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, MN 55455, United States.
| |
Collapse
|
46
|
Picher M, Bücker K, LaGrange T, Banhart F. Imaging and electron energy-loss spectroscopy using single nanosecond electron pulses. Ultramicroscopy 2018; 188:41-47. [PMID: 29547872 DOI: 10.1016/j.ultramic.2018.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/27/2018] [Accepted: 03/02/2018] [Indexed: 10/17/2022]
Abstract
We implement a parametric study with single electron pulses having a 7 ns duration to find the optimal conditions for imaging, diffraction, and electron energy-loss spectroscopy (EELS) in the single-shot approach. Photoelectron pulses are generated by illuminating a flat tantalum cathode with 213 nm nanosecond laser pulses in a 200 kV transmission electron microscope (TEM) with thermionic gun and Wehnelt electrode. For the first time, an EEL spectrometer is used to measure the energy distribution of single nanosecond electron pulses which is crucial for understanding the ideal imaging conditions of the single-shot approach. By varying the laser power, the Wehnelt bias, and the condenser lens settings, the optimum TEM operation conditions for the single-shot approach are revealed. Due to space charge and the Boersch effect, the energy width of the pulses under maximized emission conditions is far too high for imaging or spectroscopy. However, by using the Wehnelt electrode as an energy filter, the energy width of the pulses can be reduced to 2 eV, though at the expense of intensity. The first EEL spectra taken with nanosecond electron pulses are shown in this study. With 7 ns pulses, an image resolution of 25 nm is attained. It is shown how the spherical and chromatic aberrations of the objective lens as well as shot noise limit the resolution. We summarize by giving perspectives for improving the single-shot time-resolved approach by using aberration correction.
Collapse
Affiliation(s)
- Matthieu Picher
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR 7504, Strasbourg 67034, France
| | - Kerstin Bücker
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR 7504, Strasbourg 67034, France
| | - Thomas LaGrange
- Interdisciplinary Centre for Electron Microscopy (CIME), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Florian Banhart
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR 7504, Strasbourg 67034, France.
| |
Collapse
|
47
|
van Rens J, Verhoeven W, Franssen J, Lassise A, Stragier X, Kieft E, Mutsaers P, Luiten O. Theory and particle tracking simulations of a resonant radiofrequency deflection cavity in TM 110 mode for ultrafast electron microscopy. Ultramicroscopy 2018; 184:77-89. [DOI: 10.1016/j.ultramic.2017.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 11/17/2022]
|
48
|
Weppelman I, Moerland R, Hoogenboom J, Kruit P. Concept and design of a beam blanker with integrated photoconductive switch for ultrafast electron microscopy. Ultramicroscopy 2018; 184:8-17. [DOI: 10.1016/j.ultramic.2017.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/30/2017] [Accepted: 10/05/2017] [Indexed: 11/26/2022]
|
49
|
Ultrafast Transmission Electron Microscopy: Historical Development, Instrumentation, and Applications. ADVANCES IN IMAGING AND ELECTRON PHYSICS 2018. [DOI: 10.1016/bs.aiep.2018.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
50
|
Houdellier F, Caruso GM, Weber S, Kociak M, Arbouet A. Development of a high brightness ultrafast Transmission Electron Microscope based on a laser-driven cold field emission source. Ultramicroscopy 2017; 186:128-138. [PMID: 29306810 DOI: 10.1016/j.ultramic.2017.12.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/18/2017] [Accepted: 12/22/2017] [Indexed: 11/28/2022]
Abstract
We report on the development of an ultrafast Transmission Electron Microscope based on a cold field emission source which can operate in either DC or ultrafast mode. Electron emission from a tungsten nanotip is triggered by femtosecond laser pulses which are tightly focused by optical components integrated inside a cold field emission source close to the cathode. The properties of the electron probe (brightness, angular current density, stability) are quantitatively determined. The measured brightness is the largest reported so far for UTEMs. Examples of imaging, diffraction and spectroscopy using ultrashort electron pulses are given. Finally, the potential of this instrument is illustrated by performing electron holography in the off-axis configuration using ultrashort electron pulses.
Collapse
Affiliation(s)
- F Houdellier
- CEMES-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, 31055 Toulouse, France.
| | - G M Caruso
- CEMES-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, 31055 Toulouse, France
| | - S Weber
- CEMES-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, 31055 Toulouse, France
| | - M Kociak
- Laboratoire de Physique des Solides, Université Paris Sud, Bâtiment 510, UMR CNRS 8502, Orsay 91400, France
| | - A Arbouet
- CEMES-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, 31055 Toulouse, France.
| |
Collapse
|